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Abstract

Uncertainty Quantification (UQ) is an umbrella term referring to a broad class

of methods which typically involve the combination of computational modeling, ex-

perimental data and expert knowledge to study a physical system. A parameter, in

the usual statistical sense, is said to be physical if it has a meaningful interpretation

with respect to the physical system. Physical parameters can be viewed as inherent

properties of a physical process and have a corresponding true value. Statistical

inference for physical parameters is a challenging problem in UQ due to the inade-

quacy of the computer model. In this thesis, we provide methods for UQ for physical

parameters in the presence of model discrepancy which allow us to save time, iden-

tify overfitting, incorporate physical constraints, diagnose challenging problems and

provide more robust answers to the inverse problem.
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Chapter 1

Introduction & Background

“The only true wisdom is in knowing that you do not know.” – Socrates

1.1 Overview

There is no generally accepted definition of Uncertainty Quantification (UQ), perhaps

due to its separate and simultaneous development in the fields of applied mathemat-

ics, statistics and engineering/physics. Nonetheless, many authors have attempted

to define UQ, and some notable examples are given as follows [38].

“UQ is precisely the quantification of one’s lack of knowledge concerning

(in science and engineering) a physical reality.” – J. Tinsley Oden

“Combining computational models, physical observations and possibly ex-

pert judgment to make inferences about a physical system.” – David Hig-

don

“UQ is about providing bounds on our knowledge of system behavior and

on confidence in our predictions.” – Omar Knio

1



Chapter 1. Introduction & Background

The key component which can be found at the intersection of almost every definition

of UQ, is that physics-inspired computational modeling, statistical inference and

often experimental data are combined in an e↵ort to learn about a physical system.

Although rigorously defining UQ is a challenging task, we subscribe to the the

old adage if it looks like UQ, swims like UQ and quacks like UQ, then it probably is

UQ. By this, we mean that UQ can often be recognized in terms of the problems

that it attempts to solve even though the methods used to solve these problems may

vary. A few examples of physical systems which may be of interest include (i) the

e↵ect of global climate on glaciers and sea ice [70, 82, 122], (ii) the behavior of a

tropical storm [2], (iii) the spread of a global pandemic [111] and (iv) the response

of a material under extreme conditions [21,132]. The primary goal of UQ is to learn

about these systems (and many others) and to characterize or quantify precisely

what we know and do not know about them. To accomplish this, UQ may involve

(i) forward propagation of uncertainty [62,89,97], (ii) inverse problems [87,117,148],

(iii) response surface modeling [9,66], (iv) design of computer experiments [113,133],

(v) verification and validation [109], (vi) sensitivity analysis [134] and (vii) dimension

reduction [37,48, 152].

In this thesis, we will primarily focus on the inverse problem, in which experimen-

tal data is combined with a computational model and expert knowledge in order to

learn about physical parameters that govern the physical system of interest. This is

widely recognized as a challenging problem, especially in comparison with so-called

forward UQ, which involves making predictions about the physical system at previ-

ously unobserved settings [87,110].

The remainder of this thesis is summarized as follows. In Chapter 1 we give a

thorough summary of the UQ background that will be relevant to our work. Topics

include computer model emulation, model calibration, design of computer experi-

ments and Bayesian regularization. This is intended to be a contribution in its own

2



Chapter 1. Introduction & Background

right, because comprehensive summaries of UQ methodologies are presently lacking

and we include many foundational and modern references. In Chapter 2, we pro-

pose an extension of the Local Approximate Gaussian process framework of [66] and

demonstrate its superior computational properties for inherently sequential settings.

We suggest that the emulators developed in this setting are ideal for Bayesian model

calibration problems when the training set is too large for a standard Gaussian pro-

cess to be tractable. In Chapter 3, we return our attention to the primary objective

of physical parameter inference in the context of model calibration. We propose a

novel new metric for overfitting and a related regularization prior for the case where

measurement uncertainties are included as computer model inputs. In Chapter 4,

we take a detailed look at the inverse problem when the parameter of interest has a

physical interpretation. While it is known that the predominant model calibration

framework can fail in this setting, we show that even modern approaches for tackling

identifiability are insu�cient for this problem. We propose a new modularization

framework for Bayesian model calibration and demonstrate its value as a tool for

diagnosing the identifiability of physical parameters with respect to the computer

model. In Chapter 5, we discuss methods for performing cross validation when the

data has spatial or temporal structure as in model calibration. We demonstrate how

these cross validation strategies can be used to construct empirical priors for the

model discrepancy function and modularization is discussed in this setting.

1.2 Motivation: Compressibility of Tantalum

Consider a class of dynamic materials experiments in which a strong and sudden force

is imposed on a material of interest. There are a variety of impulses that may be

under consideration including explosives [7], guns [6], lasers [45] and pulsed magnetic

fields [5]. The relevant boundary condition generates extreme pressures and induces

3



Chapter 1. Introduction & Background

a directional stress wave which then propagates through the material of interest. The

way in which a material responds when subjected to extreme pressures is related to

the compressibility of the material and is a matter of profound scientific interest.

The broad “parameter” here is the function which describes the pressure-density

relationship of the material. For a given material, manufactured in a controlled

environment, this functional parameter can be viewed as an inherent property of

nature and must possess some “true value”. Rather than trying to estimate an

infinite dimensional parameter, the discussion can be simplified going forward by

specifying a parametric form for the pressure-density relationship. This parametric

form, known as the equation of state (EoS), reduces the estimation problem to that of

estimating a finite set of EoS parameters, denoted (↵1,↵2, · · ·↵p). Many physically

motivated EoS forms exist, including the Vinet [157] or Mie Gruneisen [75] equations,

but the particular selection should be made with regard for the material of interest

and with the use of expert opinion.

As a proof of concept, we will consider a set of previously published measurements

on tantalum which were generated using Sandia National Laboratories’ Z-Machine,

the world’s largest electromagnetic wave generator [20,136]. These experiments rep-

resent a useful testbed for model calibration methodology, because they have been

previously analyzed using state-of-the-art analytic techniques, with Bayesian model

calibration and again with a Bayesian e↵ective sample size (ESS) calibration pro-

cedure [20, 21]. In the simplified version of the experimental set up, shown in the

left panel of Figure 1.1, a strong magnetic field is generated as a boundary condi-

tion. Aluminum (Al) acts as an electrode and leads to a stress wave which propagates

through the system from left to right, and the velocity of this stress wave is measured

at the interface of the tantalum and lithium fluoride (LiF) samples. In this example,

Al and LiF are chosen for their desirable material properties, but also because these

materials behavior under extreme pressures are well understood which isolates the

pressure-density relationship for tantalum as the primary unknown. The field data,
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shown in the right panel of Figure 1.1, consists on p = 9 di↵erent experiments where

the color is used to represent experiments with (nearly) identical design variable

settings. In [21], it is noted that the peak pressure reached in these experiments is

70� 240GPa which is on the order of the pressure in the Earth’s inner core.

Figure 1.1: (left) A simplified model of the experimental setup. A magnetic field
boundary condition results in a stress wave which propagates through the system as a
function of time. The velocity of this stress wave is measured at the Ta LiF interface.
The velocity of the stress wave is influenced by the thickness of the tantalum and
aluminum samples, the thickness of the samples (which are measured with small
error) and the scaling of the boundary condition. (right) The experimental data
consists of the measured velocity curve for each of the p = 9 experiments.

For tantalum, prior (i.e. expert) information indicates that the pressure (P )

density (⇢) relationship may be appropriately modeled using the Vinet equation of

state

P (⇢) = 3B0

✓
1� ⇠
⇠2

◆
exp

⇢
3

2
(B0

0 � 1)(1� ⇠)
�

(1.1)

where

⇠(⇢) = (⇢0/⇢)
1/3. (1.2)

The parameters (B0, B0

0, ⇢0) are the bulk modulus, the bulk modulus pressure deriva-

tive and the initial (ambient) density of tantalum. We refer to these as physical

parameters, since they have a physical interpretation and they presumably have
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“true” meaningful values which are inherent properties of the system. Alternatively,

we can summarize the compressibility of tantalum using the pressure strain relation-

ship P (s), which is defined again by eq. (1.1) and eq. (1.3) but with strain defined

as

s = 1� ⇢

⇢0
. (1.3)

This implies that compressibility can be summarized with just the bulk modulus

(B0) and its pressure derivative (B0

0). Thus we might say that (B0, B0

0, ⇢0) are all

physical parameters, but only (B0, B0

0) are of primary scientific interest.

The ALEGRA wave propagation code [129] can be used to simulate functional

outputs which can then be compared to the velocimetry curves shown in Figure 1.1

and used for calibration. The computer model for a single experiment can be repre-

sented as ⌘(x,↵,�) where x denotes time (the single design variable) and ✓ = (↵,�)

represent a set of calibration parameters. As described in Section 1.4.3, we parti-

tion the calibration parameters as ↵ = (B0, B0

0) and � = (⇢0, ⌧Al, ⌧Ta, Bscale,�t) to

represent physical and nuisance parameters respectively. The parameters ⌧Al and

⌧Ta represent the thickness of the aluminum and tantalum samples. Although these

thickness parameters can be measured, they are measured with error and even a small

change in thickness can significantly impact the output of the computer model. Fi-

nally, the parameter Bscale is a constant magnetic field scaling term associated with

the boundary condition and �t describes the constant time-o↵set between the ex-

periments. In practice, we can align the functional data prior to calibration and fix

�t = 0 for all experiments. As a final comment, we note that some of the param-

eters (i.e. ⇢0) have physical interpretations and an argument could be made that

these parameters belong in ↵. Our choice is based on the parameters whose values

are of scientific interest with respect to the compressibility of tantalum. To simplify
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notation, we write

(B0, B
0

0) := (↵1,↵2) = ↵

(⇢0, ⌧Al, ⌧Ta, Bscale) := (�1, �2, �3, �4) = �.
(1.4)

Although there are p = 9 experiments, we can assume that B0 and B0

0 are constant

across all experiments. Since the tantalum samples were all cut from the same

plate, we will also assume that ⇢0 is constant across each experiment, but we assume

that the remaining three nuisance parameters have values which are experiment

dependent. This implies that the full set of calibration parameters is defined as

✓ = (↵,�1,�2, · · ·�9) (1.5)

where �j = (�1, �2j, �3j, �4j). Thus there are a total of 27 calibration parameters in

this model. The model likelihood is expressed as the product of p = 9 independent

likelihoods, where the likelihood for each experiment is given by eq. (1.26).

Since the ALEGRA wave propagation code is expensive to run, we are not given

full access to the model. Rather, we are given a set of d = 5000 input-output pairs for

each experiment, where the matrix of design points Xj is a generated using a Latin

hypercube design over the appropriate space. See [21] for specifics on the generation

of the design points or Section 1.5.1 for a general discussion of Latin hypercube

sampling.

1.3 The Computer Model and Emulation

Many important scientific applications use mathematical models to describe complex

physical processes [20, 67, 76, 111, 161]. As an example, consider the behavior of a

hurricane o↵ the east coast of North America. For obvious reasons, scientists are

interested in understanding the evolution of these tropical storms. A better under-

standing of how these storms move and change in space and time could lead directly
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to strategies that save lives and money. Hurricanes are rare events, and thus study-

ing these phenomena is expensive and time consuming. In the age of computation

power, computer models (or deterministic simulators), based on mathematics and

the physics of a process, have proved invaluable to the study of physical phenomena.

Throughout this thesis, we will denote the computer model by ⌘(x) : X ! R,
where the input space X is typically a subset of Rp. In later sections and chapters,

it will be useful to partition the input vector x into several di↵erent “types” of

inputs, but we make no such distinction here. We also assume that the output of the

computer model, i.e. the response variable, is a real number, but we acknowledge

that multivariate responses are possible and not uncommon [11, 76]. Although the

terms computer model and simulator are often used interchangeably, we prefer the

former since it does not obscure the deterministic nature of the model. In practice,

computer models often require a large amount of computation time. The models are

seldom linear or even convex functions of the (possibly high dimensional) input space.

Finally, the details of the computer model itself may be proprietary or classified.

Instead of having full access to the black-box computer model, we are often given a

set of input-output pairs, D = (X,⌘), where X is a d ⇥ p matrix of inputs and ⌘

is a d-dimensional vector of outputs. Explicitly, the jth element of ⌘ is ⌘j = ⌘(xj)

where xj is the jth row of X. It is sometimes convenient to informally write X =

(x1,x2, · · ·xd) and xj 2X with the intent that xj is a row of X.

An emulator, also called a statistical surrogate or metamodel, can be viewed as

a proxy for the computer model and is denoted by ⌘̂(x). The emulator should

be cheap to evaluate and capable of making predictions at all x 2 X , even if the

particular inputs are not in the training set D. To reflect the deterministic nature of

the simulator, a reasonable emulator should be an interpolator, which is to say that

⌘̂(x) = ⌘(x) for every x 2X.

For example, the least squares response surface, comprised of adding together

8
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terms of the form
Qp

j=1 x
aj
j , with each aj 2 {0, 1, 2, · · · a}, will not be an interpolator

unless the order a is exceptionally large, in which case the out of sample predictions

are typically worthless due to Runge’s phenomenon [43].

1.3.1 Nearest Neighbor Emulators

Perhaps the simplest example of an interpolator is the nearest neighbor (NN) emu-

lator. For location x and distance function d(·, ·), we can define dj = d(x,xj), for

j = 1, 2, · · · d. Let d(1), · · · d(d) denote the sorted distances, so that d(1)  d(2) 

· · ·  d(d). Finally, we define NK(x0) to be the K-nearest neighbor index set, such

that j 2 NK(x0) if and only if dj  d(K). With respect to these definitions, the NN

emulator is given by

⌘̂NN(x) = ⌘j, j 2 N1(x). (1.6)

A more sophisticated choice, it would seem, is to use the information provided

by the K nearest neighbors of x0, with K > 1. Taking the average prediction of the

K nearest neighbors of x0 yields the classical K-NN predictor

⌘̂KNN(x) =
1

K

X

j2NK(x)

⌘j (1.7)

The corresponding prediction surface typically underwhelms in practice, and also

loses the interpolation property. The interpolation property can be restored, while

simultaneously “smoothing” the surface and improving performance, by taking a

weighted average

⌘̂sKNN(x) =
X

j2NK(x)

wj⌘j, (1.8)

with weights

wj /
1

dj
,

X

j2NK(x)

wj = 1. (1.9)
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The interpolation property is satisfied here by adopting the convention that wj = 1

and wj0 = 0 (j 6= j0) whenever dj = 0.

An Illustration

For illustrative purposes, consider the surface defined by the Gramacy-Lee function

[68]

⌘(x1, x2) = 100w(x1)w(x2), where

w(x) = exp
�
�(x� 1)2

�
+ exp

�
�0.8(x+ 1)2

�
� 0.05 sin (8(x+ 0.1)) ,

(1.10)

for x 2 X = [�4, 4]2. Training data D is generated by taking X to be a two

dimensional maximin Latin hypercube sample (LHS) with d = 400 points [98, 113].

We then request T = 10, 000 predictions at each location on a rectangular grid

covering the input space X . Figure 1.2a shows the true Gramacy-Lee surface, while

Figures 1.2b, 1.2c and 1.2d illustrate the emulated surfaces using the emulators

described in this section (with K = 5).

Nearest neighbor emulation is a convenient choice for its simplicity but will typ-

ically be outperformed by other methods. In particular, nearest neighbor methods

are known to struggle in high dimensions, where astronomically large amounts of

training data are required to obtain reasonable accuracy [43]. Although this “curse

of dimensionality” is not completely unique to KNN emulation, it is particularly

susceptible due to its simplicity. There are also theoretical limitations with the NN

family of emulators such as non-di↵erentiability and the inability to ever predict a

value of the response which is beyond the range of the previously observed outputs

⌘.
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(a) True Surface (b) NN Emulator

(c) K-NN Emulator (K = 10) (d) Smooth K-NN Emulator (K = 10)

Figure 1.2: The Gramacy-Lee surface and emulated surfaces using Nearest Neighbor based
approaches.

1.3.2 Gaussian Process Emulation

By far, the Gaussian Process (GP) is the most popular choice for emulation in the

realm of computer experiments. It is flexible, accurate, e�cient in making predictions

and can be readily fit using most statistical software. For our purposes, the GP can

be viewed as a distribution over the family of real-valued functions ⌘̂ : Rp ! R, such
that every finite collection of outputs follow a multivariate normal distribution. That
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is to say, for any finite collection x1,x2, · · ·xp, the output vector ⌘̂ = (⌘̂1, ⌘̂2, · · · ⌘̂p)>,

where ⌘̂j = ⌘̂(xj), is distributed as

⌘̂ ⇠ N (µ, ⌃) .

The mean vector µ has components µj and the (jk)th entry of the covariance matrix

is parametrized as

⌃(xj,xk) = �R(xj,xk | ) + ⌧ (xj = xk). (1.11)

In this thesis, we will typically specify

R(xj,xk | ) = exp
�
�kxi � xjk22

 
, (1.12)

which is known as the isotropic Gaussian correlation function, but other correlation

functions such as the Matérn are sometimes desirable alternatives [41]. This spec-

ification of the covariance structure specifies that outputs should be more highly

correlated when the corresponding inputs are close to each other. In particular, the

correlation parameter  controls the strength of the correlation as a function of dis-

tance, while � controls the variance. The parameter ⌧ is often called the nugget, and

the GP is an interpolator whenever ⌧ = 0. In practice, it is often best for numerical

reasons to set ⌧ equal to some small positive number, such as the square root of

machine epsilon.

Although it can be a challenging problem, the parameters � and  can be esti-

mated using a variety of methods, typically falling into the categories of maximum

likelihood or empirical Bayes [13,124]. Conditional on the observed data and on the

estimated parameters, the Gaussian process emulator can be written as

⌘̂GP (x) = E (⌘̂(x)|⌘̂1, · · · , ⌘̂d) = r>(x)R�1⌘̂, (1.13)

where r>(x) is the d-vector whose jth component is R(x,xj | ) and R is the matrix

whose (jk)th element is R(xj,xk | ). Since R�1⌘̂ can be computed and stored in

12



Chapter 1. Introduction & Background

advance, a prediction can be obtained for a new input x with an amortized cost of

O(d), the time required for a single vector-vector multiply.

Another benefit of the GP, is that prediction uncertainties can be readily ob-

tained. Assuming that µ = 0 and ⌧ = 0, we have that the standard error is

SE (⌘̂GP (x)) =

r
⌘̂>R�1⌘̂ (1� r>(x)R�1r(x))

d� 2
. (1.14)

Computation of this standard error requires multiplication of the matrix R�1 with

the vector r(x) and, since r(x) is dependent on the input, the amortized cost is at

least O(d2), even if R�1 and ⌘̂>R�1⌘̂ are stored in memory.

An Illustration

Figure 1.3a shows the emulation surface corresponding to d = 50 input-output pairs

for the Gramacy-Lee function defined in eq. (1.10). Visual inspection suggests that

the GP emulator is a large improvement over the nearest neighbor emulators of

Section 1.3.1.

(a) GP Emulator (b) LA-GP Emulator

Figure 1.3: The Gramacy-Lee emulated surfaces for the GP and LA-GP emulators.
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1.3.3 Local Approximate GP Emulation

The GP emulator is typically viewed as the gold standard of computer model em-

ulation. A GP is rarely beaten in out of sample predictions, is capable of trivially

satisfying the interpolation property and is capable of making predictions with O(d)

amortized complexity. Once the parameters have been estimated and R has been

inverted, predictions can be obtained in linear time (with respect to the size d of

the training set D) but obtaining R�1 can itself be cost prohibitive when d is large.

In essence, this training process requires a minimum of O(d3) time, which can limit

the use of standard Gaussian processes for large training sets, which are typically

required for high-dimensional problems.

The local approximate Gaussian process (LA-GP) is, at first glance, a relatively

simple idea dating back to at least 1991 [41]. In its most basic form, known as

local kriging, the size of the training set is reduced to c ⌧ d using the c nearest

neighbors of a prediction location xnew. This is a reasonable approach, because data

points far from xnew typically have very little impact on the predictive distribution

of ⌘̂(·) at xnew. It has been demonstrated, however, that this local nearest neighbor

approach leads to a suboptimal local design [142,154]. With this in mind, [65,66] have

developed criteria for greedy selection of the xnew neighborhoods which yield more

accurate predictions without increasing the asymptotic complexity of the procedure.

Under this approach, the predictive equations given in eq. (1.13) and eq. (1.14)

remain the same, where the training set is C = (Xc,⌘c) of dimension c, rather than

the full training set D.

Although predictions in the LA-GP framework can technically be obtained in

O(c) time, prediction at each new location also requires O(c3) time in order to build

the neighborhood and train the local GP. In summary, to make T predictions, an

ordinary GP has costO(d3+Td) while the LA-GP requiresO(Tc3) time. Moreover, if
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the set of prediction locations Xnew = (xnew,1,xnew,2, · · ·xnew,T ) is known in advance,

then the prediction process is “pleasantly parallel”, and the cost of T can be reduced

or eliminated.

An Illustration

Figure 1.3b shows the emulation surface for the Gramacy-Lee example using the

LA-GP with c = 60. Visually, the LA-GP surface is a massive improvement over

the NN approaches but is slightly less smooth than the standard GP approach.

Table 1.1 shows the root mean squared error (RMSE), defined in eq. (2.5), for all of

the approaches discussed in this section. As expected, the KNN-smooth emulator is

the best of the nearest neighbor-based methods. The Gaussian process demonstrates

much better prediction accuracy, with the LA-GP emulator close behind.

The SLAP-GP(0.99) and LEAP-GP(400) emulators, described in Chapter 2, are

also included for comparison. The predictive performance of these emulators is com-

parable to the LA-GP emulator, although they require significantly less time to

produce predictions.

Table 1.1: Comparison of RMSE for 7 di↵erent emulators of the Gramacy-Lee sur-
face.

NN KNN KNN-Smooth GP LA-GP SLAP-GP(0.99) LEAP-GP(400)
5.22 4.82 3.79 1.61 3.59 3.67 3.49

1.3.4 Alternative Approaches to Emulation

Although the focus of this thesis is on the GP emulator, and it’s relatives LA-

GP, SLAP-GP and LEAP-GP, we note that a wide number of alternatives exist
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for emulation. In this subsection, we briefly outline a few of the more common

alternatives.

Sparse Gaussian Processes

The local approximate Gaussian processes of [66] are just one way to address the

computational challenges of GP emulation. Alternatively, one can choose to address

these issues using a family of approaches known as sparse Gaussian processes [69,85,

139]. For instance, we can parameterize the covariance of a GP regression model using

the location of c⌧ d pseudo-inputs. An early e↵ort by [139] gives a gradient-descent

based implementation, which has since been improved [69]. These methods are

similar in flavor to the local approximate GP strategies with two primary di↵erences.

The reduced training set C is global rather than local and the training set C can

consist of input-output pairs (x, ⌘(x)) which are not a part of the original training

set D (called pseudo-inputs). An obvious benefit of this class, is that it must be

trained a single time and thus leads to fast predictions like the standard Gaussian

process. Although training a sparse-GP is more feasible than training a standard

GP, it is nonetheless a challenging and time-consuming problem, especially when

compared to the fast neighborhood construction algorithm of the LA-GP framework.

If parallelization during prediction is possible, we feel that the LA-GP framework

should be the preferred option.

Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines (MARS) is another popular emulator which

achieves fast predictions and can be trained quickly. It is often a good choice when

GP emulators are impractical for computational reasons. The original proposal is

due to [54], with a Bayesian extension presented in [42]. The model can be written
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as

⌘MARS(x) = �0 +
KX

k=1

�k

pY

i=1

(xi � tk,i)
ok
+ (1.15)

Functions of the form (±(x � t))+ = max(0,±(x � t)) are called hinge functions

and t is called a knot. The MARS training algorithm selects knot locations and

appropriate hinge function combinations automatically using a forward-backward

selection process. The primary advantage of MARS (and Bayesian MARS) is com-

putational, requiring only O(K3) time to form the emulator, where K is generally

much smaller than d and grows sub-linearly with d. Additionally, MARS does not

require or assume that the response surface is smooth and is therefore better suited

to handle this case than a GP based emulator. On the other hand, BMARS is not

an interpolator, lacks a closed form for the prediction variance and is generally less

accurate than some other alternatives [144]. A notable modern extension of BMARS

is emulation with Bayesian adaptive smoothing splines (BASS), which allows for the

use of large amounts of data and facilitate more e�cient MCMC sampling [51]. An

implementation of this approach can be found in the BASS package in R [49,50].

Polynomial Chaos Expansions

Whereas the Gaussian process is the predominant emulator in the statistics commu-

nity, polynomial chaos expansion (PCE) is the principal surrogate model in applied

mathematics (at least in the not so distant past) [110]. The basic idea is to write

⌘PCE(x) =
LX

j=0

wj j(⇠) (1.16)

where ⇠ is a random realization of the random variable ⌅, called the germ. The germ

distribution is a modeling choice, and the  j terms are orthogonal polynomials of

order j with  0 = 1 which must be constructed with respect to this choice. The

wj terms are weights (called mode strengths) which depend on the polynomials and
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the germ distribution. In the discussion [110], the emulation properties of PCE are

critiqued on a variety of fronts. In particular, the truncation parameter L must be

large to yield an adequate approximation of ⌘(·), yet large values of L can lead to

instability of the predictions. The PCE can also be heavily reliant on certain hard

to justify modeling assumptions. While the PCE has some notable advantages in

related areas, such as the forward propagation of uncertainty, we argue that GP

based approaches are more suitable for most model calibration problems. Finally,

we note that a recent study comparing the performance of the models and found that

both models provided excellent predictions of the outputs, although the GP model

was more accurate and more capable of handling various stochastic challenges [88].

Deep Neural Networks

Some authors (i.e. [74, 99, 141, 147]) have had success in building surrogate models

using deep convolutional neural networks [91, 126]. Deep neural networks (DNN)

are often used in climate, planetary and financial applications, where the size of the

input space is often tremendous. The curse of dimensionality states that the volume

of an input space X grows exponentially as the input dimension p grows linearly

[43]. In these settings, an astronomical number of training examples (xj, ⌘(xj))

must be obtained for D to be “space-filling”. This big data paradigm is exactly

where DNN methods thrive. While predictions with a DNN can be very impressive,

there are a number of drawbacks including (i) considerable computational resources

are required to be feasible, (ii) non-interpolating predictions, (iii) does not produce

reliable prediction variances and (iv) can readily overfit. For most applications, with

a small to moderate number of inputs, we suggest that DNN has many drawbacks

compared with other reasonable choices and may not be worth the trouble. When

the input dimension is very large, and high-performance resources are available, DNN

emulation may be a suitable option.
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1.4 Model Calibration

Consider a deterministic and unknown true process ⇣(x) which governs some physical

phenomenon. The inputs x are called design variables which are observable and

usually controllable, to some extent, by the experimenter. These inputs can include

things like time, the settings of a machine and the thickness of a material sample.

We will denote the space of these parameters by X which is a subset of the Euclidean

space with appropriate dimension.

Based on our current understanding of the physics which governs the physical

system, a computer model ⌘(x,✓) is specified with the hope that it can serve as a

suitable proxy for the unknown ⇣(x). This computer model is often replaced with an

emulator ⌘̂(·, ·), as described in Section 1.3, but we will largely ignore the distinction

here. The inputs ✓ are called calibration parameters, which may be tuning parameters

designed to add flexibility to the model or they may describe properties of the physical

system which are inherent, unknown and uncontrollable. As an example of the latter,

consider the dynamic material properties example described in Section 1.2, where the

material properties bulk modulus B0 and the corresponding first pressure derivative

B0

0 of tantalum are calibration parameters with physical interpretations and unknown

true values. Many authors, such as [21,77], have discussed this distinction although

it rarely leads to a di↵erence in how the calibration parameters are treated. In the

present context, it will be useful to make this distinction explicit, partitioning the

calibration parameters as ✓ = (↵,�). In this case, the parameters ↵ are called

physical parameters, indicating that they describe some inherent truth about the

physical process, typically having a physical interpretation and some unknown true

value. The remaining calibration parameters, denoted �, are referred to as nuisance

parameters, suggesting that they are not of scientific interest. Occasionally, it will

be useful partition the physical parameters further, writing (↵,�) to distinguish

between the physical parameters which are of scientific interest (↵), and those which
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are not (�). The input space for the calibration parameters will be written as

⇥ = A⇥ �, where ↵ 2 A ⇢ Rp and � 2 � ⇢ Rq. The notation ✓? = (↵?,�?) is used

to denote the “true values” of the calibration parameters, although this notion must

be carefully defined for the application, as there is no consensus to what the “true

value” means in the context of model calibration.

A computer model ⌘(x,✓) is said to be perfect if there exists a ✓ 2 ⇥ such that

⌘(x,✓) = ⇣(x) for all x 2 X . The calibration parameters ✓ are said to be distin-

guishable with respect to the simulator if ✓ 6= ✓0 implies that ⌘(x,✓) 6= ⌘(x,✓0) for at

least one x 2 X . For example, in the borehole function (eq. (2.6)), the parameters

Hu and Hl only appear as a di↵erence Hu�Hl and are therefore not distinguishable.

By defining �H = Hu � Hl, as in eq. (3.11), the calibration parameters can be

made distinguishable with respect to the computer model. Unless stated otherwise,

we will typically assume that the computer model is imperfect and the calibration

parameters are distinguishable.

The specific goal or purpose of model calibration will depend on the applica-

tion. The primary goal of a researcher will typically fall into one of two categories:

prediction or estimation. In the former, the quantity of interest is ⇣(xnew) for a

particular input xnew, a set of inputs or even all inputs in X . In the latter, we are

interested in the so-called inverse problem, where the quantity of interest is some

generic function g(✓?). In general, the inverse problem is more challenging than the

forward prediction problem for reasons discussed in Section 1.4.4, Chapter 3 and

Chapter 4. Although the specific goal of model calibration may drastically vary, we

will informally define the purpose as that of finding a set of calibration parameters

✓ such that

⌘(x,✓) ⇡ ⇣(x).

To accomplish this goal, we will typically have a set of n observations from the

true process, possibly recorded with error. The observations y = (y1, y2, · · · yn)>

20



Chapter 1. Introduction & Background

correspond to design variables X = (x1,x2, · · ·xn). Collectively, the data (X,y)

are called the field data or the experimental data and it is assumed that

yi = ⇣(xi) + ✏i,

where ✏i is an error term which incorporates uncertainty in the measurement of the

observed data. More generally, we can write

y = ⇣ + e

where ⇣ = (⇣(x1), · · · ⇣(xn))> and e = (✏1, ✏2, · · · ✏n)> is an error vector with arbitrary

structure.

1.4.1 Least Squares Calibration

Perhaps the simplest method of model calibration is to select the calibration param-

eter values as those that minimizes the sum of squares between the observed data

and the computer model output. That is, the estimated calibration parameters are

✓̂LS = argmin
✓2⇥

nX

i=1

(yi � ⌘(xi,✓))
2 . (1.17)

If we assume that

yi = ⌘(xi,✓) + ✏i, i = 1, 2, · · ·n

✏i
iid⇠ N(0, �2)

(1.18)

then ✓̂LS can also be obtained as the maximum likelihood estimator of ✓ [28]. Equa-

tion (1.18) implies the existence of a perfect computer model, and is an unrealistic

modeling assumption in practice, often leading to poor predictions and underestima-

tion of the uncertainty.
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1.4.2 L2 Calibration

In the work of Tuo and Wu [148, 149], the L2 calibration procedure is proposed as

an alternative the Bayesian model calibration framework of Kennedy and O’Hagan

[87] (described in Section 1.4.3). Tuo and Wu begin by defining the true value of the

calibration parameters to be

✓L2 = argmin
✓2⇥

k⇣(·)� ⌘(·,✓)k2L2

= argmin
✓2⇥

Z

X

(⇣(x)� ⌘(x,✓))2 dx
(1.19)

This is an important step because, as described in [117,149], the predominant BMC

framework of [87] leaves the calibration parameters undefined.

Since the true process ⇣(x) is unknown, the first step is to construct a proxy

⇣̂(x) based on the data (y,X). In [149], it is assumed that yi = ⇣(x) and a kernel

interpolator is used for ⇣̂(·). We will focus on the L2 calibration proposed in [148]1,

which treats the data as stochastic, i.e. yi = ⇣(xi)+✏i. In this more realistic scenario,

⇣̂(·) is defined as the nonparametric regressor in the reproducing kernel Hilbert space

[158,160], generated by the kernel  (·, ·)

⇣̂(·) = argmin
f2N (X )

(
1

n

nX

i=1

(yi � f(xi))
2 + � kfk2

N (X )

)
. (1.20)

The kernel function  (·, ·) can be viewed as a covariance function, such as (but

not limited to)  (·, ·) = �R(·, ·), where R is given in equation eq. (1.12). The �

parameter is used to control the smoothness of the approximation and can be chosen

using certain model selection criterion, such as generalized cross validation [158].

1Although [148] was published before [149], the latter is the logical prequel.
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Along with eq. (1.20), the L2 calibration procedure can now be defined as

✓̂L2 = argmin
✓2⇥

���⇣̂(·)� ⌘̂(·,✓)
���
2

L2

= argmin
✓2⇥

Z

X

⇣
⇣̂(x)� ⌘̂(x,✓)

⌘2
dx

(1.21)

where ⌘̂(·, ·) is any emulator of ⌘(·, ·) which is a su�ciently good approximation.

Tuo and Wu show that, under suitable conditions (see [148] for an extensive list),

the estimator ✓̂L2 is consistent and semiparametric e�cient for the “true value” ✓L2

defined in eq. (1.19). These authors also prove that the least squares calibration

estimates ✓̂LS are consistent, but not semiparametric e�cient, for ✓L2 . On the other

hand, the Bayesian model calibration framework of [87] is shown to be neither con-

sistent nor e�cient for this value. This result is not surprising, because ✓L2 does not

coincide with the “true value” of ✓ in the BMC framework.

1.4.3 Bayesian Model Calibration

We use the term Bayesian model calibration (BMC) to refer to the method of model

calibration originally proposed by Kennedy and O’Hagan in their landmark 2001 pa-

per [87]. In the model calibration literature, it is often called the KOH (or KO) model.

Since 2001, the BMC framework has been widely used for a variety of applications

in a diverse collection of scientific fields [3, 4, 11, 16, 21, 66, 76, 77, 95, 111, 132, 161].

Despite its wide use, it has been at times heavily critiqued [3, 4, 24, 148, 149] and

numerous extensions, modifications and alternatives have been proposed [21, 24, 76,

94,117,148,149].

Prior to 2001, model calibration primarily referred to the process of finding cal-

ibration parameter values such that the corresponding model output matched the

data, in some sense, as closely as possible [14, 22]. The least squares and L2 cali-

bration methods described in the previous subsections provide examples of this idea,
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with varying levels of sophistication. The calibrated values are then treated as known,

and used to predict the behavior of the process going forward. This so-called “plug-

in” approach treats the calibration inputs as known, when in reality they are only

estimated imperfectly. The BMC framework marked the first comprehensive treat-

ment of uncertainty in model calibration, incorporating (i) parameter uncertainty,

(ii) model inadequacy, (iii) residual variability, (iv) observation error and (v) code

uncertainty.

In the BMC framework, we begin by linking the field data y to the computer

model ⌘(·, ·) by specifying

yi = ⇣(xi) + ✏i

⇣(xi) = ⌘(xi,✓) + �(x).
(1.22)

The ✏i terms represent observation error and are typically treated as independent and

identically distributed Gaussian random variables, although certain applications may

require a heteroskedastic model [21]. The �(·) term is called the model discrepancy

function (the terms bias function or inadequacy function are sometimes used instead)

and represents the di↵erence between the true process and the computer model

evaluated at the “true values” of ✓. The discrepancy function, which explicitly

acknowledges that the computer model is imperfect, is largely unique to the BMC

framework, and was perhaps the primary contribution of [87]. Prior information

about the unknown discrepancy function �(·) is represented in the form of a Gaussian

process (see Section 1.3.2).

✏i
iid⇠ N(0, �2), i = 1, 2, · · ·n

�(·) ⇠ GP (m(·),⌃(·, ·))
(1.23)

where m(·) is a prior mean function and ⌃(·, ·) is a prior covariance function. It is

clear that the parameters governing �(·) and ✓ are almost completely unidentifiable

[162], in the sense that for every ✓0 2 ⇥ there exists a particular function �0(·) such
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that ⇣(x) = ⌘(xi,✓0) + �0(x) for all x 2 X . For this reason, the prior distribution

for �(·) must be carefully constrained. A common and intuitive approach is to set

m(x) = 0, e↵ectively requiring that the computer model is unbiased on average

across X . Thus we specify

m(x) = 0

⌃(x,x0) = �R(x,x0 | ),
(1.24)

where R(·, ·|·) is defined in eq. (1.12). The absence of a nugget leads implicitly to

the assumption that the sum of the discrepancy function and computer model is an

interpolator of the true process, with any observational error being attributed to the

✏ terms. The BMC framework presented here has three model parameters which we

collectively refer to as  = (�,�,). The final stage of the BMC model specification

is to define prior distributions for the calibration and model parameters

✓ ⇠ ⇡1(✓)  ⇠ ⇡2( ) (1.25)

Collectively, eq. (1.22), eq. (1.23) and eq. (1.25) describe the BMC framework. Equa-

tion (1.24) is an important addendum for practical purposes and will be used through-

out this thesis. Note that equations eq. (1.22), eq. (1.23) and eq. (1.24) imply that

the log-likelihood can be written as

L(✓, |y) =(2⇡)�n/2
���R+ �2In

���1/2⇥

exp

⇢
�1

2
(y � ⌘)>

�
�R+ �2In

��1
(y � ⌘)

� (1.26)

and the resulting posterior distribution is

⇡(✓, |y) / L(✓, |y)⇡1(✓)⇡2( ). (1.27)

Posterior samples can be obtained from eq. (1.27) using a wide variety of techniques,

including Markov Chain Monte Carlo (MCMC) methods or variational inference

[19, 31,63, 72].
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Some Practical Considerations

Bayesian model calibration involves a large number of challenges, both computational

and theoretical in nature. Fully Bayesian attempts at model calibration have been

made (i.e. [161]) in certain application spaces, with varying amounts of success, but

many authors opt to use a combination of empirical and stagewise techniques to

reduce the burden [16,21,87, 94, 111].

For instance, the lack of joint identifiability between the calibration parameters

and the discrepancy function lead to the constraining assumptions in eq. (1.24). In

practice, these constraints may still fall short. In particular, we are typically un-

able to jointly infer both ✓ and the correlation parameter . It is common practice,

possibly due to the convincing arguments found in [94], to fix the correlation pa-

rameter  to a reasonable value prior to running MCMC over the rest of the model.

This is often done empirically by first using a simpler calibration method (i.e. least

squares calibration). The resulting residuals, once smoothed to remove the e↵ect of

observation error, can be viewed as an empirical discrepancy function and  can be

estimated. In some cases, a subject matter expert is often able to give a reasonable

estimate of the measurement error �2, and thus a plug-in approach or an informative

prior will be used for this parameter as well [3, 21, 111,132].

It is also common or necessary in many applications to use an emulator ⌘̂(·, ·) in

place of the full computer model ⌘(·, ·). It is possible to account for the emulation

error in the model (see again [161]), especially if the emulator is another Gaussian

process. In many cases, the emulation error will be su�ciently small and can be

implicitly absorbed by the model discrepancy term while having little to no e↵ect on

the posterior distribution of eq. (1.27) [94]. Thus, as long as significant resources are

invested in the construction of a good emulator, we can safely replace ⌘ in eq. (1.26)

with ⌘̂.
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1.4.4 Comparison of Calibration Procedures

Suppose that forward prediction is the goal and that ⇣(xnew) is the quantity of

interest, and consider the estimators

⇣̂LS = ⌘̂(xnew, ✓̂LS), ⇣̂L2 = ⌘̂(xnew, ✓̂L2), ⇣̂BMC† = ⌘̂(xnew, ✓̂BMC), (1.28)

where ✓̂BMC is some reasonable frequentist point estimator derived from the BMC

posterior distribution of ✓. In this setting, the estimator ⇣̂L2 is consistent, e�cient

and generally the superior estimator of this form. The estimate ⇣̂BMC† is unstable,

unreliable and usually inconsistent for ⇣(xnew). There are two major caveats to this

critique of BMC, however. The first point is that BMC is a Bayesian procedure,

and attacking its frequentist properties may be misleading. The second and more

important caveat, is that comparison of the estimators in eq. (1.28) is akin to com-

paring apples and Porsches. In the BMC framework, the estimator ⇣̂BMC† was never

intended to be a predictor of ⇣(xnew). For a fair comparison, the L2 calibration

estimator defined above should be compared to the BMC estimator

⇣̂BMC = ⌘̂(xnew, ✓̂BMC) + �̂(xnew). (1.29)

In this case, a third paper by Tuo and Wu [150] proves the consistency of this estima-

tor and shows that the BMC framework demonstrates more robust behavior than L2

calibration in making these forward predictions. Moreover, the BMC framework has

a variety of other benefits for forward prediction, such as the ability to incorporate

expert knowledge and to comprehensively account for relevant uncertainties.

In the case of the inverse problem, where g(✓?) is the quantity of interest, special

care must be taken in defining the “true value” ✓? so that the problem maintains

any meaning. If the true value of the calibration parameters coincides with the value

defined by Tuo and Wu (i.e. ✓? = ✓L2), then L2 calibration is an e↵ective solution.

The BMC framework, on the other hand, is known to struggle in this arena, where
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the lack of identifiability between ✓ and �(·) renders it di�cult or impossible to

recover the true values [3]. In the original framework, [24] show that by adding

specific information regarding the form of �(·), this problem can be resolved. In the

important work [117], the BMC framework is extended using prior distributions for

�(·) which are orthogonal to the gradient of the computer model. This has the e↵ect

of restoring consistency of the estimator ✓̂BMC for the parameter ✓L (where L = L2 or

some other loss function belonging to a broadly defined class), while maintaining the

other benefits of Bayesian model calibration, including the superiority and robustness

of forward prediction. We reiterate that, if forward prediction is the goal or if the

calibration parameters have physical interpretation, then the Bayesian calibration

procedure described in [117] is seldom worth the e↵ort.

In the case of the inverse problem where calibration parameters have physical in-

terpretations, ✓? is an inherent property of the physical process and may not coincide

with ✓L2 . In this case, no calibration procedure can guarantee reliable inference for

g(✓?). This issue is the primary topic of this thesis and is discussed in great detail

in Chapter 3 and especially Chapter 4 .

1.5 Related Background

1.5.1 Latin Hypercube Designs

Latin hypercube sampling is a very useful tool when dealing with black-box computer

model [98, 113, 135]. A black-box model is a function ⌘(x) : X ! R which has no

explicit description but can be evaluated to obtain input-output pairs (x, ⌘(x)). In

our discussion of emulators (Section 1.3), we are given a set of input-output pairs

D = (X,⌘) and asked to find a suitable representation of the otherwise unknown

function. In practice, the computer model ⌘(·) is often time-consuming to run, and
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therefore the number of evaluations, denoted d, may be small. It is paramount then

to use our limited allowance of computer model evaluations as e↵ectively as possible.

A good set of evaluation points, called the design, should satisfy at least the

following two properties. First, a good design should be space-filling in the sense

that the information obtained is spread out over the entire space. For instance,

consider the one-dimensional input space X = [0, 1]. In the absence of any other

information, certainly the best choice of d design points is to take x1, x2, · · · xd to be

evenly spaced between 0 and 1. It would be a waste of resources to load up on points

closer to 1 or 0. The second property is that a good design should be non-collapsing.

Since computer models are deterministic, it would be a waste of precious resources

to replicate design points. If one of the design variables has little or no e↵ect on the

output of ⌘(x), then two design points which di↵er only in this parameter are said to

collapse. That is to say the output of ⌘(·) evaluated at these two design points will

give (almost) the same value and can therefore be viewed as a repeated evaluation.

Therefore a good design maintains the property that no two design points should

ever share a coordinate value. A Latin hypercube sample (LHS) is a non-collapsing

design which generally has, or can be made to have, good space-filling properties.

An LHS of d points in p dimensions can be defined as a d⇥p matrixX where each

column is a permutation of the set {0, 1
d�1 ,

2
d�1 , · · · 1}. The rows xj = (xj1, · · · xjp),

j = 1, 2, · · · d define the d design points. It is an immediate consequence of this

definition that any LHS design is non-collapsing. Not all LHS designs will be space-

filling, however, but a randomly selected design can be evaluated according to a

separation criterion. The maximin criteria, in which the minimal distance between

any two design points is maximized, generally yields a good space-filling design [135].

The lhs package in R o↵ers a variety of routines which construct LHS designs with

respect to a number of di↵erent criteria [26].

The LHS, as defined above, is only useful if the input space happens to be X =
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[0, 1]p. More generally, we can assume that the input space is a rectangular subspace

of Rp, i.e.

XR = [a1, b1]⇥ [a2, b2]⇥ · · ·⇥ [ap, bp],

and the notion can be naturally extended. Let X be an LHS design and let X 0 be

the design with rows

x0

j = (b� a)� xj + a,

where a = (a1, a2, · · · ap), b = (b1, b2, · · · bp) and � denotes the Hadamard product.

Then X 0 is said to be an LHS design over the space XR.

If other cases, the input space may not be compact or some regions of the input

space may be viewed as more important than others. To extend the concept of an

LHS design in this setting, a (prior) distribution for each design parameter must be

specified in terms of the CDF Fk(xk), k = 1, 2, · · · p [112]. The matrix X 0 with (jk)th

element

X 0

j,k = F�1
k (Xj,k)

is said to be an LHS sample with respect to the distributions F1, · · ·Fp. Note that

the case of rectangular regions can be seen as a special case of this setting, where

the distributions are uniform over the interval [ak, bk]. Figure 1.4 illustrates this

procedure using a maximin LHS design with d = 13 two-dimensional design points

(left). In the middle panel, this same design is transformed over the space [�1, 2]⇥

[�2, 0]. On the right, the LHS design is transformed over the space R2 with respect

to the distribution x ⇠ N(0, I2), so that F1(x) = F2(x) = �(x). For the extension of

LHS design to Rp where the prior distribution has dependent components, we refer

the reader to [165].
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Figure 1.4: In the left panel, a maximin LHS design with d = 13 and p = 2 is shown.
In the middle panel, this same LHS design is taken over the space [�1, 2] ⇥ [�2, 0].
In the right panel, the same LHS design is taken over the space R2 with respect to
the standard bivariate normal distribution.

1.5.2 Markov Chain Monte Carlo

In the BMC framework of Section 1.4.3, the joint posterior distribution of the cal-

ibration parameters ✓ and the model parameters  is defined in eq. (1.27). This

posterior distribution is not analytically tractable, and thus numerical tools will be

required to approximate the posterior. In this thesis, we primarily focus on the class

of Markov Chain Monte Carlo (MCMC) methods [58, 63]. For a historical review of

MCMC methods, see [127].

MCMC is a general method for drawing samples of ✓ from a posterior distribution

⇡(✓|D), in which the samples ✓1, ✓2, · · · ✓M form a Markov chain (a Markov chain is

a sequence of random variables for which the distribution of ✓t depends only on the

most recent value ✓t�1). Rather than obtaining independent samples from ⇡(✓|D),

MCMC methods produce a sequence of correlated samples which converge to the

target distribution as M ! 1. In practice, the first M0 iterations are referred to

as the warm-up phase (or burn-in) and these samples are discarded. The process

of thinning refers to the discarding of further samples, keeping every kth sample for
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some positive integer k. If M is su�ciently large, then the remaining (M �M0)/k

values can be viewed as approximate samples from the posterior distribution.

A large number of MCMC methods have been developed and used by practi-

tioners with notable examples including Gibbs sampling [56,60], slice sampling [108],

Metropolis algorithms [73, 100, 115] and Hamiltonian based approaches [80]. Al-

though di↵erent applications may benefit from di↵erent MCMC approaches, the

results in this thesis make use of (almost exclusively) the Metropolis-Hastings algo-

rithm and, when necessary, the adaptive extension of [72]. The Metropolis Hastings

(MH) algorithm can be stated as follows.

1. Initialize ✓0 to be a starting point for which ⇡(✓0|D) > 0. In theory, any choice

of ✓0 with positive posterior support will su�ce, but choosing a reasonable

starting value is crucial to the practical success of MH. See [58] for a detailed

discussion.

2. For m = 1, 2, · · ·M

2a. Sample a candidate value ✓⇤ from a proposal distribution at time m,

Pm(✓⇤|✓m�1).

2b. Calculate the ratio

↵ =
⇡(✓⇤|D) Pm(✓m�1|✓⇤)
⇡(✓m�1|D) Pm(✓⇤|✓m�1)

(1.30)

2c. Set

✓m =

8
>><

>>:

✓⇤, with probability min(↵, 1)

✓m�1, otherwise

In many applications, the proposal distribution Pm(·|·) is symmetric, satisfying

the condition Pm(a|b) = Pm(b|a) for all a, b and m. In this case, the ratio defined in
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eq. (1.30) simplifies to

↵ =
⇡(✓⇤|D)

⇡(✓m�1|D)
,

and the resulting algorithm is known simply as theMetropolis Algorithm. A good pro-

posal distribution should be (i) easy/fast to sample from and (ii) facilitate easy/fast

evaluation of eq. (1.30). The proposal distribution defines a random walk through

the parameter space ⇥, and the size of each step taken is also crucial for success. If

the steps are too small, then the random walk will move too slowly and many itera-

tions will be required. If the steps are too large, then the candidate values will rarely

be accepted and the random walk spends much of its time standing still. For this

reason, proposal distributions are often equipped with a tuning parameter � which

must be carefully selected in order to balance these extremes. For example, suppose

that ✓ 2 Rp and consider the multivariate normal proposal distribution defined by

✓⇤|✓m�1 ⇠ N
�
✓m�1,�I

�
.

This symmetric proposal distribution is a common choice for its simplicity, leading

to e�cient candidate generation and evaluation of the acceptance ratio. It also

requires just a single parameter which must tuned to obtain reasonable acceptance

rates. In more challenging problems however, additional flexibility will be needed,

and it is common to replace �I with a more general covariance matrix C. The

appropriate structure for C is di�cult to ascertain and naive attempts at tuning

may be impractical. By allowing the covariance matrix to evolve over time, the

structure can be e↵ectively tuned during the warmup period of the Markov chain.

A popular implementation of this idea is now known as the adaptive Metropolis

(AM) Algorithm and can be summarized as follows. The proposal distribution at

time m is defined to be multivariate normal with mean ✓m�1 and covariance Cm.

Initialize ✓0 as before, and also choose an initial covariance matrix C0 according to
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our best available prior knowledge. The covariance matrix at time m is set to

Cm =

8
><

>:

C0, m  m0

� (Cov(✓0, ✓1, · · · ✓m�1) + ⌧Ip) , m > m0

(1.31)

where ⌧ is a small positive value which helps control the condition number Cm (much

like the nugget in Section 1.3.2), m0 controls the length of the pre-adaptive stage

and � is a scaling parameter which can be set to (2.4)2/p [59] or manually tuned for

additional flexibility. The Cov(✓0, · · · ✓m�1) denotes the empirical covariance matrix

and can be computed as

Cov(✓0, ✓1, · · · ✓k) = 1

k

 
kX

i=0

✓i✓i
> � (k + 1)✓̄k✓̄

>

k

!
,

where ✓̄k = 1
k+1

Pk
i=0 ✓

i. Since computing the empirical covariance matrix can be

expensive whenm is large, an e�cient implementation must make use of the following

recursive equations for m > m0

✓̄m =
(m� 1)✓̄m�1 + ✓m

m

Cm =
m� 2

m� 1
Cm�1 +

�

m� 1

�
(m� 1)✓̄m�2✓̄

>

m�2 �m✓̄m�1✓̄
>

m�1 + ✓m✓m> + ⌧I
�
(1.32)

The MHadaptive package in R provides a simple implementation of the AM al-

gorithm [32]. This MHadaptive package was used for many of the simpler analyses

described in this paper, but many of the more computationally intensive applica-

tions required writing MCMC implementations from scratch so that flexibility could

be added as needed (see Section 1.5.3, for instance). In some high dimensional ap-

plications (i.e. climate modeling) these traditional approaches may be impractical

and more creative alternatives such as Multiple Very Fast Simulated Annealing and

Delayed Rejection Adaptive Metropolis algorithms may be more suitable [155].
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1.5.3 Fast Matrix Algebra for BMC

In Section 1.4.3, the BMC framework is presented as a multivariate normal likelihood

with covariance matrix

⌃ = �R + �2In.

To evaluate the likelihood in eq. (1.26), both the determinant and inverse of this

matrix are needed, requiring O(n3) complexity. If MCMC is used to sample from

the posterior, then these model parameters can be viewed as a Markov chain  m =

(�m,m, �2
m), m = 1, 2, · · ·M , and the covariance matrix itself becomes stochastic

⌃m. Since the inverse and determinant must be found M times, the cost of MCMC

can be prohibitively large in practice. In this section we show that by setting  to

a fixed value, as recommended in Section 1.4.3, the time spent performing matrix

algebra can be substantially reduced in practice. In particular, we require a cubic-

time pre-computation phase which will allow us to calculate the determinant in linear

time and the inverse with a speedup of approximately two.

We begin by finding the eigenvalue decomposition of R, that is

R = QDQ> (1.33)

where D = Diag(r1, r2, · · · rn) is the diagonal matrix of eigenvalues ri and Q is an

orthogonal n ⇥ n matrix whose columns are the eigenvectors of R. Note that the

existence and form of the decomposition in eq. (1.33) are guaranteed since R is a

correlation matrix [64]. Next, we define ⌧ = �2 and write

|⌃m| = |�mR+ ⌧mI| = ⌧nm

����
�m

⌧m
R+ I

���� = ⌧nm

nY

i=1

✓
�m

⌧m
ri + 1

◆

=
nY

i=1

(�mri + ⌧m) .

(1.34)

Thus the determinant of each ⌃m can be computed in O(n) time with a memory

cost of O(n).
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Using the eigenvalue decomposition shown in eq. (1.33), we define R̃m = �m⌧�1
m R

and D̃m = �m⌧�1
m D = Diag(�m⌧�1

m r1,�m⌧�1
m r2, · · · ,�m⌧�1

m rn) which allows us to

write the inverse as

⌃�1
m = (�mR+ ⌧mI)

�1

=
1

⌧m

⇣
R̃m + I

⌘�1

=
1

⌧m

⇣
QD̃mQ

> + I
⌘�1

=
1

⌧m

⇣
Q
⇣
D̃m + I

⌘
Q>

⌘�1

=
1

⌧m

✓
Q
⇣
D̃m + I

⌘�1

Q>

◆
.

(1.35)

Since
⇣
D̃m + I

⌘
is a diagonal matrix, the inverse

⇣
D̃m + I

⌘�1

= Diag

 ✓
�mr1
⌧m

+ 1

◆�1

,

✓
�mr2
⌧m

+ 1

◆�1

, · · · ,
✓
�mrn
⌧m

+ 1

◆�1
!

(1.36)

can be computed in linear time. Next, we can decompose
⇣
D̃m + I

⌘�1

= WW>

which allows us to write

⌃�1
m = QWW>Q>

= (QW ) (QW )>
(1.37)

Since W is diagonal, the product QW can be obtained in quadratic time. Taking

advantage of fast algorithms for the multiplication of a matrix with its transpose,

the entire inverse can be computed in O(n2 + n3/2) time with a memory cost of

O(n2) [64]. Although the cost of this approach is asymptotically the same as the

naive implementation, we have found it to drastically reduce computation time in

practice.
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Although it is not possible to directly obtain the inverse of ⌃m in O(n2) time,

we can often find a suitable approximation to the inverse in near-quadratic time.

Starting from the final equality of eq. (1.35), we note that the (ij)th element of ⌃�1
m

is given by

(⌃m)
�1
ij =

1

⌧m

nX

k=1

QikdkQjk, (1.38)

where dk is the (kk)th element of
⇣
D̃m + I

⌘�1

. Defining qijk = QikQjk, this becomes

(⌃m)
�1
ij =

nX

k=1

qijk
rk�m + ⌧m

. (1.39)

One simple approach for approximating the inverse is to exploit the fact that the

eigenvalues typically become very small in magnitude. Formally, there usually exists

N0 ⌧ n such that ri < ✏tol for i > N0 for reasonably small values of ✏tol. This implies

that the (ij)th component of ⌃�1
m can be approximated as

�
⌃�1

m

�
ij
⇡

N0X

k=1

qijk
rk�m + ⌧m

+
1

⌧m
Zij, (1.40)

where Zij =
Pn

k=N0+1 qijk can be pre-computed for all 1  i  j  n. Thus, we

readily obtain an algorithm which operates in O(n2N0) time with an O(n2) memory

requirement. This computation can be optimized in practice by taking Q0 to be

the first N0 columns of Q and W0 to be the N0 ⇥ N0 upper left block of W and

computing

⌃�1
m ⇡ (Q0W0)(Q0W0)

> +
1

⌧m
Z. (1.41)

1.5.4 Bayesian Regularization

Consider the model y(x) = ⌘(x,✓) + e, such that E(e) = 0. We assume that

x = (x1, x2, · · · xp) is an observable covariate, ✓ = (✓1, ✓2, · · · ✓p)> is a set of unknown
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parameters and ⌘(·, ·) is an arbitrary mean function governed by the parameters

✓. Given data y = (y1, y2, · · · yn)> and X = (x1,x2, · · ·xn)> and a suitable loss

function L(✓|y,X) the parameters ✓ can be estimated as

✓̂ = argmin
✓

L(✓ | y,X). (1.42)

Linear regression is a well-known special case where ⌘(x) = x✓ and the ordinary

least squares (OLS) estimators of ✓ are given by

✓̂OLS = argmin
✓
ky �X✓k22 = (X>X)�1X>y. (1.43)

When p ⌧ n the OLS estimators often perform very well, but when p is very large

(compared to n) the estimators are often plagued by multicollinearity, leading to high

variance and poor e�ciency. Regularization is a general term for a class of methods

used to address this problem. A regularized estimator of ✓ is an estimator of the

form

✓̂ = argmin
✓

{L(✓ | y,X) + pen�(✓)} (1.44)

where pen�(✓) is a penalty function used to enforce a constraint on the parameters

✓. Perhaps the most well known form of regularization is Ridge Regression [79], in

which the penalty function is

penridge
� (✓) = �k✓k22 = �

pX

i=1

✓2i .

In the case of linear regression, the ridge estimator of ✓ can be obtained in closed

form as

✓̂ridge = (X>X + �Ip)
�1X>y. (1.45)

Ridge regression has the e↵ect of pulling the OLS estimator back towards the origin,

introducing bias in exchange for reduced variance. Although Ridge Regression works

best when there are a large number of parameters, it has been proved in the case of
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linear regression that there always exists a � > 0 such that the MSE of the Ridge

estimators is strictly smaller than that of the OLS estimator [44]. The ridge penalty

can be generalized as

penbridge
� (✓) = �k✓kpp = �

pX

i=1

|✓i|p. (1.46)

The resulting estimator is sometimes called the Bridge(b) estimator of ✓ [55]. The

Bridge regression framework contains Ridge regression (b = 2) and the LASSO [146]

(b = 1) as special cases. Ridge regression and LASSO are both widely used, each

method having advantages and disadvantages for certain scenarios. Another common

regularization method is the so-called elastic net [166], in which the advantages of

both Ridge and LASSO are harnessed by defining the penalty function

penEN
� (✓) = �1

pX

i=1

|✓i|+ �2

pX

i=1

✓2i . (1.47)

A large number of highly specialized penalty functions have been developed for

a wide variety of applications. These regularization methods have a convenient

Bayesian interpretation by letting exp (�L(✓|X,y)) denote the model likelihood

and by specifying the prior distribution

⇡(✓) / exp (�pen�(✓)) . (1.48)

Conditional on any hyperparameters �, the posterior distribution of ✓ becomes

⇡(✓|X,y) / exp (�L(✓|X,y)) exp (�pen�(✓))

= exp {� [L(✓|X,y) + pen�(✓)]} ,
(1.49)

and thus maximizing the posterior distribution is equivalent to minimizing the sum

of the loss and penalty functions as in eq. (1.44) [18]. For many particular instances

of the penalty function, this leads to a surprisingly straightforward Bayesian inter-

pretation. For instance, the Bridge(b) penalty corresponds to the prior distribution

⇡(✓) / exp

(
��

pX

i=1

|✓i|p
)
,
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which immediately implies that the Ridge regression penalty (b = 2) corresponds

to independent normal priors for each ✓1, ✓2, · · · ✓p with mean 0 and variance (2�)�1.

Similarly, the LASSO penalty can be viewed as the product of independent Laplacian

priors for each ✓, with mean 0 and variance 2��1. Similar yet less recognizable

interpretations exist for nearly every imaginable penalty function. In some cases,

the Bayesian execution of these principles can be improved with careful attention to

detail such as in the Bayesian LASSO and the Bayesian elastic net [93, 114].

Other Bayesian regularization priors, such as the g-prior [164] and the spike

and slab prior [81] have received attention recently for variable selection problems,

rivaling the LASSO and the elastic net. The spike and slab prior in particular

is theoretically enticing and is provably optimal under certain conditions, but the

combinatorial search space renders it computationally unusable for most practical

problems [119]. Instead, many practitioners rely on computationally tractable prior

distributions which attempt to approximate the behavior of the spike and slab prior.

For instance, we consider the flexible class of priors known as Global-Local Gaussian

scale mixtures, a class which contains many other well known regularization priors

such as Ridge regression and the Bayesian LASSO [15,17]. For i = 1, · · · p, this class

is defined as

✓i | (⌧, i)
ind⇠ N(0, ⌧ i)

⌧ ⇠ g and  i ⇠ gi.

(1.50)

Di↵erent choices of the prior distributions g and gi lead to di↵erent behavior, giving

this class its flexibility. A popular new prior contained in this class is the Horseshoe

prior [27] defined by the choice

⌧ ⇠ g and  i ⇠ C+(0, �i) (1.51)

where C+(0, �) denotes the half-Cauchy prior, with scale parameter (also the median)

�i. Assuming that the parameters are on a standardized scale, then each �i is usually
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taken to be 1, but these hyper-parameters can be adjusted for additional flexibility

if needed. There is no consensus on the best choice of prior for the global parameter

⌧ , although C+(0, a) seems to be a common default. Following [57], an early choice

by [27] suggest setting a = 1, while a later work by [119] suggest letting a scale

with the variance of the data. If we are willing to guess a priori at the number of

non-zero nuisance parameters, [116] derive a formula for choosing a and demonstrate

its potential superiority via simulations. Finally, [152] consider truncation of the half

Cauchy prior to the interval [1/p, 1] in order to avoid collapsing to the degenerate

⌧ = 0 case, which leads to total shrinkage of all parameters. The Dirichlet Laplace

prior is another notable member of this class which has gained momentum since it

was published in 2015 [17]. A comprehensive comparison of these approaches can be

found in [15] and [120].

These ideas are important in Chapter 3 where we develop a highly specialized

Bayesian regularization prior for nuisance parameters with a given structure. We

rely heavily on the penalty interpretation of regularization in Bayesian settings.
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Chapter 2

E�cient GP Emulation for

MCMC Applications

“Time is that which we want most, but use worst.” – William Penn

2.1 Overview

In Section 1.3.2, the Gaussian process emulator was presented as a gold standard

for computer model emulation. Unfortunately, training a GP requires inverting a

dense d⇥ d matrix, rendering the GP emulator infeasible for many problems, where

large training sets are required to precisely emulate a computer model. The local

approximate Gaussian process (LA-GP) approach described in section Section 1.3.3

solves this problem by selecting a subset of c ⌧ d examples from the training data

D [65,66]. These neighborhoods are selected using a greedy selection criterion based

on the new input xnew. The downside of this approach is that the selection of

the neighborhood and LA-GP training requires O(c3) time, but this step must be

repeated each time a new prediction is desired, and thus the true cost of producing

T predictions with an LA-GP emulator is O(Tc3). The nature of the LA-GP allows

for straightforward parallelization of the predictions, so long as the set of predictions
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Xnew = (xnew,1,xnew,2, · · ·xnew,T ) is known in advance.

In the context of Bayesian model calibration, the inputs required for prediction

at each time step t are often part of a Markov chain and thus, by definition, the

prediction set Xnew cannot be known in advance. If the prediction set is not known

in advance, then the predictions cannot be computed in parallel and, depending on

the magnitude of T , emulation with the LA-GP can be considerably slower at making

predictions than a standard GP (provided the standard GP can be fit at all).

In this chapter, we present two modifications to the LA-GP which are demonstra-

bly more e�cient than either the standard or local approximate Gaussian process, at

the cost of additional memory requirements and an often negligible loss of accuracy.

These methodologies are referred to as the Sequence of Local Approximate Gaussian

processes (SLAP-GP) and the Localized Ensemble of Local Approximate Gaussian

processes (LEAP-GP). Details for these methods will be discussed in the remainder

of this chapter, but Table 2.1 gives a look at the asymptotic complexity required for

training and prediction along with the asymptotic memory complexity for each em-

ulator. The prediction and memory requirements are broken into the cases with and

without uncertainty. Although the case with uncertainty is important for forward

uncertainty propagation [89] and in fully Bayesian calibration [161], we are typically

interested in obtaining a cheap-to-evaluate surrogate for the computer model (for

reasons explained in Section 1.4.3) and will focus on the case without uncertainty.

2.2 The Prediction Hub

The primary strategy of both the SLAP-GP and LEAP-GP emulators is to reuse our

previous work whenever possible, trading time for memory. For example, suppose we

are asked to make a prediction at time t corresponding to the input xnew,t = (0, 0).

Then at time t+1 we are asked to make a prediction at the location xnew,t+1 = (✏1, ✏2).
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Table 2.1: Asymptotic complexities for training, prediction, prediction with uncer-
tainty and total (training + prediction with uncertainty) for 4 di↵erent emulators.
Results assume that c = O(

p
d) and that parallel computation is not possible.

No uncertainty With uncertainty

Method Train Pred Memory Prediction Memory

GP d3 Td d Td2 d2

LA-GP 0 Td1.5 0 Td1.5 0

SLAP-GP 0 T?d1.5 T?d0.5 T?d1.5 T?d0.5

LEAP-GP Hd1.5 Td0.5 Hd0.5 Td Hd

In the LA-GP framework, we would be expected to explore all d candidate points

searching for a near-optimal neighborhood Ct+1 and would then be required to invert

a c⇥c matrix many times. If the ✏ are su�ciently small, one could reasonably expect

that reusing the results from the previous time step will lead to a negligible loss of

accuracy and a significant amount of time savings.

To accomplish this, we define a prediction hub H to be a mathematical object

containing all of the relevant information needed to make future predictions. A

hub must contain its own coordinates, the estimated correlation parameter  and an

index set containing the indices J = (j1, j2, · · · jc) corresponding to the neighborhood

selected for prediction. This is all the information required to make a prediction using

equation 1.13, but we can make an additional memory for time exchange and store

the vector  = R�1⌘ without increasing the asymptotic memory requirements. We

will usually be dealing with a set of prediction hubs, denoted H = (H1,H2, · · ·HH),

where each hub is viewed as the tuple Hh = (xh, Jh,h, h). If uncertainty estimates

for the prediction are desired, then we must also store the matrix K�1
h , leading to

the additional memory cost seen in Table 2.1. Additionally, we will store the scalar

value ⌫h = ⌘>K�1
h ⌘ in order to avoid unnecessary matrix-vector and vector-vector
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multiplications in the future. Thus, if uncertainty for a prediction is desired, the

prediction hubs will be defined as Hh = (xh, Jh,h, h, K
�1
h , ⌫h).

2.2.1 Building a Prediction Hub

We begin here with a high-level review of the steps required to make a prediction,

at location xnew, using LA-GP and training data D = (X,⌘). The first stage is

to find a reduced training set C = (Xc,⌘c), such that Xc = (xj1 ,xj2 , · · ·xjc) and

⌘c = (⌘j1 , ⌘j2 , · · · ⌘jc). For LA-GP, this stage is executed in two steps. First, a

small number of points are chosen via a nearest neighbor strategy. Next, each of

the remaining pairs (xj, ⌘j) are evaluated with respect to some criteria, and the

best pair is greedily accepted and added into C. This process is repeated until c

pairs have been chosen and C is complete. In [65, 66], the authors give a number of

possible criteria and discuss the tradeo↵s extensively, ultimately suggesting that the

active learning Cohn (ALC) technique be used as a default [36]. Once the reduced

training data C has been selected, a Gaussian process is constructed as described in

Section 1.3.2. This entire process takes O(c3) time, and a prediction at location xnew

can be obtained using eq. (1.13) at a cost of O(c).

Upon completion of these steps, the prediction hub can be formally constructed

by merely storing all of the relevant information. The location of the hub is given

by xnew and the neighbor index set J = (j1, j2, · · · jc) is given by the ALC process

described above. The correlation parameter  is estimated when the Gaussian process

is constructed, and the vector  must be computed in order to make a prediction.

By storing each of these values in memory, represented as H = (xnew, J,, ), future

predictions at some location xnewer can be obtained in O(c) time by using eq. (1.13)

directly. In other words, the lengthy LA-GP process can be skipped entirely. Since

 is a scalar, xnew is a vector of length p, and J and  are vectors of length c, the
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cost of storing a single prediction hub in memory is order O(c + p). This cost is

fairly small compared to storing D, which requires O(pd) memory. Finally, we note

that a single prediction hub can be stored using 8(p+1)+12c bytes. In the borehole

example first described in Section 2.3.1, this equates to 840 bytes per prediction

hub. For the borehole example, this implies that roughly 342 prediction hubs can be

stored at the same cost as storing the training data D.

2.2.2 Searching for a Prediction Hub

In Section 2.2.1, we discuss how a prediction hub is built and stored in memory. In

this subsection, we discuss the details of searching through a set of prediction hubs

and using the extracted hub for prediction. Suppose we are equipped with a non-

empty set of prediction hubs H = (H1,H2, · · ·HH) and we wish to make a prediction

at some input location xnew. As described in the previous subsection, each prediction

hub can be used to make a prediction with the input xnew. We use the notation

⌘̂(xnew|Hh)

to denote a prediction of ⌘(xnew) using Hh and eq. (1.13). Of course, each hub will

lead to a di↵erent prediction and the prediction will generally be worse when the hub

location xh is far from the location of interest xnew. Although multiple hubs can be

aggregated to produce a prediction, we will limit ourselves to a single hub.

The simplest strategy for hub selection is to choose the hub which is nearest to

the new location or, more formally, we select Hh? such that

h 6= h? ) d(xnew,xh?) < d(xnew,xh).

We can improve this method by choosing the hub for which the response at xnew

and the response at xh are most strongly correlated. That is, we want to find h that
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maximizes Cor(⌘(xnew), ⌘(xh). Based on the isotropic Gaussian correlation function

from eq. (1.12), this can be accomplished by selecting h? such that

h 6= h? ) h?d(xnew,xh?)
2 < hd(xnew,xh)

2. (2.1)

This can be accomplished by directly computing hd(xnew,xh)2 for h = 1, 2, · · ·H

and selecting h with the smallest corresponding value. If the number of hubs H is

not too large, then this may be the best approach. When the number of hubs is large,

especially with respect to the input dimension p, it may be worthwhile to maintain a

KD-Tree data structure for the hub locations. A KD-Tree is a space partitioning data

structure which can allow for a nearest neighbor search in logarithmic time [12, 40].

The memory cost of maintaining a KD-Tree is linear in H, but it will allow us to

significantly decrease the time spent searching for the nearest hub. If the number

of hubs is very large and the dimension of the input space is not, then we highly

recommend the use of a KD-Tree during the hub extraction phase.

In summary, to make a prediction at location xnew using an existing hub, the

total computational cost is either O(c + H) using linear search and O(c + logH)

using a KD-Tree, although the latter approach also requires an additional memory

cost of O(H).

2.3 SLAP-GP Emulation

Sequential Local Approximate GP emulation initially works equivalently to the LA-

GP, creating prediction hubs sequentially and as-needed. When a new prediction

location xnew is su�ciently close to the coordinates of an existing hub, the hub

is extracted and used to make the prediction. This allows us to avoid the more

expensive procedure of building a LA-GP and allows for prediction in O(c), rather

thanO(c3) time. This approach shares many of the same benefits as the standard LA-
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GP framework, including the fact that it requires no formal training phase. Assuming

that the overhead is relatively small, the SLAP-GP framework is guaranteed to be at

least as fast as the corresponding LA-GP emulator, with e�ciency gains becoming

more prominent as the number of predictions T increases. In particular, the cost of

obtaining T predictions using the SLAP-GP emulator is O(T?c3 + (T � T?)c), where

the first term represents the number of predictions which are made by building a

new LA-GP and the second term represents predictions coming from a previously

constructed hub. Since T?  T , this is guaranteed to be no worse asymptotically

than the LA-GP emulator. Under mild conditions, there exists a constant upper

bound on T? so that the asymptotic complexity of SLAP-GP is O(Tc) as T !1.

In order to formalize this idea, we will need to define what it means for a prediction

location xnew to be su�ciently close to an existing hub. We attack this problem by

defining the prediction boundary of H = (x, J,, ), with respect to a parameter

⇢ 2 (0, 1), to be the set

B(H) = {x0 | R(x0,x|) � ⇢} .

Taking d(·, ·) to be a generic distance function, the boundary can be rewritten as

B(H) =

(
x0

���� d(x0,x) 
r
� log ⇢



)
. (2.2)

Written like this, the term
q

� log ⇢
 can be viewed as the radius of a prediction hub.

Now, consider prediction at a new location xnew.

• If xnew is not contained in the boundary of any current prediction hub, then

we use LA-GP to make a prediction and create a new hub at location xnew.

• If xnew is contained in the boundary of K � 1 prediction hubs, use any number

of these hubs to make a prediction at xnew. A new prediction hub will not be

created.
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This can also be viewed as a modified K-NN prediction problem, using

hd(xnew,xh)
2 (2.3)

as a notion of distance between xnew and a prediction hub location xh. For e�ciency

and simplicity, we propose using just the “closest” prediction hub, even if K > 1, by

adapting 1.6 as

⌘̂(xnew) = ⌘̂(xnew | Hh), where h
0 6= h ) hd(xnew,xh) < h0d(xnew,xh0). (2.4)

Alternatively, one could use multiple prediction hubs, extending the idea behind

equation 1.8, which may lead to improved predictions in some scenarios. This di↵ers

from a true nearest neighbor algorithm in the sense that a prediction hub must be

created when there does not exist a current hub which is su�ciently close to xnew.

As discussed in Section 2.2.2, our implementation also uses a K-D tree to allow for

e�cient extraction of the nearest hub.

Figure 2.1: Time-accuracy tradeo↵ for the SLAP-GP

An intuitive advantage of this approach is that it relies on just a single tuning

parameter ⇢, which can be selected in terms of a time/accuracy tradeo↵. When

⇢ = 1, the SLAP-GP is equivalent to the LA-GP emulator with additional overhead.
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The case where ⇢ = 0 is akin to fitting a single LA-GP for the first prediction and

using it globally for all predictions thereafter. For values of ⇢ 2 (0, 1), the SLAP-GP

emulator can be viewed as an LA-GP where suboptimal neighborhoods are sometimes

used for prediction. The degree and frequency of sub-optimality which we will allow

is determined by the parameter ⇢. For illustration, we return to the Gramacy-Lee

function defined in eq. (1.10), where the training data consists of d = 10, 000 Latin

hypercube samples, (x1,x2, · · ·x10000), over the input space X = [�4, 4]2. A separate

Latin hypercube sample of size T = 1000 is taken to form the prediction set Xnew.

Using c = 100, the SLAP-GP emulator was used to predict the output at each of the

new locations using a variety of ⇢ values between 0 and 1. For each run, we recorded

the run time and the root mean squared error, defined as

RMSE =

vuut 1

T

TX

t=1

(⌘(xnew,t)� ⌘̂(xnew,t))
2. (2.5)

Figure 2.1 illustrates this time/accuracy tradeo↵ as a function of ⇢. The emula-

tion surface constructed for the SLAP-GP is shown in Figure 2.2a and is directly

comparable to the surfaces in Section 1.3.1 and Section 1.3.2.

(a) SLAP-GP Emulator with ⇢ = 0.99 (b) LEAP-GP Emulator with H = 400

Figure 2.2: The Gramacy-Lee emulated surfaces for the SLAP-GP(0.99) and LEAP-
GP(400) emulators. See Section 1.3.2 for details.
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One remaining issue with the SLAP-GP emulator, is that the interpolation prop-

erty is not guaranteed for all xj 2 X. To see this, suppose that xnew 2 Xnew is

equal to some xj 2 X, and suppose that a prediction is made using a pre-existing

prediction hub Hh. If xj is one of the c points used to build the LA-GP for this

hub, or equivalently if j 2 Jh, then the interpolation property will hold. Thus the

SLAP-GP emulator will be an interpolator with high probability, whenever ⇢ is close

to 1. The interpolation property can be permanently restored with the following

steps.

i) If xnew = xj for some xj 2 X and Hh has been extracted for prediction, then

check to see if j 2 Jh.

ii) If j 2 Jh, then the interpolation property will hold.

iii) If j /2 Jh, then modify the prediction hub Hh so that xj is used for prediction.

This is just a O(c2) operation, if the partition inverse equations are used [8,65].

This simple procedure guarantees that the interpolation property will hold for the

SLAP-GP emulator, and has no e↵ect on the asymptotic complexity of the algorithm.

With that said, this can add substantially to the overhead, and we choose not to

include it in our implementation, opting instead for a value of ⇢ which is reasonably

close to 1.

2.3.1 Comparison: The Borehole Function

In this section, we compare the SLAP-GP and LA-GP emulators using the well-

known borehole function [103,145]. The details of the simulation follow closely from

the work of [66] on LA-GP and of [85] on compactly supported covariance emulation.
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The response is given by

⌘(x) =
2⇡Tu (Hu �H`)

ln(r/rw)
⇣
1 + 2LTu

ln(r/rw)r2wKw
+ Tu

Tl

⌘ , (2.6)

where the eight inputs are constrained to lie in the space X defined by

rw 2 [0.05, 0.15] r 2 [100, 5000] Tu 2 [63070, 115600] Tl 2 [63.1, 116]

Hu 2 [990, 1110] Hl 2 [700, 820] L 2 [1120, 1680] Kw 2 [9855, 12045].

We generate a maximin LHS of size 4500, using the first 4000 locations for training

and the remaining locations for testing. To compare di↵erent approaches, we record

the runtime of each emulator as well as the normalized root mean squared error

(NRMSE) and the Nash Sutcli↵e e�ciency (NSE). The NRMSE is defined as

NRMSE =
1

SD(Xnew)

vuut 1

T

TX

t=1

(⌘(xnew,t)� ⌘̂(xnew,t))
2,

where SD(⌘new) is the standard deviation of the true responses corresponding to the

test set Xnew, putting RMSE on a normalized scale. The NSE is a statistic, which

can be viewed as an analogue to the R2 statistic for linear models, which is defined

as

NSE = 1�
P

x2Xnew
(⌘̂(x)� ⌘(x))2

P
x2Xnew

(⌘̂(x)� ⌘̄)2
.

Writing SLAP-GP(⇢) to denote the SLAP-GP emulator with parameter ⇢, the

results of the borehole experiment are given in Table 2.2 and clearly demonstrate

the time/accuracy tradeo↵. For example, the SLAP-GP(0) emulator requires just

0.33 seconds to make T = 50 predictions but does so with suboptimal accuracy.

The LA-GP emulator takes about 342 times as long to make the predictions but

gains an order of magnitude in terms of NRMSE. The SLAP-GP(0.95) represents

a reasonable tradeo↵ between these two extremes, as it is twice as fast as LA-GP

with a NRMSE value of 0.02216. We also note that the speedup gained by setting
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⇢ < 1 is expected to increase as the number of predictions T grows. Finally, we

note that SLAP-GP(1) and LA-GP are equivalent emulators, as expected, in terms

of accuracy. The SLAP-GP(1) emulator requires an additional 7 seconds to make

T = 500 predictions, representing an overhead of roughly 6%.

Table 2.2: Comparison of LA-GP and SLAP-GP(⇢) emulators using the borehole
exemplar.

Method Pred (secs) NSE NRMSE

SLAP-GP(0) 0.33 0.97371 0.14025
SLAP-GP(0.5) 0.33 0.97371 0.14025
SLAP-GP(0.8) 3.52 0.99301 0.07810
SLAP-GP(0.9) 19.78 0.99761 0.04640
SLAP-GP(0.95) 66.76 0.99947 0.02216
SLAP-GP(0.99) 117.58 0.99984 0.01215
SLAP-GP(1) 119.91 0.99984 0.01213
LA-GP 112.96 0.99984 0.01213

2.4 LEAP-GP Emulation

One of the convenient features of the full GP emulator, is that once the GP has been

trained, the computation required for future predictions is trivial. The LA-GP and

the SLAP-GP emulators avoid a formal training phase, but pay for it later during

prediction, since building the neighborhood and inverting the correlation matrix

must be done for each new prediction location. By allocating some initial time for

training, we obtain faster predictions which is ideal for many online or exploratory

analyses. The Localized Ensemble of Approximate (LEAP) Gaussian processes is an

emulator which uses many of the same ideas as SLAP-GP but does much of the work

in advance so that faster predictions may be obtained down the road. While SLAP-

GP builds up the set of prediction hubs as needed, the LEAP-GP emulator creates

a set of H prediction hubs in advance. An additional benefit of this method, is that
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the initial set of hubs can be simultaneously selected, thus restoring the potential for

parallel computation which makes the LA-GP so attractive in many other domains.

So although the training time for LEAP-GP is theoretically O(Hc3), the impact of

H can be eliminated or reduced with parallelization. This allows us to choose a much

larger value of H than we might otherwise be able to a↵ord, although we note that

H may still be limited in practice due to memory requirements, which are O(Hc)

regardless of parallel computation.

All that remains is to determine an acceptable value for H as well as the coordi-

nates of each hub Hh, h = 1, 2, · · ·H. Assuming that c /
p
d, one possible option

is to construct a hub at every single location in the training set D. This strategy

has the desirable feature of trivially satisfying the interpolation property and can

be trained as e�ciently as O(d1.5) with parallel computation. Assuming that re-

sources are available to train this emulator and that a K-D Tree is maintained for

the prediction hubs, then each future prediction can be executed in an impressive

O(d0.5+log2 d) time. If training is done sequentially, the complexity of the procedure

is O(d2.5), which is still an improvement over the standard GP.

Nonetheless, it would be convenient to develop an algorithm for training a LEAP-

GP emulator which requires only quadratic sequential training time. This can be

accomplished by setting c /
p
d as well as H /

p
d. Depending on parallelization,

the cost of training such an emulator is anywhere from O(d1.5) to O(d2). A further

advantage of this strategy is that the additional memory required is linear in the

size of the training data D. Since the training data must be stored anyways, the

asymptotic memory cost remains the same as both the GP and LA-GP algorithms.

Now we must consider placement of the prediction hubs. The general goal should be

to have a prediction hub as close as possible to every reasonable prediction location

xnew. Assuming that the set of training locations X are representative of the input

space, we can seek to solve a proxy for this problem instead. Specifically, we propose
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using the partitioning around medoids (PAM) algorithm with a slight modification.

PAM is a clustering algorithm, which is similar in spirit to the k-means algorithm,

where each cluster is represented by its medoid [86, 138, 151]. By definition, the

medoid is required to be a member of the dataset, a property which will be useful

for enforcing the interpolation property (at least partially). Part of what makes

PAM so appealing in this application is it’s quadratic runtime in the number of data

points, thereby maintaining our goal of a O(d2) training algorithm. PAM refers

to the e�cient algorithm which attempts to find a set of H data points from the

set (x1,x2, · · ·xd) which minimizes a clustering cost function. Typically this cost

function is given by

cost =
HX

h=1

X

x2Nh

d(x,mh), (2.7)

where mh is the medoid of the hth cluster, and x 2 Nh if and only if d(x,mh) 

d(x,mh0) for all h0 6= h. To better suit the current application, we propose modifying

this cost function to

cost =
HX

h=1

max
x2Nh

d(x,mh), (2.8)

This cost function attempts to minimize the maximum distance from any point in

the training set to its nearest hub, which is precisely our goal. This cost function can

be calculated at least as fast as the cost function in 2.7, and therefore we maintain

the desired O(d2) training requirement.

Unfortunately, the LEAP-GP emulator described above is unlikely to be an in-

terpolator, unless we are pathologically lucky. Recall that the LEAP-GP emulator

will only interpolate at location xj 2 X if j 2 Jh for at least one h 2 {1, 2, · · ·H}.

Thus J =
SH

h=1 Jh is the set of all indices j such that the training point (xj, ⌘j) is

involved in the construction of at least one prediction hub, and the metric

fracJ =
|J |
d

, (2.9)
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gives the proportion of training locations for which interpolation is possible. If fracJ

is not relatively close to 1, then the LEAP-GP emulator may need to be re-trained

with a larger value of H and/or c.

The Gramacy-Lee surface, defined in eq. (1.10), is emulated using the data de-

scribed in Section 1.3.1 and using LEAP-GP with H = 400. The emulated surface

is shown in Figure 2.2b and is directly comparable to the surfaces in Section 1.3.1

and Section 1.3.2. The RMSE value for this example is also given in Table 1.1.

Table 2.3: Comparison of LA-GP, SLAP-GP(⇢) and LEAP-GP(H) emulators using
the borehole exemplar.

Method Train (secs) Pred (secs) NSE NRMSE fracJ

LEAP-GP(64) 24.05 0.10 0.99759 0.04658 0.66375
LEAP-GP(200) 67.38 0.19 0.99797 0.04290 0.97325
LEAP-GP(500) 163.98 0.39 0.99891 0.03153 0.99975
LEAP-GP(1000) 327.11 0.83 0.99907 0.02909 1.00000
LEAP-GP(4000) 916.67 3.62 0.99931 0.02507 1.00000

SLAP-GP(0.95) 0.00 66.76 0.99947 0.02216 �
LA-GP 0.00 112.96 0.99984 0.01213 �

2.4.1 Comparison: The Borehole Function

Using the same data as in Section 2.3.1, we trained a LEAP-GP emulator using c = 64

and various values of H between
p
d ⇡ 64 and d = 4000. We report the time required

to make T = 500 predictions, the NRMSE and the NSE as well as the time required

for training and the statistic fracJ given in equation 2.9. The results are shown

in Table 2.3. We were unable to fit the standard GP for comparison due to cost,

but with a crude approximation we estimate that the training procedure would have

taken weeks or months to complete using the GPfit package in R [96]. The SLAP-GP

emulator with ⇢ = 0.95 and the full LA-GP emulator are also included in this table
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for comparison. Although both the SLAP-GP(0.95) and LA-GP emulators take less

time overall, the LEAP-GP emulator will become faster as the number of predictions

grows large. A simple linear extrapolation suggests that LEAP-GP(1000) will be

faster than LA-GP for T > 1459 and will be faster than SLAP-GP for T > 2481.

Finally, we note that these are the results of training LEAP-GP sequentially, and

the use of parallel programming could easily reduce the runtime even further.

2.4.2 Combining LEAP-GP and SLAP-GP

Both the SLAP-GP and LEAP-GP emulators o↵er the user a simple choice between

accuracy and e�ciency. Typically, significant time savings are possible at the cost

of a near negligible loss in accuracy. In the context of Bayesian model calibration,

the discrepancy function can incorporate a small amount of emulation error with

little or no e↵ect on the overall results. The LEAP-GP framework is convenient

because it can be trained in O(d2) time with reasonably good accuracy, especially if

parallelization is used in training. Moreover, by moving the work forward, we end up

with very e�cient prediction capabilities, convenient when running a large number

of MCMC repetitions, or even when writing and debugging code.

Table 2.4: Runtime and accuracy results for the emulator which results from com-
bining SLAP-GP(⇢) and LEAP-GP(H).

H ⇢ Train (s) Pred (s) NSE NRMSE # Hubs

64 0.95 24.05 51.44 0.99946 0.02309 279
64 0.98 24.05 111.81 0.99984 0.01249 539

1, 000 0.95 327.11 4.77 0.99912 0.02951 1, 016
1, 000 0.98 327.11 97.20 0.99979 0.01433 1, 406
4, 000 0.95 916.67 4.68 0.99931 0.02609 4, 000
4, 000 0.98 916.67 65.70 0.99971 0.01706 4, 260

The SLAP-GP algorithm on the other hand, is capable of prediction accuracy

57



Chapter 2. E�cient GP Emulation for MCMC Applications

which rivals the LA-GP framework directly, since when ⇢ = 1 they produce equivalent

predictions. Thus, in some cases, it may be worthwhile to use a combination of the

two approaches. Concretely, we propose using LEAP-GP to train the emulator,

shifting as much of the work to the front end as possible. The SLAP-GP structure,

preferably with a large value of ⇢, can then be used on top of the trained LEAP-GP

emulator to improve prediction accuracy. Some selected results are shown in 2.4.

Note that by training LEAP-GP, with H = 4000, in advance, the resulting emulator

is nearly twice as fast for 500 predictions compared to LA-GP. A similar speedup

was achieved with the SLAP-GP(0.95) emulator, but the NRMSE of the combined

algorithms is 0.017 compared to 0.022 for SLAP-GP and 0.013 for LA-GP.

2.5 Conclusions & Future Work

In this chapter, we propose a series of modifications to the LA-GP framework of

[65, 66] for use in applications where parallel prediction is not possible. In many

model calibration applications, particularly those with a large number of parame-

ters, sampling from the posterior distributions is time consuming, requiring many

thousands (or even millions) of MCMC iterations. In this setting, it is desirable that

computer model output can be obtained as e�ciently as possible and even a con-

stant speedup can be a huge welcome. Our approaches o↵er the user flexible choices

throughout including the ability to trade time for accuracy and memory in SLAP-

GP. A fixed amount of time can also be allocated for training prior to prediction

using LEAP-GP, leading to improved accuracy and speed of prediction. Best results

are obtained by combining the proposed procedures, training a LEAP-GP emulator

using the allocated training time and then improving the emulator as necessary using

the SLAP-GP framework during the prediction phase.

Future work will involve a more thorough comparison of these procedures to
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other emulation strategies, such as sparse Gaussian processes and MARS emulators

(see Section 1.3). Our current implementation for LEAP-GP can also be drastically

improved by allowing for the training phase to be conducted in parallel. This is a

straightforward step, but necessary for a proper comparison of results. At present

these methods are limited to the use of the isotropic Gaussian correlation function, so

another reasonable modification is to allow for the use of other correlation structures,

such as power-exponential, Matérn, and non-isotropic variants. Further theoretical

justification or empirical evidence is needed to assess some of the modeling choices.

For instance, we propose partitioning around medoids (PAM) for selecting the initial

hub structure in LEAP-GP which performs well in the applications we have seen,

but the properties of this structure should be considered and compared with other

possible options.

Finally, we note that LEAP-GP and SLAP-GP are intended for making fast se-

quential predictions, but a more general framework could be described allowing for

emulation in a broader sense. These methods could theoretically be used for other

problems in UQ, such as forward uncertainty propagation, sequential contour esti-

mation or optimization and fully Bayesian (rather than stage-wise) model calibration

(i.e. [161]), but a more general analysis which explicitly incorporates variance pre-

diction will be needed.
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Chapter 3

Dealing with Nuisance Parameters

in BMC

“Your assumptions are your windows on the world. Scrub them o↵ every once in a

while, or the light won’t come in.” – Isaac Asimov

3.1 Overview

In our application, it is useful to partition the calibration parameters into the physical

parameters of interest ↵, and a set of nuisance parameters � whose estimated values

are not of scientific interest. To complete the specification of the Kennedy and

O’Hagan model (see section 1.4.3, [87]), we must assign a prior distribution on the

calibration parameters. Using this partition of calibration parameters, we examine

priors of the form

✓ = (↵,�) ⇠ ⇡↵(↵)⇡�(�).

For simplicity, we assume throughout this chapter that the calibration parameters

have been standardized so that each ✓i has prior mean and variance of 0 and 1 respec-

tively. Based on the application, we use subject matter knowledge for the physical

parameters to build a weakly informative prior ⇡↵(↵). The main goal of this chapter
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is to explore, compare and develop choices for ⇡�(�) for applications consisting of

several experiments such as the tantalum example described in section 1.2. When

there are a large number of these nuisance parameters, the potential for overfitting

with the presence of model discrepancy is increased. We consider the case where

some of the nuisance parameters represent measurement uncertainties, such as the

thickness or mass of a material sample, where the generating probability distribu-

tion, called the measurement error model, is often known. With this additional

problem structure in mind, we can attempt to identify the overfitting of nuisance

parameters and reduce the overfitting when it occurs. This information is useful for

exploration of the relationship between discrepancy and parameter inference and can

sometimes be used to diagnose the presence and e↵ect of model discrepancy form on

the parameters of interest.

Sections 1.4.3, 1.5.2, 1.5.4 and 1.2 are highly relevant to the contents of this

chapter. The rest of this chapter is organized as follows. In section 3.2, we formally

define nuisance parameters and overfitting. We propose a criteria called probability

of prior coherency and a specialized regularization prior called moment penalization

to identify and reduce the overfitting of nuisance parameters. In section 3.3, these

methodologies are used to analyze physical parameters using a variety of applications

and synthetic examples, and the results are compared to the standard approach. The

results are further explored and extended in section 3.4.

3.2 Overfitting, Nuisance Parameters and

Regularization

In the compressibility of tantalum example, measurement uncertainty inputs to the

model (i.e. material thickness measurements) are expected to behave like draws
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from a known generating distribution (i.e. the measurement error model) and any

systematic bias in these parameters can be easily identified. In section 3.2.1, we

describe three scenarios of overfitting in the context of nuisance parameters and BMC

and section 3.2.2 describes a criteria which is capable of recognizing overfitting. In

section 3.2.3, we build on these ideas and develop a moment penalization prior which

is capable of reducing overfitting in this context. In section 3.2.4, we discuss how the

methods developed in this section can be useful as diagnostic tool for checking the

violation of model discrepancy assumptions.

3.2.1 Overfitting for Nuisance Parameters

Overfitting can have many meanings depending on the application and methodology,

thus we need to pin down what is meant by overfitting for nuisance parameters in

the BMC framework. For illustration, we consider the material thickness parame-

ters from the material property calibration problem of section 1.2. The exclusive

source of uncertainty for these parameters is measurement error. For k = 1, 2, let

(�k1, �k2, · · · �kp) denote each set of nuisance parameters across p experiments. Since

the parameters have been standardized to have mean 0 and variance 1, assuming

normally distributed errors implies that

(�k1, �k2, · · · �kp) ⇠ N(0, Ip), k = 1, 2 (3.1)

where Ip is the p ⇥ p identity matrix. The measurement error model specified in

eq. (3.1) can be viewed as a modeling constraint on each set of nuisance parameters.

For instance, if the measurement device is well registered, the set of p = 9 tantalum

thickness measurements should look like independent draws from a standard nor-

mal distribution. We now outline three scenarios of overfitting for these nuisance

parameters, which we will refer to as overdispersion, underdispersion and collective

bias.
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Figure 3.1: In the background of each panel is an (unnormalized) standard normal
distribution, representing the expected generating distribution for the p = 9 nuisance
parameters. The hypothetical posterior distributions shown on the left are consistent
with our prior knowledge of the problem structure. The posterior distributions in
the middle and right panel are not coherent with our understanding of the problem
and may be the result of overfitting.

Suppose that BMC has been performed and we inspect the nuisance posteriors

of the thickness parameters. If the posterior mean for some of these parameters is,

for example, more than ⇡ 5 prior standard deviations away from the prior mean,

we should be concerned that these errors are too large given what we know about

the measurement device. This overdispersion of nuisance parameter estimates is a

classic form of overfitting, and can readily occur if prior information is ignored, such

as in maximum likelihood estimation or with the use of non-informative priors. On

the other hand, suppose we obtain nuisance posteriors which are tightly centered

around 0 for each of the nuisance parameters. The underdispersion of nuisance

parameter estimates here should be a similar concern given our prior information of

the measurement process. The specification of independent normal priors on each

thickness parameter does nothing to address this, since the prior is maximized when

each of the thickness uncertainties is 0. This type of overfitting can lead to biased

posteriors in the physical parameters of interest, and a good prior should be able
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to handle such cases when necessary. Figure 3.1 illustrates these cases using a set

of p = 9 hypothetical posterior densities. In the left panel there is no evidence of

overfitting, as the nuisance parameter posterior means appear like independent draws

from a standard normal distribution (dotted gray). The middle panel exhibits the

behavior of overdispersion, as several of the posterior distributions are too far from

the center. The right panel gives evidence of underdispersion, where the spread of

the nuisance parameter estimates is too small according to our expectations.

Figure 3.2: Hypothetical posterior densities for two sets of p = 6 nuisance parameters.
The left panel is consistent with the expected generating distribution (dotted gray
curve). The right panel cannot be explained by the generating function and may
be the result of overfitting (i.e. collective bias). The standard prior distribution
is incapable of distinguishing between these two cases, assigning the same penalty
(negative log prior density) to each case. In this setting, a regularization prior should
be able to penalize the case on the right.

When model discrepancy leads to systematic bias, a third form of overfitting,

which we refer to as collective bias, can readily occur. Suppose that we perform

BMC and upon inspection we see that each of the aluminum thickness parameters

have negative posterior estimates and each of the tantalum thickness parameters
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are estimated to be positive. A hypothetical depiction of this type of overfitting is

illustrated in fig. 3.2, which shows posterior distributions for 2 groups of p = 6 nui-

sance parameters. In this Figure, each color (orange or green) represents a di↵erent

group assignment (i.e. tantalum or aluminum thickness). The arrangement on the

left is reasonable with respect to the known problem structure, while the arrange-

ment on the right may be an indication of systematic bias caused by a violation of

the model discrepancy identifiability constraint. The standard approach of assigning

independent standard normal priors for each nuisance parameter is unable to distin-

guish between these two cases, but a good regularization prior should be capable of

penalizing the case on the right.

3.2.2 A Metric for Overfitting

Now that we have defined overfitting of nuisance parameters, we can develop a metric

for identifying the existence and severity of this overfitting. To visualize the collective

behavior of a high dimensional set of nuisance parameters, it is useful to assess the

behavior of the first two moments. Such as in the measurement error example, we

assume that there are p � 2 nuisance parameters which have been standardized and

are a priori normally distributed. We define,

M� =
1

p

pX

j=1

�j V� =
1

p� 1

pX

j=1

(�j �M�)
2 (3.2)

to be the mean and variance respectively of the nuisance parameter set. Since the

nuisance parameters are assumed to be standard normal, we know that M� and V�

are independent and the joint distribution with respect to the prior is1

⇡M� ,V� (m, v) = N(m | 0, 1/p)⇥
⇥
(p� 1)�2(v(p� 1) | p� 1)

⇤
(3.3)

1
N(x|µ,�2) denotes a normal density with mean µ and variance �

2 and �
2(x|⌫) repre-

sents a chi-square density with ⌫ degrees of freedom
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Now let M̂� and V̂� denote posterior estimates (i.e. posterior means) of these quan-

tities. Even if the posterior estimate for each nuisance parameter �k is marginally

reasonable, it is worthwhile to check that the estimates M̂� and V̂� are also coherent

with our prior knowledge of the problem structure. If

⇡M� ,V� (m, v) > ⇡M� ,V� (m
0, v0)

then we say that the pair (m, v) is more coherent with the prior than the pair (m0, v0),

and we write (m, v) �c (m0, v0). Let

�M̂� ,V̂�
=
n
(m, v) | (M̂�, V̂�) �c (m, v)

o
(3.4)

be the set of all pairs (m, v) for which the point (M̂�, V̂�) is more coherent with the

prior than (m, v). We now define the probability of prior coherency of (M̂�, V̂�) to be

the probability that the posterior estimates are more coherent with the prior structure

than a point (m, v), which is distributed according to the density in eq. (3.3).

pc(M̂�, V̂�) =

Z

�M̂� ,V̂�

⇡M� ,V� (m, v) dmdv

⇡ 1

L

LX

`=1

⇣
(M̂�, V̂�) �c (m`, v`)

⌘
.

(3.5)

The second line of eq. (3.5) is a Monte Carlo approximation for some large integer

L, where (·) is the indicator function and (m`, v`) are random draws from the

distribution defined in eq. (3.3). For this definition of pc, we have that pc ⇠ Unif(0, 1)

whenever equation eq. (3.1) holds [28, p. 397]. An alternative definition of prior

coherency is given in Section 3.4.1 which allows for direct computation and eliminates

the need for Monte Carlo, but uniformity of the metric under eq. (3.1) will no longer

hold.

Figure 3.3 illustrates this metric for 4 di↵erent simulated datasets consisting of

p = 10 nuisance parameters. The large orange point with a black outline represents
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Figure 3.3: Diagnostic plots for four di↵erent simulated scenarios. The top-left
panel illustrates a scenario where the posterior distributions are coherent with our
knowledge of the problem structure. The top-right and bottom-left panels indicate
underdispersion and overdispersion respectively. Compare these three panels to the
hypothetical posteriors displayed in fig. 3.1. The bottom-right panel is the diagnostic
plot corresponding to the collective bias, as shown in the right panel of fig. 3.2
(green posteriors). Probability of prior coherency is computed using the Monte
Carlo approximation given in eq. (3.5).

the posterior estimates (M̂�, V̂�) in each case, and the surrounding orange scatter

represents posterior draws of (M�, V�). The pc values were computed using the

Monte Carlo approximation in eq. (3.5). The top left panel indicates nuisance poste-

riors which are consistent with the prior structure. The bottom left panel indicates

overdispersion of the nuisance posteriors, where the posteriors are collectively too far

from their prior means. The top right panel indicates underdispersion, as V̂� is far

smaller than expected. These three cases can be compared to their corresponding

panels in fig. 3.1. The bottom right panel indicates a systematic and collective bias
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of the nuisance parameters, similar to the case depicted in fig. 3.2 (green). Figure 3.3

demonstrates that small values of pc may indicate that overfitting is occurring. We

emphasize that this criteria is only appropriate when the necessary problem structure

exists, such as when the nuisance parameters represent measurement uncertainties.

In the absence of suitable problem structure, we suggest the use of other less special-

ized regularization methods, such as the Dirichlet-Laplace or Horeshoe priors [17,27].

More details on these methods in the context of model calibration can be found in

section 1.5.4.

When the posterior distribution for a set of nuisance parameters has low probabil-

ity of prior coherency, we need to consider possible explanations. First and foremost,

it is important that the prior distributions are chosen carefully and reasonably. In

our material property applications, experts are confident in their ability to provide

reasonable (not necessarily informative) priors. Assuming that the prior distributions

are reasonable, consider the following argument. If the model is well-specified, then

nuisance parameter posteriors should be relatively coherent. Similarly, this suggests

that severe incoherency of the nuisance parameters can be caused by a misspecified

model. Although high prior coherency is not guaranteed, even if the model is well-

specified, we find that low prior coherency is best explained by model misspecification

and overfitting.

3.2.3 Regularization: The Moment Penalization Prior

Building on the idea of prior coherency, in this subsection we develop a prior which

attempts to reduce overfitting by pulling the posterior estimate (M̂�, V̂�) into a re-

gion of higher prior coherency. Since M̂� and V̂� are standardized versions of the

first and second moment, we refer to the prior described in this section as the mo-

ment penalization (MP) prior. As before, we assume that all nuisance parameters
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have been standardized and are normally distributed, so that the structure given in

eq. (3.3) holds. Section 3.4.6 discusses an extension of the methods discussed here

for uniformly distributed nuisance parameters.

It is common in the Bayesian regularization literature to treat a prior distribution

as a penalty, and it will be useful and informative for us to follow that approach here

[15, 27]. In this framework a penalty function pen�(�) is chosen to either reward

or penalize a candidate solution � based on some criteria, where the hyperparame-

ter(s) � controls the magnitude of the penalty. The corresponding prior distribution

becomes exp(�pen�(�)). In the current setting, we want to penalize nuisance pa-

rameter candidates which have low probability of prior coherency. The probability

of prior coherency will be large when the constraints M� = 0 and V� = 1 are approx-

imately satisfied. Using simple squared loss penalty functions, we obtain

pen�(�) = �1(M� � 0)2 + �2(V� � 1)2

which leads to the following prior

⇡MP
� (�) / exp

⇥
��1M2

�

⇤
exp

⇥
��2(V� � 1)2

⇤
. (3.6)

The probability of prior coherency can be made large by increasing the penalty

terms �1 and �2, forcing the nuisance posteriors to behave in a manner which is

consistent with the prior structure. As a starting place, it would be convenient to

have “default” hyperparameter values which allow the MP prior to behave similarly

to the independent prior of equation eq. (3.1). According to our knowledge of the

problem structure, or equivalently under the SI prior, we have V ar(M�) = 1/p and

V ar(V�) = 2/(p� 1). Thus we can reparameterize the prior by setting,

�1 =
!1

2V ar(M�)
=

p!1

2
, �2 =

!2

2V ar(V�)
=

(p� 1)!1

4
.

Now when !1 = !2 = 1, the variance of each Gaussian kernel, which define the new

prior, is equal to the corresponding implied variance under the SI prior. We write
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� ⇠ MP (!1,!2) to denote that the joint prior density of the nuisance parameter

vector is

⇡MP
� (�) / exp

h
�p!1

2
M2

�

i
exp


�(p� 1)!2

4
(V� � 1)2

�
,

� 2 Rp, !1 > 0, !2 > 0.

(3.7)

If � ⇠MP (1, 1), then we say that the nuisance parameter vector has a standard

moment penalization (SMP) prior. The general objective of the moment penalization

prior is to reward posterior solutions for which the constraints M� = 0 and V� = 1

are approximately satisfied. The size of the reward or penalty given to a particular

solution is a function of the hyper-parameters !1 and !2. The desired e↵ect is

that when !1 = !2 = 1, the MP prior closely mimics the behavior of the standard

informative prior of eq. (3.1). Setting !1 or !2 between 0 and 1 leads to a prior

which is less informative than the standard informative prior which is an undesirable

characteristic in the present context. On the other hand, setting !1 = !2 = 1

should place all of the prior density on the set

�1,p = {(�1, · · · �p) | M� = 0, V� = 1}. (3.8)

When p = 2, for example, this set contains just two points

�1,2 =

⇢✓
1p
2
,
�1p
2

◆
,

✓
�1p
2
,
1p
2

◆�
.

As p increases, the marginal constraints on each nuisance parameter �j become

less restrictive. For example, the set �1,3 contains infinitely many points with the

marginal constraints |�j| 
p

4/3. This bound increases with p, so that there are

no marginal restrictions on each �j as p ! 1. In section 3.4.2, we show how the

normalizing constant can be approximated e�ciently for any p and prove that this

normalizing constant is both finite and positive for all !1,!2 > 0. We also develop

an e�cient rejection sampler [29] for generating draws from the MP prior for small

to moderate values of p. Using this rejection sampler, we draw 100, 000 independent
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samples from the MP (1, 1), MP (5, 5) and MP (1, 20) priors, for dimensions of p = 2,

p = 3 and p = 5. In section 3.2.3, samples from these 9 distributions are summarized

with a two-dimensional histogram of (�1, �2) and a marginal histogram of �1, with

the standard normal density curve overlaid (solid line) for reference.

When the dimension is small, the marginal distribution of each �j can be dis-

tinctly non-Gaussian and even bimodal. As the dimension p grows, the marginal

distributions become unimodal and bell-shaped. In particular, we have been unable

to find any combination of !1 and !2 which leads to a multi-modal distribution for

p � 5.

Another feature of the MP prior, is that it induces correlation for each pair

of nuisance parameters, especially for large !1 and !2. We view this dependence

as a necessary trade-o↵ to encourage the desired constraints, and we note that this

induced dependence is not uncommon in regularization frameworks. For example, the

magnitude of regression coe�cients are positively correlated under the well-known

horseshoe prior (eq. (1.51)) [27]. Moreover, it can be formally shown that � 1
p�1 

Cor(�j, �j0)  0 for all j 6= j0, and thus this correlation vanishes as p ! 1 for any

fixed !1,!2.

In the extreme case, we may want to enforce the constraints M� = 0 and V� = 1

exactly, by setting !1 = !2 =1. Although the MP prior can approximate this case

by choosing large but finite values of !1 and !2, it will not be exact and may lead to

computational challenges. In section 3.4.4, we discuss an alternate implementation

which intuitively and e�ciently enforces these constraints and requires no choice

for the hyper-parameters (implicitly, !1 = !2 = 1). In fig. 3.16, the marginal

distribution for each �j is shown to be approximately standard normal as p ! 1,

where the approximation is already quite good for p = 10. Moreover, the correlation

of any two nuisance parameters is exactly �1/p, which quickly tends to 0 for large

p.

71



Chapter 3. Dealing with Nuisance Parameters in BMC

Figure 3.4: Two dimensional histograms of (�1, �2) based on 105 draws from the
moment penalization prior using a rejection sampler (see section section 3.4.2 for
details). Marginal histograms are also given for the draws of �1, with a standard
normal density (solid line) shown for reference. The dimension p is equal to 2, 3 and
5 in the first, second and third columns respectively. The parameters (!1,!2) are set
to (1, 1), (5, 5) and (1, 20) in the first, second and third rows respectively. For small
p, the distribution can be bimodal and the variables are correlated. As p gets large,
the distributions become bell-shaped and the correlation tends to zero.
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3.2.4 The MP Prior as a Diagnostic Tool

In this subsection, we discuss how moment penalization can be useful as a diag-

nostic tool for understanding the relationship between calibration parameters and

model discrepancy. In the current framework, there are three components which

directly a↵ect the predictions: the physical calibration parameters ↵, the nuisance

parameters � and the model discrepancy �(·). If all components (this includes the

assumptions about the structure of the measurement uncertainties) of the model are

well specified, then the nuisance posteriors should be relatively coherent. Although

the contrapositive of this statement is not equivalent, due to its probabilistic nature

[35], we assert that a misspecified model is a possible (and often a probable) explana-

tion for severe incoherency. As we will show in section 3.3, moment penalization can

often be used to to reduce the bias of the nuisance parameter estimates and lead to

better estimation of these parameters. If the nuisance parameter estimates change

under moment penalization then, keeping everything else fixed, the computer model

output will change as well. To account for this change and still fit the data well,

either the physical calibration parameters or the discrepancy function (or both) will

also need to change.

a) The inferred physical parameters stay the same and the inferred model dis-

crepancy changes. In this scenario, the same inferences are obtained for the

parameters of scientific interest, regardless of the estimated discrepancy func-

tion. This is a positive result, since we have found no evidence that ↵ is

unidentifiable with either the nuisance parameters � or the discrepancy func-

tion �(·).

b) The inferred physical parameters may change, but the model discrepancy stays

the same. This also indicates some level of identifiability between ↵ and �(·).

One way that this scenario can occur, is if the inferred model discrepancy is
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completely correct (so that the potential unidentifiability is between ↵ and �).

In this case, it is reasonable to assume that better estimation of � will lead

to better estimation of ↵, although this can depend on the form of the model

discrepancy.

c) Both the physical parameter and model discrepancy inference changes. All of

our inferences have changed upon applying moment penalization, rendering it

very di�cult to pin point which component is to blame. At the very least, we

have identified evidence of unidentifiability, leading us to question the reliability

of the inferences obtained here. We must try to improve our understanding of

the problem so that the model, or model discrepancy assumptions, can be

improved. [24].

In order to identify and address overfitting, the methodology described in this

chapter gives primacy, in a sense, to the measurement error model. In our applica-

tions of interest, we are willing to assume that a subject matter expert can correctly

specify the structure (or generating distribution) of a set of nuisance parameters. If

these implicit assumptions are violated, then the probability of prior coherency may

indicate overfitting, when no such overfitting is actually occurring. In section 3.4.5,

we conduct a series of simulations in order to assess the sensitivity of these methods

to violations in the measurement uncertainty model. To summarize the findings of

section 3.4.5, both heavy tails and underestimation of the true variance can lead to

false conclusions, producing pc values which point towards overfitting when no such

overfitting is actually occuring. Our analysis indicates that the probability of prior

coherency is fairly robust to tail behavior, unless the tails are exceptionally heavy.

Prior coherency is less robust to misspecification of the variance, with possibly se-

vere implications when the true variance exceeds the specified variance by more than

about 20%. Taking a conservative approach, the consequences of overestimating the

variance are much less problematic.
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3.3 Examples

In this section, we show how probability of prior coherency and moment penal-

ization can be used as a diagnostic tool for understanding the relationship between

physical parameters and model discrepancy. In section 3.3.1, we demonstrate our

approach using synthetic data for a benchmark example adapted from [24]. In sec-

tion 3.3.2, the methods are applied to the dynamic material property application

described in section 1.2. A third example, based on the well-known Borehole func-

tion, and an accompanying simulation study can be found in section 3.3.3.

Figure 3.5: A simple machine. The true process ⇣(xi) (solid blue), the simulator
evaluated at the true e�ciency values (dotted purple), the simulator evaluated at
best fit parameters (dashed green) and the experimental data (red circles). The
true discrepancy function is not unbiased across x, so the true parameter values are
di�cult to infer.

3.3.1 A Simple Machine

We revisit the idea of the simple machine introduced by [24] which is used to illustrate

the systematic parameter bias which can occur with the absence of information about
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the model discrepancy form. We will show that the moment penalization prior can

be used as a diagnostic tool to recognize that violation of the model discrepancy

assumption is leading to poor inference for the calibration parameters. Consider a

collection of p simple machines, which deliver work depending on the amount of e↵ort

(x) that we put into it. The true process describing the e↵ort-work relationship is

⇣j(x) = Gj +
Ax

1 + x/20
(3.9)

The physical parameter of interest here is the e�ciency of the machine, denoted by

A. The denominator of the second term accounts for loss of work due to friction, and

the Gj parameters represent nuisance parameters which we refer to as base-e�ciency.

The base e�ciency parameters, which are not a part of the original formulation

[24], play the role of measurement uncertainties in the material property example.

Therefore we assume that the Gj can be estimated a priori in an unbiased manner

with uncertainty �G = 0.05. To introduce model discrepancy, the simulator for each

machine ignores the loss of work due to friction.

⌘j(x,A,Gj) = Gj + Ax (3.10)

Setting the true value of e�ciency to A = 0.65, we simulate experimental data for

p = 10 simple machines at input locations x1, x2, · · · x11 spaced evenly across the

interval [1, 4] according to the following data generating mechanism.

yij = ⇣j(xi) + ✏ij

G ⇠ N(0, 0.052I10)

✏ij
iid⇠ N(0, 0.012)

The calibration parameters are standardized using hypothetical prior information.

A ⇠ N(0.65, 0.32) ) ↵ =
A� 0.65

0.3

Gj ⇠ N(0, 0.052) ) �j =
Gj � 0

0.05
, j = 1, 2, · · · 10
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Figure 3.6: In order to better fit the data in the presence of model discrepancy, the
inferred nuisance parameters have collectively shifted to the right. These posterior
distributions are incoherent with our knowledge of the generating distribution (dotted
black line). The probability of prior coherency is e↵ectively 0, indicating strong
evidence for overfitting.

Figure 3.5 shows the true process (dashed line), a single realization of the data

(circles) and the simulator evaluated at the true parameter values (solid line) and

evaluated at the best fitting parameter values (dotted line). As an extreme example

of a poor model discrepancy assumptions, we will assume that our computer model is

perfect and that there is no model discrepancy. Since our assumptions about model

discrepancy are blatantly violated, in order to better fit the data, the inferred base-

e�ciency (intercept) parameters will be driven upwards and the inferred e�ciency

(slope) parameter will be driven downwards. We begin the analysis by specifying

independent standard normal priors for each of the calibration parameters and we

perform BMC. The posterior distributions for the p = 10 nuisance parameters

Without information about the model discrepancy form we will be unable to

recover the true value of e�ciency. The base e�ciency parameters will have a sys-

tematic upward bias, driving the estimate for the e�ciency (the slope) even farther
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Figure 3.7: Under moment penalization, the collective bias (i.e. overfitting) of the
nuisance parameters has been reduced. The inferred base e�ciency parameters now
behave like draws from the expected generating distribution (dotted gray curve), and
the probability of prior coherency is now reasonable.

in the wrong direction. We then assume independent standard normal priors for

the physical and nuisance parameters and perform BMC. Diagnostic plots for the

nuisance parameters are shown in fig. 3.6. The posterior means are all positive indi-

cating systematic bias, and the Monte Carlo estimate of pc is 0 demonstrating clear

evidence of overfitting. To rectify this, we perform BMC again using a MP(5, 5)

prior. The diagnostic plots shown in fig. 3.7 illustrate that the MP prior has pulled

the nuisance parameter estimates into a region of higher prior coherency (pc = 0.52),

and drastically reduced the bias of these estimates. In this particular example, im-

proving the estimation of the nuisance parameters leads to better estimation of the

physical parameter of interest A.

Posterior distributions of the e�ciency A under the SI and MP priors are shown

in fig. 3.8. As expected, the posterior distribution is biased even after successful

regularization of the nuisance parameters and is missing the true value A = 0.65 by

several posterior standard deviations. Nonetheless, the sensitivity of the posterior for
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Figure 3.8: Posterior distributions for the e�ciency parameter A in the simple ma-
chine example. The posterior distribution under moment penalization is much closer
to the true value of 0.65, but both posteriors miss the true value. The drastic shift in
the posterior distribution of A indicates that the model is sensitive to the estimation
of the nuisance parameters.

A to regularization of the nuisance parameters is valuable information, and indicates

that a violation of the model discrepancy assumptions is leading to poor inference.

This result should cause us to question our results and consider gathering more

information about model discrepancy or attempt to improve the model.

3.3.2 Compressibility of Tantalum

In this subsection, we use the probability of prior coherency and moment penal-

ization prior to analyze the tantalum data described in section 1.2. We begin by

assigning iid standard normal priors for the 27 nuisance parameters which corre-

spond to the (i) aluminum thickness, (ii) tantalum thickness and (iii) magnetic field

scaling parameter for each of the p = 9 experiments. The final nuisance parameter,

the density of tantalum, is fixed at a nominal value specified by the subject matter

expert. After performing BMC, the probability of prior coherency was computed for

each of the three sets of nuisance parameters. The posterior distributions for the
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Figure 3.9: Diagnostic plots (top) and posterior distributions (bottom) for the 9
boundary condition scaling nuisance parameters. The SI prior leads to posteriors
which are collectively shifted to the right, and low prior coherency (pc = 0.0691).
The MP (low penalty) prior produces similar results to the SI prior, by construc-
tion. The MP (high penalty) prior forces the posterior solution into a region of high
coherency (pc = 0.8769), leading to posterior distributions which are consistent with
our knowledge of the generating distribution.

nuisance parameters corresponding to aluminum and tantalum thickness were found

to be reasonably coherent with the prior, with pc = 0.79 and pc = 0.82 respectively.

The posteriors for the magnetic field scaling parameters, however, showed some ev-

idence of overfitting with pc = 0.069. The posterior distribution for each of these

nine magnetic field scaling parameters is shown in the bottom-left panel of fig. 3.9.

The posteriors illustrate the collective bias behavior discussed in section 3.2, and the

posterior mean is positive for all nine of these parameters. Our interpretation is that

the prior incoherency is most likely a product of overfitting, and should be addressed

with moment penalization.
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We repeat the BMC procedure twice more, assigning moment penalization priors

to each of the three sets of nuisance parameters using a low penalty case (!1 = !2 =

1) and a high penalty case (!1 = 20 = !2 = 20). In the low penalty (standard MP

prior) case the analysis is, by construction, very similar to the SI case. The posteriors

(bottom-middle) are qualitatively very similar to before, and the prior coherency for

the magnetic field scaling parameters changes only slightly (pc = 0.0759). On the

other hand, the high penalty MP prior is able to force the posterior distributions into

a region of high prior coherency (pc = 0.88). The posterior distributions (bottom-

right) for the nine magnetic field scaling parameters now looks consistent with our

expectations of the generating model; four of the nine nuisance parameter posterior

means are negative and only five are positive.

Figure 3.10: Bivariate posterior distributions for the physical parameters (B0, B0

0)
with the baseline model (⇢0 fixed to nominal value). The inferred values of the phys-
ical parameters is sensitive to the treatment of the nuisance parameters, indicating a
lack of identifiability between physical parameters, nuisance parameters and model
discrepancy.

In the next step of our analysis, we examine the posterior distributions for the

physical parameters (B0, B0

0). The bivariate posterior of these physical parameters,

shown in fig. 3.10, looks nearly identical under the SI and SMP priors, as expected.
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Figure 3.11: Bivariate posterior distributions for the physical parameters (B0, B0

0)
with the baseline model (⇢0 treated as a calibration parameter). There is no longer
any evidence of overfitting for the measurement uncertainty parameters, and the pos-
terior distributions are no longer sensitive to the treatment of nuisance parameters.

Application of moment penalization with high penalty, on the other hand, leads to

an upward shift in the posterior distribution for both of the physical parameters.

In general, there is no way to be sure that the posterior distribution under moment

penalization is more reliable than under the SI prior. In fact, the true values may

not be contained in either posterior, such as in section 3.3.1.

Since model discrepancy and poor identifiability assumptions are the most likely

cause of overfitting, we can attempt to rectify the problem at its root by adjusting

the model. For instance, we can obtain a more flexible class of computer models by

treating the initial density of tantalum (⇢0) as a calibration parameter. Rather than

fixing ⇢0 at a nominal value, it is equipped with an informative normal prior, centered

at a the same nominal value and with variance specified by the subject matter expert.

Since the tantalum used in each of the 9 experiments are cut from the same plate,

the density is assumed to be constant across all 9 experiments and thus moment

penalization cannot be applied to this calibration parameter directly. Now equipped

with an informative prior for ⇢0, we repeat the BMC procedure using independent
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standard normal priors for each of the measurement uncertainty nuisance parameters.

With this broader class of computer models, the probability of prior coherency is now

0.86, 0.90 and 0.66 for the aluminum thickness, tantalum thickness and magnetic field

scaling parameters respectively. Thus the pc metric no longer detects overfitting for

the 27 measurement uncertainty parameters. For completeness, we perform BMC

again using the low penalty and high penalty MP prior. We note that the posterior

distributions of B0, B0

0, shown in fig. 3.11, are now far less sensitive to moment

penalization.

Once the material properties have been calibrated, these physical parameters can

be used to predict the behavior of the material in di↵erent settings. For instance,

the pressure-density relationship can be modeled, conditional on these parameters,

Table 3.1: Posterior mean predictions of tantalum density at pressures 100-500
GPa. The ALA is a state-of-the-art analytic method and the predictions are used
as “ground truth” for comparison. The baseline model fixes the initial tantalum
density at a nominal value and the extended model allows this parameter to vary,
leading to a more flexible class of models. The bottom row is the estimated mean
square prediction error and is used to facilitate comparison. The high penalty MP
prior leads to predictions which most closely agree with the ALA results. Likewise,
the extended model leads to better agreement of the predictions than the baseline
model.

Baseline model Extended model

Pressure ALA SI MP MP SI MP MP
(GPa) (low) (high) (low) (high)

100 22.36 22.41 22.41 22.38 22.22 22.21 22.18

200 26.02 26.26 26.26 26.18 26.08 26.07 26.03

300 29.16 29.38 29.39 29.25 28.80 29.22 29.21

400 31.88 32.10 32.11 31.93 31.05 31.95 31.94

500 34.34 34.55 34.56 34.33 32.98 34.42 34.41

MSPE � 0.995 1.010 0.708 0.773 0.760 0.675
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using the physically motivated Vinet equation-of-state [157]. Each calibration can

be used to produce a posterior distribution for the density of tantalum at a given

(potentially extreme) pressure. Table 3.1 shows the predicted density of tantalum,

i.e. the posterior mean, at 100, 200, 300, 400 and 500 GPa for each of the 6 cali-

brations. For comparison, the tantalum pressure-density relationship according to

an average Lagrangian analysis (ALA), a state-of-the art analytic method, is also

given for comparison [20], [130]. Using the ALA predictions as a ground truth, the 6

calibration procedures can be easily compared. To facilitate comparison, the mean

squared prediction error for each calibration is given in the bottom row of table 3.1.

The baseline model refers to the computer simulator with the initial density of tan-

talum fixed at a nominal value, where the extended model refers to the more flexible

class of models. Note that the predictions for the large penalty MP calibration are in

best agreement with the ALA predictions. Moreover, the diagnostic based on prob-

ability of prior coherency and moment penalization led us to the extended model,

which leads to better predictions under all 3 priors compared to their baseline model

counterparts.

3.3.3 The Borehole Function

This section serves to provide a third example to illustrate the use of probability of

prior coherency and moment penalization in a Bayesian model calibration context.

We will compare the results of BMC using SI and MP priors for two scenarios in-

volving (i) correct specification of the model discrepancy prior and (ii) a naive and

faulty specification of the model discrepancy prior. When the model discrepancy

prior is well specified, the MP prior has little e↵ect on the posterior distribution of

the physical parameter and pc does not identify overfitting. When the model discrep-

ancy assumptions are violated, we are able to identify overfitting and the posterior

is sensitive to the use of moment penalization. Thus the diagnostic capabilities of
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MP and pc are demonstrated even though inference does not improve under moment

penalization. In addition, we conduct an extensive simulation study comparing mo-

ment penalization to the SI prior and to other methods including Z-regularization

(section 3.4.4) and the well-known but non-specialized horseshoe prior [27].

The borehole function models water flow through a borehole. This function is

commonly used in computer experiment literature due its simplicity and capacity for

quick evaluation [1, 102,103,145]. The borehole function can be written as

borehole(x,✓) =
2⇡Tu�H

ln(r/rw)
⇣
1 + 2LTu

ln(r/rw)r2wKw
+ Tu

Tl

⌘ , (3.11)

and the true process will be defined as ⇣(x) = borehole(x,✓?) for some true value ✓?.

To simplify the problem, most of the inputs are treated as fixed and known.

• r = 2, 230 is the radius of influence in meters.

• Tu = 90, 000 is the transmissivity of the upper aquifer in meters squared per

year.

• Tl = 90 is the transmissivity of the lower aquifer in meters squared per year.

• �H = 300 is the potentiometric head di↵erential in meters.

In addition, we take x = L to be a known input or design variable where L is

the length of the borehole measured in meters. This input can take values in the

range [1120, 1680]. For each borehole, there are two unknown calibration parameters

which we denote ✓ = (↵, �). The input rw is the radius of the borehole in meters

which is known up to measurement uncertainty for each borehole and is treated as

the nuisance parameter. As is standard in the Borehole function literature [145], we

specify a normal prior for rw as

rw ⇠ N(0.1, 0.01618122).
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To put the calibration parameters on a standard scale, for each borehole we define

� =
rw � 0.1

0.0161812
⇠ N(0, 1).

The physical parameter of interest for this problem is Kw, which represents the

hydraulic conductivity of the borehole in meters per year. For the sake of consistency

with our application of interest, we assume that Kw is the same for every borehole.

Again we use standard prior information from the Borehole function literature, and

specify a normal prior for Kw of the form

Kw ⇠ N(10950, 632.22).

Or equivalently,

↵ =
Kw � 10950

632.2
⇠ N(0, 1).

In the spirit of [163], we use the following function as a low fidelity computer simulator

⌘(x,✓) =
2⇡Tu�H

ln(r/rw)
⇣
1 + 1.4LTu

ln(r/rw)r2wKw
+ Tu

Tl

⌘
,

(3.12)

which is nearly the same as the Borehole function except for the constant 2 in the

second denominator term being replaced by 1.4. This low fidelity simulator intro-

duces model discrepancy, since the true process and the simulator can never agree

for all inputs.

To construct a dataset, we simulate p = 20 di↵erent boreholes each of which yields

n = 10 observations corresponding to borehole lengths xi, spaced evenly across the

input range [1120, 1680]. The true value of hydraulic conductivity is fixed at the

prior mean, corresponding to ↵? = 0. True values of the nuisance parameters are

simulated as �? ⇠ N(0, I20). We define ✓?,j = (↵?, �?,j) and simulate field data as

follows:

yij = borehole(xi,✓?,j) + ✏ij, ✏ij ⇠ N(0, 0.012), i = 1, · · ·n, j = 1, · · · p.
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Following section 1.4.3, the data yij are modeled as

yij = ⌘(xi,✓j) + �j(xi) + ✏ij

�j(·) ⇠ GP (µj,⌃j)

✏ij
iid⇠ N(0, 0.012)

↵ ⇠ N(0, 1)

� ⇠ ⇡(�).

The covariance structure of each discrepancy function �j(·) is specified as

⌃j(xi, xi0) = �j exp(�j(xi � xi0)
2).

In addition to the prior distributions for ↵ and �, we need to specify prior distri-

butions for the discrepancy function hyper parameters (µ,�,). As many authors

have discussed [3,21,111], a fully Bayesian treatment of these hyper parameters often

leads to severe lack of identifiability between � and ✓. In particular, the µj and j

parameters will be fixed at known values. In section 3.3.3 we will apply the usual

zero mean discrepancy assumption (µj = 0) and in section 3.3.3 we will fix the µj

values at their “true values”. The first approach is an inappropriate assumption for

this problem and will lead to faulty inference. The second approach, while typically

not feasible in practice, is used for the sake of comparison. To handle the remaining

discrepancy parameters, a maximum a posteriori (MAP) estimate is obtained for the

discrepancy function corresponding to each of the simulated boreholes, and a Gaus-

sian process is fit to this empirical discrepancy function via maximum likelihood

to produce point estimates ̂j and �̂j. For identifiability reasons and to improve

the mixing time of the MCMC, the estimated j values are treated as fixed and

known throughout the analysis. The �j variance parameters are assigned weakly

informative half Cauchy priors with a scale parameter (also the median) of �̂j. The

posterior distribution of (↵,�,�) is sampled using a Gibbs sampling scheme with

Metropolis-Hastings steps.
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Mean of the discrepancy function is known

We begin with the case where the constant bias of the computer model is somehow

known and thus µj can be fixed at µj?. Although this is unrealistic in practice, it

represents a case where the prior distribution for each model discrepancy function is

reasonably good. These true value are obtained as

µj,? =

Z 1680

1120

(⇣(x)� ⌘(x,✓?,j)) dx, j = 1, 2, · · · 20. (3.13)

Using the calibration procedure described in this section, posterior distributions are

obtained for ↵ and � = (�1, · · · �20) using the SI prior. The posterior distribution

for ↵ (shown in fig. 3.12) is reasonable, yielding a posterior mean which lies just

0.55 posterior standard deviations below the true value ↵? = 0. The probability of

prior coherency for the nuisance parameters is pc = 0.83, providing no evidence of

Figure 3.12: (left) Discrepancy mean is unknown, so we make a naive µj = 0 as-
sumption. The inference is sensitive to moment penalization indicating a violation of
assumptions. As a result, the posterior is biased (true value ↵? = 0). (right) When
the discrepancy means µj are known, the posterior inference is much less sensitive
to moment penalization and the posterior inference for ↵ is much improved.
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overfitting for the nuisance. The BMC procedure is repeated using a MP (5, 1) prior

for the nuisance parameters �, and we obtain another solution which is consistent

with the known problem structure (pc = 0.52). The posterior distribution for the

hydraulic conductivity is relatively consistent with the previous calibration results,

showing only a slight shift in the posterior distribution. Under both priors, the true

value ↵? is captured in the corresponding 80% posterior credible interval. In this

example, the nuisance parameters do not seem to be overfit under the SI prior and

physical parameter inference is not sensitive to nuisance parameter treatment as a

result.

There is no evidence of overfitting under the independent standard normal prior

specification (pc = 0.83). Moreover, the posterior inference for hydraulic conductivity

is much improved, having a posterior mean ↵̂ which lies just 0.55 posterior standard

deviations below the true value. We repeat the BMC using a MP(5,1) prior and

obtain a solution which is consistent with the problem structure (pc = 0.52).The

posterior distribution for ↵ for both of these priors can be seen in the right panel of

fig. 3.12. The posterior inference for ↵ is much less sensitive to moment penalization

in this case. Coupled with the high prior coherency of the non-regularized solution,

the right panel of fig. 3.12 indicates that the physical parameter inference is not

being adversely a↵ected by any violations of the model discrepancy.

Mean of the discrepancy function is unknown

In practice, we will be unable to ascertain the true values µj? with any level of con-

fidence, and will be forced to fix them to some nominal value. A common choice (as

discussed in section 1.4.3) is to set the each value equal to zero, µj = 0, asserting that

each model is unbiased on average across the design variable space. This assumption

is not valid in the present setting and the resulting inference may be unreliable.
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Figure 3.13: Diagnostic plot for the Borehole example under four di↵erent priors.
Each µj, j = 1, 2 · · · 20 is fixed at zero, an assumption which does not hold in this
scenario.

We begin by performing BMC using independent standard normal priors for each

of the nuisance parameters. The probability of prior coherency for this solution is

small (pc = 0.0479), indicating a lack of coherency with the known problem structure.

The diagnostic plot, shown in the top left panel of fig. 3.13, indicates that violation

of the model discrepancy assumptions may be leading to overfitting in the form of

collective bias. We repeat the BMC process using a standard moment penalization

prior (!1 = !2 = 1). The prior coherency and diagnostic plot (top right) show

similar results for both cases. These diagnostic plots indicate that M̂�, the posterior

mean of M�, is approximately �0.5, indicating a left shift in the nuisance posteriors.

To correct for this, we can increase the penalty associated with the first moment.

Setting !1 = 5, we assign a MP (5, 5) prior on the nuisance parameters and repeat
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the BMC procedure another time. The diagnostic plot is shown in the bottom left

panel of fig. 3.13 and shows that the posterior estimate (M̂�, V̂�) is now consistent

with our prior expectations. For comparison, a MP (20, 20) prior is also assigned

and BMC is performed a fourth time. The diagnostic plot in the bottom right panel

of fig. 3.13 demonstrates that the posterior distribution of (M�, V�) can be shrunk

aggressively to the point (0, 1) for large values of !1 and !2.

Under moment penalization, estimation of the nuisance parameters is drastically

improved. The mean squared error, defined here as

MSE =
1

20

20X

j=1

(�̂j � �?,j)2,

for posterior means �̂j, is 7.2 larger under the SI prior (MSE = 0.331) compared to

the MP(5,5) prior (MSE = 0.046). This does not lead to better physical parameter

inference in this case, however, as seen in the left panel of fig. 3.12. Nonetheless, the

posterior distribution for ↵ is very sensitive to the treatment of nuisance parameters,

and is indicative of a poor computer model and poor modeling assumptions.

Simulation study

The discussion of this section is based on the analysis of a single dataset. To illustrate

these ideas more generally, we conducted a small simulation study for the borehole

example, setting p = 10, n = 5 and ↵? 2 {0,�1, 2}.

To assess the performance of the moment penalization and other priors, we per-

formed a small simulation study for the Borehole example, by setting p = 10, n = 5

and ↵? 2 {0,�1, 2}. To mimic the measurement error model structure, we sampled

100 di↵erent nuisance parameter sets � ⇠ N(0, I10) and simulated a corresponding

dataset for each value of ↵?. We assume that the mean of the discrepancy function

is unknown, using µj = 0 as the identifiability constraint.
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Figure 3.14: Boxplots showing the distribution of pc, MSE↵ and MSE� for 7 dif-
ferent priors and 100 simulations. True value of physical parameter is ↵? = 0.

For each simulated dataset, we calibrate the model with 7 di↵erent priors for the

nuisance parameters. Along with the standard informative prior, we also consider

four moment penalization priors consisting of all combinations of !1 2 {1, 5} and

!2 2 {1, 10}. Additionally, the results are compared to the Z-regularization prior

(see section 3.4.4) and the Horseshoe priors (see section 1.5.4). For each simulation,

we compute the prior coherency (pc), the MSE of �k

MSE� =
1

p

pX

j=1

(�̂j � �?,j)2

and the MSE of ↵

MSE↵ = (↵̂� ↵?)2,

where ↵̂ and �̂j denote a posterior mean.

Figure 3.14 shows the distribution of these metrics for each of the 7 priors in

the ↵? = 0 case. These boxplots illustrate that the moment penalization prior is

improving the prior coherency of the nuisance parameter estimates as expected. In
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particular, the MP (5, 1) and MP (5, 10) priors enforce a reasonable level of prior

coherency in agreement with the process described in fig. 3.13. The Z-regularization

prior always leads to a prior coherency of 0.95, since the mean and variance con-

straints are achieved exactly. The full results of this simulation study are summarized

in table 3.2.

Table 3.2: Summary of the Borehole simulation results. Reported value is the median
across 100 simulations. Bold value indicates “best” value in the column.

Prior Coherency Avg MSE of � MSE of ↵

↵? ↵? ↵?

0 �1 2 0 �1 2 0 �1 2

SI 0.05 0.02 0.19 0.51 0.52 0.51 2.07 2.03 2.07
MP(1,1) 0.10 0.06 0.27 0.26 0.38 0.15 4.81 1.97 13.21
MP(5,1) 0.50 0.45 0.59 0.10 0.12 0.06 9.79 6.5 18.71
MP(1,10) 0.12 0.06 0.34 0.29 0.41 0.17 4.76 2.28 13.29
MP(5,10) 0.76 0.73 0.83 0.12 0.15 0.08 10.72 7.29 19.42
Z-reg 0.95 0.95 0.95 0.12 0.15 0.09 13.66 10.18 22.26
H-shoe 0.07 0.04 0.18 0.35 0.48 0.27 5.73 2.57 14.64

3.4 Extensions and Analytic Results

3.4.1 An Analytic Approximation of pc

In equation 3.5, we propose estimating the probability of prior coherency using Monte

Carlo. The use of MC is required since the integral in equation 3.5 is taken over the

set �M̂� ,V̂�
(3.4), leading to the “egg shaped” contours seen in Figure 3.3. Leveraging

the independence of V andM for iid normal �1, �2, · · · �p, Monte Carlo can be avoided

by altering the definition of pc. In particular, we define p̃c equivalently to pc in
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equation 3.5 with the set �M̂� ,V̂�
replaced by

AM̂� ,V̂�
=
n
(m, v) |

⇣
⇡M(m) < ⇡M(M̂�)

⌘
^
⇣
⇡V (v) < ⇡V (V̂�)

⌘o
. (3.14)

Assuming that p > 2, computation of p̃c now proceeds as follows,

p̃c =

Z

AM̂� ,V̂�

⇡M̂� ,V̂�
(m, v)dmdv

= 2�
⇣
�pp |M̂ |

⌘⇣
1 + F

⇣
(p� 1)V̂�

⌘
� F

⇣
(p� 1)V̂+

⌘⌘
,

(3.15)

where �(·) denotes the standard normal CDF and F (·) denotes the CDF of a chi-

square random variable with p�1 degrees of freedom. The quantities V̂+ and V̂� are

fully defined by the properties (i) V̂+ > V̂�, (ii) ⇡V (V̂�) = ⇡V (V̂�) = ⇡V (V̂+) and (iii)

Figure 3.15: A visual illustration of the sets �M̂� ,V̂�
and AM̂� ,V̂�

when M̂� = 1 and

V̂� = 2.2 (solid circle). The set �M̂� ,V̂�
(equation 3.4) is represented by the exterior

of the “egg-shaped” contour (dotted orange line) and the set AM̂� ,V̂�
is represented

by the shaded region extending from the corners of the rectangular contour (dashed
blue line). This figure also illustrates that AM̂� ,V̂�

⇢ �M̂� ,V̂�
.
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either V̂� = V̂� or V̂� = V̂+. Equation 3.15 can be calculated e�ciently and without

the need for Monte Carlo, since the CDF of the normal and chi-square distributions

are readily available in many statistical softwares.

On the other hand, we note that AM̂� ,V̂�
is a proper subset of �M̂� ,V̂�

and therefore

p̃c < pc almost surely. Since pc can be viewed as a p-value with respect to the hy-

pothesis (�1, �2, · · · �p) ⇠ N(0, Ip), it has the desirable property that pc ⇠ Unif(0, 1)

when the generating distribution is correctly specified [28]. It is clear that p̃c cannot

possess this property. Moreover, since p̃c is always strictly smaller than pc, it becomes

likely that overfitting may be falsely identified. As an example, we conducted a short

simulation study and found that in 10000 simulations with (�1, �2, · · · �5) ⇠ N(0, I5),

the distribution of p̃c is approximately Beta(0.7, 2.2) and P (p̃c < 0.05) ⇡ 0.2.

3.4.2 The Normalizing Constant

In this section we show that the normalizing constant for the MP prior can be

e�ciently approximated for the special case !1 = !2, and more generally we develop

an upper and lower bound for the normalizing constant. By showing that these

bounds are both positive and finite, we are able to guarantee that the MP prior is

proper for positive parameter values. Let x = (x1, x2, · · · xp) ⇠ N
�
0, 1

⌧ Ip
�
and define

M = 1
p

Pp
i=1 xi and V = 1

p�1

Pp
i=1(xi�M)2. Note that the joint probability density

function of x can be written as

h(x|⌧) =
✓
2⇡

⌧

◆�p/2

e�
⌧
2

Pp
i=1 x

2
i

=

✓
2⇡

⌧

◆�p/2

e�
⌧
2 (pM

2+(p�1)V )

=

✓
2⇡

⌧

◆�p/2

e�
p⌧
2 M2

e�
(p�1)⌧

4 2V .

(3.16)
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We also recognize that U = (p� 1)⌧V ⇠ �2(p� 1).

Now let x = (x1, x2, · · · xp) ⇠ MP (!1,!2). Then the normalizing constant for

the MP prior is given by

k(!1,!2) =

Z

Rp

e�
p!1
2 M2

e�
(p�1)!2

4 (V�1)2dx

=

✓
2⇡

!1

◆p/2✓2⇡

!1

◆�p/2 Z

Rp

e�
p!1
2 M2

h
e�

(p�1)!1
4 2V e

(p�1)!1
4 2V

i
e�

(p�1)!2
4 (V�1)2dx

=

✓
2⇡

!1

◆p/2 Z

Rp

h(x|!1)e
�

(p�1)!1
4 [!2(V�1)2�2!1V ]dx.

(3.17)

With respect to h(x|!1), this can now be written as the expected value

k(!1,!2) =

✓
2⇡

!1

◆p/2

E
(
exp

 
�(p� 1)!1

4

"
!2

✓
U

(p� 1)!1
� 1

◆2

� 2

p� 1
U

#!)
,

(3.18)

which can be computed with reasonable e�ciency via Monte Carlo, by recalling

that U ⇠ �2(p � 1). In the special case where ! ⌘ !1 = !2, the equation for the

normalizing constant simplifies to

k(!,!) =

✓
2⇡

!

◆p/2

E
⇢
exp

 
�
�
U � (p� 1)!(2�

p
3)
� �

U � (p� 1)!(2 +
p
3)
�

4(p� 1)!

!�
.
(3.19)

Since the function
�
x� a(2�

p
3)
� �

x� a(2 +
p
3)
�
has a minimum value of

�3a2, we can bound k(!,!) above by

k(!,!) 
✓
2⇡

!

◆p/2

exp

✓
3(p� 1)!

4

◆
<1.

It is trivial to see that k(!,!) > 0, therefore k(!1,!2) is both positive and finite

whenever !1 = !2. By defining !(1) = min(!1,!2) and !(2) = max(!1,!2), it is easy
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to see that

k(1) ⌘ k(!(2),!(2))  k(!1,!2)  k(!(1),!(1)) ⌘ k(2),

with k(1) = k(!1,!2) = k(2) if and only if !1 = !2. Since k(1) and k(2) must be

finite and positive, it follows that k(!1,!2) is also finite and positive for all values of

!1,!2 > 0.

3.4.3 A Rejection Sampler

In this section, we develop a simple rejection sampling scheme for sampling from

the MP prior by giving a simple formula for choosing the envelope constant and the

optimal variance for the proposal distribution (among a particular class of proposal

distributions). Consider the distribution defined in eq. (3.16) as a proposal distribu-

tion. To sample x ⇠ MP (!1,!2) via the Accept-Reject algorithm [29], we need to

find a constant c such that c � ⇡MP (x)
h(x|⌧) for all x 2 Rp. We begin by writing the ratio

⇡MP (x)

h(x|⌧) =
1

k(!1,!2)

✓
2⇡

⌧

◆p/2

e�
p
2 (!1�⌧)M2

e�
(p�1)

4 (!2(V�1)2�2⌧V ).

The first exponential term is bounded above by 1, so long as we choose ⌧  !1.

Since the function a(x� 1)2� 2bx, for a, b > 0, has a minimum value of �b(b+2a)
a , the

second exponential term can also be bounded above. Together, we have that

c⌧ (!1,!2) =
1

k(!1,!2)

✓
2⇡

⌧

◆p/2

exp

✓
(p� 1)⌧(⌧ + 2!2)

4!2

◆
, (3.20)

is greater than ⇡MP (x)
h(x|⌧) for all x 2 RP , as long as ⌧  !1. In eq. (3.20), k(!1,!2)

can be estimated using eq. (3.18) or replaced with k(1) using eq. (3.19). In either

case, c⌧ (!1,!2) can be viewed as an upper bound on the number of samples (from

h(x|⌧)) required to obtain a single draw from ⇡MP (x). Alternatively, k(!1,!2) can

be ignored altogether (i.e. set to 1), by replacing ⇡MP (x) with the unnormalized

density throughout the algorithm.
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The sampling scheme proposed above works for any positive value ⌧ < !1, but

the e�ciency of the sampler will depend on this choice. For optimal e�ciency (with

respect to this simple class of proposal distributions), the precision should be chosen

by the rule

⌧? = argmin
⌧2(0,!1]

⌧�pa⌧(⌧+2!2), a = e(p�1)/(2!2).

This sampler is quite e�cient for moderate values of p, !1 and !2, but loses e�ciency

as these values (especially p) become large.

When !1 and/or !2 is large, the e�ciency of the sampler can be improved by ex-

panding the class of proposal distributions, at the cost of added complexity. Consider

the proposal distribution x ⇠ N(0,⌃), with

⌃ =
1

⌧
(⇢Jp + (1� ⇢)Ip) ,

where Jp is a p ⇥ p matrix of all ones, Ip is the identity matrix and ⇢ 2 [�1
p , 0] is a

correlation parameter. A similar derivation to the one above shows that the constant

c⌧,⇢ =
(2⇡)p/2

k(!1,!2)

✓
(1� ⇢)p�1((p� 1)⇢+ 1)

⌧ p

◆1/2

exp

✓
(p� 1)⌧(⌧ + 2!2(1� ⇢)

4!2(1� ⇢)2

◆
,

(3.21)

is guaranteed to be an upper bound for ⇡MP (x)
h(x|⌧,⇢) , so long as the constraint

⌧

⇢(p� 1) + 1
< !1 (3.22)

is satisfied. For best results, ⌧ and ⇢ should be chosen to minimize c⌧,⇢ of eq. (3.21)

subject to the constraint in eq. (3.22). This added complexity can lead to a more

e�cient sampler for a wide variety of !1 and !2 values, but will still be ine�cient for

large p. For large values of the parameters in high-dimensions, the Z-regularization

approach of section 3.4.4 may be preferable.
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3.4.4 Moment Penalization in the Limit

The moment penalization prior is able to consider a candidate solution � and reward

it for having mean M� ⇡ 0 and variance V� ⇡ 1. By increasing !1 and !2, we can

place as much prior density as we desire arbitrarily close to the set

�1,p = {(�1, · · · �p) | M� = 0 and V� = 1}.

When conducting posterior inference, we can make the restriction � 2 �1 by sending

!1 ! 1 and !2 ! 1, choosing to focus only on solutions which satisfy the mean

and variance constraints exactly. In practice however, this is a set of measure zero

and the moment penalization prior can only restrict to solutions which nearly, but

not exactly, satisfy these constraints. This subsection will focus on an alternative

prior distribution for � which places all of its prior density on the set �1,p. The

following prior specification will be referred to as Z-Regularization.

Figure 3.16: Marginal prior (emprical) distribution on each �k under Z-
regularization. Orange curve shows the N(0, 1) distribution for reference.
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Consider a set of p latent variables Z such that

Z1, · · ·Zp
iid⇠ N(0, 1)

�k =
Zk �MZ

SZ
.

(3.23)

where MZ and SZ are the mean and standard deviation respectively of Z1, · · ·Zp.

By construction, we have M� = 0 and V� = 1 with probability 1. Figure 3.16 shows

empirically the marginal prior for each nuisance parameter under Z-regularization.

As the number of nuisance parameters p grows large, the induced marginal priors

become approximately standard normal.

Relaxing the constraints

The Z-regularization prior, by default, enforces the constraints M� = 0 and V� = 1

almost surely. As an alternative to moment penalization, we can relax the constraints

by introducing a relaxation variable ⇣, with a single relaxation parameter �2
R. We

refer to the following as relaxed Z-regularization

Z1, · · ·Zp
iid⇠ N(0, 1), ⇣ ⇠ N(0, �2

R)

⇣ |= Zj, j = 1, · · · p

�k =
Zk � M̃Z

S̃Z

,

(3.24)

where M̃z = (
Pp

i=1 Zi + ⇣)/p and S̃2
Z = (

Pp
i=1(Zi � M̃Z)2)/(p� 1 + �2

R/p). Note the

correction factor of �2
R/p in the denominator of S̃2

Z which ensures that E(S̃2
Z) = 1.

By construction, setting the relaxation parameter �2
R = 0 reduces to the strict Z-

regularization discussed in the previous subsection. With respect to the relaxed

Z-regularization prior, the induced mean and variance of M� (defined in eq. (3.2))

can be written as

E(M�) ⇡ 0 and Var(M�) ⇡
�2
R

p2
p� 1� �2

R/p

p� 3� �2
R/p

,
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illustrating that the constraints are relaxed monotonically with �2
R.

3.4.5 Violations of the Measurement Error Model

Both the probability of prior coherency and the moment penalization prior depend on

having strong prior information about the structure of the problem. In particular,

we rely heavily on the assumption that a set of nuisance parameters �1, · · · �p are

iid with mean µ0, variance �2
0 and distribution f0. In this section, we consider the

potential consequences which can occur when these assumptions are violated.

Figure 3.17: The left panel shows four potential “true” models for measurement
uncertainties: i) standard normal - solid black, ii) normal with mean 0 and variance
1.4 - dotted orange, iii) scaled t distribution with mean 0, variance 1 and 3 degrees
of freedom - dashed green, iv) a uniform distribution with mean 0 and variance 1 -
dot/dashed purple. The right panel shows the CDF of pc (eq. (3.5)) for each of the
4 potential models. Deviation from the identity line indicates sensitivity to violation
of the implicit assumptions for pc.

There are three basic ways in which the measurement error model can be mis-

specified. First o↵, there can be a violation if the true mean of the �j values is not
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µ0. In the present context, the nuisance parameters refer to measurement errors and

the assumption that these are measured without bias is paramount. We believe that

the assumption is both necessary and reasonable for many applications. If the nui-

sance parameters are measured with bias, then unidentifiability will be introduced

in a unreconcilable manner.

In the context of this chapter, the second and third assumptions are far more

suspect and may be easily violated. The second assumption is that the variance �2

is known by an expert to be �2
0. In the material science applications of interest, the

subject matter expert is typically able to specify �2
0 with a high degree of (subjective)

confidence. We can envision scenarios however, where the true variance �2 di↵ers

substantially from the specified value. The third assumption is that the distribution

of each �j, denoted by f0, is known. In the main text we focus primarily on the case

where the measurement uncertainties are assumed to follow a normal distribution,

and we will continue to do so here. Thus we should also explore the e↵ect of heavy

(or short) tails as a form of misspecification. In a related note, if there is good

reason to specify a distribution for �j which is not normal, section 3.4.6 shows how

the probability of prior coherency can be adjusted to account for this assumption.

Let us assume that a set of nuisance parameters � = (�1, · · · �p) is generated by

the following measurement error model

� ⇠ N(0, Ip).

Under this model, the probability of prior coherency, defined in eq. (3.5), will have

a uniform distribution on the interval (0, 1). The question we are trying to answer

is: what happens if the true model for the measurement errors di↵ers from our as-

sumptions in some way? Figure 3.17 shows the CDF of pc under 4 di↵erent “true”

measurement error models:

i) standard normal (i.e. model is correctly specified) - solid black line
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ii) normal with mean 0 and variance 1.4 - dotted orange

iii) scaled t distribution with mean 0, variance 1 and 3 degrees of freedom - dashed

green

iv) uniform distribution with mean 0 and variance 1 - dot/dashed purple.

For each case, the sensitivity of pc to violations of our assumptions can be qual-

itatively measured by the deviation from the identity line, which represents the cdf

of pc when the model is correctly specified. From this figure, it can be deduced that

underestimation of the variance or the tail heaviness leads to a metric (pc) which is

more susceptible to false positives, in the sense that overfitting may be incorrectly

identified. The figure also indicates that overestimation of the tail heaviness (or the

variance, as we will shortly see) leads to a fairly small loss of power, in the sense that

we are less likely to identify overfitting when it is present.

To examine these results more thoroughly, let us suppose that the “true” model

for the measurement uncertainties follows a generalized normal distribution with

probability density function

f(� | µ, �, ⇠) = ⇠

2a�(1/⇠)
exp

 
�
✓
|x|
a

◆⇠!
, a = �

s
�(1/⇠)

�(3/⇠)
.

This is a symmetric distribution with mean 0, standard deviation � and excess

kurtosis

 =
�(5/⇠)�(1/⇠)

�(3/⇠)2
� 3.

Special cases of this distribution include the normal distribution (⇠ = 2), the Laplace

distribution (⇠ = 1) and a uniform distribution from �a to a (as ⇠ ! 1). When

the shape parameter ⇠ is small (⇠ < 2), the tails are heavier than that of the normal

distribution, and any arbitrarily large kurtosis can be obtained for some small positive

⇠. Using this as a “true” generating model for the measurement errors, fig. 3.18 shows

the resulting distribution of pc for various values of  and �.
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Figure 3.18: This figure shows the CDF of pc when the “true” model for measurement
uncertainty is generalized normal. In the left panel, we fix � = 1 and vary ⇠ to obtain
di↵erent tail behaviors. Positive excess kurtosis leads to an increase in the false
positive rate and negative excess kurtosis leads to a (negligible) loss of power. In the
right panel, we fix ⇠ = 2 and vary � to emulate misspecification of the magnitude of
the measurement uncertainties. When �2 > 1 the false positive rate increases and
when �2 < 1 there is a (negligible) loss of power.

• When the form of the distribution is misspecified. The formula for pc

given in eq. (3.5) implicitly assumes that the form of the measurement model

is normal (⇠ = 2,  = 0). Fixing � = 1, the left panel of fig. 3.18 shows

the empirical CDF of pc for a collection of distributions with di↵erent tail

behavior. When  < 0 there seems to be a negligible loss of power. As the

tails of the distribution become increasingly heavy (!1), the probability of

prior coherency will be small with high probability, whether or not overfitting

is actually occurring. While this e↵ect can be severe for extreme values of ,

deviation from the expected distribution is fairly small even for moderately

large values of kurtosis such as  = 10.

• When the variance of the distribution is misspecified. When we com-
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pute pc, we assume that an expert is willing to specify the variance of the

measurement errors as �2
0 (assume �2

0 = 1 without loss of generality). If the

true variance, �2, is larger than 1, then the false positive rate will increase

(possibly drastically). The right panel of fig. 3.18 indicates only slight devia-

tions from the expected distribution so long as �2/�2
0

⇠

< 1.2. Specification of a

variance which exceeds the true variance leads to a loss of power, which seems

to be almost completely negligible even for �2/�2
0 = 1

2 .

Both heavy tails and underestimation of the true variance can lead to false conclu-

sions, producing pc values which point towards overfitting when no such overfitting is

actually occurring. Our analysis indicates that the probability of prior coherency is

fairly robust to tail behavior, unless the tails are exceedingly heavy. Prior coherency

is less robust to misspecification of the variance, with possibly severe implications

when the true variance exceeds the specified variance by more than about 20%. Tak-

ing a conservative approach, the consequences of overestimating the variance are

much less problematic.

3.4.6 Dealing with Non-normality

So far, we have focused on the case where the nuisance parameters are assumed to

be normally distributed, a common assumption when the nuisance parameters rep-

resent measurement uncertainty. It is worth considering an extension of the moment

penalization prior to instances where the common nuisance prior is not normal. We

consider, for a moment, the case where the nuisance parameters have a uniform prior

across some interval (a, b). As before, we standardize the parameters so that the prior

mean and variance are 0 and 1 respectively.

�k
iid⇠ Unif(�

p
3,
p
3), k = 1, · · · p.
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Again we define M� and V� to be the mean and variance of �. If we want to

compute the probability of prior coherency (pc) from Section 3.2, there are a few

things we must consider. First, the distribution of M� is no longer normal and the

distribution of V� is no longer chi square. The nuisance mean M� now follows a Bates

distribution [10], with a tractable density function. The variance term V� does not

follow a well known distribution. For moderately large p, we appeal to the Central

Limit Theorem instead. As p ! 1 we have the following, where
d! represents

convergence in distribution.

M�
d! N

✓
0,

1

p

◆
V�

d! N

✓
1,

4

5p

◆
.

Another problem with moving away from the normality assumption, is that the

resulting M� and V� are no longer independent. Still these quantities are asymp-

totically uncorrelated and, for large enough p, replacing equation eq. (3.3) with the

product of two normal distributions can become a reasonable approximation for the

joint distribution of (M�, V�).

⇡̃M� ,V� (m, v) = N(m | 0, 1/p)⇥N(v | 1, 4/(5p))

By simulating the nuisance parameters independently from the standardized uniform

distribution, we can obtain a large number L of draws (m`, v`) from the true joint

distribution of (M�, V�). If the approximation is accurate, the resulting pc values

(equation eq. (3.5)) should be uniformly distributed. Using this approach, we find

that the joint distribution is reasonably well approximated for about 10 nuisance

parameters. The moment penalization prior can be extended to handle uniform

distributions by changing �2 = 5p!2

8 , but the results may be sensitive to p. The

approximation can be improved by using a Bates distribution for M�, and estimating

V ar(V�) via simulation.
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3.5 Conclusions & Future Work

In this chapter, we have provided a framework for identification and reduction of

overfitting in the context of measurement uncertainty parameters within BMC. We

also show how this can be used as a diagnostic tool to validate the posterior inference

on physical parameters. When the form of the model discrepancy is unknown, BMC

can lead to overfitting, especially when the dimensionality of the nuisance space is

large. The probability of prior coherency metric that was introduced in section 3.2.2

is capable of identifying a wide range of cases where overfitting of nuisance param-

eters occurs. Using this criteria, moment penalization can be used to constrain the

inference in a reasonable and meaningful way, restricting nuisance parameter solu-

tions to regions of high prior coherency. This prior is flexible enough to roughly

mimic the standard informative prior on one hand (!1 = !2 = 1) and strictly enforce

the mean and variance constraints on the other (!1 = !2 = 1). By varying these

parameters, and constructing the diagnostic plot of section 3.2.3, we can diagnose

exactly how the overfitting is occurring in a given problem.

The ability to diagnose discrepancy assumption violations is important in appli-

cations such as, but not limited to, dynamic material property calibration, where

the suitable problem structure often exists. Standard methods of model calibration

incorporate information on these measurement uncertainties through informative

priors. We have shown that the standard assignment of priors for these nuisance

parameters ignores valuable information on the expected distribution of posterior

estimates. As the use of statistical methods such as BMC continues to expand in

these fields, specialized regularization methods such as the one developed here will

become essential for robust inference, especially for high dimensional data with a

large number of nuisance parameters.

Although our discussion primarily focuses on the context of Bayesian model cal-
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ibration, future work will involve application of these methods to other frameworks

where measurement uncertainties are present. Additional e↵orts could be geared

towards developing specialized regularization methods for BMC when the nuisance

parameters lack the probabilistic structure required for moment penalization. We

also suspect that probability of prior coherency could be generalized, allowing for

the use of higher moments and accounting for the case where the measurement error

model has heavy tails. Finally, we suggest that the MP assumptions can be relaxed

by using pseudo-Bayesian procedures such as the c-posterior methodology of [101] or

the modularization posterior described in Chapter 4 and Chapter 5.
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Chapter 4

A Modularization Framework for

BMC

“The hardest thing of all is to find a black cat in a dark room, especially if there is

no cat.” – Confucius

4.1 Overview

In the classic Bayesian model calibration framework of Kennedy and O’Hagan [87],

it is well understood that the calibration parameters ✓ and the model discrepancy

�(·) are not jointly identifiable. For instance, an example is provided in [3] where

credible intervals for both the calibration parameter ✓ and the discrepancy function

�(x) fail to capture the true values, yet the credible interval for the true process

⇣(x) captures the true value anyways, with remarkable precision. The authors of [24]

provide another example, one that we will revisit shortly, demonstrating that the

true value of a calibration parameter ✓ cannot be recovered for any amount of data,

unless the discrepancy function is known to have a particular form. These ideas

were formalized in the last decade with a pair of papers by Tuo and Wu [148, 149],

which show that the prior distribution for the discrepancy function �(·) in BMC
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becomes a permanent fixture of the posterior distribution for ✓, often leading to

bizarre estimates for the calibration parameters. They precisely define the “true

value” of a calibration parameter in general and show that the BMC procedure

generally leads to inconsistent estimators of the calibration parameters, providing

a rigorous explanation for the earlier results shown by [3, 24, 87] and others. In

comparison, they prove that the simple least squares calibration procedure leads

to consistent estimators and they propose a new calibration procedure, which they

refer to as L2 calibration and prove that it is consistent and semiparametric e�cient.

In the defense of BMC, the same authors produced a third paper in 2018 [150]

showing that BMC often leads to superior estimation of the physical response ⇣(x)

and demonstrate that the BMC estimator of ⇣(·) is consistent.

From this discussion, it is clear that the question of which model calibration pro-

cedure method should be used depends explicitly on the goal of model calibration. In

this chapter, we will show that all of the previously discussed calibration frameworks

can fail when calibration parameters have physical interpretations. In other words,

the novel work by Tuo and Wu, though important, does not address the problem

of unidentifiability in the present context. Thus we propose a new modularization

framework for BMC and demonstrate its value as a tool for diagnosing the identifi-

ability of physical parameters. The methods and accompanying discussion found in

Section 1.4 are crucial to this chapter.

4.2 Calibrating Physical Parameters

In L2 calibration (see Section 1.4.2), the “purpose” of model calibration is defined to

be “that of finding... the parameter value which minimizes the discrepancy between

the true process and the computer output under the L2 norm”. It is shown that the

L2 calibration, and not BMC, is able to accomplish this goal. The primary issue
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is that the “true values” of the calibration parameters are ambiguously defined in

BMC. By defining the calibration parameters mathematically, Tuo and Wu are able

to produce a calibration procedure which accomplishes their desired goal [148].

In our applications of interest, the goal of model calibration di↵ers from both of

these perspectives. We define the purpose of model calibration as that of obtaining

accurate and robust estimation (with uncertainty) for a small set of physical param-

eters, whose true values are of scientific interest. This goal is loftier than either of

the previously discussed goals and is challenging or impossible in the general case.

In a sense, this objective is similar to the objective of L2 calibration and can be

viewed as trying to minimize an unknown loss function. On the other hand, this is

necessary (but not su�cient) for accurate extrapolative predictions. In other words,

if the true value of the parameters governing the physical process cannot be accu-

rately estimated, then predictions of the true process beyond the range of observed

data cannot be generally trusted.

4.2.1 An Impossible Problem

We begin by defining the objective mathematically. Consider a generic loss function

L(✓) and define

✓L = argmin
✓2⇥

L(✓). (4.1)

We will refer to ✓L as the optimal value of ✓. Partitioning the calibration parameters

as described in section 1.4.3, we write ✓L = (↵L,�L). We will assume that every

calibration procedure is consistent for some loss function L, where consistency here

means that the estimator of ✓ converges in probability to ✓L as the design pointsX =

(x1,x2, · · ·xn) become dense in X . For example, least squares and L2-calibration

both correspond to the L2 loss function given in eq. (1.21). Now suppose that ↵ has

a physical interpretation and some unknown “true” value ↵?. In general, there is no
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reason to suppose that ↵? = ↵L, except for the unrealistic case where the model is

a perfect representation of the true process. With respect to the loss function L, we

define the goal of calibration, in this setting, as that of finding the parameter value

✓? = (↵?,�L,?), with �L,? = argmin
�2�

L(↵?,�). (4.2)

In other words, �L,? is the best fitting value of the nuisance parameter (with respect

to L) which can be found while holding ↵ at its true value. In general, it will be

the case that ✓? 6= ✓L and thus the L-consistent calibration procedure will lead to

inconsistent estimation of the true value of the physical parameter. By definition,

✓? is a suboptimal solution in the sense that L(✓L) < L(✓?) which is precisely what

makes this problem so di�cult. Searching for an optimal value can be challenging,

but at least this defining property allows us to recognize the optimal solution once we

have found it. On the other hand, there are infinitely many suboptimal values and

it may be impossible to discern which suboptimal point represents divine truth. If

estimating ✓L is like finding a needle in a haystack, then estimating ✓? is like finding

a particular needle in a needle factory.

4.2.2 A Simple Machine

The futility of the situation can be made clear with an example. Consider a simple

machine which produces work as a function of a single input e↵ort, denoted by x.

The work produced by the machine is given by the true process

⇣(x) =
↵?x

1 + x/10
, 0  x  10. (4.3)

The work output of the machine is proportional to the e↵ort x put into it, except for a

loss of work due to friction which is accounted for in the denominator. The e�ciency

of the machine is denoted by ↵? which is a physically meaningful parameter which

describes the nature of the physical system and whose value we wish to estimate.
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For a particular machine, suppose that the true e�ciency is ↵? = 2. A physical

experiment is conducted and the field data y = {y1, y2, · · · yn} is collected as

yi = ⇣(xi) + ✏i

✏i
iid⇠ N

�
0, 0.52

�
.

(4.4)

In the original formulation of this problem [24], a naive simulator was used which

ignored friction altogether (eq. (3.10)). Let us assume that the researchers of this

machine have recognized the inadequacy of this model, and choose to account for

friction using a piecewise linear computer model

⌘(x,✓) =

8
>><

>>:

↵x, x < �

↵� + �(x� �), x � �,

(4.5)

where ✓ = (↵, �, �) denotes the calibration parameters. This computer model is

imperfect, as the mechanism for loss of work due to friction is still not correctly

understood. The e�ciency parameter ↵ at least partially retains its physical inter-

pretation as the initial e�ciency of the machine. The other calibration parameters

� and � are not of interest to the researchers and are thus referred to as nuisance

parameters.

L2 Calibration

Following [148, 149] (Section 1.4.2), we start by determining the optimal value of ✓

under L2 loss

✓L2 = argmin
✓

Z

X

(⇣(x)� ⌘(x,✓))2dx

= argmin
✓

(Z �

0

✓
2x

1 + x/10
� ↵x

◆2

dx+

GHOST

Z 10

�

✓
2x

1 + x/10
� ↵� � �(x� �)

◆2

dx

)
.

(4.6)
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This minimization problem can be solved numerically with an arbitrary level of

accuracy, yielding

✓L2 = (1.596, 0.733, 3.420)

Importantly, we note that ↵L2 = 1.596, so that the “optimal value” of the physical

parameter, under the specified loss function, di↵ers significantly from the true value

↵? = 2.

Fixing ↵ at its true value, we can repeat the conditional minimization problem

to obtain

✓? = (2.000, 0.813, 1.979).

Figure 4.1 illustrates the di↵erence in the simulator evaluated at the optimal value

Figure 4.1: Simple machine: Data (circles), true process (solid line) and simulator
evaluated at ✓L2 (dashed line) as well as ✓? (dotted line).
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✓L2 (dashed) and at the true value ✓? (dotted) .

Bayesian Model Calibration

Following Section 1.4.3, we attack the problem a second time using BMC. It is well

known that a poor prior distribution for the model discrepancy can lead to many

problems, so to simplify our discussion, the BMC hyperparameters  = (�,�,) are

set to reasonable starting values. In particular, we set � = 0.5 and estimated � and

 by fitting a GP to a large number of samples from the “true discrepancy function”

�?(·) = ⇣(·)� ⌘(·,✓?).

Figure 4.2: Bivariate posterior for (↵, �) under BMC in the simple machine example.
The optimal and true values for ✓ are also shown. Prior distribution is � ⇠ U(0, 10).
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To complete the model, we specify the prior distributions

↵ ⇠ Gamma(6, 3)

�|↵ ⇠ Unif(0,↵)

� ⇠ Unif(A,B)

(4.7)

The prior for ↵ was chosen to mimic a reasonably informative prior, satisfying the

prior beliefs E(↵) = 2 and P (1  ↵  3) ⇡ 0.8. The prior for � describes our

newfound knowledge of the physical system that friction leads to a loss in e↵ort.

The prior distribution for � is only partially specified for the sake of discussion, but

for now we will assume that A = 0 and B = 10 indicating that we have very little

knowledge regarding the change point of the physical process. Figure 4.2 shows the

bivariate posterior distribution of (↵, �) under BMC. It is clear from this figure that

neither BMC nor L2 calibration will be able to correctly estimate the true value ✓?.

The Role of Prior Information

The parameter ↵ can be interpreted, in both the true process and the simulator,

as the initial e�ciency of the simple machine. Thus the nuisance parameter � has

a physical interpretation as the e↵ort level at which friction begins to “kick in”.

Note that � remains meaningless and undefined with respect to the physical system

but gains an interpretation in the computer model. Although �L2 = 3.42 provides

the best fit to the data (under L2 loss), researchers of the simple machine may be

able to detect signs of work lost due to friction for much smaller e↵ort levels. To

incorporate this knowledge, they may choose to alter the prior distribution of � shown

in eq. (4.7). Setting A = 0 and B = 2.5 has a rather drastic e↵ect on the posterior

distribution for ✓, as shown in Figure 4.3. For a fair comparison, we also repeat the

L2 calibration process using constrained optimization (0  �  2.5). The addition

of prior information has led to an improvement; the point estimators are closer
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Figure 4.3: Bivariate posterior for (↵, �) under BMC in the simple machine example.
The optimal and true values for ✓ are also shown. Prior distribution is � ⇠ U(0, 2.5).

to the true value and the posterior distribution nearly captures the ✓? in its tails.

Nonetheless, the true e�ciency of the machine is being drastically overestimated.

The change point � is a nuisance parameter with no inherent meaning in the

physical system. Its apparent meaning is induced by the physical parameter ↵ and

can only be interpreted in the context of the inadequate computer model. Thus, it

is unlikely that researchers will be able to hone in on the value �L,?, but it is worth

exploring the case anyways. Consider the set

�⌧ = {� | L(↵?, �)  L(✓?) + ⌧} , (4.8)

which can be interpreted as the set of � values which lead to nearly minimal loss,

conditional on ↵ = ↵?. Under mild conditions, we have that �⌧ ! {�L,?} = {1.979}
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Figure 4.4: The interval �⌧ as a function of ⌧ .

as ⌧ ! 0 and �⌧ ! � = [0, 10] as ⌧ ! 1. For small values of ⌧ , this set is highly

concentrated around the desired value of �, and thus ⌧�1 can be viewed as a measure

of the quantity and/or strength of the researchers prior information. In this simple

problem, these sets reduce to intervals �⌧ = [A⌧ , B⌧ ] (see Figure 4.4) and can be

used to set the prior distribution for � in eq. (4.7).

It follows that the prior distribution � ⇠ Unif(A⌧ , B⌧ ) does lead to better in-

ference for the e�ciency parameter ↵ as ⌧ ! 0. The results are summarized in

Table 4.1, where the middle columns show the point estimate (posterior mean) and

95% credible interval for ↵ corresponding to di↵erent values of ⌧ . Even when ⌧ is

very small, the true value ↵? = 2 is only barely captured in the credible interval.

Thus a tremendous amount of prior information is needed in order to have any hope

of recovering ↵ and obtaining this information in the first place is unrealistic due the

inadequacy of the computer model.
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Table 4.1: Full BMC and BMC with modularization are performed using the prior
distribution � ⇠ Unif(A⌧ , B⌧ ) for several values of ⌧ . For each approach, the point
estimate and 95% credible interval for ↵ are reported.

BMC Modularization

⌧ �⌧ ↵̂ 95% CI ↵̂ 95% CI

0.1 (1.75, 2.20) 1.85 (1.74, 2.00) 1.89 (1.75, 2.03)
0.5 (1.47, 2.46) 1.77 (1.67, 1.93) 1.91 (1.70, 2.19)
1.0 (1.25, 2.65) 1.72 (1.63, 1.83) 1.93 (1.66, 2.35)
2.0 (0.93, 2.93) 1.66 (1.59, 1.74) 1.99 (1.62, 2.73)
6.0 (0.08, 3.57) 1.56 (1.50, 1.50) 2.77 (1.54, 10.50)

4.3 The Modularization Posterior

In the previous section, we saw a simple example which illustrated the challenges of

solving an inverse problem when the parameter of interest has a physical interpreta-

tion. For nearly any physical system worth modeling, the computer model is destined

to be inadequate, leading to the presence of parameters with no context (or altered

context) in the model. When this is the case, precise learning about parameters is

dangerous because we are likely to learn the wrong value. In this chapter, we would

like to adopt the philosophy which can be summarized as

“An approximate answer to the right question is worth a great deal more

than a precise answer to the wrong question” – John W. Tukey.

Rather than trying to precisely estimate the wrong quantity, we propose focusing

our e↵orts on estimating the physical parameters of interest while still accounting

for the uncertainty of the nuisance parameters.

We assume that the data y = (y1, y2, · · · yn) is generated from a distribution with

parameters ✓ = (↵,�) 2 Rp+q equipped with the prior distribution ⇡(✓) = ⇡(↵,�).
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The fully Bayesian marginal posterior distribution for ↵ is given by

⇡(↵|y) =
Z

Rq

⇡(↵,�|y)d�

=

Z

Rq

⇡(↵|�,y)⇡(�|y)d�.
(4.9)

The second equality implies that the marginal posterior distribution for the param-

eters of interest can be viewed as the conditional posterior of ↵ given �, averaged

across the marginal posterior of �. In this form, we can see explicitly that to learn

about the parameters of interest we must also be able to learn the posterior distri-

bution of the nuisance parameters. In the modularization approach to inference, we

consider replacing the marginal posterior of � in eq. (4.9) with the marginal prior

⇡(�) =
R
Rp ⇡(↵,�)d↵. This distribution, given by

⇡M(↵|y) =
Z

Rq

⇡(↵|�,y)⇡(�)d�, (4.10)

we refer to as the modularization posterior of ↵, and � are referred to as modular-

ization parameters.

In broad terms, modularization refers to a statistical procedure which is com-

prised of di↵erent modules [83, 94]. We view this as a form of modularization with

two modules: (i) the statistical model and (ii) a prior distribution for �. In standard

Bayesian theory these two modules would be fused as one, but we suggest treating

them as separate. Treating � as fixed and known, we can obtain the conditional

posterior distribution of ↵ given � (module 1) and then this conditional posterior is

averaged across the prior distribution of � (module 2). This can also be viewed as for-

ward uncertainty propagation problem [89], where the response is the distributional

solution to the inverse problem.
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4.3.1 The Diamond in a Box

Before discussing modularization in the context of Bayesian model calibration, it will

be useful and informative to explore the behavior of modularization using a simple

tractable example. Thus we will consider a problem described in [94], presented in a

new form to facilitate discussion. We call this the Diamond in a Box (DB) problem.

The Diamond in a Box Problem. A valuable diamond weighing ↵ grams

is contained in a display case weighing � grams. The curator has a scale

which, when measuring an object weighing x grams, produces an output

of x + ✏ where ✏ ⇠ N(0, �2). The curator takes the diamond out of the

case and places it on this scale n1 times before placing it back in its box.

The diamond is very valuable, so it must remain its display case, but the

curator can weigh the display case with the diamond inside an additional

n2 times if needed. What is the weight of the diamond?

Without any additional information, we can immediately sense that weighing the

box and diamond together is a waste of time. Using the information gained from the

first n1 trials we can obtain a reasonable estimate of the diamonds weight. While the

second set of n2 trials would allow us to estimate the weight of the display case, it

provides no additional information regarding the weight of the diamond. Fortunately

enough, the curator is also a Bayesian, and she realizes that her situation can be

improved with the use of prior information. By extensively measuring a collection

of similar display cases, she is able to build an informative prior distribution for �.

This problem can be stated mathematically as

yi =

8
><

>:

↵ + ✏i, i = 1, · · ·n1

↵ + � + ✏i, i = n1 + 1, · · ·n

✏i
iid⇠ N(0, �2) ↵ ⇠ N(0, �2

↵) � ⇠ N(0, �2
�),

(4.11)
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where n = n1+n2 and typically n1 ⌧ n2. Although the prior mean for ↵ and � make

little sense in the context of the diamond in a box problem, we choose these values for

mathematical simplicity and without loss of generality. Defining ȳ1 = (
Pn1

i=1 yi) /n1

and ȳ2 = (
Pn2

i=1 yn+1�i) /n2, the marginal posterior distribution for ↵ can be written

as

⇡(↵|y) =

N

✓
↵
���

n1(n2�2
� + �2)ȳ1 + n2�2ȳ2

(n1 + �2/�2
↵)(n2�2

� + �2) + n2�2
,

�2(n2�2
� + �2)

(n1 + �2/�2
↵)(n2�2

� + �2) + n2�2

◆
.

(4.12)

Using eq. (4.10) directly, the modularization posterior distribution for ↵ can be

written as

⇡M(↵|y) = N

✓
↵
���

n1ȳ1 + n2ȳ2
n1 + n2 + �2/�2

↵

,
�2(n1 + n2 + �2/�2

↵) + n2
2�

2
�

(n1 + n2 + �2/�2
↵)

2

◆
. (4.13)

Although equations 4.12 and 4.13 are a lot to unpack, some useful information

can be obtained with careful study. For instance, both distributions reduce to the

same conjugate posterior when n2 = 0 [58]. For fixed n2 and n1 !1, both posteriors

converge in probability to the desired parameter ↵. The other extreme, where n1

is fixed and n2 ! 1, is worth noting. Rather than converging to a constant, the

posteriors instead converges in distribution to some limiting posterior. In the full

Bayes case, this limiting distribution can be written as

lim
n2!1

⇡(↵|y) = N

✓
↵ |

�2
�n1ȳ1 + �2ȳ2

�2
� (n1 + �2/�2

↵) + �2
,

�2
�

1 + (�2 + n1)(���)�2

◆
. (4.14)

The modularization posterior has the limiting posterior

lim
n2!1

⇡M(↵|y) = N
�
↵ | ȳ2, �2

�

�
. (4.15)

In other words, the modularization posterior makes no attempt to learn about nui-

sance parameters and any subsequent attempt at correction will be based on the
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prior for �. This implies that modularization is reasonable and useful only if the

prior distribution is correct and informative. The properties of the modularization

posterior, in this simple problem, will be further studied via simulation.

4.3.2 Reliance on the Prior

The investigation in Section 4.3.1 suggests that strong prior information is necessary

for the modularization posterior distribution to be helpful. By saying that the prior

information for the modularization parameters (�) should be strong, we are saying

that the uncertainty surrounding these parameters should be relatively small. As

seen in eq. (4.10), the modularization posterior starts with the conditional posterior

and takes a weighted average across the prior distribution of �. If the prior variance

of � is large (infinite) then the variance of the modularization posterior will also be

large (infinite).

Consider the DB problem again. If n1 is zero, then ↵ and � are completely

unidentifiable and no amount of data from the second source can help distinguish

between the two quantities. When n1 is non-zero but small, weak identifiability

persists and the extent to which the two parameters can be distinguished depends

primarily on n1. The modularization alternative is intriguing here as long as strong

prior information is available for the bias �.

When n2 > 0, the modularization posterior is always more conservative (less

precise) than the standard marginal posterior. The level of conservatism depends

heavily on the strength of the prior information available for the bias term, as well as

the number of observations from the biased source. Figure 4.5 provides a comparison

of the two posteriors for a single random sample with n1 = 10 and n2 = 90 where

↵ = 0, � = 0.1 and the model uncertainty � = 1. We set �↵ = 1 to represent a

flat prior over the parameter of interest, and vary �� 2 {0.25, 0.5, 1, 2}. As the
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Figure 4.5: Comparison of the fully Bayesian marginal posterior (solid line) and the
modularization posterior (dashed line) in the DB-problem for �� 2 {0.25, 0.5, 1, 2}.
Other parameters are fixed to ↵ = 0, � = 0.1, � = 1, �↵ =1.

amount of prior information for the � increases, or equivalently as �� decreases, the

variance of the modularization posterior becomes less conservative compared to the

fully Bayesian approach.

At the same time, when the prior uncertainty surrounding � is large, the modu-

larization posterior can become worthlessly conservative, leading to an increasingly

flat posterior distribution for ↵. In general, if the prior variance of � is large enough,

the variance of the modularization posterior for ↵ can exceed the prior variance of ↵.

As our first rule of thumb, the modularization approach to estimation is only prac-

tical when strong prior information is available for the modularization parameters

�.

Secondly, the success of the modularization posterior will depend on the correct-

ness of the nuisance parameter priors. The notion of correctness implies that the

nuisance parameters have a true value which, as we saw in the simple machine exam-
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ple at the beginning of this chapter, may not always be the case. In the DB problem

however, the reliance of modularization on the prior can be directly explored via sim-

ulation. In particular, we will study the consequences of specifying the prior value

�� = 0.05 when the true uncertainty, denoted ��,?, is actually significantly larger.

For the model in eq. (4.11), we specify the values n1 = 10, n2 = 90, � = 1, ↵ = 0

and �↵ = 1. Although we will assume that �� = 0.05, the true value of � for each

simulation will be sampled from a N(0, �2
�,?) distribution. Ten thousand simulations

were performed for several values of ��,? between 0 and 6. In each simulation, a 90%

credible interval for ↵ is constructed using (i) the marginal posterior eq. (4.12), (ii)

the modularization posterior eq. (4.13) and (iii) a partial posterior approach. The

partial posterior approach is discussed in [94], where it is shown to have better MSE

properties than the Bayesian alternative whenever �2
�,? > 2�2

� +
1
n1

+ 1
n2
. This ap-

proach simply discards the n2 measurements of the diamond inside the display case,

based on the belief that there is often little to gain via inclusion of the biased data

when the prior is correct, and much to lose when it is not. The results of this simu-

lation study are summarized in Figure 4.6, which shows that the marginal posterior

and (especially) the modularization posterior behave poorly when prior information

is faulty.

To summarize, if the prior information on the modularization parameters is sus-

pect, then modularization cannot be trusted to give a meaningful answer. Modu-

larization only makes sense when the prior information is strong, and there is good

reason to believe that the prior is reliable.

4.3.3 The E↵ect of Model Inadequacy

It is clear that the modularization approach should only be used for inference on

↵ if there is a set of parameters � such that (i) we have reason to trust our prior
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Figure 4.6: Comparison of the marginal posterior (solid), the modularization poste-
rior (dashed) and the partial posterior (dotted) for the DB problem for ��? 2 [0.1, 6].
Other parameters are fixed to n1 = 10, n2 = 90, ↵ = 0, � = 1, �� = 0.5, �↵ =1.

information and (ii) the prior uncertainty for these parameters is reasonably small.

By choosing the modularization framework, we are opting to aggregate the posterior

distributions corresponding to a collection of � values which are deemed likely or

reasonable according to the prior. With the aforementioned caveats in mind, this

often leads to favorable properties such as improved estimation (in terms of MSE) and

uncertainty quantification (in terms of empirical coverage). In a model calibration

context, the discrepancy function is often the primary source of trouble [3, 24, 117].

To mimic the case of a misspecified model for the diamond in a box problem, we

study the consequences of underestimating the variance of the observations.

We fix the values n1 = 10, n2 = 90, �� = 0.5, ↵ = 0 and �↵ = 1. Although we

will assume that � = 1 is known, we set the true value of the observational variance

to �? and perform ten thousand simulations for each of ten di↵erent observational

variances between 0.12 and 62.

The results are displayed in Figure 4.7. The empirical coverage of the full Bayesian
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Figure 4.7: Comparison of the marginal posterior (solid), the modularization poste-
rior (dashed) and the partial posterior (dotted) for the DB problem for �? 2 [0.1, 6].
Other parameters are fixed to n1 = 10, n2 = 90, ↵ = 0, � = 1, �� = 0.5, �↵ =1.

and partial posterior methods drop below the nominal value as soon as �? > �, and

they drop to less than 50% empirical coverage before �? has even reached 3�. For

the same observational variance of 3�, the modularization posterior maintains an

empirical coverage of 84%. In terms of MSE, the modularization approach surpasses

the other two approaches for �? ' 2�. We can also look at di↵erent forms of model

inadequacy, replacing the normal measurement error terms with scaled t distributions

with 2 degrees of freedom, the modularization approach outperforms the others in

terms of coverage and MSE whenever the scale parameter �? > 0.5.

4.4 Numerical Approximations to the Modular-

ization Posterior

In most practical applications, especially those requiring BMC, a closed form solu-

tion for the modularization posterior (such as in eq. (4.13)) is typically unavailable.
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Therefore, an algorithm will be needed to provide a numerical approximation to the

distribution. In this section, we discuss several methods for approximating eq. (4.10)

including our own proposal which we call emulating the conditional posterior, or the

ECP algorithm. If we assume that MCMC is costly for the application, as will typi-

cally be the case in model calibration problems, then the ECP algorithm is a massive

improvement over the simple Monte Carlo alternative.

Before we move on to discussing these approaches, we note that a similar approach

was examined in [21], where the authors employed a Gibbs sampler with Metropolis

steps to sample from the posterior. In Gibbs sampling, parameters are sampled

iteratively from their conditional posteriors, avoiding the need to sample from the

full joint distribution. The authors of [21] adopt a position of ignorance regarding

the nuisance parameters by sampling each �i from its prior distribution, rather than

from its conditional posterior. The issue with this approach, demonstrated by [118],

is that there is no well-defined limiting distribution. In other words, the strategy does

not generally lead to the modularization posterior distribution defined in eq. (4.10).

The Problem

Consider the set of calibration parameters ✓ = (↵,�,�) where

i) ↵ 2 A ⇢ Rp denotes a set of physical parameters whose values are of scientific

interest,

ii) � 2 � ⇢ Rq denotes the set of modularization parameters, i.e. the nuisance

parameters whose prior distributions we seek to modularize over,

iii) � 2 B ⇢ Rr denotes a set of parameters which are not included in the modu-

larization set, but whose values are not of primary scientific interest.
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The goal is to obtain M samples from the modularization posterior of ↵ with

respect to �. For clarity, this involves first finding the modularization posterior of

(↵,�) with respect to � and then integrating

⇡M(↵|y) =
Z

B

⇡M(↵,�|y)d�,

to isolate ↵. This is an important practical consideration and thus worth mentioning,

but we will typically ignore the possible inclusion of � in this section to simplify

notation.

In general, we will assume that obtaining samples from the full Bayes poste-

rior ⇡(↵|y) or the conditional posterior ⇡(↵|�,y) requires MCMC and may be a

time-consuming bottleneck (see Section 1.5.2, [63, 161]). Thus we will allow these

distributions to be sampled from just L times and we refer to L as the budget.

4.4.1 A Monte Carlo Algorithm

The modularization posterior distribution in eq. (4.10) can be viewed as the condi-

tional posterior distribution of ↵ given �, averaged over the prior distribution of �.

The Monte Carlo (MC) algorithm works by sampling �` from the prior distribution

and then, treating this value as fixed and known, performing MCMC to obtain m`

samples from the conditional posterior ⇡(↵ |�`,y). This process is then repeated L

times, and the combined M =
PL

`=0 m` samples can be treated as M approximate

draws from the modularization posterior.

The samples generated by the MC algorithm can be considered exact draws from

the modularization posterior when m` = 1, but the budget L is often far smaller than

the number of desired samplesM , rendering this solution infeasible. For fixedm` � 2,

the samples can still be viewed as approximate samples from the modularization

posterior but the quality of the approximation is heavily dependent on the size of

the budget.
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4.4.2 Emulating the Conditional Posterior

The MC implementation described above is convenient for its simplicity, but when

sampling from the conditional posterior (i.e. with MCMC) is expensive, the budget

required for an accurate approximation may be too large. Rather than using the

budget to directly obtain samples from the modularization posterior, we propose an

algorithm which builds a parametric model for the structure of the conditional pos-

terior of ↵ given �. In many cases, this structure can be learned accurately and with

a limited budget, facilitating fast approximate sampling from the modularization

posterior. We call this method emulating the conditional posterior, or ECP.

The Univariate ECP Algorithm

We begin by assuming that ↵ 2 A ⇢ R. As an initial example, suppose that the

conditional posterior of ↵ given � can be approximated by

⇡(↵|�,y) = N
�
↵|µ(�), �(�)2

�
, (4.16)

for any � 2 �. If this assumption holds, and if the functions µ(�) and �(�) are

known, then samples can be obtained from the modularization posterior e�ciently

and without the need for MCMC by sampling

�m ⇠ ⇡�(·)

↵m|(�m,y) ⇠ N
�
µ(�m), �(�m)2

�
,

(4.17)

for m = 1, 2, · · ·M . If all assumptions hold, the samples ↵1,↵2, · · ·↵M can be viewed

as M exact draws from the modularization posterior. For instance, the DB-problem

shown in eq. (4.11) satisfies these assumptions with µ(�) = a+ b� and �(�) = c for

appropriate constants a, b, c (these constants are tractable, but not shown here for

the sake of brevity). Unfortunately, in most practical applications these functions

will not be tractable and thus the appropriate structure must be learned. In the
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ECP algorithm, the MCMC budget is used to learn about this hidden structure as

well as possible, and then approximate samples are taken from ⇡M using eq. (4.17).

The assumption of normality is probably the most reasonable default parametric

assumption in general, due to limit results such as the Bernstein von-Mises theorem

[52], but we will not limit ourselves to this choice. We can assume that

↵|(�,y) ⇠ F ( 1(�), 2(�), · · · r(�)) , (4.18)

and write

⇡(↵|�,y) = F
�
↵
�� 1(�), 2(�), · · · r(�)

�
, (4.19)

where F characterizes any distribution with the properties (i) it is easy to sample

from F (conditional on the parameters  1, · · · r) and (ii) given a set of iid observa-

tions from F , the parameters  1, · · · r can be consistently estimated with reasonable

accuracy and e�ciency.

If eq. (4.18) holds and if the structure of  j(�) is known, then we can sample

exactly from the modularization posterior using

�m ⇠ ⇡�(·)

↵m|(�m,y) ⇠ F ( 1(�
m), 2(�

m), · · · r(�
m)) ,

(4.20)

In practice, we will replace each of the unknown  j(·) functions in eq. (4.20) with

an estimator  ̂j(·), with the justification that  ̂j(�) !  j(�) for every � 2 � as

L!1. Leveraging the continuity of these functions, the structure with respect to

� can be modeled as a Gaussian process (see Section 1.3.2, [9,124,125]). In summary,

the ECP algorithm works as follows.

1. Sample �1,�2, · · ·�L from the prior distribution ⇡�(·). Note: For improved

performance, consider instead taking a Latin hypercube sample with respect to

the prior (see Section 1.5.1).
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2. For ` = 1, 2, · · ·L

a. Perform MCMC to obtain T draws (↵1,↵2, · · ·↵T ) from the conditional

posterior ⇡(↵|�`,y).

b. Use (↵1↵2, · · ·↵T ) to obtain estimates \ 1(�`), \ 2(�`), · · · \ r(�`). Write

c `j = \ j(�`) for simplicity.

3. For j = 1, 2 · · · r

a. Use the tuples (�`,c `j), ` = 1, 2, · · ·L to train a Gaussian process  ̂j(·).

4. For m = 1, 2, · · ·M

a. Sample �m
new from the prior distribution ⇡�(·).

b. Set  ̃m
j = E( ̂j(�m

new)) for j = 1, 2, · · · r

c. Sample ↵m ⇠ F( ̃m
1 ,  ̃

m
2 , · · ·  ̃m

r )

As L, T ! 1, the samples produced by this procedure can be considered exact

draws from the modularization posterior, so long as eq. (4.18) holds. The convergence

is a straightforward application of Slutsky’s theorem [28]. For finite L and T , this

is only an approximation of the desired distribution but we will shortly demonstrate

that the approximation is typically much more accurate than the MC algorithm given

similar computation time. For nuisance parameter sets of small to moderate dimen-

sion the ECP algorithm is quite e�cient, but it may struggle in higher dimensions.

We advise that at least L = 2q+2 MCMC evaluations should be budgeted for reliable

results, where q is the dimension of � [43].

A Multivariate ECP Algorithm

The univariate ECP algorithm can be naturally extended to the case where ↵ 2 A ⇢

Rp. The unifying feature is the parametric distribution F which is specified for the
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conditional posterior ⇡(·|�,y). Although any distribution with the aforementioned

properties can be a valid choice for F , we will limit our discussion to the multivariate

normal distribution. In particular, we assume that

↵i ⇠ N
�
µi(�), �

2
i (�)

�
, i = 1, 2, · · · p

Cov(↵i,↵j) = �ij(�), 1  i < j  p.

(4.21)

This implies that there are r = 2p+
�
p
2

�
total  j(·) functions which must be learned.

When the dimension of ↵ is a small value, i.e. p = 2, 3, 4, then this may be feasible.

For larger sets of physical parameters, a preposterior sensitivity study may be useful

for obtaining a sparse set of parameters [4, 53].

A Sequential ECP Algorithm

A common idea for improving performance in the design of computer experiments, is

to sequentialize tasks in order to maximize the use of precious and limited computa-

tional resources. Specific applications include (i) estimation of percentiles [30, 131],

(ii) contour estimation and optimization [69, 121, 123], (iii) multi-fidelity modeling

[62,163] and (iv) in situ applications [104]. The idea is simply that certain regions of

the parameter space � may be easier to learn about than others, and our budget can

be more spent more e↵ectively by choosing �` to be the location which will add the

most information. This notion of equitable spending is worth discussing for ECP,

although we note that the non-sequential version of our algorithm is faster (less over-

head) and su�cient for every application we have considered. In higher dimensional

problems however, this extension may be valuable.

In the first step of the ECP algorithm, the set of modularization locations (�1, · · ·

�L) are chosen simultaneously with respect to the prior. We want to transition to

the case where �` is not chosen until the previous `� 1 locations have been assessed.

We begin with a build phase, in which the first three steps of ECP are executed but
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using L0 in place of L (with L0 < L).

Once the build phase is complete, the remaining budget is L�L0 and the goal is to

choose the remaining locations sequentially so that the Gaussian process emulators

 ̂1(·|D), · · ·  ̂r(·|D) can be learned for all reasonable values of � as e�ciently as

possible. Following [121, 123, 131], we will define an improvement function I(�|D)

which is used to evaluate candidate locations, selecting the `th location as

�` = argmax
�2�

I (�|D`�1) , (4.22)

where D` represents all of the relevant information we have acquired up to time `.

Before defining the improvement function for sequential ECP, we should discuss a

few of the associated challenges.

i) If the location space � is bounded, then it may be possible to search the entire

space as in eq. (4.22). When the space is unbounded finding the best location

becomes more di�cult. The prior distribution ⇡�(·) needs to be accounted for

in some way, to ensure that we are not wasting resources exploring locations

in � which are not ”reasonable” with respect to the prior. One simple way to

handle this problem is to replace the optimization space � with a finite set of

candidate values �c which containsNc random draws from the prior distribution

⇡�(·). If Nc is large enough, the chosen location can be expected to correspond

to good improvement, while being constrained to a region of prior plausibility.

ii) It seems reasonable that the new modularization parameter should be placed

in a location which reduces the uncertainty in the GP emulators  ̂j(·). It may

be the case that a value which maximizes the improvement for the jth GP has

little value with respect to the kth GP. We will need a way of evaluating a

location with respect to each parameter of the conditional posterior. Inspired

by [131], we propose looking at the u-quantile of the conditional posterior

⇡(↵|�,y) = F(↵| 1(�), · · · r(�). First of all, for most choices of u, this is
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guaranteed to be a meaningful combination of the r  j parameters which gives

us a way to evaluate the improvement with respect to each GP simultaneously.

Secondly, by targeting a particular quantile of the conditional posterior, we are

in fact targeting a tail of the modularization posterior. For physical parameters

especially, a credible interval is typically more valuable than a point estimate,

making this an enticing option.

In the univariate case, A ⇢ R, we propose the improvement function

I(�|D) = Var
⇣
⇣̂u(�|D)

⌘
(4.23)

= Var
⇣
Q
⇣
u
�� ̂1(�|D), 2(�|D), · · · r(�|D)

⌘⌘
(4.24)

where ⇣̂u(�) is the uth percentile of F(↵| 1(�), · · · 1(�)) and Q is the quantile

function corresponding to the distribution F . The inclusion of ·̂ symbols and D in

the notation serves as a reminder that we are estimating these quantities using all

available information D.

For instance, in the case where F corresponds to a univariate normal distribution,

the u-quantile can be written as

⇣u(�) = µ(�) + ��1(u)�(�), (4.25)

and the improvement function in eq. (4.23) reduces to

Inorm(�|D) = Var (µ̂(�)|D) +
�
��1(u)

�2
Var (�̂(�)|D) , (4.26)

There may be cases where a normal distribution assumption for F is inappropri-

ate, and another parametric form is desired. For instance, if expert opinion dictates

that the support of ↵ is bounded on an interval then a Beta distribution may be

specified for F . Similarly, if the parameter of interest should be strictly positive,

then perhaps a Weibull or Gamma distribution should be specified. We note that
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MC can always be used to approximate the improvement function. If the quantile

function Q can be written in closed form, then analytic calculations can be used to

produce an approximation to eq. (4.23). Two examples are given below.

Weibull Distribution

Suppose that

F
�
↵
���(�),(�)

�
=

↵
�1(�)�1

(�)�(�)�1(�)
exp

n
� (↵/�(�))

�1(�)
o
.

For notational compactness, we define  ̂ = E
⇣
 ̂(�|D)

⌘
and  ̃ = Var

⇣
 ̂(�|D)

⌘
(for

 = �,). Using the Delta method with a second order expansion we obtain

IWeibull(�|D) = u2̂
?

⇢
�̃
�
1 + 2̃ log2(u?)

�
+ �̂2̃ log2(u?)

✓
1� ̃

4
log2(u?)

◆�

with u? = � log(1� u),

(4.27)

Multivariate Normal Distribution

Returning to the multivariate case (↵ 2 A ⇢ Rp), we note that eq. (4.23) is no longer

well defined. Since there are multiple ↵i parameters, there is no clear definition for

⇣u(�). Instead, we consider a linear combination of the components

↵0 =
pX

i=1

ti↵i. (4.28)

The ti coe�cients are constants, which can be fixed at one for simplicity or taken to

be the square root of the marginal prior precision for ↵i so that each term is weighted

equally according to the prior. Now the uth percentile of ↵0 is a meaningful function

of every parameter in F ,

⇣u(�) =
pX

i=1

tiµi(�) + �
�1(u)

(
pX

i=1

t2i�i(�)
2 + 2

n�1X

i=1

nX

j=i+1

titj�ij(�)

)1/2

. (4.29)
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The improvement function of eq. (4.23) can now be used for this quantity. Due to

the square root, ⇣u(�) is no longer a linear combination of independent GPs, and

therefore finding Var(⇣̂u(�|D)) is no longer straightforward. Approximation of this

variance via Monte Carlo integration is still a valid option but will lead to slower

evaluation of I(�) (especially if p is large). Alternatively, we can apply the Delta

method with a second order expansion. As before, we define  ̂ = E ( (�|D)) and

 ̃ = Var ( (�|D)).

Ip(�|D) =


E(�21) + ��1(u)2E(�2)+2��1(u)E(�1)E

⇣
�
1/2
2

⌘�

�

E(�1)+��1(u)E

⇣
�
1/2
2

⌘�2
,

E(�1) =
pX

i=1

tiµ̂i, E(�21) = E(�1)
2 +

pX

i=1

t
2
i µ̃i, E(�2) =

pX

i=1

t
2
i �̂

2
i + 2

p�1X

i=1

pX

j=i+1

titj �̂ij ,

E

⇣
�
1/2
2

⌘
⇡ E(�2)

1/2�1

2

✓
1

16E(�2)

◆3/2
0

@
pX

i=1

t
4
i �̃

2
i + 2

p�1X

i=1

pX

j=i+1

titj �̃ij

1

A.

(4.30)

Despite its appearance, Equation (4.30) can be evaluated e�ciently.

4.4.3 Comparison of Algorithms

To assess the convergence properties of the algorithms discussed in this section, we

return to the diamond in a box problem (DB-problem) discussed in Section 4.3.1.

This is convenient, because the modularization posterior is given analytically in

eq. (4.13), and the numerical approximations (⇡̂M(·|y)) can be compared to the

theoretical distribution (⇡M(·|y)). To assess the convergence we will look at both

Kullback-Leibler divergence (KLD) [153],

KL Divergence =

Z
1

�1

⇡M(↵|y) log
✓
⇡M(↵|y)
⇡̂M(↵|y)

◆
d↵ (4.31)
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and Kolmogorov distance [71]

Kolmogorov Distance = sup
↵

����
Z ↵

�1

(⇡M(a|y)� ⇡̂M(a|y)) da
����. (4.32)

Using the parameter settings described in Figure 4.5, data was simulated 500

times and the modularization posterior was approximated using variants of both the

Monte Carlo (MC) and emulation of conditional posterior (ECP) algorithms. The

four algorithms are (i) the ECP algorithm with a normal distribution assumed for

F , (ii) the ECP algorithm with a Weibull distribution assumed for F , (iii) the MC

algorithm using LHS and m` = 100 and (iv) the same MC algorithm but with a nor-

mal distribution fit to the resulting samples. For each data set, the algorithms were

asked to approximate eq. (4.13) five times, using budgets of L 2 {10, 20, 30, 40, 50}.

The results are summarized in Figure 4.8, which shows the total KL Divergence and

Kolmogorov distance across the 500 samples. Even for the smallest budget (L = 10),

both ECP implementations converged precisely to the true posterior. The MC im-

plementations provide reasonable approximations, but a much larger budget (i.e.

L = 500) to achieve comparable accuracy.

Complexity analysis

Let M denote the cost of running MCMC a single time. It is usually the case

that running MCMC for BMC is incredibly time consuming and thus M should

be viewed as large. For a fixed budget L, the complexity of the MC algorithm is

simply O(LM). The MC implementation is also “pleasantly parallel”, leading to a

complexity of O
�
L
PM

�
when P  L processors are used for parallel computation

[90].

In comparison, the ECP implementation involves training a GP for each of the

parameters in the specified form for the conditional posterior leading toO(LM+rL3)

complexity. The MCMC can be run in parallel for each location and the r GPs can
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Figure 4.8: Comparison of the MC and ECP approximations to the modularization
posterior for the DB-problem (eq. (4.13)). The ECP implementation matches almost
perfectly even for L = 10. Parameters were fixed to ↵ = 0, � = 0.1, n1 = 10, n2 = 90,
� = 1, �� = 0.5, �↵ =1.

be trained simultaneously, leading to a cost of O
�
L
PM + r

PL
3
�
for P  min{L, r}

processors.

Finally, we consider the sequential ECP implementation (with L0 ⌧ L) which

has considerably more overhead. Each of the r GPs must be retrained at every time

step ` > L0. Done naively this will require O(rL4) time, but the use of the partition

inverse equations [8, 66] can reduce this to cubic time. There is also the problem of

finding the optimal location among the candidate set, which consists of prediction

(with uncertainty) at Nc locations for every ` > L0. Putting everything together, the

complexity of the sequential ECP algorithm becomes O (LM + (r +Nc)L3). More-

over, the sequential nature of this implementation prevents us from parallelizing the

conditional posterior sampling, but the training and candidate searching can still be

done in parallel, giving O(LM + r+Nc
P L3) for P  r. The inability of sequential ECP

to parallelize the time-consuming MCMC steps is concerning and suggests that a
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block-sequential approach may be worthwhile.

Complexity analysis is important for an honest comparison of the approaches.

For instance, it suggests that ECP may not be feasible for L > 1000, suggesting

an upper bound on the number of allowable modularization parameters (somewhere

around q = 8). We caution that complexity analysis can also be misleading here. The

ECP algorithm is expected to take (slightly) longer than the MC algorithm for the

same budget but is expected to make better use of its time. The example shown in

this section and the examples in the rest of this Chapter illustrate that ECP makes

e↵ective use of the available resources, converging drastically faster to the target

distribution than the alternative. Future work should involve theoretical results

demonstrating this fact, but at present the “proof by example” is quite convincing.

4.5 Applications to Model Calibration

In this section, we explore modularization as tool for the calibration of physical

parameters in BMC. First, we explore the use of modularization as a diagnostic tool

for better understanding the posterior relationship between physical and nuisance

parameters. As an example, we return to the simple machine example of Section 4.2.

Secondly, we revisit the borehole function, first introduced in eq. (2.6), using a low

fidelity simulator which induces a biased discrepancy function. Finally, we consider

application of modularization to the tantalum experiments described in Section 1.2.

The ECP algorithm of Section 4.4.2 is used throughout this section.

4.5.1 A Sensitivity Analysis

In this section, we describe how modularization can be useful as a tool for assessing

the sensitivity of inference for ↵ on a nuisance parameter �. In the simple machine
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example of Section 4.2, we see that the quality of our inference for the e�ciency of

machine is heavily related to the prior distribution of �. In the presence of model

discrepancy, nuisance parameters can give a model too much flexibility leading to

an overfit model and underestimation of uncertainty in the physical parameters.

Modularization is shown to be heavily reliant on the prior ⇡�(�) and somewhat

robust to the e↵ects of a misspecified model. At the same time, the modularization

posterior can be equivalent to the standard Bayesian solution. We say that ↵ is a

posteriori independent of � if

⇡(↵|�,y) = ⇡(↵|y),

and this is precisely the case where the modularization posterior (eq. (4.10)) is equiv-

alent to the marginal posterior (eq. (4.9)). If both methods are used to approach a

given problem and the results are the same, we have strong evidence that the infer-

ence for ↵ is not sensitive to the treatment of � (at least for the specified prior and

computer model). If the modularization and fully Bayesian posteriors di↵er signifi-

cantly, it means that (i) we are learning something about the nuisance parameter �

and (ii) this is influencing our inference for the physical parameter.

Revisiting the Simple Machine

In Section 4.2.2, we saw an example where calibration was unable to capture the true

value of a physical parameter. The simulator given in eq. (4.5) represents missing

physics and does not match the true process in eq. (4.3). This leads to the creation of

a nuisance parameter �, called the change point, which gains a physical interpretation

only through its relationship with the physical parameter ↵ and discrepancy function

�(·).

After careful analysis researchers of the simple machine have determined that �,

which represents (in the model) the e↵ort level at which friction starts to reduce
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output, must be between 0.5 and 2.65. Therefore they set A = 0.5 and B = 2.65

to complete the prior specification in eq. (4.7). Inference for the e�ciency of the

machine, ↵, is obtained using standard BMB and again using modularization (with

modularization parameter �). The posterior distributions are shown in Figure 4.9a.

The BMC solution yields a narrow posterior, confidently concentrating around a

value of ↵ ⇡ 1.7, and the true value ↵? = 2 will be excluded in a 95% (or 99%)

credible interval. The modularization posterior di↵ers significantly, including for the

possibility that the e�ciency of the machine may be larger than the fully Bayesian

posterior is suggesting. This should cause the researchers to hesitate and question

the validity of the fully Bayes solution.

(a) Comparison of Bayesian and modular-
ization posteriors for ↵.

(b) Conditional posterior of ↵ as a function
of �.

Figure 4.9: Diagnosing the simple machine (case 1).

Figure 4.9b illustrates the conditional posterior of ↵ given �, by plotting the

mean and quantiles (0.025 and 0.975) of this distribution as a function of �. If ↵ was

independent of �, we would expect this figure to consist of three parallel horizontal

lines. The steep gradient implies that ↵ is very sensitive to the treatment of �, with

respect to the current prior and model discrepancy form.
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One option for a path forward is to further refine the model. Although the

mechanism for friction is not yet understood, the inadequacy of the model can be

reduced by increasing the order of the approximation.

⌘(x,✓) =

8
>>>><

>>>>:

↵x, x < �

↵� + �1(x� �), �  x < �2

↵� + �1(�2 � �) + �2(x� �2), �2  x

(4.33)

↵ ⇠ Gamma(6, 3) �1|↵ ⇠ Unif(0,↵) �2|�1 ⇠ Unif(0, �1)

� ⇠ Unif(0.5, 2.65) �2|� ⇠ Unif(�, 10)

(4.34)

(a) Comparison of Bayesian and modular-
ization posteriors for ↵.

(b) Conditional posterior of ↵ as a function
of �.

Figure 4.10: Diagnosing the simple machine (case 2).

By improving the model, the posterior sensitivity of ↵ on � is reduced. The

diagnostic plot in Figure 4.10b shows less evidence of a dependence between ↵ and

�, except for when � is very close to 0.5. The posterior distributions shown in
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Figure 4.10a are now in close agreement, suggesting that ↵ is not overly sensitive to

the treatment of �. Although the posterior distribution is significantly less narrow

than before, we note that both posteriors are approximately centered around the

true value ↵? = 2.

For completeness, we note that the modularization approach was implemented

for the five values of ⌧ listed in Table 4.1. In four out of the five cases, the mean

of the modularization posterior is closer to the true value of ↵? than the standard

alternative. The modularization posterior is slightly wider than standard Bayes and

the credible region formed by modularization can be viewed almost as a superset of

the standard credible region. The true value of ↵? was captured inside the 95% CI

for all five values of ⌧ . Selected results are shown in Figure 4.11.

4.5.2 The Borehole Function

In this section, we compare the modularization and fully Bayesian model calibration

approaches using synthetic data based on the well-known Borehole function with a

single parameter of interest. In the presence of model discrepancy, this problem is

poorly identified and the parameter of interest is confounded with one of the nuisance

parameters. We demonstrate that the modularization approach to model calibration

has desirable statistical properties when compared to the fully Bayesian approach,

at the cost of precision in the credible intervals.

Consider the Borehole function [102, 103, 145], which models water flow through

a borehole (m3/yr) as

⌘(x, w,K, T, r) =
600⇡T

ln(r/w)
⇣
1 + 2xT

ln(r/w)w2K + T
100

⌘ . (4.35)

x is a known input (or design variable), which denotes the length (m) of the borehole.

We assume that this input can take values x 2 [500, 4000] and is measured without
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Figure 4.11: Comparison of fully Bayesian and modularization posteriors for di↵erent
values of ⌧ .

error. The remaining inputs are unknown calibration parameters. Briefly, w is the

radius of influence (m), K is the hydraulic conductivity (m/yr) of the borehole, T

is the transmissivity of the upper aquifer (m2/yr) and r is the radius (m) of the

borehole which is measured with error. The associated prior distributions are

w ⇠ N(0.1, 0.03042)I[0.01,1)(w), K ⇠ U(3500, 10000),

T ⇠ U(63070, 115600), r ⇠ logN(7.71, 1.0056).
(4.36)

We assume that the single parameter of interest is ↵ := w and there are three

modularization parameters � = (�1, �2, �3) := (K,T, r). We treat eq. (4.35) as the
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Figure 4.12: Borehole simulation study. Empirical coverages for the fully Bayesian
and modularization approaches as a function of w?. Nominal coverage is 95%.

computer simulator and take the true process to equal ⇣(x) = ⌘(x, w?, K?, T?, r?) +

�(x), where the ? subscript denotes the true value of a parameter. Using the BMC

framework of Section 1.4.3, we assume that the true data generating process is equal

to

yi = ⇣(xi) + �(xi) + ✏i, i = 1, 2, · · ·n

✏i
iid⇠ N(0, �2)

�(x) ⇠ GP (0,�R).

(4.37)

Depending on the generated form of the model discrepancy, the parameter of

interest w is often heavily confounded with K. Specifically, an excellent fit to the

data can still be obtained when both parameters are estimated to be smaller than

their true values. Consequently, as the true value w? increases, the standard BMC

approach has a tendency to overfit and inference for both K and w is unreliable. In

the modularization approach, by forfeiting the ability to learn aboutK, we can obtain

robust inference for the parameter of interest. For each of five di↵erent true values of

the radius of influence, w? 2 {0.07, 0.10, 0.12, 0.15, 0.16}, we generate 500 synthetic
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datasets from the mechanism of eq. (4.37), setting n = 200, xi = 500 + (i � 1)3500n�1 ,

 = (� = 0.2,� = 2, = 10�5). These parameter settings were chosen to emulate

the challenges often faced in BMC applications, but we do not believe that the results

of this section are qualitatively dependent on this choice. For each of the 500 data

sets, we perform BMC using both modularization and full Bayes and a corresponding

95% credible interval is computed for each method. From these results, displayed in

Figure 4.12, it is clear that the fully Bayesian approach is severely under-covering

as w? increases while the modularization approach maintains near nominal coverage

for all values of w?.

Figure 4.13: Posterior bias and standard deviation for the borehole example as a
function of w?. Shaded bands represent an 80% central region across 500 simulations
[106].

To better understand the di↵erences between these two approaches, we turn to

Figure 4.13. The posterior bias (left panel), defined as E(w|y)�w?, and the posterior

standard deviation (right panel) are summarized in this figure. In each panel, the

shaded bands correspond to 80% central regions and the central lines represent the

medians of the 500 simulations [106]. The modularization posterior (solid lines) is,

on average, approximately unbiased for all values of w?. The variance of the posterior
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mean, which is roughly proportional to the width of the shaded band in the left panel,

increases as w? moves away from its posterior mean. To maintain good coverage of the

credible interval, the posterior standard deviation (right panel) increases at a similar

rate. On the other hand, the fully Bayesian posterior (dashed lines) is only unbiased

on average when w? is equal to its prior mean 0.10. Since the full Bayes approach

tries to learn about w and K simultaneously, there is a tendency to underestimate w

and K is used to compensate. Although the bias increases in magnitude under the

fully Bayesian approach, the posterior standard deviation stops increasing, leading

to deceivingly precise credible intervals and poor coverage frequencies.

In this section, the modularization posterior was approximated using the ECP

algorithm with a normality assumption eq. (4.26) using L = 50, `0 = 20 and k = 5.

The results were compared to a large budget MC implementation using L = 1000 and

m = 10. The two implementations produced essentially identical results, although

the ECP implementation was more than 20 times faster. Although not shown here

for brevity, the modularization posterior was also approximated using a Weibull

assumption eq. (4.27) and again the resulting approximation was identical.

4.5.3 Compressibility of Tantalum

In this section, we analyze a set of measurements on tantalum (Ta) in which the

compressibility parameters of tantalum are of interest. This example, which has

been analyzed using traditional methods from physics [20], is challenging from a

model calibration perspective. We will show that the calibration o↵ered by the mod-

ularization approach is more consistent with the traditional analyses than standard

BMC.

We consider a class of dynamic material experiments in which a powerful mag-

netic field is used to generate high pressures and induce a stress wave which propa-
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gates through a material of interest. In this particular problem, the velocity of the

stress wave (Km/s), which propagates through a tantalum sample, is recorded at

the interface between the tantalum and a lithium fluoride window. Details on the

experimental configuration and the resulting data can be found in [20, 21, 136] The

resulting data can be viewed as a function y(t), t 2 [0, T ]. Even with the functional

structure there is a finite amount of information contained in each curve and thus it

is reasonable to discretize, so that the data becomes

yi = y(ti), i = 1, · · ·n,

for fixed time points ti [11, 161] The aim of the analysis is to estimate two material

properties of tantalum, known as equation of state parameters, which describe the

pressure-density relationship (or compressibility) of tantalum. The two parameters

of interest are the Bulk modulus of tantalum (B0 GPa) and its corresponding first

pressure derivative (B0

0), i.e. ↵ = (B0, B0

0). We also have access to a computer

simulator, which models these experiments using the ALEGRA wave propagation

code [129]. Many of the inputs to the computer model are fixed at nominal values,

but there are some remaining nuisance parameters whose uncertainty we wish to

account for. These parameters include the initial density of tantalum (⇢0 g · cm3),

the boundary condition scaling parameter (BCscale) and thickness measurements for

the tantalum (xTa µm) and the aluminum (xAl µm), which acts as an electrode.

Collectively, these 6 inputs form the set of calibration parameters ✓.

In the BMC framework [76,87] the experimental data is modeled as

yi = ⌘(ti,✓) + �(ti) + ✏i i = 1, · · ·n

�(t) ⇠ GP
⇣
µ,⌃�

⌘

✏i
ind⇠ N(0, �2

i ).

(4.38)

Equivalently, we have that y ⇠ MVN(⌘ + µ,⌃� + ⌃✏) where ⌃✏ is a diagonal

matrix with elements �2
i which are provided by a physicist and treated as fixed and
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known, and ⌃� = �R where R is a correlation matrix such that

Rij = exp
n
� (ti � tj)

2
o
. (4.39)

As identifiability constraints, we assume a mean zero discrepancy function (i.e. µ =

0) and fix  = 7.225 ⇥ 10�2 (after re-scaling so that t 2 [0, 1]) based on previous

work [3, 16, 21, 94].

The model in eq. (4.38) is overdetermined and the compressibility parameters

of tantalum are poorly identifiable. This means that there are a large number of

parameter settings (BCscale, ⇢0, B0, B0

0) which provide a precise fit to the data, and

the addition of the model discrepancy term makes it impossible to determine which

setting, if any, is the correct one. Sensitivity studies have shown ([21]) that the

thickness parameters xTa and xAl are not confounded with ↵, but these parameters

should still be handled within the MCMC to avoid artificially precise posteriors for

the parameters of interest.

To summarize the information so far, there are two parameters of scientific in-

terest ↵ = (B0, B0

0) which describe the compressibility of tantalum, and two inputs

� = (BCscale, ⇢0) whose values are highly confounded with the physical parame-

ters. Equipped with strong, well-informed prior information on these inputs, these

are the parameters for which it makes the most sense to modularize over. The re-

maining BMC parameters, we denote � = (xTa, xAl,�). These parameters are not

treated as modularization parameters, but they are not explicitly accounted for in

the ECP algorithm in order to reduce the number of GPs which must be learned. In

other words, at each iteration of the ECP algorithm samples are obtained from the

conditional posterior ⇡(↵,�|�,y), but the � parameters are ignored after this step

which is equivalent to marginalizing them out of the modularization posterior. Prior
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distributions for each parameter is given below.

↵1 = B0 ⇠ N(185, 17.32) ↵2 = B0

0 ⇠ U(2.9, 4.9)

�1 = BCscale ⇠ N(1, 0.0042) �2 = ⇢0 ⇠ N(16.55, .06622)

�1 = xTa ⇠ N(µTa, 1.5) �2 = xAl ⇠ N(µAl, 1.5) �3 = � ⇠ C+(0, 10)

(4.40)

First, we attempt to analyze this data using a fully Bayesian model calibration

approach, using an adaptive Metropolis Hastings Algorithm [72] to obtain posterior

samples. The MCMC was run for 50000 iterations using the first half as burn-in and

retaining every tenth sample [63]. The modularization posterior was approximated

using the multivariate normal ECP algorithm, with L = 100, `0 = 20 and k =

2. Posterior summaries for ↵, under each approach, is shown in Figure 4.14. As

expected, the modularization posterior is more conservative than the fully Bayesian

approach, with significantly higher posterior variance for B0

0.

Figure 4.14: Comparison of posteriors for ↵ in the tantalum example.

The compressibility parameters B0 and B0

0 were determined to be of scientific

interest, not for their own sake, but because these parameters can be used to deter-

mine the pressure-strain (P -s) relationship ([20]). This relationship is modeled using
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the physically inspired Vinet model ([157])

P (s|B0, B
0

0) = 3B0

✓
1� ⇠
⇠2

◆
exp

⇢
3

2
(B0

0 � 1)(1� ⇠)
�
, ⇠ = (1� s)1/3 . (4.41)

Previous work has shown that BMC based estimation of the compressibility param-

eters, coupled with the 2-parameter Vinet model, can provide reasonable calibration

for low pressure behavior but commonly fails at higher pressures (> 250 GPa). Thus,

the BMC results here ( Figure 4.14) are compared to the pressure-strain curve found

via an average Lagrangian analysis (ALA), a state-of-the-art analytic method for

modeling the pressure-strain relationship of a material ([20]; [130]). This compari-

son can be seen in Figure 4.15 where the ‘*’ symbols represent the ALA estimates.

The results for the full Bayes calibration and the modularization approach are shown

using solid and dashed lines respectively, where the center lines indicate the pressure-

strain relationship at the posterior mean (i.e. P (s|B̂0, B̂0

0)) and the shaded bands

indicate 95% credible central regions ([106]). Both calibration approaches agree with

the ALA response for pressures up to about 250 GPa (left panel), but both calibra-

tions begin to fail at higher pressures (right panel) due to the extrapolative nature

of these predictions. Even at peak pressure (P ⇡ 520GPa), the modularization esti-

mate of pressure is less biased than the fully Bayesian method, with a relative error

of 8% compared to 11%. More importantly, the modularization 95% credible region

captures the ALA estimates for even the highest pressures. The additional robust-

ness o↵ered by modularization comes at the cost of conservatism in estimation, with

a 95% credible band with more than twice the width of the full BMC analogue.

Although the high uncertainty in the estimation limits the scientific usefulness of

the approach in this instance, much can be learned from this analysis. The excessive

width of the modularization posterior, in comparison to full BMC, indicates a lack

of identifiability, which may signal anti-conservatism and bias in the fully Bayesian

approach and indicates that the posterior inference should be questioned.
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Figure 4.15: Comparison of full Bayes, modularization and ALA approaches on the
Pressure-strain space.

4.6 Conclusions & Future Work

In this chapter, we discuss the challenges of model calibration when physical param-

eter inference is the goal and we provide a general discussion of the modularization

framework. Special attention is given to the numerical approximation of this distri-

bution, and we propose a novel algorithm (ECP) for e�cient approximation. Finally,

we apply the modularization framework in a variety of BMC applications, demon-

strating that it has robust qualities and can be used to ascertain the sensitivity of

physical parameters ↵ to the prior of the nuisance parameters. This is yet another

diagnostic tool for the tool-box of ascertaining parameter identifiability, especially

when parameters are viewed as inherent properties of a physical system.

Although we believe the ECP algorithm is an improvement over the previous

Monte Carlo approach, there are many opportunities for improvement. When em-

ulating the conditional posterior, a parametric form for F is required. In our ap-

plications, we find that the approximation of the modularization posterior is quite

robust to this choice, but future work should involve theoretical and empirical anal-

ysis of the implications of a poor choice. Alternatively, we could work towards a
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non-parametric version of the ECP algorithm, modeling a more flexible basis rep-

resentation of the posterior. This can theoretically be done without modifying the

underlying framework, but computational challenges are sure to present themselves.

In the sequential ECP algorithm, we could also explore a block-sequential implemen-

tation, which would restore the use of parallel predictions and improve performance.

This should be possible, but the current implementation will need to be modified

to avoid clustering of the k future locations at each step. Finally, we note that we

have only applied the multivariate-ECP algorithm for ↵ 2 R2, so future work should

involve application of this algorithm for a higher dimensional physical parameter

vector, possibly using a sparse representation of the covariance or precision matrix

[25, 39, 53] to facilitate faster performance.

Future work should also be focused on better understanding modularization as a

tool for physical parameter inference, using theoretical analysis and real world appli-

cations. An immediate extension is the use of modularization for treating the model

discrepancy parameters, which are presently handled using a “plug-in” approach,

which is the topic of Chapter 5.
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Chapter 5

Modularization, Cross Validation

and Discrepancy

“To think you know when you do not is a disease.” – Lao Tzu

5.1 Overview

The “plug-in” approach to model calibration refers to the process of setting certain

calibration parameters to fixed values, treating them as known throughout the re-

mainder of the analysis. Plug-in has several downsides, including hypersensitivity to

the selected value and underestimation of uncertainty, but it is often the simplest

way to avoid some of the identifiability issues discussed by [3, 24, 117, 148]. In this

section, we write the BMC discrepancy function prior as

�(·) ⇠ GP (µ,�R(·, ·|)),

where R(·, ·|) is a correlation function like the one defined in eq. (1.12) and we the

discrepancy parameters are collectively denoted  = (µ,�,). It is very common

to treat these parameters using plug-in, setting µ = 0 and  equal to some fixed

value as described in Section 1.4.3. We propose treating these parameters with

modularization rather than plug-in because it (i) identifiability is maintained between
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�(·) and ✓ for the purposes of MCMC, (ii) provides a more honest assessment of

uncertainty and (iii) the sensitivity of the results to the choice of discrepancy function

can be evaluated.

Unfortunately, modularization is heavily reliant on prior information, which is

generally lacking for the discrepancy parameters [24]. In the remainder of this chap-

ter, we propose some options for constructing empirical priors for the discrepancy

parameters, which can subsequently be used for modularization.

5.2 Cross Validation for Discrepancy Parameters

A model that fails to generalize beyond data that it has previously observed is said to

be overfit. Cross validation (CV) [143] is a popular approach for training a balanced

model. In CV, some of the observations are withheld during the training of the

model, and then the model is evaluated based on its ability to predict these held

out values. This process is repeated using a new set of withheld values until all of

the data points have been held out and then predicted exactly one time. A model is

Figure 5.1: Illustration of an overfit model.
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less likely to overfit using this approach since predictions occur at previously unseen

locations. The term K-fold CV refers to the case where the N observations are

randomly partitioned into K sets of n = N/K distinct observations. This approach

is designed for the case where the residuals of a model can be viewed as independent,

but when the residuals exhibit spatial or temporal structure, evaluations of the hold

out set may provide an overly optimistic view. When residuals are highly correlated

with their spatial neighbors, held-out samples can be easily predicted for almost any

value of the parameters and CV provides only limited information [128]. In this

setting, we can use the modified K-block cross-validation procedure, in which folds

are chosen to be contiguous regions of the input space. In this chapter, we focus on

the temporal case where x 2 X ⇢ R is the sole design variable. The field data can

thus be written as D = (x,y) and we define a partition P of the field data to be any

collection of sets {B1, B2, · · ·BK} such that each (xj, yj), j = 1, 2, · · ·n, belongs to

exactly one set Bk. The sets in a partition are said to be temporal blocks if for every

xj < xj0 we have that xj 2 Bk and xj 2 Bk0 with k  k0.

Broadly, our proposal for CV in the context of model calibration is to (i) treat

 =  0 as fixed and known and (ii) partition the data (X,y) into K contigu-

ous blocks and for k = 1, 2, · · ·K (iii) use MCMC to sample from the posterior in

eq. (1.27) conditional on  0 and based on the data with the kth block withheld. The

overall quality of the fixed value  0 can be expressed in terms of the RMSE of every

observation in the full data, and the goal is to evaluate the quality of  0 for a large

set of reasonable values, selecting the highest quality value  ̂CV . To summarize, the

CV loss function for a fixed value  0 is

L( 0|P) =
1

N

KX

k=1

X

yi2Bk

(yi � ŷi|(P�k, 0))
2 , (5.1)

where ŷi|(P�k, 0) denotes the predicted response obtained from fitting the model

with  =  0 fixed and data from the kth block withheld. The highest quality value
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can then be defined as

 ̂CV = argmin
 0

L( 0|P). (5.2)

Although MCMC is costly for BMC applications in general, it should generally

be much faster in this scenario because (i) fixing  0 improves identifiability of the

parameters (and thus improves the mixing time), (ii) the covariance matrix of the

data (see Section 1.5.3) is now static and can be inverted just a single time for

each instance of MCMC and (iii) some data is being withheld. Next, we discuss two

empirical methods for using the results of CV to construct a prior distribution ⇡ ( )

which can be used for modularization

Method 1: Loss Function as a Prior

The process described above can be used to define a loss function L( |P), where P

denotes a partition of D = (X,y) into K contiguous blocks and is the topic of the

Section 5.3. As described in Section 1.5.4, we can specify the prior

⇡ ( |�,P) / exp {��L( |P)} , (5.3)

where � controls the precision of the prior and can be chosen using model selection

criterion such as generalized cross validation [158]. In a sensitivity analysis setting,

� can be viewed as a diagnostic parameter and ad-hoc selection methods can be

used. An example of converting a CV loss function to a prior for  = µ is shown in

Figure 5.5. Alternatively, we could define

⇡ ( |�,P) /
⇣
L( |P)  �L( ̂CV |P)

o
, (5.4)

for some � > 1, which defines a uniform prior over the set of  values which lead to

almost-minimal loss. This discussion represents two possible strategies, out of many,

for converting a loss function into a prior distributions.
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Method 2: Empirical Prior Construction

Rather than choosing the value  ̂CV which maximizes the total quality of prediction,

we can focus on the values  ̂k, k = 1, 2, · · ·K, which minimizes the MSE for the data

P�k

 ̂k = argmin
 0

(
X

yi2Bk

(yi � ŷi|(P�k, 0))
2

)
. (5.5)

Following [111], we can calculate the sample mean vector

m =
1

K

KX

k=1

 ̂k,

the sample covariance matrix

C =
1

K � 1

 
KX

k=1

 ̂k ̂
>

k �Kmm>

!
,

and specify the prior

⇡ ( |�,P) = N ( |m,�C) . (5.6)

5.3 Selection of Cross Validation Blocks

Selection of the block size (and the corresponding number of blocks) is an impor-

tant problem for successful cross-validation and prior construction. In the standard

K-fold cross-validation, it is typically the case that leave-one-out cross validation

(LOOCV) is theoretically optimal, although it is computationally intensive and may

not be feasible. This LOOCV approach fails when the data has temporal (or spatial)

structure, since it is easy to predict a held-out observation using just its neighbors

[128].

159



Chapter 5. Modularization, Cross Validation and Discrepancy

5.3.1 E↵ective LOOCV

The e↵ective sample size (ESS), denoted ne↵, is a modified notion of sample size

when the variables of interest are correlated, having temporal or spatial structure.

As a simple example, consider sampling from a posterior with an MCMC algorithm

such as Metropolis Hastings (see Section 1.5.2). Since the samples ✓1, ✓2, · · · ✓M

are correlated this is not equivalent to having M independent samples from the

posterior, with the actual amount of information obtained being comparable to a

smaller number, the e↵ective sample size ne↵.

If LOOCV is viewed as the best approach for cross validation whenever (i) it is

computationally feasible and (ii) the independence assumptions are met, then it is

reasonable to wonder if the e↵ective LOOCV approach is optimal when the data has

temporal structure. Thus, we propose an ELOOCV procedure, in which K = ne↵

contiguous blocks are used, where

ne↵ =
n

⌧
,

⌧ = 1 + 2
1X

`=1

Cor (yj, yj+`)
(5.7)

In practice, one can estimate ⌧ by substituting the sample autocorrelation function

(ACF) estimates (r`) into this equation and truncating the sum at some large value.

A method for selecting the truncation constant L is given in [140], in which L is

chosen to be the smallest value for which L � C ⌧̂L, where ⌧̂L is the estimated

autocorrelation time based on L and C ⇡ 5.

5.3.2 Gaussian Processes and E↵ective Range

In non-stationary cases, the sample ACF may not be an appropriate estimator of

Cor (yj, yj+`) leading to issues with eq. (5.7). using the sample correlation values.
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Additionally, eq. (5.7) implicitly assumes that the design variables are regularly

spaced across X , i.e. that |xi+1 � xi| is constant for i = 1, 2, · · ·n� 1. Alternatively,

ne↵ can be estimated using the notion of e↵ective range. First, we define the empirical

discrepancy function

�̂(x) = ⇣̂(x)� ⌘(x, ✓̂), (5.8)

where ✓̂ is an estimate of ✓ (i.e. using LS or L2 calibration) and ⇣̂(·) is a smoothed re-

sponse surface (for example see eq. (1.20)). We can obtain ⇣̂(·) using a sophisticated

approach (i.e. Section 1.4.2 or [148]) or using relatively simple local regression strate-

gies [33,34]. By assuming an isotropic Gaussian correlation function (i.e. eq. (1.12)),

a Gaussian process can be fit to the empirical discrepancy allowing for direct esti-

mation of Cor (�(x), �(x0)). The ⇢-e↵ective range is the smallest Euclidean distance

(denoted de↵) such that

Cor (�(x), �(x0)) � ⇢ , kx� x0k2  de↵ (5.9)

If the correlation parameter of �̂(·) is estimated to be ⌫̂, then we can estimate the

e↵ective range as

de↵ =

r
� log(⇢)

⌫̂
(5.10)

If the design variables are regularly spaced, then the e↵ective sample size (and thus

the number of ELOOCV blocks) is estimated as

ne↵ =
Di(X )

2dne↵
, (5.11)

where Di(X ) is the diameter of the input space, given by supx,x02X kx � x0

2k22. In

the case of unbounded input spaces, it will su�ce to consider the diameter of the

training set Di(X).
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5.3.3 Acceptable Partitions and Binary Refinement

When the design variables are irregularly spaced, or in the case of non-stationary

modeling assumptions for the empirical discrepancy, more flexible solutions may

be required. An example of the latter situation is a discrepancy model where the

correlation parameter depends on the design variable in some way, i.e. ⌫ = ⌫(x),

but we do not explicitly consider this scenario here.

We will say that a partition P = {B1, · · ·BK} is acceptable, with respect to ⇢ and

◆, if

(
X

y2Bk

✓
max
y0 /2Bk

{Cor(y, y0)} < ⇢

◆)
� ◆ (5.12)

hold for every k = 1, · · ·K. Equation (5.12) states that every block Bk should contain

at least ◆ response values which are su�ciently hard to predict (as determined by

⇢) via the correlation structure alone. The parameters ⇢ and ◆ should be chosen

to balance the notions that (i) K should be as large as possible according to the

LOOCV philosophy and (ii) K must not be too large to avoid the aforementioned

temporal (or spatial) di�culties of CV. If P1 and P2 are acceptable, we should prefer

the one which is more refined, which is to say that the blocks are generally small.

For given values of ⇢ and ◆, the combinatorial nature of searching for the optimally

refined acceptable partition may be infeasible. Instead, we propose a greedy recursive

strategy for finding acceptable partitions.

If P1 and P2 are acceptable, we should prefer the one which is more refined,

which is to say that the blocks are generally small. We say that a partition P2 =

{A1, A2, · · ·AK2} is a refinement of the partition P1 = {B1, B2, · · ·BK1} if each

Bk can be written as the disjoint union of sets in P2. In the present context, we

will assume that the sets Bk 2 P are contiguous blocks (defined in Section 5.2).

Although this notion can be extended to higher dimensions, we remain focused on
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the univariate case x 2 R and assume without loss of generality that xi < xi+1 for

i = 12 · · ·N � 1. This implies that a binary partition search can be conducted in

linear time.

This approach, which we refer to as (greedy) binary refinement, is outlined as

follows. We begin by finding (if one exists) a partition P1 = {B1, B2} such that

eq. (5.12) is satisfied. In each subsequent step, the partition P t is obtained by find-

ing an acceptable binary partition of each B 2 P t�1 if possible. When a contiguous

block B can no longer be refined in a manner that satisfies eq. (5.12), this branch

of the recursion process terminates. While the final partition is unlikely to be opti-

mally refined, it is guaranteed to be acceptable and likely to include reasonably small

blocks. Although our current implementation uses a global correlation parameter ⌫

as described in Section 5.3.2, the implementation can easily be modified to handle

Figure 5.2: Data with non-stationary temporal structure. Triangles denote the lo-
cation of the blocks using eq. (5.7) and diamonds denote the block locations using
binary refinement.
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non-stationarity by using local approximate Gaussian processes (as described in Sec-

tion 1.3.3). If multiple partitions exist at any step, we need a criteria for choosing

between them. There are at least two simple strategies: (i) choose the partition

which maintains the best balance (i.e. |B1| ⇡ |B2|) or (ii) choose the partition which

leads to the smallest block (i.e. min{|B1|, |B2|}) with the hope that the larger block

can be further refined. Speedup can be obtained by searching for a partition from

(i) the median value and working out or (ii) from the extremes and working towards

to the middle depending on which strategy is selected.

5.3.4 Illustration of Block Selection

Consider the n = 200 data points shown in Figure 5.2, which represent samples

from an empirical discrepancy function in the form of eq. (5.8). The input locations

x1, x2, · · · xn are sampled uniformly at random from the unit interval and sorted (i.e.

xi < xi+1) for simplicity. The response values were simulated using a non-stationary

covariance structure, setting µ = 0, � = 1, � = 0.01 and (x1, x2) = 103 max{x1, x2}.

(a) Selection of the truncation constant for
estimating ne↵ as in eq. (5.7).

(b) Correspondence of ne↵ and ⇢ as in
eq. (5.11)

Figure 5.3: Estimating the e↵ective sample size ne↵.
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Using the sample autocorrelation approach of eq. (5.7), we select a truncation

value of L = 56 (see Figure 5.3a) leading to an estimated autocorrelation time

of ⌧̂ = 9.07 and e↵ective sample size (ESS) of ne↵ = 22.05. The e↵ective range

approach of eq. (5.11) suggests similar block sizes, yielding ne↵ = 14.5, 20.2, 37.2 for

⇢ = 0.5, 0.7, 0.9 respectively (see Figure 5.3b for ne↵(⇢)). Based on this analysis,

it seems that K = 20 blocks consisting of nk = 10 observations is a reasonable

choice. Due to the irregularity of the design variables and the non-stationarity of

the temporal structure, this application may benefit from a more flexible structure.

For instance, when x is small, there is a strong temporal structure and larger blocks

may be needed. The greedy binary refinement algorithm provides this flexibility and

constructs blocks of varying sizes as seen in Table 5.1

Table 5.1: A summary of the greedy binary refinement algorithm for block con-
struction using parameter combinations ⇢ 2 {0.5, 0.7, 0.9} and ◆ 2 {5, 10, 15}. The
number of blocks depend on the parameters and the size of the blocks vary

.

⇢ ◆ # of Blocks Smallest Block Largest Block

0.9 5 27 5 13
0.9 10 13 12 25
0.9 15 8 25 25
0.7 5 19 6 13
0.7 10 10 11 25
0.7 15 8 25 25
0.5 5 16 5 25
0.5 10 8 25 25
0.5 15 8 25 25

5.4 Modularizing the Discrepancy Parameters

In this section, we explore the potential benefits of modularization for the discrepancy

function in model calibration. We will explore and compare four general strategies
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for handling any combination the model discrepancy parameters  = (µ,�,, �)

which are described below.

i) Plug-in approach using nominal values (i.e. prior mode)  ̂0. A common and

reasonable example of this strategy is the choice µ = 0, asserting that the

computer model is unbiased for the true process across the input space.

ii) Plug-in approach using the cross validation estimates  ̂CV . This may or may

not outperform the first approach, depending on the quality of the nominal

values. Since the CV criterion are based on producing output which fits the

data, identifiability issues may not be addressed.

iii) Use CV results to build a prior distribution ⇡ (·) and perform standard BMC.

Although construction of a good prior may help to an extent, it is generally

understood that BMC calibration parameters and discrepancy are not jointly

identifiable [3].

iv) Use CV results to build a prior distribution ⇡ (·) and perform BMC with

modularization. We view this as an extension of the plug-in approach with

better uncertainty quantification properties. However, it is heavily dependent

on our ability to construct a reasonable prior.

5.4.1 Modularization for the Bias

In Bayesian model calibration problems, the mean of the discrepancy function is

commonly set to 0. This can be justified by noting that

⌘(·, ·) + �µ(·) = ⌘(·, ·) + µ+ �0(·),

where �a(·) is a GP with mean a. In other words, including µ in the discrepancy

model is equivalent to adding a calibration parameter to the computer model, which
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may already have a parameter (or combination of parameters) which accomplishes

this. With this in mind, it makes very little sense to incorporate µ as a parameter in

the standard BMC framework [94]. On the other hand, it may be worth considering

and aggregating the impact of a fixed µ, across a small range of reasonable values.

To illustrate this idea, we will adapt eq. (1.10) to form a simple example. Consider

the true process

⇣(x) = �w(x|1, 0.8)w(c|1, 0.6), x 2 (0, 1),

w(x|↵, �) = exp
�
�↵(4x� 3)2

�
+ exp

�
��(4x� 1)2

�
� 0.1 sin (8(4x� 1.99)) .

(5.13)

The computer model is taken to have the same structure, but we mimic missing

physics by ignoring the oscillatory nature

⌘(x,✓) = ⌘(x,↵, �1, �2) = �v(x|↵, �1)v(c|↵, �2), x 2 (0, 1),

v(x|↵, �) = exp
�
�↵(4x� 3)2

�
+ exp

�
��(4x� 1)2

�
.

(5.14)

For this problem, x 2 [0, 1] is a design variable, ✓ = (↵, �1, �2) are calibration

Figure 5.4: True process and simulator for a slice through the Gramacy-Lee surface.
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parameters with the notion ✓? = (1, 0.8, 0.6) and c is a known constant which we can

use to control the form of the true discrepancy function. Setting c = 0.625, leads

to a simulator which is biased on average across the design variable space thereby

violating the usual assumption of µ = 0. Figure 5.4 shows the true process and the

simulator ⌘(x,✓?) which demonstrates a clear upwards shift. This figure also shows

⌘(x,✓?)+µ?, where µ? = �0.0867, which leads to a mean zero discrepancy function.

Figure 5.5: Cross validation loss and corresponding prior distribution(s) for µ.

With � = 0.1, we simulate data from this model using n = 100 design points

xi equally spaced over the unit interval. Using the e↵ective range approach from

Section 5.3.2, we determine that K = 5 blocks with 20 points is an acceptable

partition for cross validation. The left panel of Figure 5.5 shows the results of cross

validation for µ leading to the CV estimate µ̂CV = �0.035. Although CV was unable

to precisely capture the true bias µ? = �0.0867 it correctly identifies that a shift is

needed. For purposes of modularization, the CV results must be turned into a prior

for µ. The right panel of Figure 5.5 demonstrates the process described in Section 5.2

for � values of 5 · 102, 103 and 5 · 103. Although formal criteria needs to be selected,

we take a conservative ad-hoc approach here and select � = ·103.

168



Chapter 5. Modularization, Cross Validation and Discrepancy

Figure 5.6: 200 posterior predictions of the perturbed true process for each approach.
All models were calibrated using data from the physical system with c = 0.625 and
the perturbed system is represented by c0 = 0.5.

Table 5.2: MSE values for the extrapolative setting using four approaches. First row
represents the prediction MSE using the posterior mean of the calibration parameters
and the second row denotes the average MSE across the 200 posterior samples.

True Nominal CV Modular.
µ? = �0.087 µ = 0 µ̂CV = �0.035 � = 1000.

MSE(✓̂) 0.006 0.021 0.013 0.012
R
MSE(✓)⇡(✓|D)d✓ 0.72 2.31 1.503 1.755

All of the calibrated models should be able to predict the true process fairly well,

due to the fact that interpolation is a well-posed problem in Bayesian model calibra-

tion. A more di�cult test is to see how well the calibrated models can generalize or

extrapolate to a new but related physical system. We thus perturb the system by the

constant c in equations 5.13 and 5.14 to c0 = 0.5. Figure 5.6 and Table 5.2 summarize

the results of this extrapolative setting, by making 200 posterior predictions of the
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perturbed true process for (i) µ fixed at its “true” value µ? = �0.0867, (ii) µ fixed

at the nominal value 0, (iii) µ fixed at the CV estimate µ̂CV = �0.035 and (iv) µ

modularized over its CV prior (see Figure 5.5). Setting µ at ground truth leads to

the best results but is impossible to do in practice. The modularization approach

seems to best address the bias of the predictions at the cost of additional variance.

5.5 Conclusions & Future Work

This chapter is relatively exploratory in nature, outlining a strategy for using cross

validation to inform the parameters of the model discrepancy prior. This step is

usually skipped, for reasons explained in Section 1.4.3 and [3,94], in favor of a plug-

in approach. Recent work [117,148] has shown that the discrepancy prior becomes a

permanent fixture of the calibration parameter posterior, and thus nominal plug-in

can have unintended consequences. Using CV to estimate the discrepancy parameters

may not solve the underlying issue, especially in the case of the inverse-problem, so

we propose combining this approach with the modularization framework described

in Chapter 4.

There are many areas for future work here, including more comprehensive appli-

cation of the strategy proposed here. Using a test-bed of calibration problems, we

should apply the CV-modularization approach for all combinations of hyper param-

eters  = (µ,,�, �). An immediate area of need is the generalization of these ideas

from temporal to spatial settings (i.e. x 2 X ⇢ Rp). Application of these methods

also requires that the results of CV can be used to construct a prior distribution for

the discrepancy parameters, and selection of � in eq. (5.3) and eq. (5.6) needs to

be discussed in far greater detail. In the binary refinement algorithm, our current

implementation uses a global notion of e↵ective range (see Section 5.3.2). The im-

plementation can be improved by allowing for a local definition of e↵ective range,
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perhaps by using local approximate GPs, which can lead to drastically better results

when the temporal (or spatial) structure of the data is non-stationary.
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A.1 SLAP-GP-PREDICT

Algorithm 1 Pseudocode for prediction with SLAP-GP as described in section 2.3.

Inputs:

1 xnew - desired prediction location

2 D = (X,⌘) - the training data

3 H - the current set of prediction hubs

4 ⇢ - a parameter between 0 and 1

5 c - local neighborhood size

6 function SLAP-GP-PREDICT(xnew,H,D, ⇢, c)

7 if H 6= ; then

8 H?  argmin
H2H

{H. ⇥ d(xnew,H.x)}

9 if d(xnew,H?.x) 
p
� log ⇢÷H?. then

10 for i = 1 to c do

11 ji  (H?.J)i

12 ri  R(xnew,H?.x|H?.) . see eq. (1.12)

13 ŷ  r> (H?. )

14 return (ŷ,H)

15 else

16 Jnew  build-neighborhood(xnew,D, c)

17 (ŷ,new, new)  train-GP(xnew, Jnew,D)

18 H  H [ new-hub(xnew, Jnew,new, new)

19 return (ŷ,H)
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A.2 LEAP-GP-BUILD, LEAP-GP-PREDICT

Algorithm 2 Pseudocode for training a LEAP-GP emulator and using it for pre-

diction as described in section 2.4.
Inputs:

1 xnew - desired prediction location

2 D = (X,⌘) - the training data

3 H - the number of hub locations, between 1 and d

4 c - local neighborhood size

5 H - a of prediction hubs

6 function LEAP-GP-BUILD(xnew,D, H, c)

7 j  PAM-Index(D.X, H)

8 for h = 1 to H do

9 j  kh

10 Jnew  build-neighborhood(D.Xj,D, c)

11 (new, new)  train-GP(xnew, Jnew,D)

12 Hh  new-hub(D.Xj, Jnew,new, new)

13 H  {H1,H2, · · ·Hh}

14 return H

15 function LEAP-GP-PREDICT(xnew,H,D)

16 H?  argmin
H2H

{H. ⇥ d(xnew,H.x)}

17 for i = 1 to c do

18 ji  (H?.J)i

19 ri  R(xnew,H?.x|H?.) . see eq. (1.12)

20 ŷ  r> (H?. )

21 return ŷ
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B.1 ECP-SAMPLE

Algorithm 3 Pseudocode for sampling from the modularization posterior (see

eq. (4.10)) using the ECP algorithm described in section 4.4.2.

Inputs:

1 L - the budget

2 M - number of samples requested

3 ⇡ - prior distribution for modularization parameters

4 F - distributional assumption for conditional posterior.

5 D = (X,y) - the field data

6 function ECP-SAMPLE(L,M, ⇡,F ,D)

7 (�1,�2, · · ·�L)
iid⇠ ⇡ . Consider using LHS (section 1.5.1)

8 for ` = 1 to L do

9 (↵1,↵2, · · ·↵p) ⇠ ⇡(↵|�`,D) . i.e. using MCMC

10 ( ̂`1,  ̂
`
2, · · ·  ̂`r)  estimate-parameters((↵1,↵2, · · ·↵p),F)

11 for j = 1 to r do

12 [ j(·)  train-GP((�1,�2, · · ·�L), ( ̂1
j ,  ̂

2
j , · · ·  ̂L

j ))

13 for m = 1 to M do

14 �m ⇠ ⇡

15 ↵m ⇠ F
⇣
E( \ 1(�m)), · · ·E( \ r(�m))

⌘
. Using eq. (1.13)

16 return (↵1,↵2, · · ·↵M)

B.2 SEQUENTIAL-ECP-SAMPLE

177
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Algorithm 4 Pseudocode for sampling from the modularization posterior (see

eq. (4.10)) using the Sequential ECP algorithm.

Inputs:

1 L - the budget

2 M - number of samples requested

3 ⇡ - prior distribution for modularization parameters

4 F - distributional assumption for conditional posterior.

5 D = (X,y) - the field data

6 L0 - the budget for the build phase

7 Nc - size of the candidate sets

8 I(·|·) an improvement function

9 function SEQUENTIAL-ECP-SAMPLE(L,M, ⇡,F ,D, L0, Nc, I(·|·))

10 (�1,�2, · · ·�L0)
iid⇠ ⇡ . Consider using LHS (section 1.5.1)

11 for ` = 1 to L0 do

12 (↵1,↵2, · · ·↵p) ⇠ ⇡(↵|�`,D) . i.e. using MCMC

13 ( ̂`1,  ̂
`
2, · · ·  ̂`r)  estimate-parameters((↵1,↵2, · · ·↵p),F)

14 �c  �1
c , · · ·�Nc

c
iid⇠ ⇡

15 for ` = L0 + 1 to L do

16 for j = 1 to r do

17 [ `j(·)  train-GP((�1,�2, · · ·�`�1), ( ̂1
j ,  ̂

2
j , · · ·  ̂`�1

j ))

18 �`  argmax�c2�c
I
⇣
�c|
⇣
[ `r(·), · · · [ `r(·)

⌘⌘

19 for m = 1 to M do

20 �m ⇠ ⇡

21 ↵m ⇠ F
⇣
E( \ L

j (�
m)), · · ·E( \ L

r (�
m))
⌘

. Using eq. (1.13)

22 return (↵1,↵2, · · ·↵M)
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Appendix C. Pseudocode for the Greedy Binary Refinement Algorithm

C.1 IS-ACCEPTABLE

Algorithm 5 Routine to check the acceptable partition criteria of eq. (5.12).

Inputs:

1 P = (B1, B2, · · ·Bk) - a partition of the field data

2 ⌫ - the global correlation parameter

3 ◆ - parameter describing the required number of hard-to-predict points

4 ⇢ - correlation parameter which defines hard-to-predict

5 function IS-ACCEPTABLE(P , ⌫, ◆, ⇢)

6 K  |P|

7 j  1

8 for k = 1 to K do

9 i  0

10 for x 2 P .Bk do

11 d?  minx0 /2P.Bk
d(x,x0)

12 if d? 
p
� log ⇢÷ ⌫ then

13 i  i+ 1

14 if i < ◆ then

15 return FALSE

16 return TRUE
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Appendix C. Pseudocode for the Greedy Binary Refinement Algorithm

C.2 BINARY-PARTITION, SEARCH-FROM-MIDDLE,

SEARCH-FROM-END

Algorithm 6 Routine to find an acceptable binary partition of a block B.

Inputs:

1 B - a single block containing x1 < x2 < · · · < xn sorted locations

2 ⌫ - the global correlation parameter

3 ◆ - parameter describing the required number of hard-to-predict points

4 ⇢ - correlation parameter which defines hard-to-predict

5 function BINARY-PARTITION(B, ⌫, ◆, ⇢)

6 n  |B|

7 for i = 1 to n do

8 i?  SEARCH-FROM-???(i, n) . Use either sub-routine here

9 B1  (x1, · · · xi?)

10 B2  (xi?+1, · · · xn)

11 if IS-ACCEPTABLE((B1, B2), ⌫, ◆, ⇢) then

12 return (B1, B2)

13 return B

14 function SEARCH-FROM-MIDDLE(i, n)

15 i?  
⌅
n+1
2

⇧
+ (�1)i

�⌃
i
2

⌥
� (i % 2)

�

16 return i? . For most balanced partition

17 function SEARCH-FROM-ENDS(i, n)

18 i?  (i % 2)ni % 2 + (�1)i
�⌃

i
2

⌥
� (i % 2)

�

19 return i? . For partition with smallest block
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C.3 REFINE-PARTITION, BINARY-REFINEMENT

Algorithm 7 The greedy binary refinement algorithm described in section 5.3.3.

Inputs:

1 P - a partition of the field data

2 ⌫ - the global correlation parameter

3 ◆ - parameter describing the required number of hard-to-predict points

4 ⇢ - correlation parameter which defines hard-to-predict

5 function REFINE-PARTITION(P , ⌫, ◆, ⇢)

6 Pnew  ;

7 K  |P|

8 for k = 1 to K do

9 Pnew  Pnew [ BINARY-PARTITION(P .Bk, ⌫, ◆, ⇢)

10 return Pnew

11 function BINARY-REFINEMENT(P , ⌫, ◆, ⇢)

12 repeat

13 P 0  P

14 P  REFINE-PARTITION(P , ⌫, ◆, ⇢)

15 until P = P 0

16 return P
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