
University of New Mexico University of New Mexico 

UNM Digital Repository UNM Digital Repository 

Mathematics and Statistics Faculty and Staff 
Publications Academic Department Resources 

2000 

DEFINITIONS, SOLVED AND UNSOLVED PROBLEMS, DEFINITIONS, SOLVED AND UNSOLVED PROBLEMS, 

CONJECTURES, AND THEOREMS IN NUMBER THEORY AND CONJECTURES, AND THEOREMS IN NUMBER THEORY AND 

GEOMETRY GEOMETRY 

Florentin Smarandache 
University of New Mexico, smarand@unm.edu 

Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp 

 Part of the Algebra Commons, Algebraic Geometry Commons, Logic and Foundations Commons, 

Number Theory Commons, and the Set Theory Commons 

Recommended Citation Recommended Citation 
Smarandache, Florentin. "DEFINITIONS, SOLVED AND UNSOLVED PROBLEMS, CONJECTURES, AND 
THEOREMS IN NUMBER THEORY AND GEOMETRY." (2000). https://digitalrepository.unm.edu/math_fsp/
262 

This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital 
Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an 
authorized administrator of UNM Digital Repository. For more information, please contact amywinter@unm.edu, 
lsloane@salud.unm.edu, sarahrk@unm.edu. 

https://digitalrepository.unm.edu/
https://digitalrepository.unm.edu/math_fsp
https://digitalrepository.unm.edu/math_fsp
https://digitalrepository.unm.edu/departments
https://digitalrepository.unm.edu/math_fsp?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/176?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/182?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/183?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/184?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/math_fsp/262?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/math_fsp/262?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F262&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:amywinter@unm.edu,%20lsloane@salud.unm.edu,%20sarahrk@unm.edu
mailto:amywinter@unm.edu,%20lsloane@salud.unm.edu,%20sarahrk@unm.edu


FLORE TIN SMARANDACHE 

DEFINITIONS , 
SOLVED AND U SOLVED PROBLEMS, 

CONJECTURES, AND THEOREMS 
IN NUMBER THEORY AND GEOMETRY 

edited by M. L. Perez 

XIQUAN PUBLISHING HOUSE 
2000 



FLORENTIN SMARANDACHE 

DEFINITIONS, SOLVED AND UNSOLVED 
PROBLEMS, CONJECTURES, AND THEOREMS 

IN NUMBER THEORY AND GEOMETRY 

edited by M. L. Perez 

XIQUAN PUBLISHING HOUSE 
(branch of Alllerican Research Press) 

510 E. Towllley Avenue 
Phoenix, AZ 85020, USA 

2000 



FLORENTIN SMARANDACHE 
DEFINITIONS, SOLVED AND UNSOLVED 
PROBLEMS, CONJECTURES, AND THEOREMS 
IN NUMBER THEORY AND GEOMETRY 
edited by M. L. Perez 

Editorial Board: 

Amarnath Murthy, S.E. (E k T), Well Logging Services, O~GC, 
Sabarmati, Ahmedabad, India. 

Sabin Tabirca, Transilvania t:niversity of Brasov, 
Dept. of ~1athematics and Computer Sciences, Romania. 

Mihaly Bencze, 6, Harmanului Street, 2212 Sacele, Romania. 
Krassimir Atanassov, CLBME - Bulgarian Academy of Sciences, 

P.O.Box 12, Sofia-11l3, Bulgaria 

This book can also be ordered in microfilm format from: 
Bell and Howell Co. 
(C niversity of :\1 icrofilm International) 
300 N. Zeeb Road 
P.O.Box 1346, Ann Arbor 
:\U 48106-1346, t;SA 
Tel.: 1-800-521-0600 
http://www.umi.com/(Books on Demand) 

Copyright 2000 by American Research Press 
I 40 k Window Rock Rd. 
Lupton, Box 199, AZ 86508, USA 
E-mail: MJ.J>erez@yahoo.cotn 
URL: http://www.gallup.unm.edu/ .... smarandache/ 
ISBN 1-8T9585-T04.X 

The cover was designed. by Vassia Atanassova 

Standard Address Number 297-5092 
Printed in the United. States of America 



CONTENT 

Preface 5 
Definitions, Problems, Theorems 7 
References 76 

Problem 1 7 Definition 5 17 Definition 14 29 
Problem 2 7 Problem 10 18 Definition 15 30 
Definition 1 10 Problem 11 18 Definition 16 31 
Problem 3 11 Definition 6 19 Definition 17 31 
Theorem 1 11 Definition 7 19 Definition 18 31 
Theorem 2 11 Definition 8 20 Definition 19 32 
Theorem 3 11 Theorem 15 20 Definition 20 32 
Theorem 4 11 Theorem 16 20 Problem 12 32 
Theorem 5 11 Theorem 17 20 Definition 21 32 
Theorem 6 12 Theorem 18 21 Definition 22 32 
Theorem 7 12 Theorem 19 21 Definition 23 33 
Theorem 8 12 Theorem 20 21 Definition 24 33 
Theorem 9 12 Theorem 21 21 Definition 25 33 
Theorem 10 12 Theorem 22 21 Definition 26 33 
Problem 4 13 Theorem 23 22 Definition 27 34 
Problem 5 13 Theorem 24 22 Definition 28 34 
Problem 6 13 Theorem 25 22 Definition 29 34 
Problem 7 14 Theorem 26 22 Definition 30 34 
Problem 8 14 Theorem 27 23 Definition 31 35 
Problem 9 14 Theorem 28 23 Definition 32 35 
Theorem 11 14 Theorem 29 23 Definition 33 35 
Theorem 12 15 Theorem 30 23 Definition 34 36 
Theorem 13 15 Definition 9 23 Definition 35 36 
Theorem 14 15 Definition 10 25 Definition 36 36 
Definition 2 15 Definition 11 27 Problem 13 36 
Definition 3 15 Definition 12 27 Definition 37 36 
Definition 4 17 Definition 13 28 Problem 14 36 

3 



Definition 38 37 Problem 18 46 Theorem 35 50 
Definition 39 37 Problem 19 46 Theorem 36 50 
Definition 40 37 Problem 20 46 Problem 29 51 
Definition 41 37 Problem 21 46 Definition 52 51 
Definition 42 37 Theorem 31 46 Definition 53 51 
Problem 15 41 Theorem 32 47 Definition 54 52 
Definition 43 42 Theorem 33 471 Definition 55 52 
Definition 44 42 Definition 51 48 Definition 56 53 
Definition 45 43 Problem 22 48 Definition 57 53 
Definition 46 43 Problem 23 48 Definition 58 62 
Definition 47 45 Problem 24 48 Definition 59 63 
Definition 48 45 Problem 25 48 Definition 60 69 
Problem 16 45 Problem 26 49 Definition 61 70 
Definition 49 45 Problem 27 49 Definition 62 73 
Problem 17 45 Problem 28 50 Definition 63 74 
Definition 50 45 Theorem 34 50 Definition 64 74 

4 



PREFACE 
Florentin Smarandache, an American mathematician of Romanian de

scent has generated a vast variety of mathematical problems. Some prob
lems are easy, others medium, but many are interesting or unsolved and 
this is the reason why the present book appears. Here, of course, there 
are problems from various types. Solving these problems is addictive like 
eating pumpkin seed: having once started, one cannot help doing it over 
and over again. 

The Editor 

5 



Problem 1. The equation 

P~+1 - p~ = 1, 

where Pn is the n-th prime, has a unique solution between 0.5 and 1; 
- the maximum solution occurs for n = 1, i.e. 

3" - 2" = 1 when x = 1; 

- the minimum solution occurs for n = 31, i.e. 

127" - 113" = 1 when x = 0.567148 ... = ao. 

Thus, Andrica's Conjecture 

A - 1/2 1/2 
n - Pn+l - Pn < 1 

is generalized to: 
• Bn = P~+1 - p~ < 1, where a < ao· 

11k 11k /k k • en = Pn+l - pn < 2 ,where ~ 2. 

• Dn = P~+1 - p~ < lin, where a < ao and n big enough, n = n(a), 
holds for infinitely many consecutive primes. 

a) Is this still available for ao < a < 1 ? 
b) Is there any rank no depending on a and n so that (4) is verified for 

all n ~ no? 
• Pn+1/Pn :::; 5/3, and the maximum occurs at n = 2. 
References: [67, 68, 86, 94] 

Problem 2. 
2.1: Representations of the odd numbers 
A) Any odd integer n can be expressed as a combination of three 

primes, as follows: 
1) As a sum of two primes minus another prime (k = 3, s = 1): n = p+ 

q-r, where p, q, r are all prime numbers. The trivial solution: P = p+q-q 
where P is prime is not included. For example: 

1=3+5-7 =5+7-11 =7+11-17 =11+13-23= ... 
3= 5+5-7 =7+19~23= 17+23-37= ... 
5=3+13-11 - ... , 
7=11+13-17= ... ; 
9=5+7-3 

11=7+17-13 
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a) Is this conjecture equivalent to the Goldbach's Conjecture (any odd 
integer ~ 9 is the sum of three primes)? 

b) Is the conjecture true when all the three prime numbers are different? 
c) In how many ways can each odd integer be expressed as above? 
2) As a prime minus another prime and minus again another prime 

(I. = 3, s = 2): n = p - q - r, where p, q, r are all prime numbers. For 
example: 

1 13-5-7 17-5-11 19-5-13 ... , 
3 13-3-7 = 23-7-13 = ... , 
5 = 13-3-5 = ... , 
7 17-3-7 ... , 
9 17-3-5 = ... , 

11 19-3-5 

a) Is this conjecture equivalent to the Goldbach's Conjecture (any odd 
integer ~ 9 is the sum of three primes)? 

b) Is the conjecture true when all the three prime numbers are different? 
c) In how many ways can each odd integer be expressed as above'? 

B) Any odd integer n can be expressed as a combination of five primes 
as follows: 

3) n = p + q + r + t - u, where p, q, r, t, u are all prime numbers, and 
t :f; u (k = 5, s = 1). For example: 

1 = 3+3+3+5-13 3+5+5+17-29 = 
3 = 3+5+11+13-29 ... , 
5 3+7+11+13-29 .0' , 

7 5+7+11+13-29 .0. , 
9 7+7+11+13-29 ... , 

11 = 5+7+11+17-29 

a) Is the conjecture true when all the five prime numbers are different? 
b) In how many ways can each odd integer be expressed as above? 
4) n = p + q + T - t"- u, where p, q, T,t, u are all prime numbers, and 

t, u :f; p, q, r (k = 5, s = 2). For example: 

1 3+7+17-13-13 3+7+23-13-19 ... , 
3 5+7+17-13-13 .... ~ 

5 = 7+7+17-13-13 ... , 
7 = 5+11+17-13-13 = ... , 
9 = 7+11+17-13-13 = '0' 1 

11 = 7+11+19-13-13 
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a) Is the conjecture true when all five prime numbers are different? 
b) In how many ways can each odd inte~er be expressed as above? 
5) n = p + q - r - t - tt, where p, q, r, t, tt are all prime numbers, and 

r, t, tt f p, q (k = 5, s = 3). For example: 

1 = 11+13-3-3-17 = .. , , 
3 13+13-3-3-17 ... , 
5 = 3+ 29-5-5-17 = ... , 
7 3+31-5-5-17 ... , 
9 3+37-7-7-17 ... , 

11 5+37-7-7-17 

a) Is the conjecture true when all the five prime numbers are different? 
b) In how many ways can each odd integer be expressed as above? 
6) n = p - q - r - t - tt, where p, q, r, t, u are all prime numbers, and 

q, r, t, u f p (k = 5, s = 4). For example: 

1 13-3-3-3-3 
3 17-3-3-3-5 
5 = 19-3-3-3-5 
7 23-3-3-5-5 
9 29-3-5-5-7 ... , 

11 31-3-5-5-7 

a) Is the conjecture true when all the five prime numbers are different? 
b) In how many ways can each odd integer be expressed as above? 

2.2: Representations of the even numbers 
A) Any even integer n can be expressed as a combination of two primes, 

as follows: 
1) n = p - q, where p, q are both primes (k = 2, s = 1). For example: 

2 7-5 13-11 ... , 
4 11-7 ... , 
6 13-7 ... , 
8 13-5 

In how many ways can each odd integer be expressed as above? 

B) Any even integer n can be expressed as a combination of four primes 
as follows: 

2) n = p+q+r-t, where p, q, r, t are all prime numbers (k = 4, s = 1). 
For example: 



2 = 3+3+3-7 = 3+5+5-11 = .... , 
4 = 3+3+5-7 = = .... , 
6 = 3+5+5-7 = = .... , 
8 = 11+5+5-13 = = 

a) Is the conjecture true when all the four prime numbers are different? 
b) In how many ways can each odd integer be expressed as above? 
3) n = p+q-r-t, where p,q,r,t are all prime numbers (I: = 4, s = 1). 

For example: 

2 11+11-3-17 = 11+11-13-7 = ... , 
4 = 11+13-3-17 = ... , 
6 = 13+13-3-17 = ... , 
8 11+17-7-13 = 

a) Is the conjecture true when all the four prime numbers are different? 
b) In how many ways can each odd integer be expressed as above? 
4) n = p-q-r-t, where p,q, r,t are all prime numbers (k = 4,5 = 3). 

For example: 

2 = 11-3-3-3 = 13-3-3-5 = 
4 = 13-3-3-3 = ... , 
6 = 17-3-3-5 = ... j 

8 = 23-3-5-7 = 
a) Is the conjecture true when all the four prime numbers are different? 
b) In how many ways can each odd integer be expressed as above? 

2.3: General conjecture: 
Let k ~ 3, and 1 $ s < k, be integers. Then: 
i) If k is odd, any odd integer can be expressed as a sum of k - s primes 

(first set) minus a sum of s primes (second set) [so that the primes of the 
first set is different from the primes of the second set]. 

a) Is the conjecture true when all the k prime numbers are different? 
b) In how many ways can each odd integer be expressed as above? 
ii) If k is even, any even integer can be expressed as a sum of k - 5 

primes (first set) minus a: sum ofs primes (second set) [so that the primes 
of the first set is different from the primes of the second setJ. 

a) Is the conjecture true when all the k prime numbers are different? 
b) In how many ways can each even integer be expressed as above? 
References: [71], p. 190 from [82]. 

Definition 1. E(n) = Xf2 + x~s + ... + X~l, where n > 2, with 
Xl. X2, ... , Xn > 1 and has the greatest common divisor 1. 
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Problem 3. Is the number of the primes of this form finite or infinite? 
References: [20, 25, 50, 51]. 

Theorem 1. Let S(n) be the Smarandache function: S(n) is the 
smallest number, such that S(n)! is divisible by n. Let p be an integer 
> 4. Then: 

p is prime iff S(p) = p. 

Here and everywhere below "iff" denotes "if and only if'. 
References: [32, 72]. 

The following four statements are derived from the Wilson Theorem 
(p is prime iff (p - I)! is congruent to -1 (mod p)), but they improve it 
because the factorial is reduced. 

Theorem 2. Let p be an integer 2:: 3. Then: 

p is prime iff (p - 3)! is congruent to p; 1 (mod p). 

References: [73] and pp. 94-98 from [81]. 

Theorem 3. Let p be an integer 2::1. Then: 

p is prime iff (p - 4)! is congruent to (_l)ltJ+1 LP ; 1 J (mod p). 

References: [73] and pp. 94-98 from [81]. 

Theorem 4. Let p be an integer 2:: 5. Then: 

p is prime iff (p - 5)! is congruent to rh + r22~ 1 (mod p), 

with h = L~J and r = p - 24h. 

References: [73] and pp. 94-98 from [81]. 

Theorem 5. Let p = (k -l)!h + 1 be a positive integer k > 5, h being 
a natural number. Then: 

p is prime iff (p- k)! is congruent to (-l)'h (mod p), 

11 



with t = ,,+ tfJ + 1. 

References: [73] and pp. 94-98 from [81]. 

Everywhere above l z J means the inferior integer part of z, Le., the 
smallest integer greater than or equal to z. 

Theorem 6. Characterization of Twin Primes: 
Let p and p+2 be positive odd integers. Then the following statements 

are equivalent: 
a) p and p + 2 are both primes; 

b) (p - 1}!(3p + 2) + 2p + 2 is congruent to 0 (mod p(p + 2)); 

c) (p - l)!(p - 2) - 2 is congruent to 0 (mod p(p + 2»; 

d) [(p-l)!+ 1] + [2(p-l)!+ 1] . . te 
P p + 2 IS an 10 ger. 

Theorem 7. Characterization of Pairs of Primes: 
Let p and p + k be positive integers, with (p, p + k) = 1. Then p and 

p+k are both primes iff (p-l)!(p+ k)+(p+k-1)!p+2p+ k is congruent 
to 0 (mod p(p+ k». 

Theorem 8. Characterization of Triplets of Primes: 
Let p - 2, p and p + 4 be positive integers, coprime two by two. Then 

p - 2, p and p + 4 are all primes iff 

( -1)1 p[(p-3)!+11 p[(P+3)!+1]=_I( od) 
p.+ 2 + 4 - m p. p- p+ 

Theorem 9. Characterization of Quadruples of Primes: 
Let p, p + 2, p + 6 and p + 8 be positive integers, coprime two by two. 

Then p, p + 2, p + 6 and p + 8 are all primes iff 

pr(p - 1)1 + 1J + 2![(P - 1)1 + 1] + 6![(P - I)! + 1] + 8![(P - 1)' + 1] 
p p+2 p+6 p+8 

is an integer. 

Theorem 10. General Theorem of Characterization of n Prime Num
bers simultaneously: 

12 



Let P1, P2, ... , Pn be positive integers> 1, coprime two by two, and 
1 ;:; ki ;:; Pi for 1 ;:; i ;:; n. Then the following statements are equivalent: 
a) P1, P2, ... , Pn are prime simultaneously; 

n 

b) ~ 
i=l 

[(Pi - ki)!(ki -I)! - (_I)k.] II Pj == 0 (mod P1P2···Pn); j¢i 

n 

~ [(Pi - ki)!(ki - I)! - (_I)k.] II Pj 
i=l j¢i 

c) P.+t···Pn == 0 (mod P1P2 ... P.); 

n 

~ [(Pi - ki)!(ki -I)! - (_I)k']pj 
i=l 

d) Pi == 0 (mod Pj); 

n 

~ 
i=l 

[(Pi - ki)!(ki - I)! - (_I)k.] 

e) Pi is an integer. 

References: [78], [79], pp. 13-18 from [81]. 

Problem 4. Study Smarandache - Kurepa Function: 
For P being prime, SK(p) is the smallest integer, such that !SK(p) is 
divisible by p, where !SK(p) = O! + I! + 2! + ... + (p -1)1. For example, 

P I 2 3 7 11 17 19 23 31 37 41 61 71 73 89 
SK(p) 2 4 6 6 5 7 7 12 22 16 55 54 42 24 

Reference: [3]. 

Problem 5. Study Smarandache - Wagstaff Function: 
For P being prime, SW(p) is the smallest integer, such that W(SW(p» is 
divisible by p, where W(p) = I! + 2! + ... + p1. For example, 

p 13 11 17 23 29 37 41 43 53 67 73 79 97 
SW(p) 2 4 5 12 19 24 32 19 20 20 7 57 6 

Reference: [3]. 

Problem 6. Study Smarandache Ceil Functions of n-th Order: 
Sk(n) is the smallest integer, for which n divides Sk(n)k. For example, for 
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I: = 2, we have: 

n 11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
S2(n) 2 4 3 6 10 12 5 9 14 8 6 20 22 15 12 7 

References: [13], pp. 27-30 from [40]. 

Problem 1. Study Pseudo-Smarandache Function: 
Z(n) is the smallest integer, such that 1 + 2 + ... + Z(n) is divisible by n. 
For example, 

n 11 234567 
Z(n) 1 3 2 3 4 3 6 

Reference: [43J. 

Problem 8. Study Smarandache Near-To-Primordial Function: 
SNT P( n) is the smallest prime, such that either p. - 1, p. or p. + 1 is 
divisible by n, where p. , for a prime number p, is the product of all primes 
less than or equal to p. For example, 

n 11 2 3 4 5 6 7 8 9 10 11 .. . 
SNTP(n} 2 2 2 * 3 3 3 * * 5 11 .. . 

where" *" means "does not exist". SNTP(n) is undefined for squareful 
integers: 4, 8, 9, 12, ... 

References: [1, 54]. 

Problem 9. Study Smarandache double-factorial function: 
SDF(n) is the smallest number, such that SDF(n)!! is divisible by n, 
where the double factorial 

m!!={ 1.3.5 ..... m, if m is odd 
2.4.6 ..... m, if m is even 

For example, 

n 11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
SDF(n) 1 2 3 4 5 6 7 4 9 10 11 6 13 14 5 6 

Reference: Section No. 54 from [33]. 

Theorem 11. Smarandache Primitive Functions: 
Let p be prime. Sp : JI -+ JI, having the property that (Sp(n»! is divisible 
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by pn, and it is the smallest integer with this property, where here and 
everywhere below N is the set of the natural numbers. 

For example, S3(4) = 9, because 9! is divisible by 34 , and it is the 
smallest one with this property. 

These functions help us compute the Smarandache Function. 
Reference: [72]. 

The following three Smarandache's problems are solved by Ion Bala
cenoiu (see [12]). 

Theorem 12. Smarandache Functions of the First Kind: 
Sn : N* -+ N*, N* = {1, 2, 3, ... } 

i) If n = u r (with u = 1, or u = p being a prime number), then 
Sn(a) = k, where k is the smallest positive integer such that k! is a multiple 
of ura; 

ii)Ifn=p~1.p;2 ... p~·,thenSn(a)= max {Srj(a)}. 
l::;i::;t Pj 

Theorem 13. Smarandache Functions of the Second Kind: 
Sk : N* -+ N*, Sk(n) = Sn(k) for k E N*, where Sn are the Smarandache 
Functions of the First Kind. 

Theorem 14. Smarandache Functions of the Third Kind: 
S! (n) = Sa" (bn), where Sa" is the Smarandache Function of the First 
Kind, and the sequences (an) and (bn) are different from the following 
situations: 
i) an = 1 and bn = n, for n E N*; 
ii) an = nand bn = 1, for n E N*. 

Reference: [12]. 

Definition 2. A function f : N* -+ N* is called Smarandache
multiplicative one if for any (a, b) = 1, f(ab) = max(J(a), feb)), i.e., if 
it reflects the main property of the Smarandache Function. 

Reference: [89]. 

Definition 3. Let f : N -+ N be a strictly increasing function and x 
an element of'R. - the set of the real numbers. Then: 
a) Inferior f- part of x ISf(x) is the smallest k, such that 

f(k) ~ z < f(k + 1). 
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b) S.perior J- part oj z SSJ(z) is the smallest 1:, such that 

J(I:) < z $ J(I: + 1). 

Particular cases (they are discussed in [8, 10, 11, 61]): 
a} Inferior prime part: 
For a.ny positive real number n ISp(n) is defined as the la.rgest prime 
number less than or equal to n. The first values of this function are: 

2,3,3,5,5,7,7,7,7,11,11,13,13,13,13,17,17,19,19,19, 19,23,23 ... 

b) Superior prime part: 
For any positive real number n SSp(n) is defined as the smallest prime 
number greater than or equal to n. The first values of this function are: 

2,2,2,3,5,5,7,7,11,11,11,11,13,13,17,17,17,17,19,19, 23, 23,23 ... 

c) Inferior square part: 
For any positive real number n ISs(n) is defined as the largest square less 
than or equal to n. The first values of this function are: 

0,1,1,1,4,4,4,4,4,9,9,9,9,9,9,9,16,16,16,16,16,16, 16, 16, 16,25 ... 

d) Superior square part: 
For any positive real number n SSs(n) is defined as the smallest square 
greater than or equal to n. The first values of this function are: 

0,1,4,4,4,9,9,9,9,9,16,16,16,16,16,16,16,25,25,25,25,25,25, 

25,25,25,36,36 ... 

e) Inferior cube part: 
For any positive real number n ISe(n) is defined as the largest cube less 
than or equal to n. The first values of this function are: 

0,1,1,1,1,1,1,1,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8, 8,8, 27, 27 ... 

f) Superior cube part: 
For any positive real number n SSe( n) is defined as the smallest cube 
greater than or equal to n. The first values of this function are: 

0,1,8,8,8,8,8,8,8,27,27,27,27,27,27,27,27,27,27, 27, 27,27,27 ... 
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g) Inferior factorial part: 
For any positive real number n ISf(n) is defined as the largest factorial 
less than or equal to n. The first values of this function are: 

1,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24, 24, 24, 24 ... 

h) Superior factorial part: For any positive real number n SSf(n) is de
fined as the largest factorial less than or equal to n. The first values of 
this function are: 

1,2,6,6,6,6,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24 ... 

References: [69, 80] 

Definition 4. Let f : ./If -+ ./If be a strictly increasing function and x 
be an elemerit ofR. Then: fractional f- part of x FSf(x) = x - ISf(x), 
where ISf(x) is the Inferior f-part of x, defined above. 

Particular cases: 
a) Fractional Prime Part: 
FSp(x) = x - ISp(x), where ISp(x) is the Inferior Prime Part, defined 
above. Example: FSp(12.501) = 12.501 - ISp(12.501) = 12.501- 11 = 
1.50l. 
b) Fractional Square Part: 
FSs(x) = x - ISs(x), where ISs(x) is the Inferior Square Part, defined 
above. Example: FSs(12.501) = 12.501 - ISs(12.501) = 12.501 - 9 = 
3.50l. 
c) Fractional Cubic Part: 
FSc(x) = x - ISc(x), where ISc(x) is the Inferior Cubic Part, defined 
above. Example: FSc(12.501) = 12.501 - ISc(12.501) = 12.501 - 8 = 
4.50l. 
d) Fractional Factorial Part: 
F Sf(x) = x - IS f(x), where ISf(x) is the Inferior Factorial Part, defined 
above. Example: FSf(12.501) = 12.501 - ISf(12.501) = 12.501 - 6 = 
6.50l. 
Remark 2.1 This is a generalization of the fractional part of a number. 
Remark 2.2 In a similar way the following ones are defined: 
- Inferior Fractional f-Part IFSf(x) = x - ISf(x) = FSf(x); 
- Superior Fractional f-Part SFSf(x) = SSf(x)-x; for example, Superi-
or Fractional Cubic Part of12.501 is SFSc(12.501) = 27-12.501 = 14.499. 

Definition 5. Let 9 : A -+ A be a strictly increasing function, and 
let "~,, be a given internal law on A. Then we say that f : A -+ A is 
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complementary with respect to the function 9 and the internal law "' ...... " 
if I(x) is the smallest k, such that there exists z E A so that x '" k = g(z). 

Particular cases (the first three cases are discused in [8, 9]): 
a) Square Complementary Function: I : N -- N, I(x) is the smallest k, 
such that xlc is a perfect square. The first values of this function are: 

1,2,3,1,5,6,7,2,1,10,11,3,14,15,1,17,2,19,5,21,22,23, 6,1,26,3,7 ... 

b) Cubic Complementary Function: I : N -- N, I(x) is the smallest Ie, 
such that xlc is a perfect cube. The first values of this function are: 

1,4,9,2,25,36,49,1,3,100,121,18,169,196,225,4,289, 12,361,50 ... 

More general: 
c) m-power Complementary Function: I: },f -- N, I(x) is the smallest 
Ie, such that xl: is a perfect m-power. 
d) Prime Complementary Function: f : .N -- }v', J(x) is the smallest Ie, 
such that z + Ie is a prime. The first values of this function are: 

1,0,0,1,0,1,0,3,2,1,0,1,3,2,1,0,1,3,2,1,0,1,5,4,3, 2,1,0,1,5 ... 

References: [24,34, 58, 69, 80,92] 

Problem 10. Smarandache-Fibonacci Ttriples: 

11,121,4902,26245,32112,64010,368140,415664,2091206,2519648, 

4573053,7783364,79269727,136193976,321022289,445810543,559199345, 

670994143,836250239,893950202,937203749,10411478032, 1148788154. 

Integer n is such one that S(n) = S(n - 1) + Sen - 2), where S(I:) 
is the Smarandache function. It is not known whether this sequence has 
infinitely or finitely many terms. H. Ibstedt and C. Ashbacher indepen
dently conjectured that there are infinitely many terms. H. Ibsteat found 
the largest known number of this kind: 19448047080036. 

References: [7,40] 

Problem 11. Smarandache-Radu Duplets: 

224,2057,265225,843637,6530355,24652435,35558770,40201975, 

45388758,46297822,67697937,138852445,157906534,171531580, 
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299441785,551787925,1223918824,1276553470,1655870629, 
1853717287,1994004499,2256222280. 

Integer n is such one that between 5( n) and 5( n + 1) there is no prime 
(S(n) and 5(n+ 1) included), where 5(k) is the Smarandache function. It 
is not known whether this sequence has infinitely or finitely many terms. 
H. Ibstedt conjectured that there are infinitely many terms. H. Ibsteat 
found the largest known number of this kind: 

270329975921205253634707051822848570391313. 

References: [40, 62] 

Definition 6. Functional Iteration of First Kind: 

Let f : A -+ A be a function, such that f(x) ~ x for all x, and min f(x):2 
xEA 

rna =F -00. Let f have p :2 1 fix points rna ~ Xl < x2 < ... < xp. [The 
point x is called a fix one if f( x) = x .]. Then 5 Il f (x) is the smallest 
number of iterations k, such that f(l( .. ./( x) ... ) ) = constant. 

~ --..-
k times k times 

Example: Let n > 1 be an integer, and den) be the number of the 
positive divisors of n, d : N -+ N. Then 5Ild(n) is the smallest number of 
iterations k, such that d(d( ... d( x) ... ) ) = 2; because den) < n for n > 2, 

~ --..--
k times k times 

and the fix points of function dare 1 and 2. Thus 5Ild(6) = 3, because 
d(d(d(6») = d(d(4» = d(3) = 2; 5Ild(5) = 1, because d(5) = 2. 

Definition 7. Functional Iteration of Second Kind: 
Let 9 : A -+ A be a function such that g( x) > x for all x, and let 
b > x. Then 5129 (x, b) is the smallest number of iterations k such that 
g(g( ... g( x) ... ) ) :2 b. 

-------- --..--k times k times 

Example: Let n > 1 be an integer, and o-(n) be the sum of positive di
visors of n, (1 and n included), 0- : N -+ N. Then 512,,(n, b) is the smallest 
number of iterations k such that 0-( 0-( ... o-( x ) ... ) ) :2 b; because 0-( n) > n 

~ --..--
k times k times 

for n > 1. Thus 512,,(4,11) = 3, because 0-(0-(0-(4))) = 0-(0-(7» = 0-(8) = 
15 ~ 11. 
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Definition 8. Functional Iteration of Third Kind: 
Let h : A -+ A be a function, such that h(z) < z for all z, and let 
b < z. Then SI31&(z, b) is the smallest number of iterations k, such that 
h(h( ... h(z) ... »:s b. 
~ "'"'--'" 
k times 1: times 

Example: Let n be an integer and gd(n} be the greatest divisors of n, 
less than n, gd : N* -+ N*. Then gd(n) < n for n > 1 and SI3gd(60, 3) = 
4, because gd(gd(gd(gd(60)))) = gd(gd(gd(30))) = gd(gd(15» = gd(5) = 
1 < 3. 

-References: [3J], pp. 52-58 from [40], Problem 52 from [80J. 

The following sixteen theorems are proved by F. Smarandache (29, 
64, 18, 35, 19). More decimals for each constant have been computed by 
Weisstein [94]. 

Theorem 15. The First Constant of Smarandache's: 

is convergent to a number $1. which satisfies O.OOO:S 81 :s 0.717. 
Reference: pp. 116-118 from [29]. 

Theorem 16. The Second Constant of Smarandache's: 

is convergent to an irrational number $2' 

Reference: pp. 119-120 from [29]. 

Theorem 11. The Third Constant of Smarandaehe's: 

I: 1 
n~2 S(2)S(3) ... S(n) 

is convergent to a number $3, which satisfies 0.71 :s 81 :s 1.01. 
Reference: pp. 121-126 from [29]. 
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Theorem 18. The Fourth Constant of Smarandache: 

n'" 

S(2)S(3) ... S(n) , 

where a 2: 1, is convergent to a number S4. 

Reference: pp. 121-126 from [29]. 

Theorem 19. The series 

converges to an irrational number. 
Reference: [64]. 

Theorem 20. The series 

S(n) 
(n+l)!' 

converges La a number S6, where e-~ < S6 < ~. 
References: [18, 35]. 

Theorem 21. The series 

Sen) 
(n+r)!' 

where r is a natural number, converges to a number S7. 

Reference: [35]. 

Theorem 22. The series 

Sen) 
(n-r)!' 

where r 1= 0 is a natural number, converges to a number S8. 

Reference: [35]. 
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Theorem 23. The series 

converges to a number S9-

Reference: [35]_ 

Theorem 24. The series 

1 

1 

Sen) \lS(n)!' 

where Q > 1. is convergent to a number 510-

References: [19, 35)_ 

Theorem 25. The series 

1 

S(n) \I(S(n) - I)! 

where Q > 1, is convergent to a number S11-

Reference: [19). 

Theorem 26. Let J : N* -. 'R be a function which satisfies the 
condition c 

J(t) $ t<lCd(t!)) - dCCt - I)!) 

for t "# 0 being a. na.tural number, d(x) being the number of divisors of x, 
and the given constants Q, C > L Then the series 

E J(S(n» 
n2:1 

is convergent to a number SUI' 

Reference: [19]_ 
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Theorem 27. The series 

1 

n 

( IT S(k)!)n 
k=2 

is convergent to a number 813. 

Reference: [19]. 

Theorem 28. The series 

1 

S(n)!JS(n)!(log S(n»p' 

where p> I, is convergent to a number 814. 

Reference: [19]. 

Theorem 29. The series 

is convergent to a number 815. 

Reference: [19]. 

Theorem 30. The series 

E Sen) 
n 1+p ' n~1 

where p > 1 is a real number, converges to a number S16. For 0 ::; p ::; 2 
the series diverges. 

Reference: [19]. 

Definition 9. An Algorithm of Multiplication of Two Integer Num
bers, A and B: 
- let k ~ 2 be an integer; 
- write A and B in two different vertical columns: c(A), respectively c(B); 
- multiply A by k, and write the product Al in column c(A); 
- derive B by k, and write the integer part of the quotient Bl in column 

23 



e(B); 
... and so on with the new numbers Al and B 1 , until we get Bi < k in 
column c(B); 
- write another column c(r), on the right side of c(B), such that: for each 
number of column c(B), which may be a multiple of I: plus the rest r 
(where r = 0, 1, ... , I: - I), the corresponding number in err) will be r; 
- multiply each number of column A by its corresponding r of c(r), and 
put the new products in another column c(P) on the right side of e(r); 
- finally, add all numbers of column c(P). 
A x B = the sum of all numbers of c(P}. 

Remark that any multiplication of integer numbers can be done only 
by multiplication with 2,3, ... , 1:, divisions by Ie, and additions. 

This is a generalization of Russian multiplication (when k = 2). 
This multiplication is usefull when k is very small, the best values being 

for k = 2 (Russian multiplication - known from Egyptian times), or k = 3. 
If k is greater than or equal to min(IO, B), this multiplication is trivial (the 
obvious multiplication). 

Example 1 (if we choose k = 3): 73 x 97 =? 

x3 I /3 
c(A} c(B) c(r) c(P) 

73 97 1 73 
219 32 2 438 . 
657 10 1 657 

1971 3 0 0 
5913 1 1 5913 

total: 7081 
Therefore: 73 x 97 = 7081. 
Remark that any multiplication of integer numbers can be done only 

by multiplication with 2,3, divisions by 3, and additions. 
Example 2 (if we choose I: = 4): 73 x 97 =? 

x4 /4 
eeA) c(B) c(r) c(P) 

73 97 1 73 
292 24 0 0 

1168 6 2 2336 
4672 1 1 4672 

total: 7081 
Therefore: 73 x 97 = 7081. 
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Remark that any multiplication of integer numbers can be done only 
by multiplication with 2,3,4, divisions by 4, and additions. 

Example 3 (if we choose k = 5): 73 x 97 =? 

x5 /5 
~(A) c(B) c(r) c(P) 

73 97 2 146 
365 19 4 1450 

1825 3 3 5475 

total: 7081 
Therefore: 73 x 97 = 708l. 
Remark that any multiplication of integer numbers can be done only 

by multiplication with 2,3,4,5, divisions by 5, and additions. 
The above multiplication becomes less usefull when k increases. Look 

at example (4) to see what happens when k = 10: 

xlO /10 
etA) e(B) c(r) e(P) 

73 97 7 511 
730 9 9 6570 

total: 7081 
Therefore: 73 x 97 = 708l. 
Remark that any multiplication of integer numbers can be done only 

by multiplication with 2,3, ... ,9, 10, divisions by 10, and additions - hence 
we obtain just the obvious multiplication. 

Reference: see Section 110 from [33] 

Definition 10. An Algorithm of Division of an Integer Number, A by 
kn, where k, n 2: 2 are integers: 
- write A and kn in two different vertical columns: c(A), respectively c(kn); 
- multiply A by k, and write the integer quotient Ai in column c(A); 
- write the quotient qi = kn- i in column c(kn); 
... and so on with the new numbers Ai and qi, until we get qn = 1(= kO) 
in column c(kn); 
- write another column c(r), in the left side of c(A), such that: for each 
number of column c(A), which may be a multiple of k plus the remainder 
r (where r = 0,1, ... , k - 1), the corresponding number in c(r) will be r; 
- write another column c(P) by its corresponding r of c(r), and put the 
new products in another column c(R) on the left side of c(P); 
- finally, add all numbers of column c(R) to get the final remainder Rn, 
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while the final quotient will be stated in front of c(kn)'s 1. Therefore: 
A/(len) = An and remainder R.n. 

Remark that any division of an integer number by kn can be done 
only by divisions to Ie, calculations of powers of Ie, multiplications with 
1,2, ... , Ie - 1, additions. 

The above division becomes less useful! when Ie increases. Look at 
example (4) to see what happens when Ie = 10: 

Example 1: 1357/(27
) =? 

12 12 
c(R) c(P) c(r) c(A) C{27) 

I 1 . 2u 1 1357 27 line1 
9 1 21 0 678 26 line2 
4 22 1 339 25 linea 
8 ~ 1 169 24 line4 
0 24 0 84 ~ lines 
0 2s 0 42 22 line6 

64 26 1 21 21 liner 
10 2u lastllne 

~ I 17 I 
Therefore: 1357?(27) = 10 and the remainder is 77. 
Remark that the division of an integer number by any power of 2 can 

be done only by divisions to 2, calculations of powers of 2, mUltiplications 
and additions. 

Example 2: 19495/(38) =? 
/3 /3 

c(R) c(P) c(r) c(A) e(3") 
1 3U 1 10495 3" line1 
0 31 0 6498 37 line2 
0 32 0 2166 36 linea 

54 33 2 722 35 lin~ 
0 34 0 240 34 lines 

486 35 21 80 33 lines 
1458 36 2 26 32 line7 
4374 37 2 8 31 lines 

2 3u lastune 
I 63731 

Therefore: 19495?(3S} = 2 and the remainder is 6373. 
Remark that the division of an integer number by any power of 3 can 

be done only by divisions to 3, calculations of powers of 3, multiplications 
and additions. 
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Reference: see Section 111 from [33] 

Definition 11. A Prime Base: 

0,1,10,100,101,1000,1001,10000, 10001,10010,10100,100000,100001, 

1000000,1000001,1000010,1000100,10000000,10000001,100000000, 

100000001,100000010,100000100,1000000000,1000000001,10000000100, 

1000000101, ... 

Smarandache defined over the set of natural numbers the following infinite 
base: Po = 1, and for k 2: 1 Pk is the k-th prime number. He proved that 
every positive integer A may be uniquely written in the prime base as: 

del 
A = (an ... alaO)sp = 

n 

~ aiPi, 
i=O 

with all ai = 0 or 1 (of course, an = 1), in the following way: 
- if Pn ~ A < Pn+l then A = Pn + rl; 
- if Pm ::; rl < Pm+l then rl = Pm + r2, m < n; 
and so on until one obtains a remainder rj = O. 

Therefore, any number may be written as a sum of prime numbers +e, 
where e = 0 or 1. 

If we note by p(A) the Smarandache superior part of A (i.e. the largest 
prime less than or equal to A), then A is written in the Smarandache prime 
base as: 

A = p(A) + p(A - p(A)) + p(A - p(A) - p(A - p(A))) + ... 

This base is important for partitions with primes. 
References: [33, 37] 

Definition 12. A Square Base: 

0,1,2,3,10,11,12,13,20,100,101,102,103,110,111,112,1000,1001,1002, 

1003,1010,1011,1012,1013,1020,10000,10001,10002,10003,10010, 

10011,10012,10013,10020,10100,10101,100000,100001,100002,100003, 

100010,100011,100012,100013,100020,100100,100101,100102,100103, 

100110,100111,100112,101000,101001,101002,101003,101010,101011, 
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101012,101013,101020,101100,101101,101102,1000000, ... 

Smarandache defined over the set of natural numbers the following infinite 
base: for k ~ 0 SI; = k 2 • He proved that every positive integer A may be 
written in a unique way in the Smarandache square base as: 

tkJ n 

A = (a.. ... alao)s2 = E aiSi, 
i=l 

with all ai = 0 or 1 for i ~ 2, 0 ~ ao ~ 3, 0 ~ al ~ 2, and, of course, 
an = 1, in the following way: 
- if Sn ~ A < S,,+1 then A = s" + Tl; 

- if Sm ~ T1 < Sm+1 then T1 = Sm + r2, m < n; 
and so on until one obtains a remainder Tj = O. 

Therefore, any number may be written as a sum of squares (1, being 
obvious, is not counted as a square) +e, where e = 0,1 or 3. 

If we note by s(A) the Smarandache superior square part of A (i.e. the 
largest square less than or equal to A), then A is written in the Smaran
dache square base as: 

A = s(A) + s(A - s(A)) + seA - s(A) - s(A - s(A})) + ... 

This base is important for partitions with squares. 
References: [33, 37] 

Definition 13. A m-Power Base (generalization): 
Each number n written in m-power base, where ~ 2 is an integer. 
Smarandache defined over the set of natural numbers the following 

infinite m-power base: for k ~ 0 tl; = km. He proved that every positive 
integer A may be written in a unique way in the m-power base as: 

deJ 

A = (an ... alaO)Sm = 

with a; = 0 or 1 for i ~ m, 0 ~ ai ::; [ it! ~ ;; 1] (integer part) for 

i = 0,1, ... , m - 1, and, of course, an = 1, in the following way: 
- if tn ~ A < in+! then A = tn + Tl; 

- if tm :S T1 < tm+! then Tl = tm + T2, m < n; 
and so on until one obtains a remainder Tj = O. 

Therefore, any number may be written as a sum of m-powers (1, being 
obvious, is not counted as am-power) +e, where e = 0, 1,2, ... or 2m - 1. 
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If we note by t(A) the Smarandache superior m-power part of A (i.e. 
the largest m-power less than or equal to A), then A is written in the 
Smarandache m-power base as: 

A = t(A) + teA - t(A)) + teA - teA) - t(A - t(A))) + ... 

This base is important for partitions with m-powers. 
References: [33, 37] 

Definition 14. A Factorial Base: 

0,1,10, 11,20,21,100,101,110,111,120, 121,200,201,210,211,220,221, 

300,301,310,311,320,321,1000, 1001,1010,1011,1020,1021,1100,1101, 

1110,1111,1120,1121,1200, ... 

Smarandache defined over the set of natural numbers the following infinite 
base: for k ~ 1 flo = k!. He proved that every positive integer A may be 
written in a unique way in the factorial base as: 

de! 

A = (an ... a1aO)(F) = 
n 

~ aili, 
;=1 

with all ai = 0, 1, ... , i for i ~ 1 in the following way: 
- if fn $ A < fn+l, then A = fn + rl; 
- if fm $ rl < fm+l, then rl = fm + r2, m < n; 
and so on until one obtains a remainder rj = O. 

What is very interesting is that: a1 = 0 or 1; a2 = 0, 1 or 2; a3 = 0, 1,2 
or 3, and so on ... 

If we note the Smarandache superior factorial part of A (i.e. the largest 
factorial less than or equal to A), by f(A) then A is written in the Smaran
dache factorial base as: 

A = f(A) + f(A - f(A)) + f(A - f(A) - f(A - f(A))) + ... 

Rules of addition and subtraction in Smarandache factorial base: for 
each digit ai we add and substract in base i + 1, for i ~ 1. Here is an 
example, for an addition: 

base 5 4 3 2 
2 1 0 + 
221 

110 1 
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because: 0 + 1 = 1 (in base 2); 1 + 2 = 10 (in base 3), therefore, we write 
o and keep 1; 2 + 2 + 1 = 11 (in base 4). ~ow a subtraction 

base 5 4 3 2 
100 1 

320 
1 1 

because: 1 - 0 = 1 (in base 2); 0 - 2 =? it is not possible (in base 3), go 
to the next left unit, which is 0 again (in base 4), go again to the next 
left unit, which is 1 (in base 5), therefore, 1001 -+ 0401 -+ 0331 and then 
0331- 320 = 11. 

Find some rules for multiplication and division. 
In a general case, if we want to design a base such that any number 

de, 

A = (an ... alaO)(B) = 

with all aj = 0, 1, ... , ti for i ~ 1, where all ti ~ 1, then this base should be 
b1 = 1, bi+! = (ti + 1).bi for i ~ l. 

References: [33, 37) 

Definition 15. A Generalized Base: 
Smarandache defined over the set of natural numbers the following 

infinite generalized base: 1 = go < gl < ... ,9k < ... ). He proved that every 
positive integer A may be written in a unique way in the Smarandache 
generalized base as: 

i=O 

with 0 ~ ai ~ [9it~i- 1] (integer part) for i = 0,1, ... , n, and, of course, 
an ~ 1, in the following way: 
- if gn ::; A < gnt 1 then A :;: gn + Tl j 

- if 9m ~ Tl < gmtl then Tl = 9m + T2, m < n; 
and so on until one obtains a remainder Tj = O. 

If we nole by the Smarandache superior generalized part of A (i.e. 
the largest gi less than or equal to A). g(A) then A is written in the 
Smarandache generalized base as: 

A :;: g(A) + g(A - g(A» + g(A - g(A) - g(A. - g(A») + ... 
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This base is important for partitions: a generalized base may be any 
infinite integer set (of primes, squares, cubes, any m-powers, Fibonac
ci/Lucas numbers, Bernouly numbers, Smarandache numbers, etc.) whose 
partitions are studied. 

A particular case is when the base verifies: 2gj ~ gi+l for any i, and 
go = 1, since all the coefficients of a written number in this base will be 0 
or l. 

Remark: another particular case: if one takes gi = pi-l, i = 1,2,3, ... , 
p an integer ~ 2, one gets the representation of a number in the numerical 
base p (p may be 10 (decimal), 2 (binary), 16 (hexadecimal), etc.). 

References: [33, 37] 

Definition 16. A Concatenated Natural Sequence: 

1,22,333,4444,55555,666666,7777777,88888888,999999999, 
10101010101010101010,1111111111111111111111, 

121212121212121212121212,13131313131313131313131313, 

1414141414141414141414141414, 151515151515151515151515151515, ... 

Definition 17. A Concatenated Prim.e Sequence: 

2,23,235,2357,235711,23571113,2357111317,235711131719, 
23571113171923, ... 

Back concatenated prime sequence: 

2,32,532,7532,117532,13117532,1713117532,191713117532, 
2319171311753, ... 

Conjecture: there are infinitely many primes among the numbers of 
the first sequence. 

Definition 18. A Concatenated Odd Sequence: 

1,13,135,1357,13579,1357911,135791113,13579111315,1357911131517 

Back concatenated odd sequence: 

1,31,531, 7531,97531,1197531,131197531,15131197531,1715131197531 

Conjecture: there are infinitely many primes among these numbers. 
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Definition 19. A Concatenated Even Sequence: 

2,24,246,2468,246810,24681012,2468101214,246810121416, ... 

Back concatenated even sequence: 

2,42,642,8642,108642,12108642,1412108642,161412108642, ... 

Definition 20. A Concatenated S-sequence (generalization): 
Let Sl, 82, ... , 8 n , ... be an infinite integer sequence (noted by S). Then: 

is called Concatenated S-sequence, and 

is called Back concatenated S-sequence. 

Problem 12. How many terms of the Concatenated S-Sequence be
long to the initial S-sequence? Or, how many terms of the Concatenated 
S-Sequence verify the relation of other given sequence? 

Look 00\\ at some other examples, where S is the sequence of squares, 
cubes, Fibonacci, respectively. 

Definition 21. A Concatenated Square Sequence: 

1,14,149,14916,1491625,149162536, 14916253649,1491625364964, ... 

Back concatenated square sequence: 

1,41,941,16941,2516941,362516941, 49362516941, 6449362516941, ... 

How many of them are prefect squares? 

Definition 22. A Concatenated Cubic Sequence: 

1,18,1827,182764,182764125,182764125216, 182764125216343, ... 

Back concatenated cubic sequence: 

1,81,2781,642781,125642781,216125642781,343216125642781, ... 
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How many of them are prefect cubes? 

Definition 23. A Concatenated Fibonacci Sequence: 

1,11,112,1123,11235,112358,11235813,1123581321, 112358132134, ... 

Back concatenated Fibonacci sequence: 

1,11,211,3211,53211,853211,13853211,2113853211,342113853211, ... 

Does any of these numbers is a Fibonacci number? 

Definition 24. A Power Function: SP(n) is the smallest number 
m, such that mm is divisible by n. 

Remarks: If P is prime, then SP(p) = p. If r is a square free, then 
k 

SP(r) = r. If n = II P:' and all Si ~ Pi, then SP(n) = n. If n = p', 
i=l 

where p is prime, then: 

if 1 ~ S ~ P 
if p + 1 ~ s ~ 2p2 
if 2p2 + 1 ~ s ~ 3p3 

if (t - l)pt-l + 1 ~ s ~ tpt 

Reference: [83) 

Definition 25. A Reverse Sequence: 

1,21,321,4321,54321,654321,7654321,87654321,987654321, 

10987654321,1110987654321,121110987654321, ... 

Definition 26. A Multiplicative Sequence: 

2,3,6,12, 18,24,36,48,54, ... 

General definition: if ml, m2, are the first two terms of the sequence, then 
rnA:, for k ~ 3, is the smallest number equal to the product of two previous 
distinct terms. All terms of rank ~ 3 are divisible by ml, and m2. In our 
case the first two terms are 2, respectively 3. 
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Definition 27. A Wrong Sequence: A number n = ala2 ... at con
sisted of at least two digits, with the property: the sequence a1, a2, ... , at, 
bt+b bt +2 , ••• (where bt+i is the product of the previous k terms, for any 
i 2: 1) contains n as its term. 

The author conjectured that no number is wrong. Therefore, this se
quence is empty. 

Definition 28. Impotent Numbers: 

2,3,4,5,7,9,11,12,17,19,23,25,29,31,37,41,43,47,49, 53, 59, 61, ... 

A number n those proper divisors product is less than n. This sequence 
contains terms with the forms of p and p2, where p is a prime. 

Definition 29. A Random Sieve: 

1,5,6,7,11,13,17,19,23,25,,29,31,35,37,41,43,47,53, 59, ... 

General definition: 
- choose at random a positive number Ul; 

- delete all the multiples of all its divisors, except this number; 
- choose another number U2 being greater than nl among the remaining; 
- delete all the multiples of all its divisors, except this second number; 
... and so on. 

The remaining numbers are all coprime two by two. 
The obtained sequence Uk, k 2: I, is less dense than the prime number 

sequence, but it tends to the prime number sequence and also tends to 
infinity. This sequence may be important in this way. In our case Ul = 
6, U2 = 19, U3 = 35, .... 

Definition 30. A Cubic Base: 

0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,20,21,22,23,24,25,26,27, 

30,31,32, 100,101,102,103,104,105,106,107,110,111,112,113,114,115, 

116,117, 120, 121, 122, 123, ... 

Smarandache defined over the set of natural numbers the following 
infinite base: for k 2: 1 Sk = k3 • He proved that every positive integer A 
may be written in a unique way in the cubic base as: 
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de! n 

~ ajsj, 

with 0 ::; al ::; 7, 0 ::; a2 ::; 3, 0 ::; a3 ::; 2, and 0 ::; aj ::; 1, for i 2 4, and, 
of course, an = 1, in the following way: 
- if cn ::; A < Cn +l, then A = Cn + rl; 
- if Cm ::; rl < Cm +l, then rl = Cm + r2, m < n; 
and so on until one obtains a remainder rj = O. 

Therefore, any number may be written as a sum of cubes (1, being 
obvious, is not counted as a cube) +e, where e = 0, 1, ... , 7. 

If we note the superior cubic part of A (i.e. the largest cube less than 
or equal to A) by c(A), then A is written in the cube base as: 

A = c(A) + c(A - c(A)) + c(A - c(A) - c(A - c(A)) + ... 

This base is important for partitions with cubes. 

Definition 31. A Triangular Base: 

1,2,10,11,12, 100,101,102, 110,1000,1001,1002,1010,1011,10000, 

10001,10002, 10010, 10011,10012,100000,100001,100002,100010, 

100011,100012,100100, 1000000,1000001,1000002,1000010, 1000011, 

1000012,1000100, ... 

Numbers, written in the triangular base, are defined as follows: t(n) = 
n(n

2
+ 1) , for n 2 1. 

Definition 32. A Double Factorial Base: 

1,10,100,101, 110,200,201,1000,1001, 1010,1100,1101,1110, 1200, 

10000,10001,10010,10100, 10101,10110,10200,10201,11000,11001, 

11010,11100,11101,11110,11200,11201,12000, ... 

Numbers, written in the double factorial base, are defined as follows: 
df(n) = n!!. 

Definition 33. A General Base: Let 1 = b1 < b2 < b3 < ... < bn < 
... be a strictly increasing integer sequence. Then any positive integer can 
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by written in a unique way in this infinite base (in the same way as the 
previous particular bases). If we note the superior square part of A (i.e., 
the largest bk less than or equal to A) by 6{A), then A is written in the 
general base as: 

A = b{A) + b(A - b(A» + b(A - b(A) - b(A - b(A))) + ... 

This base may be important for partitions with increasing sequences. 
Reference: [70J 

Definition 34. A Non-Multiplicative Sequence (General defi
nition): Let ml, m2, ... , rnl: be the first k ? 2 terms of the sequence. Then 
111t, for i ? k + 1, is the smallest number not equal to the product of k 
previous distinct terms. 

Definition 35. A Non-Arithmetic Progression: 

1,2,4,5,10,11,13,14,28,29,31,32,37,38,40,41, ... 

General definition: if mI, m2 are the first two terms of the sequence, 
then m,., for k ? 3, is the smallest number, such that no 3-term arithmetic 
progression is in the sequence. In our case the first two terms are 1 and 2. 
Generalization: the same initial conditions, but with no i-term arithmetic 
progression in the sequence (for a given i ? 3). 

Definition 36. A Cubic Product Sequence: 

2,9,217,13825,1728001,373248001, 128024064001,65548320768001, ... 

en = 1 + SlS2 ... Sn, where Cl: is the k-th cubic number. 

Problem 13. How many of them are prime? 

Definition 37. A Factorial Product Sequence: 

2,3,13,289,34561,24883201,125411328001,5056584744960001, .,. 

Fn = 1 + hl2 .. .fn, where /1: is the k-th factorial number. 

Problem 14. How many of them are prime? 
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Definition 38. An U - Product Sequence (generalization): Let 
Un, n ~ 1, be a positive integer sequence. Then we define a sequence, as 
follows: Un = 1 + Ul U2 •• 'u,,· 

Reference: [70] 

Definition 39. A S2 function (numbers): 

1,2,3,2,5,6,7,4,3, 10,11,6,13,14,15,4,17,6,19,10,21,22,23, 12, 

5,26,9,14,29,30,31,8,33, ... 

52(n) is the smallest integer m, such that m2 is divisible by n. 

Definition 40. A S3 function (numbers): 

1,2,3,2,5,6,7,2,3,10,11,6,13,14,15,4,17,6,19,10,21,22,23,6, 

5,26,3,14,29,30,31,4,33, '" 

53 (n) is the smallest integer m, such that m3 is divisible by n. 

Definition 41. An Anti-Symmetric Sequence: 

11.1212,123123,12341234,1234512345,123456123456, 

12345671234567,1234567812345678,123456789123456789, 

1234567891012345678910,12345678910111234567891011, 

123456789101112123456789101112, ... 

Definition 42. Recurrence Type Sequences: 

A. 1,2,5,26,677,701,842,866,1517,458330,458333,458354, ... 

552(n) is the smallest number, strictly greater than the previous one, 
which is the squares sum of two previuus distinct terms of the sequence; 
in our particular case the first two terms are 1 and 2. 

Recurrence definition: 
1) number a belongs to 552 ; 

2) If b, c belong to 552 , then b2 + c2 belollgs to 552 , too; 
3) only numbers, obtained by rules 1) and jor 2), applied a finite number 

of times, belong to 552 . 

Sequence 552 is increasingly ordered. Rule 1) may be changed by: the 
given numbers al, a2, ... , ak, where k ~ 2, belong to 552. 
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13. 1,1,2,4,5,6,16,17,18,20,21,22,25,26,27,29,30,31,36,37,38, 

40,41,42,43,45,46, .,. 

551 (n) is the smallest number, strictly greater than the previous one (for 
n ;?: 3), which is the squares sum of one or more previous distinct terms 
of the sequence; in our particular case the first term is l. 

Recurrence definition: 
1) number a belongs to 551 ; 

2) If b1, 62 , ••• , bl: belong to SSt, where k ;?: 1, then b? + b~ + ... + bl belongs 
to 551 , too; 
3) only numbers, obtained by rules 1) and lor 2), applied a finite number 

of times, belong to SSI. 
The sequence SSl is increasingly ordered. Rule 1) may be changed by 

the given numbers al, a2, ... , aI:, where k ;?: 1, belong to 551. 

C. 1,2,3,4,6,7,8,9,11,12,14, 15, 16, 18, 19,21, ... 

N SS2(n) is the smallest number, strictly greater than the previous one, 
which is not the squares sum of two previous distinct terms of the sequence; 
in our particular case the first two terms are 1 and 2. 

Recurrence definit ion: 
1) numbers a S b belong to NSS2 ; 

2) If b, c belong to N SS2, then b2 + c2 does not belong to N SS2; any other 
numbers belong to N 552; 
3) only numbers, obtained by rules 1) and lor 2) applied a finite number 

of times, belong to NSS2. 
The sequence N 55] is increasingly ordered. Rule 1) may be changed 

by the given numbers aI, a2, ... , aI:, where k ;?: 2, belong to NSS2 . 

I>. 1,2,3,6,7,8,11,12,15,16,17,18,19,20,21,22,23,24,25,26,27,28, 

29,30,31,32,33,34,38,39,42,43,44,47, ... 

N SSl (n) is the smallest number, strictly greater than the previous distinct 
terms of the sequence; in our particular case the first term is l. 

Recurrence definition: 
1) number a belongs to NSS l ; 

2) If bl'~' ... ,b1: belong to NSS!, where Ie ~ 1, then b~ + h~ + ... + hi do 
not belong to N SSl ; 
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3) only numbers, obtained by rules 1) and lor 2), applied a finite number 
of times, belong to N SSI. 
Sequence NSSI is increasingly ordered. Rule 1) may be changed by 

the given numbers al,a2, ... ,ak, where k ~ 1, belong to NSSI . 

E. 1,2,9,730,737,389017001,389017008,389017729, ... 

CS2 (n) is the smallest number, strictly greater than the previous one, 
which is the cubes sum of two previous distinct terms of the sequence; in 
our particular case the first two terms are 1 and 2. 

Recurrence definition: 
1) numbers a ::; b belongs to C S2; 
2) If c, d belong to CS2 , then c3 + d3 belongs to CS2, too; 
3) only numbers, obtained by rules 1) and lor 2), applied a finite number 

of times, belong to C S2. 
Sequence C 52 is increasingly ordered. Rule 1) may be changed by the 

given numbers aI, a2, ... , ak, where k ~ 2, belong to CS2 . 

F.1,1,2,8,9,10,512,513,514,520,521,522,729,730,731, 

737,738,739,1241, ... 

C5l (n) is the smallest number, strictly greater than the previous one (for 
n ~ 3), which is the cubes sum of one or more previous distinct terms of 
the sequence; in our particular case the first term is 1. 

Recurrence definition: 
1) numbers a ::; b belongs to C Sl; 
2) If bl , b2 , .•. , bk belong to CSl , where k ~ 1, then bi +b~ + ... +bf belongs 
~~; . 

3) only numbers, obtained by rules 1) and lor 2), applied a finite number 
of times, belong to CSI . 

Sequence CSI is increasingly ordered. Rule 1) may be changed by the 
given numbers aI, a2, ... , ak, where k ~ 1, belong to CSI . 

(;.1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,17,18,19,20, 

21,22,23,24,25,26,27,29,30,31,32,33,34,36,37,38, ... 

N C S2 (n) is the smallest number, strictly greater than the previous one, 
which is not the cubes sum of two previous distinct terms of the sequence; 
in our particular case the first two terms are 1 and 2. 

Recurrence definition: 
1) numbers a ::; b belongs to NCS2 ; 

2) If c, d belong to NCS2, then 2 + d3 does not belong to NCS2 ; any 
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other numbers do belong to NCS2; 
3) only numbers, obtained by rules 1) and jor 2), applied a finite number 

of times, belong to C S2. 
Sequence NCSz is increasingly ordered. Rule 1) may be changed by 

the given numbers aI, a2 •..• ,ak, where Ie ~ 2, belong to NCS2. 

II. 1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,18,19,20,21,22, 

23,24,25,26,27,30,31,32,33,34,37,38,39, ... 

NCS1(n) is the smallest number, strictly greater than the previous one, 
which is not the cubes sum of one or more previous distinct terms of the 
sequence; in our particular case the first term is l. 

Recurrence definition: 
1) number a belongs to NCSI ; 

2) iUI , 62 , ... , 6k belong to NCSI • where Ie ~ 1, then br + b~ + ... + 6i do 
not belong to iVCS1 ; 

3) only numbers, obtained by rules 1) and jor 2), applied a finite number 
of times, belong to .VCSl . 

Sequence NCSI is increasingly ordered. Rule 1) may be changed by: 
the given numbers al,a2, ... ,ak, where Ie ~ 1, belong to NCSI . 

I. A General-Recurrence (Positive) Type Sequence: 
General Positive recurrence definition: 

Let Ie ~ j be natural numbers, and a1, az, ... , ak - given eiements, and 
R - a j-relationship (relation among j elements). Then: 
1) elements al,uZ, ... ,ak belong to SGPR; 
2) if ml,mZ, ... ,mj belong to SGPR, then R(ml,mz, ... ,mj) belongs to 
SGPR, too; 
3) only numbers, obtained by rules 1) and jor 2), applied a finite number 

of times, belong to SG P R. 
Sequence SG P R is increasingly ordered. 
Method of constructing the Smarandache (positive) general recurrence 

sequence: 
- level 1: the given elements all az, ... , ak belong to SGP R; 
- level 2: apply the relationship R for all combinations of j-elements 
among aI, az, ... , ak; the results belong to SGRP, too; order all the elements 
of levels 1 and 2 together; 

- level i + 1: if b1, bz, ... , 6m are all the elements of levels 1, 2, ...• i-I, 
and Cl, Cz • ••• , Cn are all the elements of levels i, then apply the relationship 
R for all combinations of j-elements among 61 ,bz, ... ,bm .Cl,C2, •.•• Cn. so 
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that at least one element is from level i; the results belong to SGRP, too; 
order all elements of levels i and i + 1 together; 
and so on ... 

J. A General-Recurrence (Negative) Type Sequence: 
. General Negative recurrence definition: 

Let k ~ j be natural numbers, and ai, a2, ... , ak - given elements, and 
R - a j-relationship (relation among j elements). Then: 
1) elements ai, a2, ... , ak belong to SGN R; 
2) if ml,m2, ... ,mj belong to SGNR, then R(ml,m2, ... ,mj) does not 
belong to SG N R; 
3) only numbers, obtained by rules 1) and jor 2), applied a finite number 

of times, belong to SG N R. 
Sequence SG N R is increasingly ordered. 
Method of constructing the Smarandache (negative) general recurrence 

sequence: 
- level 1: the given elements ai, a2, ... , ak belong to SGN R; 
- level 2: apply the relationship R for all combinations of j elements a-
mong ai, a2, , .. , ak; none of the results belong to SGRP, too; the smallest 
element, strictly greater than all ai, a2, , .. , ak, and different from the pre
vious results, belongs to SGNR; order all the elements of levels 1 and 2 
together; 

- level i + 1: if b1 , b2 , .. " bm are all the elements of levels 1, 2, .. " i-I, and 
Cl, C2, .. " Cn are all elements of level i, then apply the relationship R for 
all combinations of j-elements among bl , b2 , ... , bm , CI, C2, .. " Cn, so that at 
least one element is from the level i; none of the results belong to SGNR; 
the smallest element, strictly greater than all the previous elements, and 
different from the previous results, belongs to SGNR; order all the ele
ments of levels i and i + 1 together; 
and so on .. , 

Problem 15. Partition Type Sequences: 

A.1,1,1,2,2,2,2,3,4,4" .. 

How many times is n written as a sum of DOD-null squares, disregarding 
the terms order? For example: 

9 12+12 +12 +12 +12 +12+12+12+12 
12+12 +12+12 +12+22 
12+22 +22 
32 , 
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therefore n8(9) = 4. 

B. 1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3, 

4,4,4,5,5,5,5,5,6,6 ... 

How many times is n written as a sum of non-null cubes, disregarding'the 
terms order? For example: 

9 = 13+13+13+13+13+13+13+13+13 
= 13+~ 

therefore nc(9) = 2. 
c. A General-Partition Type Sequence 

How many times can n be written in the form of 

for some k and nl, n2, ... , n" between 1 and n? 
Particular cases: when f( x) = x 2 , or Z3, or x!, or zZ, etc. and relation 

R is the obvious addition of numbers, or multiplication, etc. 
Reference: [70}. 

Definition 43. A Non-Geometric Progression: 

1,2,3,5,6,7,8,10,11,13,14,15,16,17,19,21,22,23,24,26,27,29,30, 

31,33,34,35,37,38,39,40,41,42,43,45,46,47,48,50,51, 53, ... 

General definition: if ml, m2 are the first two terms of the sequence, then 
m", for k ~ 3, is the smallest number, such that no 3-term geometric 
progression is in the sequence. In our case the first two terms are 1, 
respectively 2. 
Generalization: if-ml, m2, ... , 71li-l are the first i-I terms of the sequence, 
i ~ 3, then rn", for k ~ u, is the smallest miinber, such that no i-term 
geometric progression is in the sequence. 

Definition 44. A Unary Sequence: 

11,111,11111,1111111,11111111111,1111111111111,11111111111111111, 

11111111111111111,1111111111111111111,11111111111111111111111, ... 

u{n) = 11...1, Pn digits of "1", where Pn is the n-th prime. 
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Is there an infinite number of primes belonging to the sequence? 

Definition 45. Let VI, V2 , .•• , Vn be an n-sided polygon, n 2: 3, and 
S be a given set of m elements, m 2: n. In each vertex V;, 1 ::s: i ::s: n, 
of the polygon one puts at most one element of S, and on each side Sj, 

1 ::s: i::S: n, of the polygon one puts ej 2: 0 elements from S. 
Let R be a given relationship of two or more elements of S. All el

ements of S should be put on the polygon's sides and vertices so that 
the repationship R on each side gives the same result. What connections 
can be found existing among the number of the sides of the polygon, set 
S (what elements and how many), and the relation R in order for this 
problem to have solution(s)? 

Definition 46. 
I) Smarandache Polyhedrons (With Edge Points): similar definition 

generalized in the 3-dimensional space: the points are put on the vertices, 
and edges only of the polyhedron (not on inside faces). 

II) Smarandache Polyhedrons (With Face Points): similar definition 
generalized in the 3-dimensional space: the points are put on the vertices, 
and inside faces of the polyhedron (not on the edges). 

III) Smarandache Polyhedrons (With Edge/Face Points): similar def
inition generalized in the 3-dimensional space: the points are put on the 
vertices, on edges, and on inside faces of the polyhedron. 

IV) Smarandache Polyhedrons (With Edge Points): similar definition 
generalized in the 3-dimensional space: the points are put on the edges, 
and inside faces only of the polyhedron (not in verteces). 

What connections can be found existing among the number of ver
tices/faces/edges of the polyhedrons, set S (what elements and how many), 
and the relation R in order for this problem to have solution(s)? 

Examples: I 
a) For an equilateral triangle, the set Ns = {I, 2, 3, 4, 5, 6}, the addition, 

and on each side to have three elements exactly, and in each vertex an 
element, one gets: 

1 
6 5 

2 4 3 

the sum of each of the three sides is 9 [the minimum elements 1,2,3 are 
put in the vertices]; 
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1 
6 5 

2 4 3 

the sum of each of the three sides is 12 [the maximal elements 6,5,4 are 
put in the vertices]. 

There are no other possible combinations to keep (the sum constant). 
Therefore: The Triangular Index SGI(3) == (9,12; 2), means: the min

imum value, the maximum value, the total number of combinations, r~ 
spectively. 

b) For a square, the set Nl2 == {1,2,3,4,5,6, ... ,12}, the addition, and 
on each side to have four elements exactly, and in each vertex an element. 
What is the Square Index SGI(4)? 

c) For a regular pentagon, the set N20 == {1,2,3,4,5,6, ... ,20}, the 
addition, and on each side to have five elements exactly, and in each vertex 
an element. What is the Pentagonal Index SGI(5)? 

d) For a regular hexagon, the set N3(J = {1,2,3,4,5,6, ... ,30}, the 
addition, and on each side to have six elements exactly, and in each vertex 
an element. What is the Hexagonal Index SGI(6)? 

e) Generally speaking: For a n-sided regular polygon: the set Nn":l_n 

= {1,2,3,4,5,6, ... ,n2 - n}, the addition, and on each side to have n 
elements exactly. What is the n-Sided Regular Polygonal Index SGI(n)? 

Examples: II 
a) For a regular tetrahedron (4 vertices, 4 triangular faces, 6 edges), 

the set NlO = {I, 2,3,4,5,6, ... , lO}, the addition, and on each edge to have 
three elements exactly (in each vertex one element) - to get the same sum. 

b) For a regular hexahedron (8 vertices, 6 square faces, 12 edges), the 
set N32 = {I, 2, 3, ... ,32}, the addition, and on each edge to have four 
elements exactly (in each vertex one element) - to get the same sum. 

c) For a regular octahedron (6 vertices, 8 triangular faces, 12 edges), 
the set Nli~. == {l, 2,3, ... , I8}, the addition, and on each edge to have three 
elements exactly (in each vertex one element) - to get the same sum. 

d) For a regular dodecahedron (14 vertices, 12 square faces, 24 edges), 
the set N62 == {1,2,3, ... ,62}, the addition, and on each edge to have four 
elements exactly (in each vertex one element) - to get the same sum. 

Compute the Polyhedron Index SH lev, e, f) == (m, M; nc) in each 
case, where v is the number of the polyhedron verteces, e is the number 
of edges, f is the number of faces, m is the minimum sum value and M is 
the maximum sum value, nc is the total number of combinations. 

e) Or other versions for the previous particular polyhedrons: 
- putting elements on the inside faces and vertices only (not on the edges); 
- or putting elements on the inside faces, edges and vertices, too; 
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- or putting elements on the inside faces and edges only (not on the ver
tices) . 

References: [13, 15, 16, 38, 40, 42, 44, 52, 69, 92]. 

Definition 47. An Add-on Sequence: 
Let G = {g1, g2, ... , gk, ... } be an ordered set of positive integers with 

a given property g. Then the corresponding Smarandache G Add-On 
Sequence is defined through 

SG = {a; I a1 = g1,gk = ak_1101+1og1o(gk) + gk, k ~ I}. 

This definition is a generalization of Definitions 17, 18 and 19. 

Definition 48. Concatenation Type Sequences 
Let S1, S2, ... , Sn, ... be an infinite integer sequence (noted by S). Then 

the concatenation is defined as 

Problem 16. How many terms of this concatenated S-sequence be
long to the initial s-sequence. 

Definition 49. Partition Type Sequences 
Let f be an arithmetic function, and R a k-relation among numbers. 

How many times can n be expressed in the form of; 

Problem 17. How many times can n be expressed as a sum of non-null 
squares (or cubes, or m-powers)? 

Definition 50. Construction of Elements of the 
Square-Partial-Digital Subsequence 
The Square-partial-digital subsequence (SSPDS) is the sequence of 

square integers which admit a partition for which each segment is a square 
integer. An example is 5062 = 256036, which has partition 256 / 0 / 
36. C. Ashbacher showed that SSPDS is infinite by exhibiting two infi-

nite families of elements. We will extend his results by showing how to 
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construct infinite families of elements of a SSPDS containing the desired 
patterns of digits. 

Problem 18. 441 belongs to the SSPDS, and its square 4412 = 194481 
also belongs to the SSPDS. Can another example of integers m, m 2 , m4 

all belonging to SSPDS be found? 

Problem 19. It is relatively easy to find two consequtive squares in 
SSPDS, e.g., 122 = 144 and 132 = 169. Does the SSPDS contain three or 
more consequtive squares as well? What is the maximum length? 

Problem 20. How many primes are there in the expression: x1l + yr, 
where gcd(x,y) = I? K. Kashihara announced that there are only finitely 
many numbers of the above form, which are products of factorials. F. Luca 
proved the following conjecture: 

Let a, b, and c be three integers with ab 'I O. Then the equation 
axY + byr = cz'\ with x, y, z ~ 2, and gcd(x, y) = 1, has finitely many 
solutions (x, y, z, n). 

Problem 21. J. Castillo asked in [21] how many primes are there in 
the expression: x? + X;3 + ... + X~l, where n > 1, Xl, X2, ••• , Xn > 1, and 
ged(Xl' X2 • ... , Xn) = I? 

This is a generalization of Problem 43 called "Smarandache expression" 
in [21]. F. Luca announced a lower bound for the size of the largest prime 
divisor of an expression of type ax' + byr, where ab 'I 0, x, y ~ 2, and 
gcd(x, y) = 1. 

The following three problems are proved by Henry Ibstedt in [41] 
Theorem 31. Subtraction Periodic Sequences 
Let c be a. positive integer. Start with the positive integer N and let N' 

be its digital reverse. Put NI = IN' - el, a.nd let Nf be its digital reverse. 
Put N2 = IrN'- el, and let NI;. be its digital reverse. And so on. We shall 
obtain eventually a repetition. For example, with c = 1 and N = 52 we 
obtain the sequence: 

52,24,41,13,30,02,19,90,08,79,96,68,85,57,74,46,63, 35,52, ... 

Here a repetition occurs after 18 steps, and the length of the repeating 
cycle is 18. 

First example: c = 1, 10 $ N $ 999. 
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Every other member of this interval is an entry point into one of five 
cyclic periodic sequences (four of these are of the length of 18, and one 
of the length of 9). When N is of the form of 11k or 11k - 1, then the 
iteration process results in O. 

Second example: 1 ~ c ~ 9, 100 ~ N ~ 999. For c = 1,2 or 5 all 
iterations result in the invariant 0 sometimes, after, a large number of 
iterations. For the other values of c there are only eight different possible 
values for the length of the loops, namely 11,22,33,50,100,167,189,200. For 
e = 7 and N = 109 we have an example of the longest loop obtained: it 
has 200 elements, and the loop closes after 286 iterations. (H. Ibstedt) 

Theorem 32. Multiplication Periodic Sequences 
Let c > 1 be a positive integer. Start with the positive integer N, 

multiply each digit x of N by c and replace that digit by the last digit of 
ex to give N1 . And so on. We shall obtain eventually a repetition. For 
example, with c = 7 and N = 68 we obtain the sequence: 

68,26,42,8468, ... 

Integers which digits are all equal to 5 are invariant under the given oper
ation after one iteration. 

If e = 2, there are four term loops, starting with the first or second 
term. If c = 3, tIJere are four term loops, 81 arting with the first term. If 
e = 4, there are four term loops, starting with the first or second term. If 
e = 4 or 5, the sequence is invariant after one iteration. If c = 7, there 
are four term loops, starting with the first term. If c = 8, there are four 
term loops, starting with the second term. If c = 9, there are two loops, 
starting with the first term. 

Theorem 33. Mixed Composition Periodic Sequences 
Let N be a two-digit number. Add the digits, and if the sum is greater 

than 10 add them again. Also take the absolute value of their difference. 
These are the first and second digits of N1 . Now repeat this. For example, 
with N = 75 we obtain the sequence: 

75,32,51,64,12,31,42,62,84,34,71,86,52,73,14,53,82, 16,75, ... 

There are no invariants in this case. Four numbers: 36, 90, 93, and 99 
produce two-element loops. The longest loops have 18 elements. There 
are also loops of 4, 6, and 12 elements. (H. Ibstedt) 

There will always be a periodic (invariant) sequence whenever we have 
a function f : S -+ S, where S is a finite set, and we repeat the function 
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I more times than cord(S). Thus the General periodic sequence is defined 
as: 
01 = I(s), where 8 is an element of S; 
a2 = I(ad = l(f(s»; a3 = 1(02) = 1(f(aI) = l(f(f(s))) 

Definition 51. Erdos-Smarandache Numbers: 

2,3,5,6,7,10,11,13,14,15,17,19,20,21,22,23,26,28,29,30, 

31,33,34,35, ... 

Solutions of the diophantine equation P(n) = S(n), where P(n) is the 
largest prime factor which divides n, and Sen} is the Smarandache func
tion. 

References: [36, 68J 

Problem 22. A Square Product Sequence: 

2,5,27,577,14401,518401,25401601,1625702401,131681894401, 

13168189440001,1593350922240001, ... 

S" = 1 + 8182 ... 8", where 81: is the k-th square number. How many of 
them are prime? 

Problem 23. A Cubic Product Sequence: 

2,9,217,13825,1728001,373248001, 128024064001,65548320768001, '" 

e" = 1+c1c2 ... c", where C1: is the k-th cubic number. How many of them 
are prime? 

Problem 24. A Factorial Product Sequence: 

2,3,13,289,34561,24883201,125411328001,5056584744960001, ... 

F" = 1 + 1112 .. ./", where 11: is the k-th factorial number. How many of 
them are prime? 

Problem 25. How many solutions have the equalities: 

S(n + 1) +S(n + 2) = Sen + 3) + S(n +4)1 
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M. Bencze found the solutions n = 5,6,27; 

Sen + 1) - Sen + 2) = Sen + 3) - Sen + 4)? 

M. Bencze found the solutions n = 0, 1,48; 

Sen + 1) + Sen + 2) + Sen + 3) = Sen + 4) + Sen + 5) + Sen + 6)? 

M. Bencze found the solution n = 4. 

Problem 25. Continued Fractions 
If we consider the consecutive sequence 

1,12,123,1234,12345, ... 

we form a simple continued fraction 

1 + ------~----
12 + 1 

123 + 1 1 
1234 + 1234;) + ... 

1 

If we consider the reverse sequence 

1,21,321,4321,54321, ... 

to the previous one we get a general continued fraction 

1 
1 + 21 

12 + 3:l1 
123 + 4321 

1234 + 12345 + ... 

Calculate each of the above continued fractions. The previous example 
is convergent (Dodge [31]) but what about the second? 

Reference: [22, 23, 31, 87] 

Problem 27. Palindromic Numbers and Iterations: A number 
is called palindromic if it reads the same forwards and backwards. For 
example: 121, 34566543, 1111. The Pseudo-Smarandache function Zen) 
is defined for any n ~ 1 as the smallest integer m, such that n divides 
evenly 1 + 2 + ... + m. There are some palindromic numbers n such that 
Zen) is also palindromic Z(909) = 404, Z(2222) = 1111. Let Zk(n) 
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Z(Z(Z( ... (n) ... »), where function Z is executed k times. ZO(n) is, by 
convention, n. 

Unsolved problem: What is the largest value of m, such that for 
some n, Zk(n)s is a palindrome for all Ie = 0, 1,2, ... , m? 

Conjecture (Ashbacher): There is no largest value of m, such that 
for some n, Zi(n)s is a palindrome for all k = 0,1,2, ... , m? 

Reference: [43] 

Problem 28. Some upper bounds for the Smarandache func
tion average: Let S = *.(S(l) + S(2) + ... + S(n» be the Smarandache 
function average. S. Tabirca and T. Tabirca. proved that 

- 3 1 2 
S < -.n + - + - for n > 5' - 8 4 n' , 

- 21 1 2 
S < -.n + - - -. for n > 23 

- 72 12 n' 

They conjectured that S = t#L. for n > 1. In n' 
The following three theorems are proved by F. Smarandache in [i5]. 

Theorem 34. On Concurrent Lines: If a polygon with n sides 
(n ~ 4) is circumscribed to a circle, then there are at least three concurrent 
lines among the polygon's diagonals and the lines which join tangential 
points of two non-adjacent sides. 

Theorem 35. On Cevians Theorem: Let AA', BB' ,CC' be three 
concurrent cevians (lines), in the point P, in the triangle ABC. Then 

PA PB PC 
PA'+ PB'+ PC,~6, 

and 
PA PB PC BA CB AC 
PA"PB"PC = BA"CU'AC' ~8. 

Theorem 36. On Podaire Theorem: Let AA',BB',CC' be the 
altitudes of the triangle ABC. Note AB = c, BC = a, CA = b, and 
A' B' = c' , B' C' = a', Ct A' = b'. Then 
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Problem 29. Let p be a positive prime and s ~ 2 be an integer. Then 
Z(p') = p.+l - 1, if p is even; or Z(p') = p.-l - 1, if p is odd. The 
solution set of the diophantine equation Z(x) = 8 is {9, 12, 18, 36}. For 
any positive integer n the diophantine equation Z(x) = n has solutions. 
Unsolved Problem 1: The diophantine equation Z(x) = Z(x + 1) has 
no solutions. 
Unsolved Problem 2: For any given positive number r there exists an 
integer s, such that the absolute value of Z( s) - Z( s + 1) is greater than 
r. 

Reference: [43] 

Definition 52. Smarandache similar triangles: Let us denote by 
T(a, b, c) the triangle ABC with side lengths of a, b, c. Then the two similar 
triangles T( a, b, c) and T( a', b' , c/) are said to be Smarandache similar ones 
if S(a) = S(a' ), S(b) = S(b' ), S(c) = S(c/). 

Reference: [65] 

Definition ·53. Smarandache Related Triangles: Unsolved prob
lems 1), 2), 4) are solved by Charles Ashbacher in [5]. Being given a 
triangle T(a, b, c), we say that a triangle T(a' , b', c/) is Smarandache relat
ed to T if S(a) = S(a' ), S(b) = S(b/), S(c) = S(c/). Note that triangles T 
and T' mayor may not be similar. 

The following four problems are interested and Problems 1),2),4) are 
solved by Charles Ashbacher in [5]. 
Problem 1: Are there two distinct dissimilar Phytagorean triangles that 
are Smarandache related, i.e., both T(a,b,c) and T(a',b' , c' ) are Phy
tagorean, so that S(a) = S(a' ), S(b) = S(b' ), S(c) = S(c' ), but not being 
similar. 
Problem 2: Are there two distinct and dissimilar 60°-triangles or 120°
triangles that are Smarandache related? 
Problem 3: Let triangle T(a, b, c) be given. Is it possible to give either an 
exact formula or an upper bound for the total number oftriangles (without 
actually determining all of them) that are Smarandache related to T? 
Problem 4: Consider other ways of relating two triangles in the Smaran
dache number sense. For example, are three two triples of natural num
bers (a, b,c) and (a', b', c' ), such that a + b + c = a' + b' + c' = 180° and 
S(a) = S(a/), S(b) = S(b' ), S(c) = S(c' ). If such distinct triples exist, the 
two triangles would be Smarandache related via their angles. Of course, 
in this relationship the side lengths of the triangles may not be natural 
numbers. 

Reference: [65] 
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The following four definitions are introduced in F. Smarandache's paper 
"Paradoxist Mathematics" (see pages 5-28 from [82]). 

Definition 54. Paradoxist Geometry: A new type of geometry 
was constructed by F. Smarandache (see [57]) in 1969 simultaneously in a 
partially Euclidean and partially non-Euclidean space by replacing the Eu
clid's fifth postulate (axiom of parallels) with the following five-statement 
propositions: 
a) there are at least one straight line and one point exterior to it in the 
space, for which only one line passes through the point and does not in
tersect the initial line [1 parallel]; 
b) there are at least one straight line and one point exterior to it in the 
space, for which only a finite number of lines 11 ,/2 , ••• , It (k ~ 2) pass 
through the point and do not intersect the initial line [2 or more (in a 
finite number) parallels]; 
c) there are at least one straight line and one point exterior to it in the 
space, for which any line that passes through the point intersects the ini
tialline [0 parallel]; 
d) there are at least one straight line and one point exterior to it in the 
space, for which an infinite number of lines that pass through the point 
(but not all of them) do not intersect the initial line [an infinite number 
of parallels, but not all lines passing through]; 
e) there are at least one straight line and one point exterior to it in the 
space, for which any line that passes through the point does not intersect 
the initial line [an infinite number of parallels, all lines passing throught 
the point]. 

Definition 55. Non-Geometry: A curious geometry was construct
ed by F. Smarandache (see [26]) in 1969 with the following "axioms": 
1. It is not always possible to draw a line from an arbitrary point to an
other arbitrary point. 
2. It is not always possible to extend by continuity a finite line to an 
infinite line. 
3. It is not always possible to draw a circle from an arbitrary point and of 
an arbitrary interval. 
4. Not all the right angles are congruent. 
5. If a line, cutting two other lines, forms the interior angles of the same 
side of it strictly less than two right angles, then not always the two lines 
extended towards infinity cut each other in the side where the angles are 
strictly less than two right angles. 
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Definition 56. Counter-Projective Geometry This type of geom
etry has been constructed by F. Smarandache (see [17]) in 1969. 

Let P, L be two sets, and r a relation included in P x L. The elements 
of P are called points, and those of L lines. When (p, I) belongs to r, 
we say that line I contains point p. For these, one imposses the following 
counter-axioms: 
1) There exist either at least two lines, or no line, that contains two given 
distinct points. 
2) Let PI, P2, P3 be three non-collinear points, and qI, q2 two distinct points. 
Suppose that {PI, qI ,P3} and {P2, q2,P3} and collinear triples. Then the 
line containing PI, P2, and the line containing qI, q2 are not intersecting 
each other. 
3) Every line contains at most two distinct points. 

Definition 57. Anti-Geometry 
It is possible to deformalize entirely Hilbert's groups of axioms of the 

Euclidean Geometry, and to construct a model, such that none of its fixed 
axioms holds. Let us consider the following things: 
- a set of <points>: A, B, C, ... 
- a set of <lines>: h, k, I, ... 
- a set of <planes>: 0', /3, /, ... and 
- a set of relationships among these elements: "are situated", "between", 
"parallel", "congruent", "continuous", etc. Then, we can deny all Hilbert's 
twenty axioms [see David Hilbert, "Foundations of Geometry", translat
ed by J .Townsend, 1950; and Roberto Bolona, "Non-Euclidean Geome
try" ,1938]. There exist cases, within a geometric model, whem the same 
axiom is verified by certain points/lines/planes and denied by others. 

GROUP I. ANTI-AXIOMS OF CONNECTION: 
1.1. Two distinct points of A and B do not always completely deter

mine a line. 
Let us consider the following model MD: 

Get an ordinary plane 6, but with an infinite hole in being of the following 
shape: 
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P 
1 seai-plane delta 1 
a ................... . 
n 
e 

d 
e 
I ................... . 
t semi-plane delta 2 
a 

p 

Q 

curve 11 (frontier) 

. I . J 

• K 

curve f2 (frontier) 

Plane 6 is a reunion of two disjoint planar semi-planes; 11 lies in MD, 
but f2 does not; P, Q are two extreme points on I that belong to MD. 

One defines a LINE I as a geodesic curve if two points A, B that belong 
to MD lie also in I. If a line passes two times through the same point, then 
it is called a double point (K!'OT). 

One defines a PLAl'\E 0 as a surface, such that for any two points 
A, B that lie in 0 and belong to MD there is a geodesic curve which passes 
through A, B and lies also in o. 

Now, let us have two strings of the same length: one ties P and Q with 
the first string S1, so that curve S1 is folded in two or more different planes 
and S1 is the plane o. Next, do the same with string S2, tie Q with P, 
but over plane 6, and so that S2 has a different form from 81; and a third 
string 83, from P to Q, much longer than 81. Then, 81,82,83 belong to 
MD. 

Let I, J, K be three isolated points - as some islands, i.e. not joined 
with any other point of MD, exterior to plane 6. 

Unsolved problem: Of course, this model is not perfect, and it is far 
from the best. Readers are asked to improve it, or to make up a new one 
that is better. 

Let A, B be two distinct points in t51- It. P and Q are two points on 81, 

but they do not completely determine a line, referring to the first axiom 
of Hilbert, because A - P - 81 - Q are different from B - P - 81 - Q. 

1.2. There is at least one line 1 and at least two distinct points A and 
B of I, such that A and B do not completely determine line I. 
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Line A - P - 51 - Q is not completely determined by P and Q in 
the previous construction, because B - P - 51 - Q is another line passing 
through P and Q. 

1.3. Three points A, B, G not situated in the same line do not always 
completely determine a plane a. 

Let A, B be two distinct points in 81- j" such that A, B, P are not co
linear. There are many planes containing these three points: 81 extended 
with any surface 5 containing 51, but not cutting 52 in between P and Q, 
for example. 

1.4. There is at least one plane, a, and at least three points A, B, G in 
it not lying in the same line, such that A, B, C do not completely determine 
the plane a. (See the previous example.) 

1.5. If two points A, B of a line I lie in a plane a, it does not mean 
that every point of I lies in a. 

Let A be a point in 81- j" and B - another point on 51 between P and 
Q. Let a be the following plane: 81 extended with a surface 5 containing 
51, but not cutting 52 between P and Q, and tangent to 82 on a line QC, 
where G is a point in 82- h. Let D be a point in 82 - 12 , not lying on the 
line QG. Now, A, B, D are lying on the same line A - P - 51 - Q - D, 
A, B are in plane a, but D is not. 

1.6. If two planes a, f3 have a point A in common, does not mean that 
they have at least one second point in common. 

Construct the following plane a: a closed surface containing 51 and 52, 

and intersecting 81 in one point only, P. Then a and 81 have a single point 
m common. 

1.7. There exist lines, where only one point lies, or planes, where only 
two points lie, or space where only three points lie. 

Hilbert's 1.7 axiom may be contradicted ifthe model has discontinuities. 
Let us consider the isolated points area. 

Point I may be regarded as a line, because it is not possible to add any 
new point to I to form a line. 

One constructs a surface that intersects the model only in points I and 
J. 

GROUP II. ANTI-AXIOMS OF ORDER 
11.1 If A, B, G are points of a line and B lies between A and G, it does 

not mean that B always lies between G and A, as well. 
Let T lies in 51, and V lies in 52, both of them closer to Q, but different 

from it. Then: P, V, T are points on line P - 51 - Q - 52 - P, i.e. the 
closed curve that starts from point P and lies in 51 and passes through 
point Q and lies back to 52 and ends in P), and T lies between P and V 
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- because PT and TV are both geodesic curves, but T does not lie between 
V and P 
- because from V the line goes to P and then to T, therefore, P lies 
between V and T. 

By definition: segment AB is a system of points lying upon a line 
between A and B the extremes are included. 

Warning: AB may be different from BA; for example: the segment PQ 
formed by the system of points starting with P, ending with Q, and lying 
in 81, is different from the segment Q P formed by the system of points 
starting with Q, ending with P, but belonging to 52. 

Moreover: AB may sometimes be different from AB; for example: the 
segment PQ formed by the system of points starting with P, ending with 
Q, and lying in 51, is different from the segment PQ formed by the system 
of points starting with P, ending with Q, but belonging to 52. 

IT.2. If A and C are two points of a line, then: there does not always 
exist a point B lying between A and C, or there does not always exist a 
point D such that C lies between A and D. 

For example: let F be a point on h, F being different from P, and G a 
point in 61 , G does not belong to II; draw the line I which passes through 
G and F; then: there exists a point B lying between G and F 
- because GF is an obvious segment, but there is no point D, such that 
F lies between G and D; 
- because GF is right bounded in F (GF may not be extended to the other 
side of F, because otherwise the line will not remain a geodesic curve one 
anymore). 

IT.3. There exist at least three points situated on a line, so that: one 
point lies between the other two, and another point lies between the other 
two, as well. 

For example: let R, T be two distinct points, different from P and Q, 
situated on line P-st -Q-S2-P, such that the lengths of PR, RT, TP 
are all equal; then: R lies between P and T, and T lies between Rand P, 
and P lies between T and R, as well. 

ITA. Four points A, B, C, D of a line cannot always be arranged: so 
that B lies between A and C and also A between D, and such that C lies 
between A and D and also between Band D. 

For example: let T and R are two dictinct points, different from P and 
Q, situated on line P - 81 - Q - 82 - P, so that the lengths of PR, RQ, 
QT and TP are all equal, therefore, R belongs to 51, and T belongs to 52; 

then P, R, Q, T are situated on the same line: 
so that R lies between P and Q, but not between P and T 

- because the geodesic curve PT does not pass through R, 
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and so that Q does not lie between P and T 
- because the geodesic curve PT does not pass through Q, 
but lies between Rand T; 

- let A and B be two points in 62- h' such that A, Q , Bare colinear, 
and let C, D be two points on 51, 52 respectively, all of the four points 
being different from P and Q; then A, B, C, D are points situated on the 
same line as A-Q-51-P-52-B, which is the same A-Q-52-P-51-B, 
therefore, we may have two different orders of these four points in the same 
time: A, C, D, B and A, D, C, B. 

II.5. Let A, B, C be three points not lying in the same line, and let 
I be a line lying in the same plane ABC, not passing through any of the 
points A, B, C. Then, if line I passes through a point of segment AB, 
it does not mean that line I will always pass either through a point of 
segment BC, or through a point of segment AC. 

For example: let AB be a segment passing through P in the semi-plane 
81, and let C be a point lying in 81 , too, on the left side of line AB; thus A, 
B, C do not lie on the same line; now consider line Q - 52 - P - 51 - Q - D, 
where D is a point, lying in semi-plane 81 but not on h: therefore, this line 
passes through point P of the segment AB, but it passes neuther through 
a point of the segment BC, nor through a point of the segment AC. 

GROUP III. ANTI-AXIOM OF PARALLELS. 
In a plane a through a point A, lying outside of line I, either no line, 

or only one line, or a finite number of lines can be drawn (At least two of 
these situations should occur.) The line(s) is (are) called parallel(s) to I 
through the given point a. 

For example: 
- let 10 be the line N - P - 51 - Q - R, where N is a point lying in 81 

not on II, and R is a similar point lying in 62 not on h, and let A be a 
point lying on 82, then: no parallel to 10 can be drawn through A (since 
any line passing through A, hence, through 52, will intersect 81, hence, 10 
in P and Q); 

- if line 11 lies in 81 , so that h does not intersect frontier II, then: 
through any point lying on the left side of 11 one and only one parallel will 
pass; 

- let B be a point lying in II, different from P, and another point C 
lying in 81 , not on II; let A be a point lying in 61 outside of BC; then: an 
infinite number of parallels to line BC can be drawn through point A. 

Theorem: There are at least two lines 11, 12 of a plane, which do not 
meet a third line 13 of the same plane, but they meet each other, (i.e. if 11 
is parallel to 13 , and all of them are in the same plane it is not necessary 
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that 11 is parallel to 12)' 
For example: consider three points A, B, C lying in h, and different 

from P, and D a point in 61 not on h; draw lines AD, BE and GE, so 
that E is & point in 61 not on h and both BE and GE do not intersect 
AD; then: BE is parallel to AD, GE is also parallel to AD, but BE is 
not parallel to C E because point E belongs to both of them.] 

GROUP IV. ANTI-AXIOMS OF CONGRUENCE 
IV.l. If A, B are two points on a line I, and A' is a point upon the 

same or another line [I, then: upon a given side of A' on the line I', we 
cannot always find only one point B' so that segment AB is congruent to 
segment A' B' . 

For example: 
- let AB be a segment lying in 61 and having no point in common with 

h. and let us construct line G - P - 81 - Q - 82 - P (noted by [' which 
is the same with C - P - 82 - Q - 51 - P, where C is a point lying in 
61 neither in h, nor on AB; take a point A' on 1', between C and P, so 
that A' P is smaller than AB; now, there exist two distinct points B' on 
82. such that A' B1' is congruent to AB, with A' B1 different from A' B2; 

- but if we consider a line /' lying in 151 and limited by the frontier h 
on the right side (the limit point being noted by ]V). and take a point A' 
on ['. close to M, such that A'M is less than A' B', then: there is no point 
B' on the right side of /', so that A' B' is congruent to ..lB. 

A segment may not be congruent to itself! For example: let A be a 
point on 81, closer to P also; A and B are lying on the same line A - Q -
B - P - A, which is the same as line A - P - B - Q - A, but AB measured 
on the first representation of the line is strictly greater than AB measured 
on the second representation of their line. 

IV.2. If a segment AB is congruent to the segment A' B' and also to 
the segment A" B", then segment A'B' is not always congruent to A" B". 

For example: let AB be a segment lying in t51-It, and consider the line 
G - P - 51 - Q - 52 - P - D, where C, D are two distinct points in 151-/-1 , 

such that C, P, D are colinear. Suppose that segment AB is congruent 
to segment CD (i.e. C - P - 81 - Q - 52 - P - D). Get also an obvious 
segment A' B' in 151-/1, different from the preceding ones, but congruent 
to AD. Then, segment A' B' is not congruent to segment CD (considered 
as C - P - D, i.e. not passing through Q.) 

IV.3. If AB, BC are two segments of the same line 1, which have no 
points in common aside from point B, and A' B', B'C' are two segments of 
the same line or of another line /', having no point in common aside from 
B', so that AB is congruent to A' B' and BC is congruent to B' C', then 
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segment AG is not always congruent to A'G'. 
For example: let / be a line lying in 61 , not on h, and let A, B, G be 

three distinct points on /, such that AG is greater than 51; let /' be the 
following line: A' - P - 51 - Q - 52 - P, where A'lies in 61 , not on h, 
and get BI on 51 so that A' B' is congruent to AB, get G' on 52, so that 
BC is congruent to B'G' (points A, B, G are thus chosen); then: segment 
A'G' which is firstly seen as A' - P - B' - Q - G' is not congruent to AG, 
because A' C' is the geodesic curve A' - P - G' (the shortest way from A' 
to C' does not pass through B') which is strictly less than AG. 

Definitions: Let h, k be two lines having a point 0 in common. Then 
system (h.o, k) is called the angle of lines hand k in point O. (Since some 
of our lines are curves, we take the angle of the tangents to the curves in 
their common point.) 

The angle, formed by lines hand k situated in the same plane, noted 
by L (h, I. ), is equal to the arithmetic mean of the angles formed by hand 
I. in all their common points. 

IVA. Let an angle (h, k) be given in the plane a, and let a line h' 
be given in the plane 13. Suppose that in plane 13 a definite side of line h' 
be assigned, and a point 0 ' . Then in plane 13 there are one, or more, or 
even no half-line(s) k' emanating from point 0 ' , so that the angle (h, k) 
is congruent to angle (h', k'), and at the same time the interior points of 
angle (h', k') lie upon one or the both sides of h'. 

Examples: 
- Let A be a point in 61- it, and B, G two distinct points in 62 - 12 ; let h 
be the line A - P - 51 - Q - B, and k be the line A - P - 52 - Q - G; 
since h and I. intersect in an infinite number of points (the segment AP), 
where they normally coincide - i.e. in each point at this kind their angle 
is congruent to zero, angle (h, I.) is congruent to zero. Now, let A' be a 
point in 61- it , different from A and B' a point in 62- 12 , different from B, 
and draw the line h' as A' - P - 51 - Q - B; there exist an infinite number 
of lines 1.' , of the form A' - P - 52 - Q - G' (where G' is any point in 
62- 12 , not in the line QB' ), such that angle (h, k) is congruent to (h', k'), 
because (h', 1.' ) is also congruent to zero, and the line A' - P - 52 - Q - D' 
if D' is not on the line QC' . 
- if h, k, and h' are three lines in 61- p , which intersect the frontier h in 
one point at most, then there exists only one line k' on a given part of h', 
such that angle (h, k) is congruent to the angle (h', k' ). 
- Is there any case when, with these hypotheses, no k' exists? 
- Not every angle is congruent to itself; for example: L(51' 52) is not congru-
ent to L(51' 52) [because one can construct two distinct lines: P-51-Q-A 
and P - 52 - Q - A, where A is a point in 62- 12 , for the first angle, which 
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becomes equal to zero; and P - 81 - Q - A and P - 82 - Q - B, where B 
is another point in 6,.-12, B different from A, for the second angle, which 
becomes strictly greater than zero! 

IV.S. If angle (h, k) is congruent to angle (h', F) and angle (h", kn), 
then angle (h', k') is not always congruent to angle (h", k"). (A similar 
construction to the previous one.) 

IV.6. Let ABC and A' B'C' be two different triangles, so that 
AB is congruent to A' B' , 
AC is congruent to A' C', 
LBAC is congruent to LB'A'C'. 

Then, not always LABC is congruent to LA' B'C' and LACB is con
gruent to LA'C' B'. 

For example: let M, N be two distinct points in 62- h' thus obtaining 
the triangle PM N; Now take three points R, M', N' in 61-/t, such that 
RM' is congruent to PM, RN' is congruent to RN, and angle (RM', RN') 
is congruent to angle (P M, P N). RM' N' is an obvious triangle. Of course 
both the triangles are not congruent, because for instance, PM and P N 
cut each other twice - in P and Q - while RM' and RN' only once - in 
R. (These are geodesical triangles.) 

Definitions: Two angles are called supplementary if they have the 
same vertex, one side in common, and the other not common sides form a 
line. 

A right angle is the angle, congruent to its supplementary angle. 
Two triangles are congruent if their angles are congruent two by two, 

and their sides are congruent two by two. 
Propositions: A right angle is not always congruent to another right 

angle. 
For example: let A - P - 81 - Q be a line, with A lying in 61-/t, and 

B - P - 81 - Q another line, with B lying in 61-/t and B not lying on 
line AP; we consider the tangent t at S1 in P, and B chosen in a way 
that L(AP, t) is not congruent to L(BP, t); let A', B' be other points lying 
in 61_" so that LAPA' is congruent to LA' P - S1 - Q, and LBP B' is 
congruent to LB' P - S1 - Q. Then: 
- angle AP A' is right, because it is congruent to its supplementary (by 
construction); 
- angle B P B' is right, because it is congruent to its supplementary (by 
construction); 
- but LAPA' is not congruent to LBP B', because the first one is a half of 
angle A - P - 81 - Q, i.e. a half of L(AP, t), while the second is a half of 
B - P - 81 - Q, i.e. a half of L(BP, t). 

The theorems of congruence for triangles [two sides and an angle in 
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between; two angles and a common side; three side] may not hold even in 
the Critical Zone (51,52, !1, h) of the Model. 

Property: The sum of the angles of a triangle can be: 
- 180 degrees, if all of its vertices A, B, C are lying, for example, in 61-It; 
- strictly less than 180 degrees [any value in the interval (0,180)], for 
example: let R, T be two points in 62- 12 , so that Q does not lie in KI', 
and S another point on 52; 

then triangle SRT has L(SR, RT) congruent to 0, because SR and ST 
have an infinite number of common points (the segment SQ), and LQT R+ 
LTRQ congruent to 180 - LTQR [by construction we may vary LTQR in 
the interval (0, 180)]; 
- even 0 degree: let A be a point in 61-It, B a point in 62-12, and C a point 
on 53, very close to P; then ABS is a non-degenerate triangle (because its 
vertices are non-colinear), but 

L(A - P - 51 - Q - B,A - P - 53 - C) 

= L(B - Q - 51 - P - A, B - Q - 53 - P - 53 - C) 

= L(C - 53 - P - kG - 53 - P - 51 - Q - B) = 0 

(one considers the length of G - 53 - P - 51 - Q - B strictly less than the 
length of C - 53 - B; the area of this triangle is also 0; 
- more than 180 degrees, for example: let A, B be two points in 81- It , so 
that LP AB + LP BA + L(51, 52; inQ) is strictly greater than 180 degrees; 
then triangle ABQ, formed by the intersection of lines A - P - 52 - Q, Q -
51 - P - B, AB will have the sum of its angles strictly greater than 180 
degrees. 

Definition: A circle of center M is a totality of all points A for which 
the segments M A are congruent to one another. 

For example, if the center is Q, and the length of the segments M A is 
chosen to be greater than the length of 51, then the circle is formed by the 
arc of circle centered in Q, of radius M A, and lying in 62 , plus another arc 
of circle centered in P, of radius M A-length of 51, lying in 61 

GROUP V. ANTI-AXIOMS OF CONTINUITY 
(ANTI-ARCHIMEDIAN AXIOM) 

Let A, B be two points. Take the points AI, A 2 , A3 , A 4 , •.. , so that Al 
lies between A and A2, A2 lies between Al and A3, A3 lies between A2 and 
A4, etc. and so that segments AAl , A I A2, A2A3, A3A4' ... are congruent 
to one another. Then, among this series of points, there not always exists 
a certain point An, such that B lies between A and An. 
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For example: let A be a point in 61- J 1, and B a point on II, B different 
from P; let us consider on line AB points AI, A2, A3, A4, ... in between A 
and B, such that AAl,AlA2,A2A3,~A4' ... etc. are congruent to each 
other; then, we find that there is no point behind B (considering the 
direction from A to B), because B is a limit point (line AB ends in B). 

The Bolzano's (intermediate value) theorem may not hold in the Crit
ical Zone of the Model. 

Unsolved problem: Is there a better model for this anti-geometry? 

Definition 58. A Class of Paradoxes 
Let < A > be an attribute, and let < Non - A > be its negation. 

Then: 
Paradox 1. ALL IS < A >, THE < Non - A> TOO. 
Examples: 
Ell: All is possible, the impossible too. 
E12: All is present, the absents too. 
E13: All is finite, the infinite too. 
Paradox 2. ALL IS < Non - A >, THE < A > TOO. 
Examples: 
E21: All is impossible, the possible too. 
E22: All is absent, the presents too. 
E23: All is infinite, the finite too. 
Paradox 3.· XOTHI.VG IS < A >, .VOT EVE.v < A>. 
Examples: 
E31: Nothing is perfect, not even the perfect. 
E32: Nothing is absolute, not even the absolute. 
E33: ~othing is finite, not even the finite. 

Remark: The three kinds of paradoxes are equivalent. 
More general paradox: ALL (Verb) < A >, THE < Non - A > 

TOO. 
Replacing < A > by an attribute, we find a paradox. 
Let us analyse the first one (Ell): "All is possible, the impossible too". 
If this sentence is true, then we get that "The impossible is possible 

too", which is a contradiction; therefore the sentence is false (object lan
guage). 

But the sentence may be true, because "All is possible" involves that 
"the impossible is possible", i.e., "it is possible to have impossible things", 
which is correct (meta-language). 

Of course, among these ones, there are unsuccessful paradoxes, but the 
proposed method obtains beautiful others. 
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References: [2, 14, 44, 45, 46, 48, 49, 53, 55, 56, 57, 63, 77, 91, 93, 
96,97] 

Definition 59. Linguistic Paradoxes 
Let < N >, < V >, < A > be some noun, verb, and attribute, 

respectively, and < Non - N >, < Non - V >, < Non - A > be their 
antonyms, respectively. For example, if < A > is small, then < N on-A> 
is big or large, etc. 

Also let < N' >, < Nil >, etc. represent synonyms of < N > or even 
< N >, and so < V' >, < V" >, etc. or < A' >, < A" >, etc. 

Let < NV > represent a noun-ed verb, and < NV' > a synonym, etc. 
Then, one defines the following classes oflinguistic paradoxes and semi

paradoxes. 

1. < Non - N > is a better < N >. 
< Non - A> is a better < A >. 
< Non - V > is a better < V >. 

Examples: 
~ot to speak is sometimes a better speech. 
Not to complain is a better complaint. 
Unattractive is sometimes better than attractive. 
Slow is sometimes better than fast. 
~o governmE'lIt is sometimes a better government. 
A non-ruler is sometimes a better ruler. 
No news is a good news. 
Not to stare is sometimes a better look. 
~ot to love is a better love. 
Not to move is sometimes a better move. 
Impoliteness is a better politeness. 
Not to hear is better than not listening. 
No reaction is sometimes the best reaction. 
Not to show kindness is a better kindness [welfare]. 
She is better than herself. 
No fight is a better fight [i.e., to fight by non-violent means]. 

2. Only < N > is truly a < Non - N >. 
Only < A > is truly a < Non - A >. 

Examples: 
Only a rumor is truly a gossip. 
Only a fiction is truly a fact. 
Only normal is truly not normal. 
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Nobody is truly a 'somebody'. 
Only fiction is truly real. 
The friend is the most dangerous hidden enemy. 
Only you are truly not you [= you act strangely]. 
Only mercy can be truly merciless. 
If you spit at the sky, it will fall in your face. 
Only gentleness is truly wildness. 

3. This is so < A >, that it looks < ]V on - A >. 
Examples: 

This is so true, that it looks false! 
This is so ripe, that it looks spoilt. 
This is so friendly, that it looks hostile. 
He seems so trustworthy, that he looks untrustworthy. 
This is so fake, that it looks real! 
This is so proper, that it looks improper. 
This is so beautiful, that it looks unreal. 
This is so simple, that it looks difficult. 
The story was so real, that it looked fiction. 
Can't see the trees for the forest. 

4. There is some < ]V >, which is < A > and < Non - A > at the 
same time. 

Examples: 
There are events which are good and bad at the same time. 
There are lows which are good and bad at the same time. 
There are some news which are real and wrong at the same time. 
There are some insects which are helpful and dangerous at the same time 

Uike the spider]. 
There are men who are handsome and ugly at the same time. 
There are classes that are fun and boring at the same time. 
There are some ministers who are bevievers and mis-believers at the same 

time. 
There are moments that are sweet and sour. 
There are games which are challenged and not competitive at the same 

time. 
Food which are simultaneously hot and cold. 
The game was excluding, yet boring [because we were losing]. 
People are smart and foolish at the same time [i.e., smart at something, 

and foolish at other thing]. 

5. There is some < ]V >, which < V> and really < Non - V> at the 
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same time. 
Examples: 

There are people who trick and do not really trick at the same time. 
There are some people who play and do not play at the same time. 
Some of life's experiences are punishments and rewards as the same time. 
Exercise is exchausting but also invigorating. 
There are children who listen and do not really listen at the same time. 
There are teachers who teach and do not teach at the same time. 
There are people who spell and misspell at the same time. 
Nice and rough people concomitantly. 
Politicians who lie and tell the truth at the time! 

6. To < V >, even when < Non - V >. 
Examples: 

A sage thinks even when he does not think. 
I exist even when I do not exist. 
A clown is funny even when he is not being funny. 
To die of thirst surrounded by water [saltwater]. 
To be poet and not to know it. 
A mother worries even when she does not worry. 
To believe even when you do not believe. 
Is matching even when not-matching. 
I sleep even when I am awake. 
Always running round. 
To dream, even when not sleeping. 

7. This < N> is enough < Non - N >. 
Examples: 

This silence is enough noise. 
This vacation from work is hard work. 
The superiority brings enough inferiority [= listlessness]. 
This day is my night. 
This diary is enough non-diary. 
This sleep is enough awake. 
This sweet truthfulness is enough sarcasm. 
This table of four is enough for six people. 
I had enough. 
This job is enough recreation [when enjoying the job]. 

8. < Non - V > sometimes means < V >. 
Examples: 

Not to speak sometimes means to speak. 

5 65 



Not to touch sometimes means to touch. 
To preserve peace sometimes means going to war. 
To destroy life (as in viruses) sometimes means to preserve life. 
Not to listen sometimes means to listen. 
Two feet forward sometimes means standing still. 
~ot to litter sometimes means to litter. 
Speeding is sometimes not speeding [in case of emergency). 
Not to show anger is sometimes to show anger. 

9. < N > without < N >. 
Examples: 

Hell without hell. 
The style without style. 
The rule applied: there were no rule! 
Our culture is our lack of culture. 
Live without living. 
Some people are so afraid of death, that they do not live. 
Work without work. 
Cannot live with them, cannot live without them. 
Death without death [for a Christian dying is going on the eternal life]. 
Guilty without guilt [sometimes is guilty but does bot feel guilty]. 

1O.a. < .v > inside/within the < Son -.v >. 
Examples: 

Movement inside the immobility. 
Silence within the noise. 
Slavery within the freedom. 
Loneliness within a crowd. 
A circle within a circle. 
The wrestling ring inside a squared section. 
To find wealth in poverty [i.e., happiness and loveJ. 

1O.b. < Non - N > in the < N >. 
Examples: 

Immobility inside the movement. 
Noise inside the silence. 
The eye of the storm. 
Government. Bureaucracies. 
Inequality inside the equality. 
Single inside the marriage. 
Anger inside the happiness. 

66 



Warmth in the cold. 
Cold in the heat. 
Laughing without being happy. 
Has not gotten anywhere. 
Poverty in wealth [no poverty or love in a wealth family]' 

11. The < A > of the < Non - A >. 
Examples: 

The shadow of the light. 
Music of silence. 
Relaxing of exercise effect. 
The restrictions of the free. 
Life through death. 
The sound/loudness of the silence. 
I can see the light at the end of the tunnel. 
The slave of freedom [someone who could not give up his freedom, not 

even in marriage]. 

12. < V> what one < Non - V >. 
Examples: 

To see what one cannot see. 
To hear what one cannot hear. 
To taste what one cannot taste. 
To accept what one canlJot ullderstand. 
To say what one cannot say [to tell a secret]. 
To wait patiently when one does not know how to wait. 
To breathe what one cannot breathe. 
To feel what one cannot feel. 
To appreciate what one dis-appreciates. 
To believe what one cannot believe [faith]. 
To smell what one cannot smell. 

13. Let us < V> by < Non - V >. 
Examples: 

Let us strike by not striking [= Japanese strike]. 
Let us talk by not talking; [means to think]. 
To vote by not voting all. 
To help someone by not helping [using experience as a teacher]. 
Let us justify by not justifying. 
Let us win by not winning. 
Let us strip by not stripping [to make bare or clear]. 
Let us fight by not fighting [Ghandi's motto]. 
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14. < N > of the < Non- N >. 
Examples: 

The benefits we get from non-benefits. 
The smoke we got from non-smokers. 
The rewards we get from hard work. 
The service we get from non-service. 
The good that comes from bad. 
The pleasure we get from the pain. 

15. < Non - A> is < A>. 
Examples: 

The bad is good (because makes you try harder]. 
The good is bad [because does not leave any room for improvement]. 
Work is a blessing. 
The poor is spiritually rich. 
Sometimes ugly is beautiful [because beauty is in the eyes of the beholden]. 
You have to kiss a lot of frogs before you find a prince. 
Hurt is healing. 
"There is no absolute" is an absolute. 
;\ot to commit any error is an error. 

16. A < Non - N > < N >. 
Examples: 

A positive negative [which means: a failure enforces you to do better]. 
A sad happiness. 
An impossible possibility. 
Genuine imitation leather. 
A loud whisper. 
A beautiful disaster [which means beauty can be found anywhere]. 
A bitter sweet. 
A harst gentleness [a gentleness that is very firm with you]. 
A guiltless sinner [someone who does not regret sinning]. 

17. Everything has an < A > and a < Non - A >. 
Examples: 

Everything has a sense and a non-sense. 
Everything has a truthful side and a wrong side. 
Everything has a beginning and an end. 
Everything has a birth and a death. 
Everything has its time and a non-time. 
Everything has an appearance and non-appearance. 
Everybody has a good side and a bad side. 
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Everyone has a right and a wWllg. 

18. < V> what < .von - \/ >. 
Examples: 

To be what you are not. 
One needs what one does not need. 
Expect the ullexpected! 
Culture exists by its non-existence. 
~o matter how rich we are, we never make enough money. 
One purchases what one does not purchase. 
To work when we are not working. 
To die might mean to live forever [= for an artist]. 
One wants because one does not want [sometimes one wants something 

only because someone else likes it]. 
Look at this Funny Law example: 

A Paradoxist Government: Suppose you have two cows. Then the govern
ment kills them and milks you! 

The list of such invented linguistic paradoxes can be indifinitely extend
ed. It is specific to each language, and it is based on language expressions 
and types of sentence and phrase constructions and structures. 

One can also play with antonymic adverbs, prepositions, etc to con
struct other categories of linguistic paradoxes. 

References: [2, 14,44, 45, 46, 48, 49, 53, 5.5, 56, 57, 63, 77, 91, 93, 
94,96, 97] 

Definition 60. Sorites Paradoxes 
These sorites paradoxes are associated with Eubulides of Miletus (fo

urth century B.C.): 
1) Invisible paradox: 

Our visible world is composed of a totality of invisible particles. 
a) An invisible particle does not form a visible object, nor do two 

invisible particles, three invisible particles, etc. However, at some point, 
the collection of invisible particles becomes large enough to form a visible 
object, but there is apparently no definite point where this occurs. 

b) A similar paradox is developed in an opposite direction. It is always 
possible to remove an atom from an object in such a way that what is left is 
still a visible object. However, repeating and repeating this procedure, at 
some point, the visible object is decomposed so that the left part becomes 
invisible, but there is no definite point where this occurs. 

Between A and Non - A there is no clear distinction, no exact frontier. 
Where does A really end and Non - A begin? We extend Zadeh's fuzzy 
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set term to neutrosophic concept. 
2) Mass paradox: 

Things with mass result from atoms with quasi-null mass. 
3) Infinite paradox: 

A finite line pegment is formed by infinitely many points. 
References: [85] 

Definition 61. Linguistic Tautologies 
The tautology is a redundancy, a pleonasm, a needless repetition of an 

idea, according to the "Webster's New World Dictionary", Third College 
Edition, 1988. 

However, the following classes of tautologies - using repetition - go to a 
deeper meaning, and even changes the sense. A double assertion reverses 
to a negation. 

One also may play with the synonyms. 
Let < N >, < V >, < A > be some noun, verb, and attribute, 

respectively. Also let < N' >. < Nil >, etc. represent synonyms of 
< N > (or just < N », and so < V' >. < V" >, etc. or < A' >, < A" >, 
etc. 

Let < NV > represent a noun-ed verb, and < NV' > a synonym, etc. 
Then, one defines the following classes of linguistic tautologies and 

semi-tautologies. 

1. ~lirror semi-paradox: 
< N > of the < N' >. 
< N > of the < N' > of the < Nil >. 

Examples: 
Best of the best. 
Worst of the worst of the worst. 
A mother of the mother of the mother ... [the maternal grandmother]. 
A follower of the followers. 
The row of the rows. Oots of rows.] 

2. This is not an < N >, this is an < N' >. 
Examples: 

1 his is not a teacher, this is a professor. 
This is not a car, this is a Volkswagen. 
This is not a truck, this is a Chevy. 
This is not noise, this is music. 
This is not music, this is noise. 
This is not a cedar tree, this is a <gad>. [gad = Navajo name for cedar 
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tree] 
This is not a sword, this is a sabre. 
This is not a problem, this is a exercise. [= easier] 
Practice makes you practice. 
This is not a girl, this is Katie. 
This is not a horse, this is a pony. 

3. < N > is not enough < N ' > 
< A> is not enough < A' >. 

Examples: 
Sufficient is not enough sufficient [which means: to do more than "suffi
cient"]. 
Punishment is not enough punishment. 
Health is not enough wealth. 
Clean is not enough clean. 
Studying is not enough studying [which means to do more than just get-

ting by, i.e. to do research]. 
Extravagant is not enough extravagant. 
Time is not enough time. 
The more you have, the more you want. 
Attention is not enough attention [some people need action, too]. 

4. More < A > than < A' >. 
Examples: 

Better than better [= perfection]. 
Worst than worst [= evil]. 
Sweeter than sweeter [= honey]. 
More life than life [= spirituality]. 
More depressed than depressed. 
Faster than faster. 
More beautiful than pretty. 
l;glier than ugly f= really ugly]. 
Smarter than smart [= like a genius]. 

5. How < A > is an < A' > < N >? 
Examples: 

How democratic is a so called democratic society? 
How republican is a so called republican society? 
How civilized is a so called civilized person? 
How free is a so called free country? 
How commanding is a so called commanding officer? 
How Pop Culture is a so called Pop Culture? 
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How strong is a strong man? 
How lone is a lone ranger? [not very, he has tanto]. 

6. No < A > is really < A' >. 
Examples: 

~o friend is really a friend [s/he betrays you when you do not even expect!]. 
~o luck is really a luck. 
~ 0 original is really original. 
~o husband is really a husband [you learn to depend on yourself!] 
i\o tomboy is really a tomboy [girl considered boyish]. 
~o work is really less work. 
No true Marxist is really a true Marxist [they contradict their own beliefs]. 
~o magic is really magic [all is only a trick). 

7. I would rather prefer < A >, than < A' >. 
Examples: 

I would rather prefer pretty, than prettier. 
I want this, not that. 
I would rather prefer this, to that. 
I would rather be old, than old. 
I would rather prefer great than big. 
I would rather be crazy than crazy [crazy like foolish, than crazy like 

insane]. 

8. ~lore < A >, than < A' >. 
Examples: 

Prettier than pretty. 
More real than real. 
More advantage than advantage. 
More help than help. 
More smiles than smiles [she did not psychically smile, but there were 

smiles allover her face]. 
More cries than cries. 
More meters than kilometers. 
Make everyday a rainbow day. 
He earns more than himself. 
More suspictions than suspected. 

9. < V > those who < V' > you. 
Examples: 

Ignore those who ignore you. 
Criticize those who criticize you. 
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Defend those who defend you. 

10. < V > because < V' >. 
Examples: 

I want because I want. 
I think because I think. 
I hear because I listen. 
I see because I look. 
I need because I need. 
I know because I know. 
I live because I live. 
I believe what is unbelievable [faith]. 
I am happy because I am happy [there is no reason for my happiness]. 

11. < V > the < NV' >. 
Examples: 

I hate the haters (therefore, I hate myself!) 
I envy the evniers (therefore, I envy myself). 
I am strange to strangers. 
I cheat the cheaters (therefore, I cheat myself). 
I lie to liers (therefore, I lie myself). 
I kick the kickers (therefore, I kick myself). 
I love the lovers. 

The list of the so invented linguistic tautologies can be indefinitely 
extended. It is specific to each language, and it is based on language 
expressions and types of sentence and phrase constructions and structures. 
One can also play with synonimic adverbs, prepositions, etc. to construct 
other categories of linguistic tautologies. 

References: [2, 14, 44, 45, 46, 48, 49, 53, 55, 56, 57, 63, 77, 91, 93, 
94,96,97] 

Definition 62. Hypothesis: "There is no Speed Barrier 
in the Universe" 

F. Smarandache extended an experiment of the University of Inns
bruck - Austria researchers, which have proved that the speed of light can 
be overpassed, contradicting Einstein's prediction. The Smarandache's hy
pothesis is that speed may by even infinite, which looks fantastic! At this 
speed, a being would not age and life would have no death. 

References: [47, 84, 30] 
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Definition 63. Smarandache Primes, Squares, Cubes, 
M-Powers, and More General "T-"Numbers 

Smarandache Prime is a term of any of the Smarandache sequences, 
or a value of any of the Smarandache-type functions, which is a prime 
number. 

For example: Stephan [88] proved that in the Smarandache Reverse 
Sequence 

1,21,321,4321, ... , 121110987654321, ... 

the only Smarandache Reverse Prime is: 

RSm(82) = 8281807978 ... 121110987654321 

among the first 750 terms, while Weisstein extended the search up to the 
first 2,739 terms. One conjectures that this is the only prime in the whole 
sequence. 

Similarly one defines: 
A Smarandache Square is a term of any of the Smarandache sequences 

(except, of course, the sequence involving squares), or a value of any of the 
Smarandache-type functions, which is a perfect square number. 

A Smarandache Cube is a term of any of the Smarandache sequences 
(except, of course, the sequence involving cubes), or a value of any of the 
Smarandache-type functions, which is a perfect cube number. 

Aud :,;0 011: A Srnaralldache III-Power is a term of any of the Smaran
dache sequences (except, of course, the sequence involving m-powers), 
or a value of any of the Smarandache-type functions, which is a perfect 
m-power number. 

A Smarandache Palindromic Number is a term of any of the Smaran
dache sequences, or a value of any of the Smarandache-type functions, 
which is palindromic. 

Generalization: Let "T -" be a specific defined number (for example: 
perfect number, or Bell number, or at most a prime number, etc.). Then: A 
Smarandache "T -" N umber is a term of any of the Smarandache sequences, 
or a value of any of the Smarandache-type functions, which is "T". 

References: [88], pp. 310-311 and 1661-1663 from [94]. 

Definition 64. Let the set Zp = {O, 1,2, ... ,p - I}. The elements of 
Zp can be written in a unique way as m-adic numbers. 

Let r = (an-lan-2 ... alao)m and 8 = (bn-lbn-2 ... blbo)m be two ele
ments from Zp. Then, one can introduce the operation: 
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where Iz - yl is the absolute value of z - y. 
The set (Zp, l-l) is known as the Smarandache Groupoid. 
The complement of r, C(r) = r 1 - 1 SuP(Zp), where SuP(Zp) is the 

maximal element of Zp, 
We say that rRs, iff r 1- I C(r) = s 1 - l C(s). R is a relation of 

equivalence, which partitions Zp into equivalence classes. The equivalence 
class below is defined as D-form: 

DSup(zp) = {r E Zp ! rl-lC(r) = SuP(Z,)}. 

Let us introduce two more operations on Z,: 

where {z + y} is the remainder of z + y modulo m. 

where {z.y} is the remainder of z.y modulo m. 
Then the set (Z" {z+y}, {z.y}) is known as the Smarandache Ring. If 

m is prime, then the set (Zp, {z+y}, {z.y}) is known as the Smarandache 
Field. 

Unsolved problems: 
1) Study the Smarandache Ring, and the Smarandache Field. 
2) If one introduces other operations on Zp: 

r I A 18 = ({tln-l A bnJ{an-2 A bn -2} ... {al A bd{ao A bO})m, 

where {z A y} is the remainder of z A y (z to the power y) modulo m. 
Study (Z" l A I). 
3) And in a similar way for any introduced digit operation on Z,: 

rl F l s = ({an_1Fbnl}{an_2Fbn_21} ... {alFbt}{aoFbo})", , 

where {zFy} is the remainder of zFy (i.e., F(z,y), for F being a given 
function, F : N - N) modulo m. 

References: [90] 
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