University of New Mexico
UNM Digital Repository

Theory of Abel Grassmann's Groupoids

Florentin Smarandache
University of New Mexico, smarand@unm.edu
Madad Khan

Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp
Part of the Algebra Commons, Analysis Commons, Discrete Mathematics and Combinatorics
Commons, and the Logic and Foundations Commons

Recommended Citation

Smarandache, Florentin and Madad Khan. "Theory of Abel Grassmann's Groupoids." (2015).
https://digitalrepository.unm.edu/math_fsp/211

This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact amywinter@unm.edu, Isloane@salud.unm.edu, sarahrk@unm.edu.

Theory of Abel Grassmann's Groupoids

Madad Khan | Florentin Smarandache | Saima Anis

Madad Khan Florentin Smarandache Saima Anis Theory of Abel Grassmann's Groupoids

Peer Reviewers:

Prof. Rajesh Singh, School of Statistics, DAVV, Indore (M.P.), India.

Dr. Linfan Mao, Academy of Mathematics and Systems,
Chinese Academy of Sciences, Beijing 100190, P. R. China.

Mumtaz Ali, Department of Mathematics, Quaid-i-Azam University, Islamabad, 44000, Pakistan

Said Broumi, University of Hassan II Mohammedia,
Hay El Baraka Ben M'sik, Casablanca B. P. 7951, Morocco.

Madad Khan】Florentin Smarandache Saima Anis

Theory of Abel Grassmann's Groupoids

Madad Khan【 Florentin Smarandache【Saima Anis
Theory of Abel Grassmann's Groupoids

Copyright: © Publisher, Madad Khan ${ }^{1}$, Florentin Smarandache ${ }^{2}$, Saima Anis ${ }^{1} .2015$
${ }^{1}$ Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan
${ }^{2}$ Department of Mathematics \& Science, University of New Mexico, Gallup, New Mexico, USA
fsmarandache@gmail.com

The Educational Publisher, Inc.
1313 Chesapeake Ave.
Columbus, Ohio 43212, USA
Toll Free: 1-866-880-5373
www.edupublisher.com/
ISBN 978-1-59973-347-0

Contents

Preface 7
1 Congruences on Inverse AG-groupoids 11
1.1 AG-groupoids 11
1.2 Inverse $\mathrm{AG}^{* *}$-groupoids 13
2 Structural Properties of Γ - $\mathrm{AG}^{* *}$-groupoids 21
2.1 Gamma Ideals in Γ-AG-groupoids 21
2.2 Locally Associative Γ-AG**-groupoids 37
2.3 Decomposition to Archimedean Locally Associative AG-subgroupoids 44
3 Embedding and Direct Product of AG-groupoids 47
3.1 Embedding in AG-groupoids 47
3.2 Main Results 48
3.3 Direct Products in AG-groupoids 50
4 Ideals in Abel-Grassmann's Groupoids 61
4.1 Preliminaries 61
4.2 Quasi-ideals of Intra-regular Abel-Grassmann's Groupoids 64
4.3 Characterizations of Ideals in Intra-regular AG-groupoids 75
4.4 Characterizations of Intra-regular AG-groupoids 84
4.5 Characterizations of Intra-regular AG**-groupoids 93
5 Some Characterizations of Strongly Regular AG-groupoids 101
5.1 Regularities in AG-groupoids 101
5.2 Some Characterizations of Strongly Regular AG-groupoids 102
6 Fuzzy Ideals in Abel-Grassmann's Groupoids 109
6.1 Inverses in AG-groupoids 111
6.2 Fuzzy Semiprime Ideals 114
$7(\in, \in \vee q)$ and $\left(\in, \in \vee q_{k}\right)$-fuzzy Bi-ideals of AG-groupoids 119
7.1 Characterizations of Intra-regular AG-groupoids 123
$7.2\left(\in, \in \vee q_{k}\right)$-fuzzy Ideals of Abel-Grassmann's 132
7.3 Main results 132
7.4 Regular AG-groupoids 138
8 Interval Valued Fuzzy Ideals of AG-groupoids 151
8.1 Basics 151
8.2 Main Results using Interval-valued Generalized Fuzzy Ideals 153
9 Generalized Fuzzy Ideals of Abel-Grassmann's Groupoids 163
$9.1\left(\epsilon_{\gamma}, \in_{\gamma} \vee q \delta\right)$-fuzzy Ideals of AG-groupoids 163
$9.2\left(\in_{\gamma}, \in_{\gamma} \vee q \delta\right)$-fuzzy Quasi-ideals of AG-groupoids 177
10 On Fuzzy Soft Intra-regular Abel-Grassmann's Groupoids 191
10.1 Some Characterizations Using Generalized Fuzzy Soft Bi-ideals 199
10.2 References 202

Preface

It is common knowledge that common models with their limited boundaries of truth and falsehood are not sufficient to detect the reality so there is a need to discover other systems which are able to address the daily life problems. In every branch of science problems arise which abound with uncertainties and impaction. Some of these problems are related to human life, some others are subjective while others are objective and classical methods are not sufficient to solve such problems because they can not handle various ambiguities involved. To overcome this problem, Zadeh [67] introduced the concept of a fuzzy set which provides a useful mathematical tool for describing the behavior of systems that are either too complex or are ill-defined to admit precise mathematical analysis by classical methods. The literature in fuzzy set and neutrosophic set theories is rapidly expanding and application of this concept can be seen in a variety of disciplines such as artificial intelligence, computer science, control engineering, expert systems, operating research, management science, and robotics.

Zadeh introduced the degree of membership of an element with respect to a set in 1965, Atanassov introduced the degree of non-membership in 1986, and Smarandache introduced the degree of indeterminacy (i.e. neither membership, nor non-membership) as independent component in 1995 and defined the neutrosophic set. In 2003 W. B. Vasantha Kandasamy and Florentin Smarandache introduced for the first time the Ineutrosophic algebraic structures (such as neutrosophic semigroup, neutrosophic ring, neutrosophic vector space, etc.) based on neutrosophic numbers of the form $a+b I$, where I ' is the literal indeterminacy such that $I^{2}=I$, while a, b are real (or complex) numbers. In 2013 Smarandache introduced the refined neutrosophic set, and in 2015 the refined neutrosophic algebraic structures built on sets on refined neutrosophic numbers of the form $a+b_{1} I_{1}+b_{2} I_{2}+\ldots+b_{n} I_{n}$, where $I_{1}, I_{2}, \ldots, I_{n}$ are types of sub-indeterminacies; in the same year he also introduced the (t, i, f)neutrosophic structures.

In 1971, Rosenfeld [53] first applied fuzzy sets to the study of algebraic structures, and he initiated a novel notion called fuzzy groups. This pioneer work started a burst of studies on various fuzzy algebras. Kuroki [28] studied fuzzy bi-ideals in semigroups and he examined some fundamental properties of fuzzy semigroups in [28]. Mordesen [37] has demonstrated a theoretical exposition of fuzzy semigroups and their application in fuzzy coding, fuzzy finite state machines and fuzzy languages. It is worth noting that these fuzzy structures may give rise to more useful models in some
practical applications. The role of fuzzy theory in automata and formal languages has extensively been discussed by Mordesen [37].

Pu and Liu [49] initiated the concept of fuzzy points and they also proposed some inspiring ideas such as belongingness to (denoted by \in) and quasi-coincidence (denoted by q) of a fuzzy point with a fuzzy set. Murali [42] proposed the concept of belongingness of a fuzzy point to a fuzzy subset under a natural equivalence on fuzzy subsets. These ideas played a vital role to generate various types of fuzzy subsets and fuzzy algebraic structures. Bhakat and Das [1, 2] applied these notions to introducing (α, β)-fuzzy subgroups, where $\alpha, \beta \in\{\in, q, \in \vee q, \in \wedge q\}$ and $\alpha \neq \in \wedge q$. Among (α, β) fuzzy subgroups, it should be noted that the concept of $(\in, \in \vee q)$-fuzzy subgroups is of vital importance since it is the most viable generalization of the conventional fuzzy subgroups in Rosenfeld's sense. Then it is natural to investigate similar types of generalizations of the existing fuzzy subsystems of other algebraic structures. In fact, many authors have studied $(\in, \in \vee q)$-fuzzy algebraic structures in different contexts [19, 22, 55]. Recently, Shabir et al. [55] introduced $\left(\in, \in \vee q_{k}\right)$-fuzzy ideals (quasi-ideals and bi-ideals) of semigroups and gave various characterizations of particular classes of semigroups in terms of these fuzzy ideals. M. Khan introduced the concept of ($\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}$)-fuzzy ideals and $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy soft ideals in AG-groupoids

An AG-groupoid is an algebraic structure that lies in between a groupoid and a commutative semigroup. It has many characteristics similar to that of a commutative semigroup. If we consider $x^{2} y^{2}=y^{2} x^{2}$, which holds for all x, y in a commutative semigroup, on the other hand one can easily see that it holds in an AG-groupoid with left identity e and in $A G^{* *}$-groupoids. In addition to this $x y=(y x) e$ holds for any subset $\{x, y\}$ of an AG-groupoid. This simply gives that how an AG-groupoid has closed connections with commutative algebras.

We extend now for the first time the AG-Groupoid to the Neutrosophic AG-Groupoid. A neutrosophic AG-groupoid is a neutrosophic algebraic structure that lies between a neutrosophic groupoid and a neutrosophic commutative semigroup.

Let M be an AG-groupoid under the law "." One has $(a b) c=(c b) a$ for all a, b, c in M. Then $M U I=\{a+b I$, where a, b are in M, and I is literal indeterminacy such that $\left.I^{2}=I\right\}$ is called a neutrosophic AG-groupoid. A neutrosophic AG-groupoid in general is not an AG-groupoid.

If on MUI one defines the operation "*" as: $(a+b I) *(c+d I)=a c+b d I$, then the neutrosophic AG-groupoid $(M U I, *)$ is also an AG-groupoid since:

$$
\begin{aligned}
{\left[\left(a_{1}+b_{1} I\right) *\left(a_{2}+b_{2} I\right)\right] *\left(a_{3}+b_{3} I\right) } & =\left[a_{1} a_{2}+b_{1} b_{2} I\right] *\left(a_{3}+b_{3} I\right) \\
& =\left(a_{1} a_{2}\right) a_{3}+\left(b_{1} b_{2}\right) b_{3} I \\
& =\left(a_{3} a_{2}\right) a_{1}+\left(b_{3} b_{2}\right) b_{1} I
\end{aligned}
$$

Also

$$
\begin{aligned}
{\left[\left(a_{3}+b_{3} I\right) *\left(a_{2}+b_{2} I\right)\right] *\left(a_{1}+b_{1} I\right) } & =\left[a_{3} a_{2}+b_{3} b_{2} I\right] *\left(a_{1}+b_{1} I\right) \\
& =\left(a_{3} a_{2}\right) a_{1}+\left(b_{3} b_{2}\right) b_{1} I
\end{aligned}
$$

In chapter one we discuss congruences in an AG-groupoid. In this chapter we discuss idempotent separating congruence μ defined as: $a \mu b$ if and only if $\left(a^{-1} e\right) a=\left(b^{-1} e\right) b$, in an inverse $\mathrm{AG}^{* *}$-groupoid S. We characterize μ in two ways and show (a) that $S / \mu \simeq E,(E$ is the set of all idempotents of $S)$ if and only if E is contained in the centre of S, also it is shown; (b) that μ is identical congruence on S if and only if E is self-centralizing. We show that the relations $\tau_{\text {min }}$ and $\tau_{\text {max }}$ show are smallest and largest congruences on S. Moreover we show that the relation ρ defined as: $a \rho b$ if only if $a^{-1}(e a)=$ $b^{-1}(e b)$, is a maximum idempotent separating congruence.

In chapter two we discuss gamma ideals in Γ - $\mathrm{AG}^{* *}$-groupoid. Moreover we show that a locally associative Γ - $\mathrm{AG}^{* *}$-groupoid S has associative powers and S / ρ_{Γ}, where $a \rho_{\Gamma} b$ implies that $a \Gamma b_{\Gamma}^{n}=b_{\Gamma}^{n+1}, b \Gamma a_{\Gamma}^{n}=a_{\Gamma}^{n+1} \forall a, b \in S$, is a maximal separative homomorphic image of S. The relation η_{Γ} is the least left zero semilattice congruence on S, where η_{Γ} is define on S as $a \eta_{\Gamma} b$ if and only if there exists some positive integers m, n such that $b_{\Gamma}^{m} \in a \Gamma S$ and $a_{\Gamma}^{n} \in b \Gamma S$.

In chapter three we discuss embedding and direct products in AG-groupoids.
In chapter four we introduce the concept of left, right, bi, quasi, prime (quasi-prime) semiprime (quasi-semiprime) ideals in AG-groupoids. We introduce m system in AG-groupoids. We characterize quasi-prime and quasisemiprime ideals and find their links with m systems. We characterize ideals in intra-regular AG-groupoids. Then we characterize intra-regular AG-groupoids using the properties of these ideals.

In chapter five we introduce a new class of AG-groupoids namely strongly regular and characterize it using its ideals.

In chapter six we introduce the fuzzy ideals in AG-groupoids and discuss their related properties.

In chapter seven we characterize intra-regular AG-groupoids by the properties of the lower part of $(\in, \in \vee q)$-fuzzy bi-ideals. Moreover we characterize AG-groupoids using $\left(\in, \in \vee q_{k}\right)$-fuzzy.

In chapter eight we discuss interval valued fuzzy ideals of AG-groupoids.
In chapter nine we characterize a Abel-Grassmann's groupoid in terms of its $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy ideals.

In chapter ten we characterize intra-regular AG-groupoids in terms of $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy soft ideals.

1

Congruences on Inverse AG-groupoids

In this chapter we discuss idempotent separating congruence μ defined as: $a \mu b$ if and only if $\left(a^{-1} e\right) a=\left(b^{-1} e\right) b$, in an inverse $\mathrm{AG}^{* *}$-groupoid S. We characterize μ in two ways and show (a) that $S / \mu \simeq E,(E$ is the set of all idempotents of S) if and only if E is contained in the centre of S, also it is shown; (b) that μ is identical congruence on S if and only if E is self-centralizing. We show that the relations $\tau_{\min }$ and $\tau_{\max }$ are smallest and largest congruences on S. Also we show that the relation ρ defined as: $a \rho b$ if only if $a^{-1}(e a)=b^{-1}(e b)$, is a maximum idempotent separating congruence.

1.1 AG-groupoids

The idea of generalization of a commutative semigroup was first introduced by Kazim and Naseeruddin in 1972 (see [24]). They named it as a left almost semigroup (LA-semigroup). It is also called an Abel-Grassmann's groupoid (AG-groupoid) [47].

An AG-groupoid is a non-associative and non-commutative algebraic structure mid way between a groupoid and a commutative semigroup. This structure is closely related with a commutative semigroup, because if an AG-groupoid contains a right identity, then it becomes a commutative semigroup [43]. The connection of a commutative inverse semigroup with an AG-groupoid has been given in [39] as: a commutative inverse semigroup (S, \circ) becomes an AG-groupoid (S, \cdot) under $a \cdot b=b \circ a^{-1}$, for all $a, b \in S$. An AG-groupoid $(S,$.$) with left identity becomes a semigroup (S$, o) defined as: for all $x, y \in S$, there exists $a \in S$ such that $x \circ y=(x a) y$ [47].

An AG-groupoid is a groupoid S whose elements satisfy the left invertive law $(a b) c=(c b) a$, for all $a, b, c \in S$. In an AG-groupoid, the medial law [24] $(a b)(c d)=(a c)(b d)$ holds for all $a, b, c, d \in S$. An AG-groupoid may or may not contains a left identity. If an AG-groupoid contains a left identity, then it is unique [43]. In an AG-groupoid S with left identity, the paramedial law $(a b)(c d)=(d b)(c a)$ holds for all $a, b, c, d \in S$. If an AG-groupoid contains a left identity, then it satisfies the following law

$$
\begin{equation*}
a(b c)=b(a c), \text { for all } a, b, c \in S \tag{1}
\end{equation*}
$$

Note that a commutative AG-groupoid S with left identity becomes a commutative semigroup because if a, b and $c \in S$. Then using left invertive law and commutative law, we get

$$
(a b) c=(c b) a=a(c b)=a(b c)
$$

In [15] J. M. Howie defined a relation μ as $(a, b) \in \mu$ if and only if $a^{-1} e a=b^{-1} e b$ on an inverse semigroup and show it maximum idempotent separating congruence and characterize it in two ways. Also it is shown that $S / \mu \simeq E$ if and only if E is central in S and that $\mu=1_{S}$, the identical congruence on S, if and only if E is self centralizing in S. Moreover, J. M. Howie in [14] defined a relations $\tau_{\min }$ and $\tau_{\max }$ as $a \tau_{\min } b$ if and only if $a a^{-1} \tau b b^{-1}$ and $\exists e \in E$ such that $e \tau a a^{-1} e a=e b$ and $a \tau_{\max } b$ if and only if $a^{-1} e a \tau b^{-1} e b$ for all $e \in E$ and shown these as the smallest and largest congruences on an inverse semigroup with trace τ. In this chapter, we defined these congruences for inverse $\mathrm{AG}^{* *}$-groupoid and also characterize it. An AG-groupoid S is called an inverse AG-groupoid if for every $a \in S$ there exists $a^{\prime} \in S$ such that $\left(a a^{\prime}\right) a=a,\left(a^{\prime} a\right) a^{\prime}=a^{\prime}$ where a^{\prime} is an inverse for a. We will write a^{-1} instead of a^{\prime}. If S is an inverse AG-groupoid, then $(a b)^{-1}=a^{-1} b^{-1}$ and $\left(a^{-1}\right)^{-1}=a$ for all $a, b \in S$.

Example 1 Let $S=\{1,2,3\}$ and the binary operation"." defined on S as follows:

\cdot	1	2	3
1	2	2	3
2	2	2	2
3	2	2	2

Clearly S is non-associative and non-commutative because $2=(1 \cdot 1) \cdot 3 \neq$ $1 \cdot(1 \cdot 3)=3$ and $1 \cdot 3 \neq 3 \cdot 1 .(S, \cdot)$ is an $A G^{* *}$-groupoid without left identity.

Lemma 2 Let S be an inverse $A G^{* *}$-groupoid and δ defined by a δ, if and only if $a a^{-1}=b b^{-1}$, is a congruence relation.

Proof. Clearly δ is reflexive, symmetric and transitive, so δ is an equivalence relation. Let $a \delta b$ which implies that $a a^{-1}=b b^{-1}$, then we get.

$$
\begin{aligned}
(a c)(a c)^{-1} & =(a c)\left(a^{-1} c^{-1}\right)=\left(a a^{-1}\right)\left(c c^{-1}\right)=\left(b b^{-1}\right)\left(c c^{-1}\right) \\
& =(b c)\left(b^{-1} c^{-1}\right)=(b c)(b c)^{-1}
\end{aligned}
$$

Similarly we can show that $(c a)(c a)^{-1}=(c b)(c b)^{-1}$.
Lemma 3 Let S be an inverse $A G^{* *}{ }_{\text {-groupoid, then the relation } \mu}^{\mu}=\{(a, b) \in$ $\left.S \times S: a^{-1} a=b^{-1} b\right\}$ is a congruence on S.

Proof. It is available in [47].

Lemma 4 The congruence relation δ is equivalent to μ.
Proof. Let $a \mu b$, this implies that $a^{-1} a=b^{-1} b$. Then we have

$$
\begin{aligned}
a a^{-1} & =\left(\left(a a^{-1}\right) a\right) a^{-1}=\left(a^{-1} a\right)\left(a a^{-1}\right)=\left(b^{-1} b\right)\left(a a^{-1}\right) \\
& =\left(a^{-1} a\right)\left(b b^{-1}\right)=\left(b^{-1} b\right)\left(b b^{-1}\right) \\
& =\left(\left(b b^{-1}\right) b\right) b^{-1}=b b^{-1} .
\end{aligned}
$$

Thus $a \delta b$.
Conversely, If $a \delta b$, then $a a^{-1}=b b^{-1}$. Then

$$
\begin{aligned}
a^{-1} a & =a^{-1}\left(\left(a a^{-1}\right) a\right)=\left(a a^{-1}\right)\left(a^{-1} a\right)=\left(b b^{-1}\right)\left(a^{-1} a\right) \\
& =\left(a a^{-1}\right)\left(b^{-1} b\right)=\left(b b^{-1}\right)\left(b^{-1} b\right) \\
& =\left(\left(b^{-1} b\right) b^{-1}\right) b=b^{-1} b .
\end{aligned}
$$

Hence $a \mu b$.
Corollary 5 If μ is congruence on an inverse $A G^{* *}$-groupoid, then $(a, b) \in$ μ, if and only if $\left(a^{-1}, b^{-1}\right) \in \mu$.

Proof. It is same as in [15].
Example 6 Let $S=\{1,2,3,4\}$ and the binary operation "" defined on S as follows:

\cdot	1	2	3	4
1	4	1	2	3
2	3	4	1	2
3	2	3	4	1
4	1	2	3	4

Clearly (S, \cdot) is non-associative, non-commutative and it is an $A G^{* *}$-groupoid with left identity 4. Every element is an inverse of itself and so $a^{-1} a=$ $a a^{-1}$, for all a in S.

The following lemma is available in [47].
Lemma 7 The set E of all idempotents in an $A G^{* *}$-groupoid forms a semilattice structure.

1.2 Inverse $\mathrm{AG}^{* *}$-groupoids

In the rest, by S we shall mean an inverse $\mathrm{AG}^{* *}$-groupoid in which $a a^{-1}=$ $a^{-1} a$, holds for every $a \in S$.

Let ρ be a congruence on S. The restriction of ρ to E, is congruence on E, which we call trace of ρ and is denoted by $\tau=\operatorname{tr} \rho$. The set $\operatorname{ker} \rho=\{a \in$ $S /(\exists e \in E) a \rho e\}$ is the kernel of ρ.

Theorem 8 Let E be the set of all idempotents of S and let τ be a congruence on E, then the relation $\tau_{\min }=\left\{(a, b) \in S \times S: a a^{-1} \tau b b^{-1}\right.$ and there exist $e \in E, e \tau a a^{-1}$ and $\left.e a=e b\right\}$ is the smallest congruence on S with trace τ.

Proof. Clearly τ is reflexive. Now let $a \tau_{\min } b$, this implies that $a a^{-1} \tau b b^{-1}$ and there exist $e \in E$ such that $e \tau a a^{-1}$ and $e a=e b$. As $e \tau a a^{-1}$ and $a a^{-1} \tau b b^{-1}$ which implies that $e \tau b b^{-1}$ also $e b=e a$ which implies that $b \tau_{\text {min }} a$, which shows that $\tau_{\text {min }}$ is symmetric. Again let $a \tau_{\text {min }} b$ and $b \tau_{\text {min }} c$ which implies that $a a^{-1} \tau b b^{-1} \tau c c^{-1}$ this implies that $a a^{-1} \tau c c^{-1}$. Also $e \tau a a^{-1}$ and $f \tau b b^{-1}$ for $e, f \in E$. Since τ is compatible so, ef $\tau\left(a a^{-1}\right)\left(a a^{-1}\right)=$ $a a^{-1}$ which implies that ef $\tau a a^{-1}$. Now $e a=e b$ implies that $f(e a)=f(e b)$ so we have

$$
\begin{aligned}
& f(e a)=(f f)(e a)=(a e)(f f)=(a e) f=(f e) a, \text { and } \\
& f(e b)=(f f)(e b)=(b e)(f f)=(b e) f=(f e) b
\end{aligned}
$$

Also $f b=f c$ implies that $e(f b)=e(f c)$. Now

$$
\begin{aligned}
& e(f b)=(e e)(f b)=(b f)(e e)=(b f) e=(e f) b=(f e) b \\
& e(f c)=(e e)(f c)=(c f)(e e)=(c f) e=(e f) c=(f e) c
\end{aligned}
$$

Hence $(f e) a=(f e) c$ which shows that $\tau_{\text {min }}$ is transitive.
Now let $a \tau_{\text {min }} b$, then

$$
\begin{aligned}
(c a)(c a)^{-1} & =(c a)\left(c^{-1} a^{-1}\right)=\left(c c^{-1}\right)\left(a a^{-1}\right) \tau\left(c c^{-1}\right)\left(b b^{-1}\right) \\
=(c b) & \left(c^{-1} b^{-1}\right)=(c b)(c b)^{-1}, \text { and } \\
\left(c c^{-1}\right) e \tau\left(c c^{-1}\right)\left(a a^{-1}\right) & =(c a)\left(c^{-1} a^{-1}\right) \\
& =(c a)(c a)^{-1}, \text { where }\left(c c^{-1}\right) e \in E, \text { and } \\
\left(\left(c c^{-1}\right) e\right)(c a) & =\left(\left(c c^{-1}\right) c\right)(e a) \\
& =\left(\left(c c^{-1}\right) c\right)(e b)=\left(\left(c c^{-1}\right) e\right)(c b)
\end{aligned}
$$

Therefore $c a \tau_{\min } c a$.
Again let $a \tau_{\min } b$ then by definition $a a^{-1} \tau b b^{-1}, e \tau a a^{-1}$ and $e a=e b$ Now

$$
\begin{aligned}
(a c)(a c)^{-1} & =(a c)\left(a^{-1} c^{-1}\right) \\
& =\left(a a^{-1}\right)\left(c c^{-1}\right) \tau\left(b b^{-1}\right)\left(c c^{-1}\right)=(b c)(b c)^{-1} \text { and } \\
e\left(c c^{-1}\right) \tau\left(a a^{-1}\right)\left(c c^{-1}\right) & =(a c)\left(a^{-1} c^{-1}\right) \\
& =(a c)(a c)^{-1}, \text { where } e\left(c c^{-1}\right) \in E
\end{aligned}
$$

Also

$$
\left(e\left(c c^{-1}\right)\right)(a c)=(e a)\left(\left(c c^{-1}\right) c\right)=(e b)\left(\left(c c^{-1}\right) c\right)=\left(e\left(c c^{-1}\right)\right)(b c)
$$

Thus $a c \tau_{\text {min }} b c$. Therefore $\tau_{\text {min }}$ is a congruence relation.
The remaining proof is same as in [14].
Theorem 9 Let E be the set of all idempotents of S and let τ be a congruence on E, then the relation $\tau_{\max }=\{(a, b) \in S \times S:(\forall e \in E)$ $\left.a^{-1}(e a) \tau b^{-1}(e b)\right\}$ is the largest congruence on S with trace τ.

Proof. Clearly $\tau_{\max }$ is an equivalence relation as τ is an equivalence relation on E.

Let us suppose that $a \tau_{\text {max }} b$, then $a^{-1}(e a) \tau b^{-1}(e b)$ so

$$
\begin{aligned}
(a c)^{-1}(e(a c)) & =\left(a^{-1} c^{-1}\right)((e e)(a c))=\left(a^{-1} c^{-1}\right)((e a)(e c)) \\
& =\left(a^{-1}(e a)\right)\left(c^{-1}(e a)\right) \tau\left(b^{-1}(e b)\right)\left(c^{-1}(e c)\right) \\
& =\left(b^{-1} c^{-1}\right)((e b)(e c))=(b c)^{-1}(e(b c)) .
\end{aligned}
$$

Thus $a c \tau_{\text {max }} b c$. Similarly $c a \tau_{\max } c b$. Therefore $\tau_{\text {max }}$ is congruence on S .
Remaining proof is same as in [14].
The relation $1_{s}=\{(x, x): x \in S\}$ is a congruence relation which we call the identical congruence. A congruence whose trace is the identical congruence 1 is called idempotent separating.

Theorem 10 Let E be the set of all idempotents of S and let the relation μ defined as $a \mu b$ if and only if $\left(a^{-1} e\right) a=\left(b^{-1} e\right) b$, for any e in E, is an idempotent separating congruence on S.

Proof. It is easy to prove that μ is an equivalence relation. Now let $a \mu b$, then $\left(a^{-1} e\right) a=\left(b^{-1} e\right) b$, for every idempotent e in E, now we get

$$
\begin{aligned}
\left((a c)^{-1} e\right)(a c) & =\left(\left(a^{-1} c^{-1}\right)(e e)\right)(a c)=\left(\left(a^{-1} e\right)\left(c^{-1} e\right)\right)(a c) \\
& =\left(\left(a^{-1} e\right) a\right)\left(\left(c^{-1} e\right) c\right)=\left(\left(b^{-1} e\right) b\right)\left(c^{-1} e\right) c \\
& =\left(\left(b^{-1} e\right)\left(c^{-1} e\right)\right)(b c)=\left((b c)^{-1} e\right)(b c) .
\end{aligned}
$$

Thus $a c \mu b c$. Similarly $c a \mu c b$. Hence μ is a congruence relation on S.
Now let $e \mu f$ for e, f in E. Then for every g in $E,\left(e^{-1} g\right) e=\left(f^{-1} g\right) f$ so by (1), we have $e g=f g$. The equality holds in particular when $g=e$. Hence $e=f g$. Similarly for $g=f$, we obtain $e f=f$. Since $e f=f e$, so $e=f$. Thus μ is idempotent separating.

If E is the semilattice of an inverse semigroup S, we define $E \zeta$, the centralizer of E in S, by

$$
E \zeta=\{z \in S: e z=z e \text { for every } e \text { in } E\}
$$

Clearly $E \subseteq E \zeta$ If $E \zeta=S$, then the idempotents are central. If $E \zeta=E$, we shall say that E is self-centralizing.

Theorem 11 Let E be the set of all idempotents of S and let μ be the idempotent separating congruence on S. Then Ker $\mu=E \zeta$ where $E \zeta$ be the centralizer of E in S.

Proof. Let S be an inverse $\mathrm{AG}^{* *}$-groupoid and let μ be the idempotent separating congruence on S. Let $a \in \operatorname{Ker} \mu$, so $a \mu f$ for some $f \in E$. also $a^{-1} \mu f^{-1}=f$, so $a^{-1} a \mu f$, implies that $a \mu a a^{-1}$. So for all e in $E\left(a^{-1} e\right) a=$ $\left(\left(a^{-1} a\right)^{-1} e\right)\left(a^{-1} a\right)$, then we get

$$
\begin{align*}
\left(\left(a^{-1} a\right)^{-1} e\right)\left(a^{-1} a\right) & =\left(\left(a a^{-1}\right) e\right)\left(a^{-1} a\right) \\
& =\left(e\left(a^{-1} a\right)\right)\left(a^{-1} a\right)=\left(a^{-1} a\right) e, \text { that is } \\
& \left(a^{-1} e\right) a=\left(a^{-1} a\right) e . \tag{5}
\end{align*}
$$

Also we have,

$$
\begin{aligned}
e a & =e\left(\left(a a^{-1}\right) a\right)=\left(a a^{-1}\right)(e a)=\left((e a) a^{-1}\right) a \\
& =\left(\left(a^{-1} a\right) e\right) a=\left(\left(a^{-1} e\right) a\right) a=(a a)\left(a^{-1} e\right) \\
& =\left(e a^{-1}\right)(a a)=\left((a a) a^{-1}\right) e=\left(\left(a a^{-1}\right) a\right) e=a e .
\end{aligned}
$$

Thus $a \in E \zeta$.
Conversely, assume that $a \in E \zeta$. Then for all e in $E, a e=e a$, so

$$
\begin{aligned}
\left(a^{-1} e\right) a & =(a e) a^{-1}=(e a) a^{-1}=(e a)\left(\left(a^{-1} a\right) a^{-1}\right) \\
& =\left(a^{-1} a\right)\left((e a) a^{-1}\right)=\left(a^{-1} a\right)\left(\left(a^{-1} a\right) e\right) \\
& =\left(e\left(a^{-1} a\right)\right)\left(a a^{-1}\right)=\left(\left(a a^{-1}\right)^{-1} e\right)\left(a a^{-1}\right) .
\end{aligned}
$$

Thus $a \mu a a^{-1}$ and so $a \in K e r \mu$. Hence $E \zeta=K e r \mu$.
Theorem 12 Let E be the set of all idempotents of S and let μ be the idempotent separating congruence on S. Then $(a, b) \in \mu$ if and only if $a^{-1} a=b^{-1} b$, and $a b^{-1} \in E \zeta$. Dually $(a, b) \in \mu$ if and only if $a a^{-1}=b b^{-1}$ and $a^{-1} b \in E \zeta$.

Proof. Let $(a, b) \in \mu$, then $\left(a^{-1} e\right) a=\left(b^{-1} e\right) b$ which implies that $(a e) a^{-1}=$ $(b e) b^{-1}$ for all e in E.

Now $\left(\left(a^{-1} e\right) a\right)\left((a e) a^{-1}\right)=\left(\left(b^{-1} e\right) b\right)\left((b e) b^{-1}\right)$ which implies that

$$
\begin{equation*}
\left(\left(a^{-1} a\right) e\right)\left(a a^{-1}\right)=\left(\left(b^{-1} b\right) e\right)\left(b b^{-1}\right) \tag{6}
\end{equation*}
$$

Therefore we get

$$
\begin{aligned}
a^{-1} a & =\left(\left(a^{-1} a\right) a^{-1}\right)\left(\left(a a^{-1}\right) a\right)=\left(\left(a^{-1} a\right)\left(a a^{-1}\right)\right)\left(a^{-1} a\right) \\
& =\left(\left(a^{-1} a\right)\left(a a^{-1}\right)\right)\left(a a^{-1}\right)=\left(\left(b^{-1} b\right)\left(a a^{-1}\right)\right)\left(b b^{-1}\right) \\
& =\left(\left(a a^{-1}\right)\left(b^{-1} b\right)\right)\left(b b^{-1}\right)=\left(\left(b b^{-1}\right)\left(b^{-1} b\right)\right)\left(a a^{-1}\right) \\
& =\left(\left(b^{-1} b\right)\left(b^{-1} b\right)\right)\left(a a^{-1}\right)=\left(b^{-1} b\right)\left(a a^{-1}\right)=\left(a^{-1} a\right)\left(b^{-1} b\right) .
\end{aligned}
$$

Similarly we can show that $b^{-1} b=\left(a^{-1} a\right)\left(b^{-1} b\right)$. Therefore $a^{-1} a=b^{-1} b$.
Now let $(a, b) \in \mu$, then $\left(a^{-1} e\right) a=\left(b^{-1} e\right) b$ which implies that $(a e) a^{-1}=$ $(b e) b^{-1}$, which implies that $\left(a\left((a e) a^{-1}\right)\right) b^{-1}=\left(a\left((b e) b^{-1}\right)\right) b^{-1}$.

Now we obtain

$$
\begin{aligned}
\left(a\left((a e) a^{-1}\right)\right) b^{-1} & =\left((a e)\left(a a^{-1}\right)\right) b^{-1}=\left(b^{-1}\left(a a^{-1}\right)\right)(a e) \\
= & \left(a\left(b^{-1} a^{-1}\right)\right)(a e)=(e a)\left(\left(b^{-1} a^{-1}\right) a\right) \\
= & (e a)\left(\left(a a^{-1}\right) b^{-1}\right)=\left(e\left(a a^{-1}\right)\right)\left(a b^{-1}\right), \text { and } \\
\left(a\left((b e) b^{-1}\right)\right) b^{-1} & =\left((b e)\left(a b^{-1}\right)\right) b^{-1}=\left(b^{-1}\left(a b^{-1}\right)\right)(b e) \\
& =\left(b^{-1} b\right)\left(\left(a b^{-1}\right) e\right)=\left(a a^{-1}\right)\left(\left(a b^{-1}\right) e\right) \\
& =\left(a b^{-1}\right)\left(\left(a a^{-1}\right) e\right)=\left(a b^{-1}\right)\left(e\left(a a^{-1}\right)\right)
\end{aligned}
$$

Hence $a b^{-1} \in E \zeta$.
Conversely, let $a^{-1} a=b^{-1} b$ and $a b^{-1} \in E \zeta$, then $e\left(a b^{-1}\right)=\left(a b^{-1}\right) e$ for all $e \in E$, which implies that $\left(a^{-1}\left(e\left(a b^{-1}\right)\right)\right) b=\left(a^{-1}\left(\left(a b^{-1}\right) e\right)\right) b$. Now we get

$$
\begin{aligned}
\left(a^{-1}\left(e\left(a b^{-1}\right)\right)\right) b & =\left(b\left(e\left(a b^{-1}\right)\right)\right) a^{-1}=\left(e\left(b\left(a b^{-1}\right)\right)\right) a^{-1} \\
& =\left(e\left(a\left(b b^{-1}\right)\right)\right) a^{-1}=\left((e e)\left(a\left(a a^{-1}\right)\right)\right) a^{-1} \\
& =\left(\left(\left(a a^{-1}\right) a\right)(e e)\right) a^{-1}=(a e) a^{-1}=\left(a^{-1} e\right) a
\end{aligned}
$$

Now

$$
\begin{aligned}
\left(a^{-1}\left(\left(a b^{-1}\right) e\right)\right) b & =\left(a^{-1}\left(\left(a b^{-1}\right)(e e)\right)\right) b=\left(a^{-1}\left((a e)\left(b^{-1} e\right)\right)\right) b \\
& =\left((a e)\left(a^{-1}\left(b^{-1} e\right)\right)\right) b=\left(\left(\left(b^{-1} e\right) a^{-1}\right)(e a)\right) b \\
& =\left(\left(\left(b^{-1} e\right) e\right)\left(a^{-1} a\right)\right) b=\left(\left(e b^{-1}\right)\left(a^{-1} a\right)\right) b \\
& =\left(\left(e b^{-1}\right)\left(b^{-1} b\right)\right) b=\left(b\left(b^{-1} b\right)\right)\left(e b^{-1}\right) \\
& =\left(b^{-1} e\right)\left(\left(b^{-1} b\right) b\right)=\left(b^{-1} e\right)\left(\left(b b^{-1}\right) b\right) \\
& =\left(b^{-1} e\right) b .
\end{aligned}
$$

Therefore $\left(a^{-1} e\right) a=\left(b^{-1} e\right) b$. Hence $a \mu b$.
Let $a \mu b$ then by definition $\left(a^{-1} e\right) a=\left(b^{-1} e\right) b$. Now as $a^{-1} a=b^{-1} b$ so $a a^{-1}=b b^{-1}$.

Now as $\left(a^{-1} e\right) a=\left(b^{-1} e\right) b$ which implies that $\left(a^{-1}\left(\left(a^{-1} e\right) a\right)\right) b=$ $\left(a^{-1}\left(\left(b^{-1} e\right) b\right)\right) b$.

So we get

$$
\begin{aligned}
\left(a^{-1}\left(\left(a^{-1} e\right) a\right)\right) b & =\left(\left(a^{-1} e\right)\left(a^{-1} a\right)\right) b=\left(\left(a^{-1} e\right)\left(b^{-1} b\right)\right) b \\
& =\left(b\left(b^{-1} b\right)\right)\left(a^{-1} e\right)=\left(e a^{-1}\right)\left(\left(b b^{-1}\right) b\right) \\
& =\left(e a^{-1}\right) b=\left(b a^{-1}\right) e=\left(b a^{-1}\right)(e e) \\
& =(e e)\left(a^{-1} b\right)=e\left(a^{-1} b\right), \text { and }
\end{aligned}
$$

Now we get

$$
\begin{aligned}
\left(a^{-1}\left(\left(b^{-1} e\right) b\right)\right) b & =\left(b\left(\left(b^{-1} e\right) b\right)\right) a^{-1}=\left(\left(b^{-1} e\right)(b b)\right) a^{-1} \\
& =\left(\left(b^{-1} b\right)(e b)\right) a^{-1}=\left(e\left(\left(b b^{-1}\right) b\right)\right) a^{-1} \\
& =(e b) a^{-1}=\left(a^{-1} b\right) e
\end{aligned}
$$

Hence $a^{-1} b \in E \zeta$.
Theorem 13 Let E be the set of all idempotents of S and let μ be the idempotent separating congruence on S. Then $S / \mu \simeq E$ if and only if E is central in S.

Proof. Since μ is idempotent separating congruence so S / μ is a semilattice if each -class contains atmost one idempotent. Thus if S / μ is semilattice then $S / \mu=E$. Let us suppose that each μ class contains an idempotent that is for every $x \in S$, there exist an $f \in E$ such that $f \mu x$ which implies that $f f^{-1}=x x^{-1}$ and $f^{-1} x \in E \zeta$, thus

$$
x=\left(x x^{-1}\right) x=\left(f f^{-1}\right) x=f^{-1} x \in E \zeta
$$

but this holds for any x in S, so $E \zeta=S$.
Conversely, suppose that $E \zeta=S$, then $x f^{-1} \in S=E \zeta$ and

$$
x x^{-1}=\left(x x^{-1}\right)\left(x x^{-1}\right)=\left(x x^{-1}\right)\left(x x^{-1}\right)^{-1}=f f^{-1}
$$

Then by theorem $5, x \mu f$, that is, $x \mu x x^{-1}$, which shows that every μ class contains an idempotent.

Theorem 14 Let E be the set of all idempotents of S and let μ be the idempotent separating congruence on S. Then $\mu=1_{S}$, the identical congruence on S, if and only if E is self centralizing in S.

Proof. Let $\mu=1_{S}$, Then for $z \in E \zeta$ implies that $z e=e z$, for all $e \in E$ if we write f for $z z^{-1}$ then $z z^{-1}=f=f f=f f^{-1}$ also we get

$$
\left(z f^{-1}\right) e=\left(e f^{-1}\right) z=(e f) z=z(e f)=z\left(e f^{-1}\right)=e\left(z f^{-1}\right)
$$

Therefore $z f^{-1} \in E \zeta$. Then by theorem $5, z \mu z z^{-1}$, but $\mu=1_{S}$, so $z=$ $z z^{-1} \in E$. Thus $E \zeta=E$.

Conversely, assume that $E \zeta=E$. Let $x \mu y$ then $x^{-1} x=y^{-1} y$ and $x y^{-1} \in E \zeta=E$, since $x y^{-1}$ is idempotent so $\left(x y^{-1}\right)^{-1}=x y^{-1}$, implies that $x^{-1} y=x y^{-1}$, also $\left(x^{-1}, y^{-1}\right) \in \mu$ so

$$
\begin{aligned}
x x^{-1} & =\left(\left(x x^{-1}\right) x\right) x^{-1}=\left(\left(y y^{-1}\right) x\right) x^{-1} \\
& =\left(\left(x y^{-1}\right) y\right) x^{-1}=\left(\left(x^{-1} y\right) y\right) x^{-1} \\
& =\left(x^{-1} y\right)\left(x^{-1} y\right)=x^{-1} y .
\end{aligned}
$$

Also we get

$$
\begin{aligned}
x & =\left(x x^{-1}\right) x=\left(y y^{-1}\right) x=\left(x y^{-1}\right) y \\
& =\left(x^{-1} y\right) y=\left(x x^{-1}\right) y=\left(y y^{-1}\right) y=y
\end{aligned}
$$

Hence $\mu=1_{S}$.

Theorem 15 Let E be the set of all idempotents of S then the relation defined by apb if only if $a^{-1}(e a)=b^{-1}(e b)$ is a maximum idempotent separating congruence on S.

Proof. Clearly ρ is an equivalence relation. Let $a \rho b$, which implies that $a^{-1}(e a)=b^{-1}(e b)$. Now

$$
\begin{aligned}
(a c)^{-1}(e(a c)) & =\left(a^{-1} c^{-1}\right)(e(a c))=\left(a^{-1} c^{-1}\right)((e e)(a c)) \\
& =\left(a^{-1} c^{-1}\right)((e a)(e c))=\left(a^{-1}(e a)\right)\left(c^{-1}(e c)\right) \\
& =\left(b^{-1}(e b)\right)\left(c^{-1}(e c)\right)=\left(b^{-1} c^{-1}\right)((e b)(e c)) \\
& =(b c)^{-1}(e(b c)) .
\end{aligned}
$$

Therefore $a c \rho b c$. Similarly $c a \rho c b$. Hence ρ is a congruence relation. Now suppose that $e \rho f$, where $e, f \in E$, then for every idempotent g we have $e^{-1}(g e)=f^{-1}(g f)$, which implies that $g e=g f$. In particular when $g=e$, then $e e=e f$, implies that $e=e f$ and for $g=f, f e=f f$ implies that $f e=f$, but since $e f=f e$ implies that $e=f$. Thus ρ is idempotent separating congruence. Now let η be any other idempotent separating congruence. We shall show that $\eta \subseteq \rho$. Let $(x, y) \in \eta$ then $\left(x^{-1}, y^{-1}\right) \in \eta$, since η is congruence, it follows that $x \eta y$ which implies that expey, also $x^{-1}(e x) \eta y^{-1}(e y)$, but both $x^{-1}(e x)$ and $y^{-1}(e y)$ are idempotents, and so it follows that $x^{-1}(e x)=y^{-1}(e y)$. Thus $x \rho y$. Hence ρ is maximum.

Theorem 16 Let E be the set of all idempotents of S then the relation defined on S with $\sigma=\left\{(a, b) \in S \times S(\forall e \in E):\left(\left(a^{-1}\right)^{2} e\right) a^{2}=\left(\left(b^{-1}\right)^{2} e\right) b^{2}\right\}$ is a congruence relation on S.

Proof. It is clear that σ is an equivalence relation. Now suppose that $a \sigma b$ and c is an arbitrary element of S, then

$$
\begin{aligned}
\left(\left((a c)^{-1}\right)^{2} e\right)(a c)^{2} & =\left(\left(a^{-1} c^{-1}\right)^{2} e\right)(a c)^{2} \\
& =\left(\left(\left(a^{-1}\right)^{2}\left(c^{-1}\right)^{2}\right) e\right)\left(a^{2} c^{2}\right) \\
& =\left(\left(\left(a^{-1}\right)^{2} e\right)\left(c^{-1}\right)^{2}\right)\left(a^{2} c^{2}\right) \\
& =\left(\left(\left(a^{-1}\right)^{2} e\right) a^{2}\right)\left(\left(c^{-1}\right)^{2} c^{2}\right) \\
& =\left(\left(\left(b^{-1}\right)^{2} e\right) b^{2}\right)\left(\left(c^{-1}\right)^{2} c^{2}\right) \\
& =\left(\left(\left(b^{-1}\right)^{2} e\right)\left(c^{-1}\right)^{2}\right)\left(b^{2} c^{2}\right) \\
& =\left(\left(b^{-1}\right)^{2}\left(c^{-1}\right)^{2} e\right)\left(b^{2} c^{2}\right) \\
& =\left(\left(b^{-1} c^{-1}\right)^{2} e\right)(b c)^{2} \\
& =\left(\left((b c)^{-1}\right)^{2} e\right)(b c)^{2}
\end{aligned}
$$

Thus $(a c, b c) \in \sigma$. Similarly $(c a, c b) \in \sigma$. Hence σ is congruence relation.

Lemma 17 Let E be the set of all idempotents of S then the centralizer $E \zeta$ of E in S, is an inverse subgroupoid of S.

Proof. Let $a, b \in E \zeta$, then $a e=e a$ and $b e=e b$, for all $e \in E$, so

$$
(a b) e=(a b)(e e)=(a e)(b e)=(e a)(e b)=(e e)(a b)=e(a b)
$$

Therefore $E \zeta$ is a subgroupoid of S.
Now let $a \in E \zeta$ then $a e=e a$ implies that $(a e)^{-1}=(e a)^{-1}$ or $a^{-1} e=$ $e a^{-1}$, so $a^{-1} \in E \zeta$. Hence $E \zeta$ is an inverse subgroupoid.

Theorem 18 Let S be an inverse $A G^{* *}$-groupoid with semilattice E and let ρ be the maximum idempotent separating congruence on S then S / ρ is fundamental.

Proof. Every idempotent in S / ρ has the form $e \rho$. Let us suppose that $(a \rho, b \rho) \in \rho_{S / \rho}$ then for every e in $E(a \rho)^{-1}((e \rho)(a \rho))=(b \rho)^{-1}((e \rho)(b \rho))$ which implies that $\left(a^{-1}(e a)\right) \rho=\left(b^{-1}(e b)\right) \rho$, consequentlya $a^{-1}(e a) \rho b^{-1}(e b)$ but ρ is idempotent separating so $a^{-1}(e a)=b^{-1}(e b)$ that is $a \rho b$ implies that $a \rho=b \rho$ so $\rho_{S / \rho}$ is identical. Thus S / ρ is fundamental.

2

Structural Properties of Γ-AG**-groupoids

In this chapter we discuss gamma ideals in Γ - $\mathrm{AG}^{* *}$-groupoids. We show that a locally associative Γ - $\mathrm{AG}^{* *}$-groupoid S has associative powers and S / ρ_{Γ}, where $a \rho_{\Gamma} b$ implies that $a \Gamma b_{\Gamma}^{n}=b_{\Gamma}^{n+1}, b \Gamma a_{\Gamma}^{n}=a_{\Gamma}^{n+1} \forall a, b \in S$, is a maximal separative homomorphic image of S. The relation η_{Γ} is the least left zero semilattice congruence on S, where η_{Γ} is define on S as $a \eta_{\Gamma} b$ if and only if there exists some positive integers m, n such that $b_{\Gamma}^{m} \in a \Gamma S$ and $a_{\Gamma}^{n} \in b \Gamma S$.

2.1 Gamma Ideals in Γ-AG-groupoids

Let S and Γ be any non-empty sets. If there exists a mapping $S \times \Gamma \times S \rightarrow S$ written as (x, α, y) by $x \alpha y$, then S is called a Γ-AG-groupoid if $x \alpha y \in S$ such that the following Γ-left invertive law holds for all $x, y, z \in S$ and $\alpha, \beta \in \Gamma$

$$
\begin{equation*}
(x \alpha y) \beta z=(z \alpha y) \beta x . \tag{1}
\end{equation*}
$$

A Γ-AG-groupoid also satisfies the Γ-medial law for all $w, x, y, z \in S$ and $\alpha, \beta, \gamma \in \Gamma$

$$
\begin{equation*}
(w \alpha x) \beta(y \gamma z)=(w \alpha y) \beta(x \gamma z) \tag{2}
\end{equation*}
$$

Note that if a Γ-AG-groupoid contains a left identity, then it becomes an AG-groupoid with left identity.

A Γ-AG-groupoid is called a Γ-AG**-groupoid if it satisfies the following law for all $x, y, z \in S$ and $\alpha, \beta \in \Gamma$

$$
\begin{equation*}
x \alpha(y \beta z)=y \alpha(x \beta z) . \tag{3}
\end{equation*}
$$

A Γ - $\mathrm{AG}^{* *}$-groupoid also satisfies the Γ-paramedial law for all $w, x, y, z \in$ S and $\alpha, \beta, \gamma \in \Gamma$

$$
\begin{equation*}
(w \alpha x) \beta(y \gamma z)=(z \alpha y) \beta(x \gamma w) \tag{4}
\end{equation*}
$$

Definition 19 Let S be a Γ-AG-groupoid, a non-empty subset A of S is called Γ - $A G$-subgroupoid if $a \gamma b \in A$ for all $a, b \in A$ and $\gamma \in \Gamma$ or A is called Γ - $A G$-subgroupoid if $A \Gamma A \subseteq A$.

Definition $20 A$ subset A of $a \Gamma$-AG-groupoid S is called Γ-left (right) ideal of S if $S \Gamma A \subseteq A(A \Gamma S \subseteq A)$ and A is called Γ-two-sided ideal of S if it is both Γ-left and Γ-right ideal.

Definition $21 A \Gamma$-AG-subgroupoid A of $a \Gamma$-AG-groupoid S is called a Γ-bi-ideal of S if $(A \Gamma S) \Gamma A \subseteq A$.

Definition $22 A \Gamma$-AG-subgroupoid A of $a \Gamma$ - $A G$-groupoid S is called a Γ-interior ideal of S if $(S \Gamma A) \Gamma S \subseteq A$.

Definition $23 A \Gamma$-AG-groupoid A of $a \Gamma$-AG-groupoid S is called $a \Gamma$ -quasi-ideal of S if $S \Gamma A \cap A \Gamma S \subseteq A$.

Definition $24 A \Gamma$-AG-subgroupoid A of $a \Gamma$-AG-groupoid S is called a Γ-(1,2)-ideal of S if $(A \Gamma S) \Gamma(A \Gamma A) \subseteq A$.

Definition 25 A Γ-two-sided ideal P of a Γ - $A G$-groupoid S is called Γ prime (Γ-semiprime) if for any Γ-two-sided ideals A and B of S, $A \Gamma B \subseteq$ $P(A \Gamma A \subseteq P)$ implies either $A \subseteq P$ or $B \subseteq P(A \subseteq P)$.
Definition 26 An element a of an Γ-AG-groupoid S is called an intraregular if there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a=(x \beta(a \delta a)) \gamma y$ and S is called an intra-regular Γ-AG-groupoid S, if every element of S is an intra-regular.

Example 27 Let $S=\{1,2,3,4,5,6,7,8,9\}$. The following multiplication table shows that S is an $A G$-groupoid and also an $A G$-band.

\cdot	1	2	3	4	5	6	7	8	9
1	1	4	7	3	6	8	2	9	5
2	9	2	5	7	1	4	8	6	3
3	6	8	3	5	9	2	4	1	7
4	5	9	2	4	7	1	6	3	8
5	3	6	8	2	5	9	1	7	4
6	7	1	4	8	3	6	9	5	2
7	8	3	6	9	2	5	7	4	1
8	2	5	9	1	4	7	3	8	6
9	4	7	1	6	8	3	5	2	9

It is easy to observe that S is a simple AG-groupoid that is there is no left or right ideal of S. Now let $\Gamma=\{\alpha, \beta, \gamma\}$ defined as follows.

α	1	2	3	4	5	6	7	8	9
1	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2
3	2	2	2	2	2	2	2	2	2
4	2	2	2	2	2	2	2	2	2
5	2	2	2	2	2	2	2	2	2
6	2	2	2	2	2	2	2	2	2
7	2	2	2	2	2	2	2	2	2
8	2	2	2	2	2	2	2	2	2
9	2	2	2	2	2	2	2	2	2

β	1	2	3	4	5	6	7	8	9
1	8	8	8	8	8	8	8	8	8
2	8	8	8	8	8	8	8	8	8
3	8	8	8	8	8	8	8	8	8
4	8	8	8	8	8	8	8	8	8
5	8	8	8	8	8	8	8	8	8
6	8	8	8	8	8	8	8	8	8
7	8	8	8	8	8	8	8	8	8
8	8	8	8	8	8	8	8	8	8
9	8	8	8	8	8	8	8	8	8

γ	1	2	3	4	5	6	7	8	9
1	8	8	8	8	8	8	8	8	8
2	8	8	8	8	8	8	8	8	8
3	8	8	8	8	8	8	8	8	8
4	8	8	8	8	8	8	8	8	8
5	8	8	8	8	8	8	8	8	8
6	8	8	8	8	8	8	8	8	8
7	8	8	8	8	8	8	8	8	8
8	8	8	8	8	8	8	8	8	8
9	8	8	8	8	8	8	8	9	9

It is easy to prove that S is a Γ-AG-groupoid because $(a \pi b) \psi c=(c \pi b) \psi a$ for all $a, b, c \in S$ and $\pi, \psi \in \Gamma$. Clearly S is non-commutative and nonassociative because $8 \gamma 9 \neq 9 \gamma 8$ and $(1 \alpha 2) \beta 3 \neq 1 \alpha(2 \beta 3)$.

Example 28 Let $S=\{1,2,3$,$\} . The following Cayley's table shows that$ S is an AG-groupoid.

\cdot	1	2	3
1	2	3	1
2	1	2	3
3	3	1	2

Let us define $\Gamma=\{\alpha, \beta, \gamma\}$ as follows.

α	1	2	3
1	1	1	1
2	1	1	1
3	1	1	1

β	1	2	3
1	2	2	2
2	2	2	2
3	2	2	3

γ	1	2	3
1	1	1	1
2	1	1	1
3	1	1	3

Clearly S is an intra-regular Γ-AG-groupoid because $1=(2 \beta(1 \alpha 1)) \gamma 3$, $2=(1 \alpha(2 \beta 2)) \beta 3,3=(3 \beta(3 \gamma 3)) \beta 3$.

Theorem $29 A \Gamma$ - $A G^{* *}$-groupoid S is an intra-regular Γ - $A G^{* *}$-groupoid if $S \Gamma a=S$ or $a \Gamma S=S$ holds for all $a \in S$.

Proof. Let S be a Γ-AG**-groupoid such that $S \Gamma a=S$ holds for all $a \in S$, then $S=S \Gamma S$. Let $a \in S$ and therefore, by using (2), we have

$$
\begin{aligned}
a & \in S=(S \Gamma S) \Gamma S=((S \Gamma a) \Gamma(S \Gamma a)) \Gamma S=((S \Gamma S) \Gamma(a \Gamma a)) \Gamma S \\
& =(S \Gamma(a \Gamma a)) \Gamma S .
\end{aligned}
$$

Which shows that S is an intra-regular Γ-AG ${ }^{* *}$-groupoid.
Let $a \in S$ and assume that $a \Gamma S=S$ holds for all $a \in S$, then by using (1), we have

$$
a \in S=S \Gamma S=(a \Gamma S) \Gamma S=(S \Gamma S) \Gamma a=S \Gamma a
$$

Thus $S \Gamma a=S$ holds for all $a \in S$ and therefore it follows from above that S is an intra-regular.

Corollary 30 If S is a Γ - $A G^{* *}$-groupoid such that $a \Gamma S=S$ holds for all $a \in S$, then $S \Gamma a=S$ holds for all $a \in S$.

Theorem 31 If S is an intra-regular Γ - $A G^{* *}$-groupoid, then $(B \Gamma S) \Gamma B=$ $B \cap S$, where B is a Γ-bi-(Γ-generalized bi-) ideal of S.

Proof. Let S be an intra-regular Γ-AG ${ }^{* *}$-groupoid, then clearly $(B \Gamma S) \Gamma B \subseteq$ $B \cap S$. Now let $b \in B \cap S$ which implies that $b \in B$ and $b \in S$, then since S is an intra-regular Γ - $\mathrm{AG}^{* *}$-groupoid so there exist $x, y \in S$ and $\alpha, \beta, \gamma \in$ Γ such that $b=(x \alpha(b \beta b)) \gamma y$. Now we have

$$
\begin{aligned}
b & =(x \alpha(b \beta b)) \gamma y=(b \alpha(x \beta b)) \gamma y=(y \alpha(x \beta b)) \gamma b \\
& =(y \alpha(x \beta((x \alpha(b \beta b)) \gamma y))) \gamma b=(y \alpha((x \alpha(b \beta b)) \beta(x \gamma y))) \gamma b \\
& =((x \alpha(b \beta b)) \alpha(y \beta(x \gamma y))) \gamma b=(((x \gamma y) \alpha y) \alpha((b \beta b) \beta x)) \gamma b \\
& =((b \beta b) \alpha(((x \gamma y) \alpha y) \beta x)) \gamma b=((b \beta b) \alpha((x \alpha y) \beta(x \gamma y))) \gamma b \\
& =((b \beta b) \alpha((x \alpha x) \beta(y \gamma y))) \gamma b=(((y \gamma y) \beta(x \alpha x)) \alpha(b \beta b)) \gamma b \\
& =(b \alpha(((y \gamma y) \beta(x \alpha x)) \beta b)) \gamma b \in(B \Gamma S) \Gamma B .
\end{aligned}
$$

Which shows that $(B \Gamma S) \Gamma B=B \cap S$.
Corollary 32 If S is an intra-regular $\Gamma-A G^{* *}$-groupoid, then $(B \Gamma S) \Gamma B=$ B, where B is a Γ-bi-(Γ-generalized bi-) ideal of S.

Theorem 33 If S is an intra-regular Γ-A $G^{* *}$-groupoid, then $(S \Gamma I) \Gamma S=$ $S \cap I$, where I is a Γ-interior ideal of S.

Proof. Let S be an intra-regular Γ-AG**-groupoid, then clearly $(S \Gamma I) \Gamma S \subseteq$ $S \cap I$. Now let $i \in S \cap I$ which implies that $i \in S$ and $i \in I$, then since S is an intra- regular Γ-AG**-groupoid so there exist $x, y \in S$ and $\alpha, \gamma, \delta \in$ Γ such that $i=(x \alpha(i \delta i)) \gamma y$. Now we have

$$
\begin{aligned}
i & =(x \alpha(i \delta i)) \gamma y=(i \alpha(x \delta i)) \gamma y=(y \alpha(x \delta i)) \gamma i \\
& =(y \alpha(x \delta i)) \gamma((x \alpha(i \delta i)) \gamma y)=(((x \alpha(i \delta i)) \gamma y) \alpha(x \delta i)) \gamma y \\
& =((i \gamma x) \alpha(y \delta(x \alpha(i \delta i)))) \gamma y=(((y \delta(x \alpha(i \delta i))) \gamma x) \alpha i) \gamma y \in(S \Gamma I) \Gamma S .
\end{aligned}
$$

Which shows that $(S \Gamma I) \Gamma S=S \cap I$.
Corollary 34 If S is an intra-regular $\Gamma-A G^{* *}$-groupoid, then $(S \Gamma I) \Gamma S=$ I, where I is a Γ-interior ideal of S.

Lemma 35 If S is an intra-regular regular Γ - $A G^{* *}$-groupoid, then $S=$ $S \Gamma S$.

Proof. It is simple.

Lemma 36 A subset A of an intra-regular Γ - $A G^{* *}$-groupoid S is a Γ-left ideal if and only if it is a Γ-right ideal of S.

Proof. Let S be an intra-regular Γ - $\mathrm{AG}^{* *}$-groupoid and let A be a Γ-right ideal of S, then $A \Gamma S \subseteq A$. Let $a \in A$ and since S is an intra-regular Γ - $\mathrm{AG}^{* *}$ groupoid so there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a=(x \beta(a \delta a)) \gamma y$. Let $p \in S \Gamma A$ and $\psi \in \Gamma$, then by we have

$$
\begin{aligned}
p & =s \psi a=s \psi((x \beta(a \delta a)) \gamma y)=(x \beta(a \delta a)) \psi(s \gamma y)=(a \beta(x \delta a)) \psi(s \gamma y) \\
& =((s \gamma y) \beta(x \delta a)) \psi a=((a \gamma x) \beta(y \delta s)) \psi a=(((y \delta s) \gamma x) \beta a) \psi a \\
& =(a \beta a) \psi((y \delta s) \gamma x)=(x \beta(y \delta s)) \psi(a \gamma a)=a \psi((x \beta(y \delta s)) \gamma a) \in A \Gamma S \subseteq A .
\end{aligned}
$$

Which shows that A is a Γ-left ideal of S.
Let A be a Γ-left ideal of S, then $S \Gamma A \subseteq A$. Let $a \in A$ and since S is an intra-regular Γ - $\mathrm{AG}^{* *}$-groupoid so there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a=(x \beta(a \delta a)) \gamma y$. Let $p \in A \Gamma S$ and $\psi \in \Gamma$, then we have

$$
\begin{aligned}
p & =a \psi s=((x \beta(a \delta a) \gamma y) \psi s=(s \gamma y) \psi(x \beta(a \delta a))=((a \delta a) \gamma x) \psi(y \beta s) \\
& =((y \beta s) \gamma x) \psi(a \delta a)=(a \gamma a) \psi(x \delta(y \beta s))=((x \delta(y \beta s)) \gamma a) \psi a \in S \Gamma A \subseteq A .
\end{aligned}
$$

Which shows that A is a Γ-right ideal of S.

Theorem 37 In an intra-regular $\Gamma-A G^{* *}$-groupoid S, the following conditions are equivalent.
(i) A is a Γ-bi-(Γ-generalized bi-) ideal of S.
(ii) $(A \Gamma S) \Gamma A=A$ and $A \Gamma A=A$.

Proof. $(i) \Longrightarrow(i i)$: Let A be a Γ-bi-ideal of an intra-regular Γ - $\mathrm{AG}^{* *}$ groupoid S, then $(A \Gamma S) \Gamma A \subseteq A$. Let $a \in A$, then since S is an intra-regular so there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a=(x \beta(a \delta a)) \gamma y$. Now we have

$$
\begin{aligned}
a & =(x \beta(a \delta a)) \gamma y=(a \beta(x \delta a)) \gamma y=(y \beta(x \delta a)) \gamma a \\
& =(y \beta(x \delta((x \beta(a \delta a)) \gamma y))) \gamma a=(y \beta((x \beta(a \delta a)) \delta(x \gamma y))) \gamma a \\
& =((x \beta(a \delta a)) \beta(y \delta(x \gamma y))) \gamma a=((a \beta(x \delta a)) \beta(y \delta(x \gamma y))) \gamma a \\
& =((a \beta y) \beta((x \delta a) \delta(x \gamma y))) \gamma a=((x \delta a) \beta((a \beta y) \delta(x \gamma y))) \gamma a \\
& =((x \delta a) \beta((a \beta x) \delta(y \gamma y))) \gamma a=(((y \gamma y) \delta(a \beta x)) \beta(a \delta x)) \gamma a \\
& =(a \beta(((y \gamma y) \delta(a \beta x)) \delta x)) \gamma a \in(A \Gamma S) \Gamma A .
\end{aligned}
$$

Thus $(A \Gamma S) \Gamma A=A$ holds. Now we have

$$
\begin{aligned}
a & =(x \beta(a \delta a)) \gamma y=(a \beta(x \delta a)) \gamma y=(y \beta(x \delta a)) \gamma a \\
& =(y \beta(x \delta((x \beta(a \delta a)) \gamma y))) \gamma a=(y \beta((x \beta(a \delta a)) \delta(x \gamma y))) \gamma a \\
& =((x \beta(a \delta a)) \beta(y \delta(x \gamma y))) \gamma a=((a \beta(x \delta a)) \beta(y \delta(x \gamma y))) \gamma a \\
& =(((y \delta(x \gamma y)) \beta(x \delta a)) \beta a) \gamma a=(((a \delta x) \beta((x \gamma y) \delta y)) \beta a) \gamma a \\
& =(((a \delta x) \beta((y \gamma y) \delta x)) \beta a) \gamma a=(((a \delta(y \gamma y)) \beta(x \delta x)) \beta a) \gamma a \\
& =((((x \delta x) \delta(y \gamma y)) \beta a) \beta a) \gamma a \\
& =((((x \delta x) \delta(y \gamma y)) \beta((x \beta(a \delta a)) \gamma y)) \beta a) \gamma a \\
& =((((x \delta x) \delta(y \gamma y)) \beta((a \beta(x \delta a)) \gamma y)) \beta a) \gamma a \\
& =((((x \delta x) \delta(a \beta(x \delta a))) \beta((y \gamma y) \gamma y)) \beta a) \gamma a \\
& =(((a \delta((x \delta x) \beta(x \delta a))) \beta((y \gamma y) \gamma y)) \beta a) \gamma a \\
& =(((a \delta((a \delta x) \beta(x \delta x))) \beta((y \gamma y) \gamma y)) \beta a) \gamma a \\
& =((((a \delta x) \delta(a \beta(x \delta x))) \beta((y \gamma y) \gamma y)) \beta a) \gamma a \\
& =((((a \delta a) \delta(x \beta(x \delta x))) \beta((y \gamma y) \gamma y)) \beta a) \gamma a \\
& =(((((y \gamma y) \gamma y) \delta(x \beta(x \delta x))) \beta(a \delta a)) \beta a) \gamma a \\
& =((a \beta((((y \gamma y) \gamma y) \delta(x \beta(x \delta x))) \delta a)) \beta a) \gamma a \\
& \subseteq((A \Gamma S) \Gamma A) \Gamma A \subseteq A \Gamma A .
\end{aligned}
$$

Hence $A=A \Gamma A$ holds.
$(i i) \Longrightarrow(i)$ is obvious.
Theorem 38 In an intra-regular Γ - $A G^{* *}$-groupoid S, the following conditions are equivalent.
(i) A is a Γ-(1,2)-ideal of S.
(ii) $(A \Gamma S) \Gamma(A \Gamma A)=A$ and $A \Gamma A=A$.

Proof. $(i) \Longrightarrow(i i)$: Let A be a Γ - $(1,2)$-ideal of an intra-regular $\Gamma-\mathrm{AG}^{* *}$ groupoid S, then $(A \Gamma S)(A \Gamma A) \subseteq A$ and $A \Gamma A \subseteq A$. Let $a \in A$, then since S is an intra- regular so there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a=(x \beta(a \delta a) \gamma y$. Now

$$
\begin{aligned}
a & =(x \beta(a \delta a)) \gamma y=(a \beta(x \delta a)) \gamma y=(y \beta(x \delta a)) \gamma a \\
& =(y \beta(x \delta((x \beta(a \delta a)) \gamma y))) \gamma a=(y \beta((x \beta(a \delta a)) \delta(x \gamma y))) \gamma a \\
& =((x \beta(a \delta a)) \beta(y \delta(x \gamma y))) \gamma a=(((x \gamma y) \beta y) \beta((a \delta a) \delta x)) \gamma a \\
& =(((y \gamma y) \beta x) \beta((a \delta a) \delta x)) \gamma a=((a \delta a) \beta(((y \gamma y) \beta x) \delta x)) \gamma a \\
& =((a \delta a) \beta((x \beta x) \delta(y \gamma y))) \gamma a=(a \beta((x \beta x) \delta(y \gamma y))) \gamma(a \delta a) \in(A \Gamma S) \Gamma(A \Gamma A) .
\end{aligned}
$$

Thus $(A \Gamma S) \Gamma(A \Gamma A)=A$. Now we have

$$
\begin{aligned}
a & =(x \beta(a \delta a)) \gamma y=(a \beta(x \delta a)) \gamma y=(y \beta(x \delta a)) \gamma a \\
& =(y \beta(x \delta a)) \gamma((x \beta(a \delta a)) \gamma y)
\end{aligned}
$$

$$
\begin{aligned}
& =(x \beta(a \delta a)) \gamma((y \beta(x \delta a)) \gamma y) \\
& =(a \beta(x \delta a)) \gamma((y \beta(x \delta a)) \gamma y) \\
& =(((y \beta(x \delta a)) \gamma y) \beta(x \delta a)) \gamma a \\
& =((a \gamma x) \beta(y \delta(y \beta(x \delta a)))) \gamma a \\
& =\quad((((x \beta(a \delta a)) \gamma y) \gamma x) \beta(y \delta(y \beta(x \delta a)))) \gamma a \\
& =\quad(((x \gamma y) \gamma(x \beta(a \delta a))) \beta(y \delta(y \beta(x \delta a)))) \gamma a \\
& =\quad(((x \gamma y) \gamma y) \beta((x \beta(a \delta a)) \delta(y \beta(x \delta a)))) \gamma a \\
& =\quad(((y \gamma y) \gamma x) \beta((x \beta(a \delta a)) \delta(y \beta(x \delta a)))) \gamma a \\
& =\quad(((y \gamma y) \gamma x) \beta((x \beta y) \delta((a \delta a) \beta(x \delta a)))) \gamma a \\
& =\quad(((y \gamma y) \gamma x) \beta((a \delta a) \delta((x \beta y) \beta(x \delta a)))) \gamma a \\
& =\quad((a \delta a) \beta(((y \gamma y) \gamma x) \delta((x \beta y) \beta(x \delta a)))) \gamma a \\
& =\quad((a \delta a) \beta(((y \gamma y) \gamma x) \delta((x \beta x) \beta(y \delta a)))) \gamma a \\
& =\quad((((x \beta x) \beta(y \delta a)) \delta((y \gamma y) \gamma x)) \beta(a \delta a)) \gamma a \\
& =\quad((((a \beta y) \beta(x \delta x)) \delta((y \gamma y) \gamma x)) \beta(a \delta a)) \gamma a \\
& =((((x \delta x) \beta y) \beta a) \delta((y \gamma y) \gamma x)) \beta(a \delta a)) \gamma a \\
& =(((x \beta(y \gamma y)) \delta(a \gamma((x \delta x) \beta y))) \beta(a \delta a)) \gamma a \\
& =((a \delta((x \beta(y \gamma y)) \gamma((x \delta x) \beta y))) \beta(a \delta a)) \gamma a \\
& =((a \delta((x \beta(x \delta x)) \gamma((y \gamma y) \beta y))) \beta(a \delta a)) \gamma a \\
& \in((A \Gamma S) \Gamma(A \Gamma A)) \Gamma A \subseteq A \Gamma A .
\end{aligned}
$$

Hence $A \Gamma A=A$.
$(i i) \Longrightarrow(i)$ is obvious.
Theorem 39 In an intra-regular $\Gamma-A G^{* *}$-groupoid S, the following conditions are equivalent.
(i) A is a Γ-interior ideal of S.
(ii) $(S \Gamma A) \Gamma S=A$.

Proof. $(i) \Longrightarrow(i i)$: Let A be a Γ-interior ideal of an intra-regular Γ - $\mathrm{AG}^{* *}$ groupoid S, then $(S \Gamma A) \Gamma S \subseteq A$. Let $a \in A$, then since S is an intra- regular so there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a=(x \beta(a \delta a)) \gamma y$. Now we have

$$
\begin{aligned}
a & =(x \beta(a \delta a)) \gamma y=(a \beta(x \delta a)) \gamma y=(y \beta(x \delta a)) \gamma a \\
& =(y \beta(x \delta a)) \gamma((x \beta(a \delta a)) \gamma y) \\
& =(((x \beta(a \delta a)) \gamma y) \beta(x \delta a)) \gamma y \\
& =((a \gamma x) \beta(y \delta(x \beta(a \delta a)))) \gamma y \\
& =(((y \delta(x \beta(a \delta a))) \gamma x) \beta a) \delta y \in(S \Gamma A) \Gamma S .
\end{aligned}
$$

Thus $(S \Gamma A) \Gamma S=A$.
$(i i) \Longrightarrow(i)$ is obvious.

Theorem 40 In an intra-regular Γ - $A G^{* *}$-groupoid S, the following conditions are equivalent.
(i) A is a Γ-quasi ideal of S.
(ii) $S \Gamma Q \cap Q \Gamma S=Q$.

Proof. $(i) \Longrightarrow(i i)$: Let Q be a Γ-quasi ideal of an intra-regular Γ - $\mathrm{AG}^{* *}$ groupoid S, then $S \Gamma Q \cap Q \Gamma S \subseteq Q$. Let $q \in Q$, then since S is an intraregular so there exist $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $q=(x \alpha(q \gamma q)) \beta y$. Let $p \delta q \in S \Gamma Q$, for some $\delta \in \Gamma$, then

$$
\begin{aligned}
p \delta q & =p \delta((x \alpha(q \gamma q)) \beta y)=(x \alpha(q \gamma q)) \delta(p \beta y)=(q \alpha(x \gamma q)) \delta(p \beta y) \\
& =(q \alpha p) \delta((x \gamma q) \beta y)=(x \gamma q) \delta((q \alpha p) \beta y)=(y \gamma(q \alpha p)) \delta(q \beta x) \\
& =q \delta((y \gamma(q \alpha p)) \beta x) \in Q \Gamma S .
\end{aligned}
$$

Now let $q \delta y \in Q \Gamma S$, then we have

$$
\begin{aligned}
q \delta p & =((x \alpha(q \gamma q)) \beta y) \delta p=(p \beta y) \delta(x \alpha(q \gamma q)) \\
& =x \delta((p \beta y) \alpha(q \gamma q))=x \delta((q \beta q) \alpha(y \gamma p)) \\
& =(q \beta q) \delta(x \alpha(y \gamma p))=((x \alpha(y \gamma p)) \beta q) \delta q \in S \Gamma Q .
\end{aligned}
$$

Hence $Q \Gamma S=S \Gamma Q$. Then we have

$$
q=(x \alpha(q \gamma q)) \beta y=(q \alpha(x \gamma q)) \beta y=(y \alpha(x \gamma q)) \beta q \in S \Gamma Q
$$

Thus $q \in S \Gamma Q \cap Q \Gamma S$ implies that $S \Gamma Q \cap Q \Gamma S=Q$.
$(i i) \Longrightarrow(i)$ is obvious.

Theorem 41 In an intra-regular Γ - $A G^{* *}$-groupoid S, the following conditions are equivalent.
(i) A is a Γ-(1,2)-ideal of S.
(ii) A is a Γ-two-sided two-sided ideal of S.

Proof. $(i) \Longrightarrow(i i)$: Let S be an intra-regular Γ-AG ${ }^{* *}$-groupoid and let A be a Γ-(1,2)-ideal of S, then $(A \Gamma S) \Gamma(A \Gamma A) \subseteq A$. Let $a \in A$, then since S is an intra-regular so there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$, such that
$a=(x \beta(a \delta a)) \gamma y$. Now let $\psi \in \Gamma$, then

$$
\begin{aligned}
s \psi a & =s \psi((x \beta(a \delta a)) \gamma y)=(x \beta(a \delta a)) \psi(s \gamma y) \\
& =(a \beta(x \delta a)) \psi(s \gamma y)=((s \gamma y) \beta(x \delta a)) \psi a \\
& =((s \gamma y) \beta(x \delta a)) \psi((x \beta(a \delta a)) \gamma y) \\
& =(x \beta(a \delta a)) \psi(((s \gamma y) \beta(x \delta a)) \gamma y) \\
& =(y \beta((s \gamma y) \beta(x \delta a))) \psi((a \delta a) \gamma x) \\
& =(a \delta a) \psi((y \beta((s \gamma y) \beta(x \delta a))) \gamma x) \\
& =(x \delta(y \beta((s \gamma y) \beta(x \delta a)))) \psi(a \gamma a) \\
& =(x \delta(y \beta((a \gamma x) \beta(y \delta s)))) \psi(a \gamma a) \\
& =(x \delta((a \gamma x) \beta(y \beta(y \delta s)))) \psi(a \gamma a) \\
& =((a \gamma x) \delta(x \beta(y \beta(y \delta s)))) \psi(a \gamma a) \\
& =((((x \beta(a \delta a)) \gamma y) \gamma x) \delta(x \beta(y \beta(y \delta s)))) \psi(a \gamma a) \\
& =(((x \gamma y) \gamma(x \beta(a \delta a))) \delta(x \beta(y \beta(y \delta s)))) \psi(a \gamma a) \\
& =((((a \delta a) \gamma x) \gamma(y \beta x)) \delta(x \beta(y \beta(y \delta s)))) \psi(a \gamma a) \\
& =((((y \beta x) \gamma x) \gamma(a \delta a)) \delta(x \beta(y \beta(y \delta s)))) \psi(a \gamma a) \\
& =(((y \beta(y \delta s)) \gamma x) \delta((a \delta a) \beta((y \beta x) \gamma x))) \psi(a \gamma a) \\
& =(((y \beta(y \delta s)) \gamma x) \delta((a \delta a) \beta((x \beta x) \gamma y))) \psi(a \gamma a)
\end{aligned}
$$

$$
\begin{aligned}
& =((a \delta a) \delta(((y \beta(y \delta s)) \gamma x) \beta((x \beta x) \gamma y))) \psi(a \gamma a) \\
& =((((x \beta x) \gamma y) \delta((y \beta(y \delta s)) \gamma x)) \delta(a \beta a)) \psi(a \gamma a) \\
& =(a \delta(((x \beta x) \gamma y) \delta(((y \beta(y \delta s)) \gamma x) \beta a))) \psi(a \gamma a) \in(A \Gamma S) \Gamma(A \Gamma A) \subseteq A
\end{aligned}
$$

Hence A is a Γ-left ideal of S and so A is a Γ-two-sided ideal of S.
$(i i) \Longrightarrow(i):$ Let A be a Γ-two-sided ideal of S. Let $y \in(A \Gamma S) \Gamma(A \Gamma A)$, then $y=(a \beta s) \gamma(b \delta b)$ for some $a, b \in A, s \in S$ and $\beta, \gamma, \delta \in \Gamma$. Now we have

$$
y=(a \beta s) \gamma(b \delta b)=b \gamma((a \beta s) \delta b) \in A \Gamma S \subseteq A
$$

Hence $(A \Gamma S) \Gamma(A \Gamma A) \subseteq A$ and therefore A is a Γ-(1,2)-ideal of S.

Theorem 42 In an intra-regular $\Gamma-A G^{* *}$-groupoid S, the following conditions are equivalent.
(i) A is a Γ-(1,2)-ideal of S.
(ii) A is a Γ-interior ideal of S.

Proof. $(i) \Longrightarrow(i i)$: Let A be a Γ-(1,2)-ideal of an intra-regular Γ - $\mathrm{AG}^{* *}$, groupoid S, then $(A \Gamma S) \Gamma(A \Gamma A) \subseteq A$. Let $p \in(S \Gamma A) \Gamma S$, then $p=(s \mu a) \psi s^{\prime}$ for some $a \in A, s, s^{\prime} \in S$ and $\mu, \psi \in \Gamma$. Since S is intra-regular so there
exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a=(x \beta(a \delta a)) \gamma y$. Now we have

$$
\begin{aligned}
p & =(s \mu a) \psi s^{\prime}=(s \mu((x \beta(a \delta a)) \gamma y)) \psi s^{\prime} \\
& =((x \beta(a \delta a)) \mu(s \gamma y)) \psi s^{\prime}=\left(s^{\prime} \mu(s \gamma y)\right) \psi(x \beta(a \delta a)) \\
& =\left(s^{\prime} \mu(s \gamma y)\right) \psi(a \beta(x \delta a))=a \psi\left(\left(s^{\prime} \mu(s \gamma y)\right) \beta(x \delta a)\right) \\
& =((x \beta(a \delta a)) \gamma y) \psi\left(\left(s^{\prime} \mu(s \gamma y)\right) \beta(x \delta a)\right) \\
& =((a \beta(x \delta a)) \gamma y) \psi\left(\left(s^{\prime} \mu(s \gamma y)\right) \beta(x \delta a)\right) \\
& =\left((a \beta(x \delta a)) \gamma\left(s^{\prime} \mu(s \gamma y)\right)\right) \psi(y \beta(x \delta a)) \\
& =\left(\left(a \beta s^{\prime}\right) \gamma((x \delta a) \mu(s \gamma y))\right) \psi(y \beta(x \delta a)) \\
& =\left(\left(a \beta s^{\prime}\right) \gamma((y \delta s) \mu(a \gamma x))\right) \psi(y \beta(x \delta a)) \\
& =\left(\left(a \beta s^{\prime}\right) \gamma(a \mu((y \delta s) \gamma x))\right) \psi(y \beta(x \delta a)) \\
& =\left((a \beta a) \gamma\left(s^{\prime} \mu((y \delta s) \gamma x)\right)\right) \psi(y \beta(x \delta a)) \\
& =\left((a \beta a) \gamma\left((y \delta s) \mu\left(s^{\prime} \gamma x\right)\right)\right) \psi(y \beta(x \delta a)) \\
& =\left((y \beta(x \delta a)) \gamma\left((y \delta s) \mu\left(s^{\prime} \gamma x\right)\right)\right) \psi(a \beta a) \\
& =\left((y \beta(y \delta s)) \gamma\left((x \delta a) \mu\left(s^{\prime} \gamma x\right)\right)\right) \psi(a \beta a) \\
& =\left((y \beta(y \delta s)) \gamma\left(\left(x \delta s^{\prime}\right) \mu(a \gamma x)\right)\right) \psi(a \beta a) \\
& =\left((y \beta(y \delta s)) \gamma\left(a \mu\left(\left(x \delta s^{\prime}\right) \gamma x\right)\right)\right) \psi(a \beta a) \\
& =\left(a \gamma\left((y \beta(y \delta s)) \mu\left(\left(x \delta s^{\prime}\right) \gamma x\right)\right) \psi(a \beta a)\right. \\
& \in(A \Gamma S) \Gamma(A \Gamma A) \subseteq A .
\end{aligned}
$$

Thus $(S \Gamma A) \Gamma S \subseteq A$. Which shows that A is a Γ-interior ideal of S.
$(i i) \Longrightarrow(i)$: Let A be a Γ-interior ideal of S, then $(S \Gamma A) \Gamma S \subseteq A$. Let $p \in(A \Gamma S) \Gamma(A \Gamma A)$, then $p=(a \mu s) \psi(b \alpha b)$, for some $a, b \in A, s \in S$ and $\mu, \psi, \alpha \in \Gamma$. Since S is intra-regular so there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a=(x \beta(a \delta a)) \gamma y$. Now we have

$$
\begin{aligned}
p & =(a \mu s) \psi(b \alpha b)=((b \alpha b) \mu s) \psi a \\
& =((b \alpha b) \mu s) \psi((x \beta(a \gamma a)) \gamma y) \\
& =(x \beta(a \gamma a)) \psi(((b \alpha b) \mu s) \gamma y) \\
& =((((b \alpha b) \mu s) \gamma y) \beta(a \gamma a)) \psi x \\
& =((a \gamma a) \beta(y \delta((b \alpha b) \mu s))) \psi x \\
& =(((y \delta((b \alpha b) \mu s)) \gamma a) \beta a) \psi x \in(S \Gamma A) \Gamma S \subseteq A .
\end{aligned}
$$

Thus $(A \Gamma S) \Gamma(A \Gamma A) \subseteq A$.
Now by using (3) and (4), we have

$$
\begin{aligned}
A \Gamma A & \subseteq A \Gamma S=A \Gamma(S \Gamma S)=S \Gamma(A \Gamma S)=(S \Gamma S) \Gamma(A \Gamma S) \\
& =(S \Gamma A) \Gamma(S \Gamma S)=(S \Gamma A) \Gamma S \subseteq A
\end{aligned}
$$

Which shows that A is a Γ-(1,2)-ideal of S.

Theorem 43 In an intra-regular Γ - $A G^{* *}$-groupoid S, the following conditions are equivalent.
(i) A is a Γ-bi-ideal of S.
(ii) A is a Γ-interior ideal of S.

Proof. $(i) \Longrightarrow(i i)$: Let A be a Γ-bi-ideal of an intra-regular Γ-AG**groupoid S, then $(A \Gamma S) \Gamma A \subseteq A$. Let $p \in(S \Gamma A) \Gamma S$, then $p=(s \mu a) \psi s^{\prime}$ for some $a \in A, s, s \in S$ and $\mu, \psi \in \Gamma$. Since S is an intra-regular so there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a=(x \beta(a \delta a)) \gamma y$. Now we have

$$
\begin{aligned}
p & =(s \mu a) \psi s^{\prime}=(s \mu((x \beta(a \delta a)) \gamma y)) \psi s^{\prime} \\
& =((x \beta(a \delta a)) \mu(s \gamma y)) \psi s^{\prime}=\left(s^{\prime} \mu(s \gamma y)\right) \psi(x \beta(a \delta a)) \\
& =((a \delta a) \mu x) \psi\left((s \gamma y) \beta s^{\prime}\right) \\
& =\left(\left((s \gamma y) \beta s^{\prime}\right) \mu x\right) \psi(a \delta a)=\left(\left(x \beta s^{\prime}\right) \mu(s \gamma y)\right) \psi(a \delta a) \\
& =(a \mu a) \psi\left((s \gamma y) \delta\left(x \beta s^{\prime}\right)\right)=\left(\left((s \gamma y) \delta\left(x \beta s^{\prime}\right)\right) \mu a\right) \psi a \\
& =\left(\left((s \gamma y) \delta\left(x \beta s^{\prime}\right)\right) \mu((x \beta(a \delta a)) \gamma y)\right) \psi a \\
& =\left(((s \gamma y) \delta(x \beta(a \delta a))) \mu\left(\left(x \beta s^{\prime}\right) \gamma y\right)\right) \psi a \\
& =\left((((a \delta a) \gamma x) \delta(y \beta s)) \mu\left(\left(x \beta s^{\prime}\right) \gamma y\right)\right) \psi a \\
& =\left(\left(\left(\left(x \beta s^{\prime}\right) \gamma y\right) \delta(y \beta s)\right) \mu((a \delta a) \gamma x)\right) \psi a \\
& =\left((a \delta a) \mu\left(\left(\left(\left(x \beta s^{\prime}\right) \gamma y\right) \delta(y \beta s)\right) \gamma x\right)\right) \psi a \\
& =\left(\left(x \delta\left(\left(\left(x \beta s^{\prime}\right) \gamma y\right) \delta(y \beta s)\right)\right) \mu(a \gamma a)\right) \psi a \\
& =\left(a \mu\left(\left(x \delta\left(\left(\left(x \beta s^{\prime}\right) \gamma y\right) \delta(y \beta s)\right)\right) \gamma a\right)\right) \psi a \\
& \in(A \Gamma S) \Gamma A \subseteq A .
\end{aligned}
$$

Thus $(S \Gamma A) \Gamma S \subseteq A$. Which shows that A is a Γ-interior ideal of S.
$(i i) \Longrightarrow(i)$: Let A be a Γ-interior ideal of S, then $(S \Gamma A) \Gamma S \subseteq A$. Let $p \in(A \Gamma S) \Gamma A$, then $p=(a \mu s) \psi b$ for some $a, b \in A, s \in S$ and $\mu, \psi \in \Gamma$. Since S is an intra-regular so there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $b=(x \beta(b \delta b)) \gamma y$. Now

$$
\begin{aligned}
p & =(a \mu s) \psi b=(a \mu s) \psi((x \beta(b \delta b)) \gamma y)=(x \beta(b \delta b)) \psi((a \mu s) \gamma y) \\
& =(((a \mu s) \gamma y) \beta(b \delta b)) \psi x=((b \gamma b) \beta(y \delta(a \mu s))) \psi x \\
& =(((y \delta(a \mu s)) \gamma b) \beta b) \psi x \in(S \Gamma A) \Gamma S \subseteq A .
\end{aligned}
$$

Thus $(A \Gamma S) \Gamma A \subseteq A$.
Now

$$
\begin{aligned}
A \Gamma A & \subseteq A \Gamma S=A \Gamma(S \Gamma S)=S \Gamma(A \Gamma S)=(S \Gamma S) \Gamma(A \Gamma S) \\
& =(S \Gamma A) \Gamma(S \Gamma S)=(S \Gamma A) \Gamma S \subseteq A
\end{aligned}
$$

Which shows that A is a Γ-bi-ideal of S.

Theorem 44 In an intra-regular Γ - $A G^{* *}$-groupoid S, the following conditions are equivalent.
(i) A is a Γ-(1,2)-ideal of S.
(ii) A is a Γ-quasi ideal of S.

Proof. $(i) \Longrightarrow(i i)$: Let A be a Γ-(1, 2)-ideal of intra-regular Γ-AG**groupoid S, then $(A \Gamma S) \Gamma(A \Gamma A) \subseteq A$. Now we have

$$
\begin{aligned}
S \Gamma A & =S \Gamma(A \Gamma A)=S \Gamma((A \Gamma A) \Gamma A) \\
& =(A \Gamma A) \Gamma(S \Gamma A)=(A \Gamma S) \Gamma(A \Gamma A) \subseteq A
\end{aligned}
$$

and by using (1) and (3), we have

$$
\begin{aligned}
A \Gamma S & =(A \Gamma A) \Gamma S=((A \Gamma A) \Gamma A) \Gamma S=(S \Gamma A) \Gamma(A \Gamma A)=(S \Gamma(A \Gamma A)) \Gamma(A \Gamma A) \\
& =((S \Gamma S) \Gamma(A \Gamma A)) \Gamma(A \Gamma A)=((A \Gamma A) \Gamma(S \Gamma S)) \Gamma(A \Gamma A) \\
& =(A \Gamma S) \Gamma(A \Gamma A) \subseteq A .
\end{aligned}
$$

Hence $(A \Gamma S) \cap(S \Gamma A) \subseteq A$. Which shows that A is a Γ-quasi ideal of S. $(i i) \Longrightarrow(i)$: Let A be a Γ-quasi ideal of S, then $(A \Gamma S) \cap(S \Gamma A) \subseteq A$. Now $A \Gamma A \subseteq A \Gamma S$ and $A \Gamma A \subseteq S \Gamma A$. Thus $A \Gamma A \subseteq(A \Gamma S) \cap(S \Gamma A) \subseteq A$. Then

$$
(A \Gamma S) \Gamma(A \Gamma A)=(A \Gamma A) \Gamma(S \Gamma A) \subseteq A \Gamma(S \Gamma A)=S \Gamma(A \Gamma A) \subseteq S \Gamma A
$$

and

$$
\begin{aligned}
(A \Gamma S) \Gamma(A \Gamma A) & =(A \Gamma A) \Gamma(S \Gamma A) \subseteq A \Gamma(S \Gamma A)=S \Gamma(A \Gamma A) \\
& =(S \Gamma S) \Gamma(A \Gamma A)=(A \Gamma A) \Gamma(S \Gamma S) \subseteq A \Gamma S
\end{aligned}
$$

Thus $(A \Gamma S) \Gamma(A \Gamma A) \subseteq(A \Gamma S) \cap(S \Gamma A) \subseteq A$. Which shows that A is a Γ-(1,2)-ideal of S.

Lemma 45 Let A be a subset of an intra-regular Γ - $A G^{* *}$-groupoid S, then A is a Γ-two-sided ideal of S if and only if $A \Gamma S=A$ and $S \Gamma A=A$.

Proof. It is simple.
Theorem 46 For an intra-regular Γ - $A G^{* *}$-groupoid S the following statements are equivalent.
(i) A is a Γ-left two-sided ideal of S.
(ii) A is a Γ-right two-sided ideal of S.
(iii) A is a Γ-two-sided ideal of S.
(iv) $A \Gamma S=A$ and $S \Gamma A=A$.
(v) A is a Γ-quasi ideal of S.
(vi) A is a Γ-(1,2)-ideal of S.
(vii) A is a Γ-generalized bi-ideal of S.
(viii) A is a Γ-bi-ideal of S.
(ix) A is a Γ-interior ideal of S.

Proof. $(i) \Longrightarrow(i i)$ and $(i i) \Longrightarrow(i i i)$ are easy.
$(i i i) \Longrightarrow(i v)$ is followed by above Lemma and $(i v) \Longrightarrow(v)$ is obvious.
$(v) \Longrightarrow(v i)$ It is easy.
$(v i) \Longrightarrow(v i i):$ Let A be a Γ-(1,2)-ideal of an intra-regular Γ - $\mathrm{AG}^{* *}$ groupoid S, then $(A \Gamma S) \Gamma(A \Gamma A) \subseteq A$. Let $p \in(A \Gamma S) \Gamma A$, then $p=(a \mu s) \psi b$ for some $a, b \in A, s \in S$ and $\mu, \psi \in \Gamma$. Now since S is an intra-regular so there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that such that $b=(x \beta(b \delta b)) \gamma y$ then we have

$$
\begin{aligned}
p & =(a \mu s) \psi b=(a \mu s) \psi((x \beta(b \delta b)) \gamma y) \\
& =(x \beta(b \delta b)) \psi((a \mu s) \gamma y)=(y \beta(a \mu s)) \psi((b \delta b) \gamma x) \\
& =(b \delta b) \psi((y \beta(a \mu s)) \gamma x)=(x \delta(y \beta(a \mu s))) \psi(b \gamma b) \\
& =(x \delta(a \beta(y \mu s))) \psi(b \delta b) \\
& =(a \delta(x \beta(y \mu s))) \psi(b \delta b) \in(A \Gamma S) \Gamma(A \Gamma A) \subseteq A .
\end{aligned}
$$

Which shows that A is a Γ-generalized bi-ideal of S.
$(v i i) \Longrightarrow(v i i i)$ is simple.
$(v i i i) \Longrightarrow(i x)$ is followed easily.
$(i x) \Longrightarrow(i)$ is followed by previous results .
Theorem 47 In a Γ - $A G^{* *}$-groupoid S, the following conditions are equivalent.
(i) S is intra-regular.
(ii) Every Γ-bi-ideal of S is Γ-idempotent.

Proof. $(i) \Longrightarrow(i i)$ is obvious.
$(i i) \Longrightarrow(i)$: Since $S \Gamma a$ is a Γ-bi-ideal of S, and by assumption $S \Gamma a$ is Γ-idempotent, so we have

$$
\begin{aligned}
a & \in(S \Gamma a) \Gamma(S \Gamma a)=((S \Gamma a) \Gamma(S \Gamma a)) \Gamma(S \Gamma a) \\
& =((S \Gamma S) \Gamma(a \Gamma a)) \Gamma(S \Gamma a) \subseteq(S \Gamma(a \Gamma a)) \Gamma(S \Gamma S) \\
& =(S \Gamma(a \Gamma a)) \Gamma S .
\end{aligned}
$$

Hence S is intra-regular.
Lemma 48 If I and J are Γ-two-sided ideals of an intra-regular Γ - $A G^{* *}$ groupoid S, then $I \cap J$ is a Γ-two-sided ideal of S.

Proof. It is simple.
Lemma 49 In an intra-regular $\Gamma-A G^{* *}$-groupoid $I \Gamma J=I \cap J$, for every Γ-two-sided ideals I and J in S.

Proof. Let I and J be any Γ-two-sided ideals of S, then obviously $I \Gamma J \subseteq$ $I \cap J$. Since $I \cap J \subseteq I$ and $I \cap J \subseteq J$, then $(I \cap J)(I \cap J) \subseteq I \Gamma J$, also,
$I \cap J$ is a Γ-two-sided ideal of S, so we have $I \cap J=(I \cap J)(I \cap J) \subseteq I \Gamma J$. Hence $I \Gamma J=I \cap J$.

Lemma 50 Let S be a Γ - $A G^{* *}$-groupoid, then S is an intra-regular if and only if every Γ-left ideal of S is Γ-idempotent.

Proof. Let S be an intra-regular Γ-AG ${ }^{* *}$-groupoid, then every Γ-two-sided ideal of S is Γ-idempotent.

Conversely, assume that every Γ-left ideal of S is Γ-idempotent. Since $S \Gamma a$ is a Γ-left ideal of S, so we have

$$
\begin{aligned}
a & \in S \Gamma a=(S \Gamma a) \Gamma(S \Gamma a)=((S \Gamma a) \Gamma(S \Gamma a)) \Gamma(S \Gamma a) \\
& =((S \Gamma S) \Gamma(a \Gamma a)) \Gamma(S \Gamma a) \subseteq(S \Gamma(a \Gamma a)) \Gamma(S \Gamma S) \\
& =(S \Gamma(a \Gamma a)) \Gamma S
\end{aligned}
$$

Hence S is intra-regular.
Lemma 51 In an $A G^{* *}$-groupoid S, the following conditions are equivalent.
(i) S is intra-regular.
(ii) $A=(S \Gamma A)(S \Gamma A)$, where A is any Γ-left ideal of S .

Proof. $(i) \Longrightarrow(i i)$: Let A be a Γ-left ideal of an intra-regular Γ - $\mathrm{AG}^{* *}{ }^{*}$ groupoid S, then $S \Gamma A \subseteq A$ and then, $(S \Gamma A)(S \Gamma A)=S \Gamma A \subseteq A$. Now $A=A \Gamma A \subseteq S \Gamma A=(S \Gamma A)(S \Gamma A)$, which implies that $A=(S \Gamma A)(S \Gamma A)$.
$(i i) \Longrightarrow(i):$ Let A be a Γ-left ideal of S, then $A=(S \Gamma A)(S \Gamma A) \subseteq A \Gamma A$, which implies that A is Γ-idempotent and so S is an intra-regular.

Theorem $52 A \Gamma$ - $A G^{* *}$-groupoid S is called Γ-totally ordered under inclusion if P and Q are any Γ-two-sided ideals of S such that either $P \subseteq Q$ or $Q \subseteq P$.

A Γ-two-sided ideal P of a Γ-AG ${ }^{* *}$-groupoid S is called Γ-strongly irreducible if $A \cap B \subseteq P$ implies either $A \subseteq P$ or $B \subseteq P$, for all Γ-two-sided ideals A, B and P of S.

Lemma 53 Every Γ-two-sided ideal of an intra-regular Γ - $A G^{* *}$-groupoid S is Γ-prime if and only if it is Γ-strongly irreducible.

Proof. It is an easy.
Theorem 54 Every Γ-two-sided ideal of an intra-regular Γ - $A G^{* *}$-groupoid S is Γ-prime if and only if S is Γ-totally ordered under inclusion.

Proof. Assume that every Γ-two-sided ideal of S is Γ-prime. Let P and Q be any Γ-two-sided ideals of S, so , $P \Gamma Q=P \cap Q$, and $P \cap Q$ is a Γ-two-sided ideal of S, so is prime, therefore $P \Gamma Q \subseteq P \cap Q$, which implies that $P \subseteq P \cap Q$ or $Q \subseteq P \cap Q$, which implies that $P \subseteq Q$ or $Q \subseteq P$. Hence S is Γ-totally ordered under inclusion.

Conversely, assume that S is Γ-totally ordered under inclusion. Let I, J and P be any Γ-two-sided ideals of S such that $I \Gamma J \subseteq P$. Now without loss of generality assume that $I \subseteq J$ then

$$
I=I \Gamma I \subseteq I \Gamma J \subseteq P
$$

Therefore either $I \subseteq P$ or $J \subseteq P$, which implies that P is Γ-prime.
Theorem 55 The set of all Γ-two-sided ideals of an intra-regular Γ - $A G^{* *}$ groupoid S, forms a Γ-semilattice structure.

Proof. Assume that $\Gamma_{\mathcal{I}}$ be the set of all Γ-two-sided ideals of an intraregular Γ - $\mathrm{AG}^{* *}$-groupoid S and let $A, B \in \Gamma_{\mathcal{I}}$, since A and B are Γ-twosided ideals of S, then by using (2), we have

$$
\begin{aligned}
(A \Gamma B) \Gamma S & =(A \Gamma B) \Gamma(S \Gamma S)
\end{aligned}=(A \Gamma S) \Gamma(B \Gamma S) \subseteq A \Gamma B .
$$

Thus $A \Gamma B$ is a Γ-two-sided ideal of S. Hence $\Gamma_{\mathcal{I}}$ is closed. Also we have, $A \Gamma B=A \cap B=B \cap A=B \Gamma A$, which implies that $\Gamma_{\mathcal{I}}$ is commutative, so is associative. Now $A \Gamma A=A$, for all $A \in \Gamma_{\mathcal{I}}$. Hence $\Gamma_{\mathcal{I}}$ is Γ-semilattice.

Theorem 56 For an intra-regular Γ - $A G^{* *}$-groupoid S, the following statements holds.
(i) Every Γ-right ideal of S is Γ-semiprime.
(ii) Every Γ-left ideal of S is Γ-semiprime.
(iii) Every Γ-two-sided ideal of S is Γ-semiprime

Proof. (i) : Let R be a Γ-right ideal of an intra-regular Γ-AG**-groupoid S. Let $a \delta a \in R$ for some $\delta \in \Gamma$ and let $a \in S$. Now since S is an intraregular so there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a=(x \beta(a \delta a)) \gamma y$. Now we have

$$
\begin{aligned}
a & =(x \beta(a \delta a)) \gamma y=(a \beta(x \delta a)) \gamma y=(y \beta(x \delta a)) \gamma a \\
& =(y \beta(x \delta a)) \gamma((x \beta(a \delta a)) \gamma y)=(x \beta(a \delta a)) \gamma((y \beta(x \delta a)) \gamma y) \\
& =(x \beta(y \beta(x \delta a))) \gamma((a \delta a) \gamma y) \\
& =(a \delta a) \gamma((x \beta(y \beta(x \delta a))) \gamma y) \in R \Gamma(S \Gamma S)=R \Gamma S \subseteq R .
\end{aligned}
$$

Which shows that R is Γ-semiprime.
(ii) : Let L be a Γ-left ideal of S. Let $a \delta a \in L$ for some $\delta \in \Gamma$ and let $a \in S$ now since S is an intra-regular so there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a=(x \beta(a \delta a)) \gamma y$, then we have

$$
\begin{aligned}
a & =(x \beta(a \delta a)) \gamma y=(a \beta(x \delta a)) \gamma y=(y \beta(x \delta a)) \gamma a \\
& =(y \beta(x \delta a)) \gamma((x \beta(a \delta a)) \gamma y)=(x \beta(a \delta a)) \gamma((y \beta(x \delta a)) \gamma y) \\
& =(y \beta(y \beta(x \delta a))) \gamma((a \delta a) \gamma x)=(a \delta a) \gamma((y \beta(y \beta(x \delta a))) \gamma x) \\
& =(x \delta(y \beta(y \beta(x \delta a)))) \gamma(a \gamma a) \in S \Gamma L \subseteq L .
\end{aligned}
$$

Which shows that L is Γ-semiprime.
(iii) is obvious.

Theorem 57 A Γ-two-sided ideal of an intra-regular Γ - $A G^{* *}$-groupoid S is minimal if and only if it is the intersection of two minimal Γ-two-sided ideals.
Proof. Let S be an intra-regular Γ - $A G^{* *}$-groupoid and Q be a minimal Γ-two-sided ideal of S, let $a \in Q . A s S \Gamma(S \Gamma a) \subseteq S \Gamma a$ and $S \Gamma(a \Gamma S) \subseteq$ $a \Gamma(S \Gamma S)=a \Gamma S$, which shows that $S \Gamma a$ and $a \Gamma S$ are Γ-left ideals of S so $S \Gamma a$ and $a \Gamma S$ are Γ-two-sided ideals of S.

Now

$$
\begin{aligned}
& S \Gamma(S \Gamma a \cap a \Gamma S) \cap(S \Gamma a \cap a \Gamma S) \Gamma S \\
= & S \Gamma(S \Gamma a) \cap S \Gamma(a \Gamma S) \cap(S \Gamma a) \Gamma S \cap(a \Gamma S) \Gamma S \\
\subseteq & (S \Gamma a \cap a \Gamma S) \cap(S \Gamma a) \Gamma S \cap S \Gamma a \subseteq S \Gamma a \cap a \Gamma S .
\end{aligned}
$$

Which implies that $S \Gamma a \cap a \Gamma S$ is a Γ-quasi ideal so $S \Gamma a \cap a \Gamma S$ is a Γ-two-sided ideal.

Also since $a \in Q$, we have

$$
S \Gamma a \cap a \Gamma S \subseteq S \Gamma Q \cap Q \Gamma S \subseteq Q \cap Q \subseteq Q
$$

Now since Q is minimal so $S \Gamma a \cap a \Gamma S=Q$, where $S \Gamma a$ and $a \Gamma S$ are minimal Γ-two-sided ideals of S, because let I be a Γ-two-sided ideal of S such that $I \subseteq S \Gamma a$, then

$$
I \cap a \Gamma S \subseteq S \Gamma a \cap a \Gamma S \subseteq Q
$$

which implies that

$$
I \cap a \Gamma S=Q . \text { Thus } Q \subseteq I
$$

So we have

$$
\begin{aligned}
S \Gamma a & \subseteq S \Gamma Q \subseteq S \Gamma I \subseteq I, \text { gives } \\
S \Gamma a & =I
\end{aligned}
$$

Thus $S \Gamma a$ is a minimal Γ-two-sided ideal of S. Similarly $a \Gamma S$ is a minimal Γ-two-sided ideal of S.

Conversely, let $Q=I \cap J$ be a Γ-two-sided ideal of S, where I and J are minimal Γ-two-sided ideals of S, then Q is a Γ-quasi ideal of S, that is $S \Gamma Q \cap Q \Gamma S \subseteq Q$.

Let Q^{\prime} be a Γ-two-sided ideal of S such that $Q^{\prime} \subseteq Q$, then

$$
\begin{aligned}
S \Gamma Q^{\prime} \cap Q^{\prime} \Gamma S & \subseteq S \Gamma Q \cap Q \Gamma S \subseteq Q, \text { also } S \Gamma Q^{\prime} \subseteq S \Gamma I \subseteq I \\
\text { and } Q^{\prime} \Gamma S & \subseteq J \Gamma S \subseteq J .
\end{aligned}
$$

Now

$$
\begin{aligned}
S \Gamma\left(S \Gamma Q^{\prime}\right) & =(S \Gamma S) \Gamma\left(S \Gamma Q^{\prime}\right)=\left(Q^{\prime} \Gamma S\right) \Gamma(S \Gamma S) \\
& =\left(Q^{\prime} \Gamma S\right) \Gamma S=(S \Gamma S) \Gamma Q^{\prime}=S \Gamma Q^{\prime}
\end{aligned}
$$

implies that $S \Gamma Q^{\prime}$ is a Γ-left ideal and hence a Γ-two-sided ideal. Similarly $Q^{\prime} \Gamma S$ is a Γ-two-sided ideal of S.

But since I and J are minimal Γ-two-sided ideals of S, so

$$
S \Gamma Q^{\prime}=I \text { and } Q^{\prime} \Gamma S=J
$$

But $Q=I \cap J$, which implies that,

$$
Q=S \Gamma Q^{\prime} \cap Q^{\prime} \Gamma S \subseteq Q^{\prime}
$$

Which give us $Q=Q^{\prime}$. Hence Q is minimal.

2.2 Locally Associative Γ - $\mathrm{AG}^{* *}$-groupoids

In this section we introduce a new non-associative algebraic structure namely locally associative Γ - $\mathrm{AG}^{* *}$-groupoids and decompose it using Γ-congruences. An AG-groupoid S is called a locally associative Γ-AG-groupoid if $(a \alpha a) \beta a=$ $a \alpha(a \beta a)$, holds for all a in S and $\alpha, \beta \in \Gamma$. If S is a locally associative AG-groupoid then it is easy to see that $(S \Gamma a) \Gamma S=S \Gamma(a \Gamma S)$ or $(S \Gamma S) \Gamma S=S \Gamma(S \Gamma S)$. For particular $\alpha \in \Gamma$, let us denote $a \alpha a=a_{\alpha}^{2}$ for some $\alpha \in \Gamma$ and $a \alpha a=a_{\Gamma}^{2}, \forall \alpha \in \Gamma$ i.e. $a \Gamma a=a_{\Gamma}^{2}$ and generally $a \Gamma a \Gamma a \ldots a \Gamma a=a_{\Gamma}^{n}(\mathrm{n}$ times. $)$

Let S be an Γ-AG**-groupoid and a relation ρ_{Γ} be defined on S as follows: $a \rho_{\Gamma} b$ if and only if there exists a positive integer n such that $a \Gamma b_{\Gamma}^{n}=b_{\Gamma}^{n+1}$ and $b \Gamma a_{\Gamma}^{n}=a_{\Gamma}^{n+1}$, for all a and b in S.
Proposition 58 If S is a locally associative Γ - $A G^{* *}$-groupoid, then $a \Gamma a_{\Gamma}^{n+1}=$ $\left(a_{\Gamma}^{n+1}\right) \Gamma a$, for all a in S and positive integer n.

Proof.

$$
\begin{aligned}
a \Gamma a_{\Gamma}^{n+1} & =a \Gamma\left(a_{\Gamma}^{n} \Gamma a\right)=a_{\Gamma}^{n} \Gamma(a \Gamma a)=\left(a_{\Gamma}^{n-1} \Gamma a\right) \Gamma(a \Gamma a)=(a \Gamma a) \Gamma\left(a \Gamma a_{\Gamma}^{n-1}\right) \\
& =(a \Gamma a) \Gamma a_{\Gamma}^{n}=\left(a_{\Gamma}^{n} \Gamma a\right) \Gamma a=\left(a_{\Gamma}^{n+1}\right) \Gamma a
\end{aligned}
$$

Proposition 59 In a locally associative $\Gamma-A G^{* *}{ }_{-}$groupoid S, $a_{\Gamma}^{m} a_{\Gamma}^{n}=a_{\Gamma}^{m+n}$ $\forall a \in S$ and positive integers m, n.

Proof.

$$
\begin{aligned}
a_{\Gamma}^{m+1} a_{\Gamma}^{n} & =\left(a_{\Gamma}^{m} \Gamma a\right) \Gamma a_{\Gamma}^{n}=\left(a_{\Gamma}^{n} \Gamma a\right) \Gamma a_{\Gamma}^{m}=\left(a \Gamma a_{\Gamma}^{n}\right) \Gamma a_{\Gamma}^{m} \\
& =\left(a_{\Gamma}^{m} \Gamma a_{\Gamma}^{n}\right) \Gamma a=a_{\Gamma}^{m+n} \Gamma a=a_{\Gamma}^{m+n+1} .
\end{aligned}
$$

Proposition 60 If S is a locally associative Γ - $A G^{* *}$-groupoid, then for all a, b in $S,(a \Gamma b)_{\Gamma}^{n}=a_{\Gamma}^{n} \Gamma b_{\Gamma}^{n}$ and positive integer $n \geq 1$ and $(a \Gamma b)_{\Gamma}^{n}=b_{\Gamma}^{n} \Gamma a_{\Gamma}^{n}$, for $n \geq 2$.

Proof.

$$
(a \Gamma b)_{\Gamma}^{2}=(a \Gamma b) \Gamma(a \Gamma b)=(a \Gamma a) \Gamma(b \Gamma b)=a^{2} \Gamma b^{2}
$$

$(a \Gamma b)_{\Gamma}^{k+1}=(a \Gamma b)_{\Gamma}^{k} \Gamma(a \Gamma b)=\left(a_{\Gamma}^{k} \Gamma b_{\Gamma}^{k}\right) \Gamma(a \Gamma b)=\left(a_{\Gamma}^{k} \Gamma a\right) \Gamma\left(b_{\Gamma}^{k} \Gamma b\right)=a_{\Gamma}^{k+1} \Gamma b_{\Gamma}^{k+1}$.
Let $n \geq 2$. Then by (3) and (1), we get

$$
\begin{aligned}
(a \Gamma b)_{\Gamma}^{n} & \left.=a_{\Gamma}^{n} \Gamma b_{\Gamma}^{n}=\left(a \Gamma a_{\Gamma}^{n-1}\right) \Gamma\left(b \Gamma b_{\Gamma}^{n-1}\right)=b \Gamma\left(\left(a \Gamma a_{\Gamma}^{n-1}\right) \Gamma b_{\Gamma}^{n-1}\right)\right) \\
& =b \Gamma\left(\left(b_{\Gamma}^{n-1} \Gamma a_{\Gamma}^{n-1}\right) \Gamma a\right)=b \Gamma\left((b \Gamma a)_{\Gamma}^{n-1} \Gamma a\right)=(b \Gamma a)_{\Gamma}^{n-1} \Gamma(b \Gamma a) \\
& =(b \Gamma a)_{\Gamma}^{n}=b_{\Gamma}^{n} \Gamma a_{\Gamma}^{n} .
\end{aligned}
$$

Proposition 61 In a locally associative Γ - $A G^{* *}{ }_{-g r o u p o i d} S,\left(a_{\Gamma}^{m}\right)_{\Gamma}^{n}=a_{\Gamma}^{m n}$ for all $a \in S$ and positive integers m, n.

Proof.

$$
\left(a_{\Gamma}^{m+1}\right)_{\Gamma}^{n}=\left(a_{\Gamma}^{m} \Gamma a\right)_{\Gamma}^{n}=\left(a_{\Gamma}^{m}\right)_{\Gamma}^{n} \Gamma a_{\Gamma}^{n}=a_{\Gamma}^{m n} \Gamma a_{\Gamma}^{n}=a_{\Gamma}^{m n+n}=a_{\Gamma}^{n(m+1)}
$$

Theorem 62 Let S be a locally associative $\Gamma-A G^{* *}$-groupoid. If $a \Gamma b_{\Gamma}^{m}=$ b_{Γ}^{m+1} and $b \Gamma a_{\Gamma}^{n}=a_{\Gamma}^{n+1}$ for $a, b \in S$ and positive integers m, n, then $a \rho_{\Gamma} b$.

Proof. If $n>m$, then

$$
\begin{aligned}
b_{\Gamma}^{n-m} \Gamma\left(a \Gamma b_{\Gamma}^{m}\right) & =b_{\Gamma}^{n-m} \Gamma b_{\Gamma}^{m+1} \\
a \Gamma\left(b_{\Gamma}^{n-m} \Gamma b_{\Gamma}^{m}\right) & =b_{\Gamma}^{n-m+m+1} \\
a \Gamma b_{\Gamma}^{n-m+m} & =b_{\Gamma}^{n+1} \\
a \Gamma b_{\Gamma}^{n} & =b_{\Gamma}^{n+1} .
\end{aligned}
$$

Theorem 63 The relation ρ_{Γ} on a locally associative $\Gamma-A G^{* *}$-groupoid is a congruence relation.

Proof. Evidently ρ_{Γ} is reflexive and symmetric. For transitivity we may proceed as follows.

Let $a \rho_{\Gamma} b$ and $b \rho_{\Gamma} c$ so that there exist positive integers n, m such that

$$
\begin{gathered}
a \Gamma b_{\Gamma}^{n}=b_{\Gamma}^{n+1}, b \Gamma a_{\Gamma}^{n}=a_{\Gamma}^{n+1}, \text { and } \\
b \Gamma c_{\Gamma}^{m}=c_{\Gamma}^{m+1}, c \Gamma b_{\Gamma}^{m}=b_{\Gamma}^{m+1}
\end{gathered}
$$

Let $k=(n+1)(m+1)-1$, that is, $k=n(m+1)+m$. Thus we get,

$$
\begin{aligned}
a \Gamma c_{\Gamma}^{k} & =a \Gamma c_{\Gamma}^{n(m+1)+m}=a \Gamma\left(c_{\Gamma}^{n(m+1)} \Gamma c_{\Gamma}^{m}\right)=a \Gamma\left\{\left(c_{\Gamma}^{m+1}\right)_{\Gamma}^{n} \Gamma c_{\Gamma}^{m}\right\} \\
& =a \Gamma\left\{\left(b \Gamma c_{\Gamma}^{m}\right)_{\Gamma}^{n} \Gamma c_{\Gamma}^{m}\right\}=a \Gamma\left\{\left(b_{\Gamma}^{n} \Gamma c_{\Gamma}^{m n}\right) \Gamma c^{m}\right\}=a \Gamma\left(c_{\Gamma}^{m(n+1)} \Gamma b^{n}\right) \\
& =c_{\Gamma}^{m(n+1)} \Gamma\left(a \Gamma b_{\Gamma}^{n}\right)=c_{\Gamma}^{m(n+1)} \Gamma b_{\Gamma}^{n+1}=\left(c_{\Gamma}^{m} \Gamma b\right)_{\Gamma}^{n+1}=b_{\Gamma}^{n+1} \Gamma c_{\Gamma}^{m(n+1)} \\
& =\left(b \Gamma c_{\Gamma}^{m}\right)_{\Gamma}^{n+1}=c_{\Gamma}^{k+1} .
\end{aligned}
$$

Similarly, $c \Gamma a^{k}=a_{\Gamma}^{k+1}$. Thus ρ_{Γ} is an equivalence relation. To show that ρ_{Γ} is compatible, assume that $a \rho_{\Gamma} b$ such that for some positive integer n,

$$
a \Gamma b_{\Gamma}^{n}=b_{\Gamma}^{n+1} \text { and } b \Gamma a_{\Gamma}^{n}=a_{\Gamma}^{n+1}
$$

Let $c \in S$, then, we get
$(a \Gamma c) \Gamma(b \Gamma c)_{\Gamma}^{n}=(a \Gamma c) \Gamma\left(b_{\Gamma}^{n} \Gamma c_{\Gamma}^{n}\right)=\left(a \Gamma b_{\Gamma}^{n}\right) \Gamma\left(c \Gamma c_{\Gamma}^{n}\right)=b_{\Gamma}^{n+1} \Gamma c_{\Gamma}^{n+1}=(b \Gamma c)_{\Gamma}^{n+1}$.
Similarly, $(b \Gamma c) \Gamma(a \Gamma c)_{\Gamma}^{n}=(a \Gamma c)_{\Gamma}^{n+1}$. Hence ρ_{Γ} is a congruence relation on S.

Lemma 64 Let S be a locally associative $\Gamma-A G^{* *}$-groupoid, then $a \Gamma b \rho_{\Gamma} b \Gamma a$, for all a, b in S.

Proof.

$$
\begin{aligned}
(a \Gamma b) \Gamma(b \Gamma a)_{\Gamma}^{n+1} & =(a \Gamma b) \Gamma\left(a_{\Gamma}^{n+1} \Gamma b_{\Gamma}^{n+1}\right)=\left(a \Gamma a_{\Gamma}^{n+1}\right) \Gamma\left(b \Gamma b_{\Gamma}^{n+1}\right) \\
& =a_{\Gamma}^{n+2} \Gamma b_{\Gamma}^{n+2}=(b \Gamma a)_{\Gamma}^{n+2} .
\end{aligned}
$$

Similarly, $(b \Gamma a) \Gamma(a \Gamma b)_{\Gamma}^{n+1}=(a \Gamma b)_{\Gamma}^{n+2}$. Hence $a \Gamma b \rho b \Gamma a$, for all a, b in S.
A relation ρ on an AG-groupoid S is called separative if $a \Gamma b \rho a_{\Gamma}^{2}$ and $a \Gamma b \rho_{\Gamma} b_{\Gamma}^{2}$ implies that $a \rho_{\Gamma} b$.

Theorem 65 The relation ρ_{Γ} is separative.
Proof. Let $a, b \in S, a \Gamma b \rho_{\Gamma} a_{\Gamma}^{2}$, and $a \Gamma b \rho_{\Gamma} b_{\Gamma}^{2}$. Then by definition of ρ_{Γ} there exist positive integers m and n such that,

$$
\begin{aligned}
(a \Gamma b) \Gamma\left(a_{\Gamma}^{2}\right)_{\Gamma}^{m} & =\left(a_{\Gamma}^{2}\right)_{\Gamma}^{m+1}, a_{\Gamma}^{2} \Gamma(a \Gamma b)_{\Gamma}^{m}=(a \Gamma b)_{\Gamma}^{m+1} \text { and } \\
(a \Gamma b) \Gamma\left(b_{\Gamma}^{2}\right)_{\Gamma}^{n} & =\left(b_{\Gamma}^{2}\right)_{\Gamma}^{n+1}, b_{\Gamma}^{2} \Gamma(a \Gamma b)_{\Gamma}^{n}=(a \Gamma b)_{\Gamma}^{n+1} .
\end{aligned}
$$

Then

$$
\begin{aligned}
(a \Gamma b) \Gamma a_{\Gamma}^{2 m} & =(a \Gamma b) \Gamma\left(a_{\Gamma}^{m} \Gamma a_{\Gamma}^{m}\right)=\left(a \Gamma a_{\Gamma}^{m}\right) \Gamma\left(b \Gamma a_{\Gamma}^{m}\right)=\left(a_{\Gamma}^{m+1}\right) \Gamma\left(b \Gamma a_{\Gamma}^{m}\right) \\
& =b \Gamma\left(a_{\Gamma}^{m+1} \Gamma a_{\Gamma}^{m}\right)=b \Gamma a_{\Gamma}^{2 m+1}, \operatorname{but}(a \Gamma b) \Gamma a_{\Gamma}^{2 m}=\left(a_{\Gamma}^{2}\right)_{\Gamma}^{m+1}=a_{\Gamma}^{2 m+2}
\end{aligned}
$$

which implies that $b \Gamma a_{\Gamma}^{2 m+1}=a_{\Gamma}^{2 m+2}$. Also $(a \Gamma b) \Gamma\left(b_{\Gamma}^{2}\right)_{\Gamma}^{n}=\left(b_{\Gamma}^{2}\right)_{\Gamma}^{n+1}$, implies that $b_{\Gamma}^{2 n+1} \Gamma a=b_{\Gamma}^{2 n+2}$. Also, we get

$$
b_{\Gamma}^{2 n+2} \Gamma b_{\Gamma}^{2}=\left(b_{\Gamma}^{2 n+1} \Gamma a\right) \Gamma b_{\Gamma}^{2},
$$

this implies that

$$
b_{\Gamma}^{2 n+4}=b_{\Gamma}^{2} \Gamma\left(a \Gamma b_{\Gamma}^{2 n+1}\right)=a \Gamma\left(b_{\Gamma}^{2} \Gamma b_{\Gamma}^{2 n+1}\right)=a \Gamma b_{\Gamma}^{2 n+3} .
$$

Hence, $a \rho_{\Gamma} b$.
Theorem 66 Let S be a locally associative Γ - $A G^{* *}$-groupoid. Then S / ρ_{Γ} is a maximal separative commutative image of S.

Proof. ρ_{Γ} is separative, and hence S / ρ_{Γ} is separative. We now show that ρ_{Γ} is contained in every separative congruence relation σ_{Γ} on S. Let $a \rho_{\Gamma} b$ so that there exists a positive integer n such that,

$$
a \Gamma b_{\Gamma}^{n}=b_{\Gamma}^{n+1} \text { and } b \Gamma a_{\Gamma}^{n}=a_{\Gamma}^{n+1}
$$

We need to show that $a \sigma_{\Gamma} b$, where σ_{Γ} is a separative congruence on S. Let k be any positive integer such that,

$$
\begin{equation*}
a \Gamma b^{k} \Gamma \sigma b_{\Gamma}^{k+1} \text { and } b \Gamma a_{\Gamma}^{k} \sigma a_{\Gamma}^{k+1} . \tag{5}
\end{equation*}
$$

Suppose $k \geqslant 3$.

$$
\begin{aligned}
\left(a \Gamma b_{\Gamma}^{k-1}\right)_{\Gamma}^{2} & =\left(a \Gamma b_{\Gamma}^{k-1}\right) \Gamma\left(a \Gamma b_{\Gamma}^{k-1}\right)=a_{\Gamma}^{2} \Gamma b_{\Gamma}^{2 k-2}=(a \Gamma a) \Gamma\left(b_{\Gamma}^{k-2} \Gamma b_{\Gamma}^{k}\right) \\
& =\left(a \Gamma b_{\Gamma}^{k-2}\right) \Gamma\left(a \Gamma b_{\Gamma}^{k}\right)=\left(a \Gamma b_{\Gamma}^{k-2}\right) \Gamma b^{k+1}
\end{aligned}
$$

Therefore

$$
\left(a \Gamma b_{\Gamma}^{k-2}\right) \Gamma\left(a \Gamma b_{\Gamma}^{k}\right) \sigma_{\Gamma}\left(a \Gamma b_{\Gamma}^{k-2}\right) \Gamma b_{\Gamma}^{k+1}
$$

Thus we get

$$
\left(a \Gamma b_{\Gamma}^{k-2}\right) \Gamma b_{\Gamma}^{k+1}=\left(b_{\Gamma}^{k+1} \Gamma b_{\Gamma}^{k-2}\right) \Gamma a=b_{\Gamma}^{2 k-1} \Gamma a=\left(b_{\Gamma}^{k} \Gamma b_{\Gamma}^{k-1}\right) \Gamma a=\left(a \Gamma b_{\Gamma}^{k-1}\right) \Gamma b_{\Gamma}^{k} .
$$

Also $\left(a \Gamma b_{\Gamma}^{k-1}\right) \Gamma b_{\Gamma}^{k}=\left(b_{\Gamma}^{k} \Gamma b_{\Gamma}^{k-1}\right) \Gamma a=b_{\Gamma}^{2 k-1} \Gamma a=\left(b_{\Gamma}^{k-1} \Gamma b_{\Gamma}^{k}\right) \Gamma a$

$$
=\left(a \Gamma b_{\Gamma}^{k}\right) \Gamma b_{\Gamma}^{k-1}
$$

implies that

$$
\left(a \Gamma b_{\Gamma}^{k-1}\right)_{\Gamma}^{2} \sigma_{\Gamma}\left(a \Gamma b_{\Gamma}^{k}\right) \Gamma b_{\Gamma}^{k-1} .
$$

Since $a \Gamma b_{\Gamma}^{k} \sigma_{\Gamma} b_{\Gamma}^{k+1}$ and $\left(a \Gamma b_{\Gamma}^{k}\right) \Gamma b_{\Gamma}^{k-1} \sigma_{\Gamma} b_{\Gamma}^{k+1} \Gamma b_{\Gamma}^{k-1}$, hence $\left(a \Gamma b_{\Gamma}^{k-1}\right)_{\Gamma}^{2} \sigma_{\Gamma}\left(b_{\Gamma}^{k}\right)_{\Gamma}^{2}$. It further implies that,

$$
\left(a \Gamma b_{\Gamma}^{k-1}\right)_{\Gamma}^{2} \sigma_{\Gamma}\left(a \Gamma b_{\Gamma}^{k-1}\right) b_{\Gamma}^{k} \sigma_{\Gamma}\left(b_{\Gamma}^{k}\right)_{\Gamma}^{2} .
$$

Thus

$$
a \Gamma b_{\Gamma}^{k-1} \sigma_{\Gamma} b_{\Gamma}^{k} .
$$

Similarly,

$$
b \Gamma a_{\Gamma}^{k-1} \sigma_{\Gamma} a_{\Gamma}^{k}
$$

Thus if (13) holds for k, it holds for $k-1$.
Now obviously (13) yields

$$
a \Gamma b_{\Gamma}^{3} \sigma_{\Gamma}^{\prime} b_{\Gamma}^{4} \text { and } b \Gamma a_{\Gamma}^{3} \sigma_{\Gamma}^{\prime} a_{\Gamma}^{4}
$$

Also, we get

$$
\begin{aligned}
& \left(a \Gamma b_{\Gamma}^{3}\right) \Gamma a_{\Gamma}^{2} \sigma_{\Gamma}^{\prime} b_{\Gamma}^{4} a_{\Gamma}^{2} \text { and }\left(b \Gamma a_{\Gamma}^{3}\right) \Gamma b_{\Gamma}^{2} \sigma_{\Gamma}^{\prime} a_{\Gamma}^{4} \Gamma b_{\Gamma}^{2} \\
& \left(a_{\Gamma}^{2} \Gamma b_{\Gamma}^{3}\right) \Gamma a \sigma^{\prime} \Gamma b_{\Gamma}^{4} \Gamma a_{\Gamma}^{2} \text { and }\left(b_{\Gamma}^{2} \Gamma a_{\Gamma}^{3}\right) \Gamma b \sigma_{\Gamma}^{\prime} a_{\Gamma}^{4} \Gamma b_{\Gamma}^{2} \\
& \left(b_{\Gamma}^{3} \Gamma a_{\Gamma}^{2}\right) \Gamma a \sigma_{\Gamma}^{\prime} a_{\Gamma}^{2} \Gamma b_{\Gamma}^{4} \text { and }\left(a_{\Gamma}^{3} \Gamma b_{\Gamma}^{2}\right) \Gamma b \sigma_{\Gamma}^{\prime} b_{\Gamma}^{2} \Gamma a_{\Gamma}^{4} \\
& a_{\Gamma}^{3} \Gamma b_{\Gamma}^{3} \sigma_{\Gamma}^{\prime} a_{\Gamma}^{2} \Gamma b_{\Gamma}^{4} \text { and } b_{\Gamma}^{3} \Gamma a_{\Gamma}^{3} \sigma_{\Gamma}^{\prime} b_{\Gamma}^{2} \Gamma a_{\Gamma}^{4} \\
& a_{\Gamma}^{3} \Gamma b_{\Gamma}^{3} \sigma_{\Gamma}^{\prime} a_{\Gamma}^{2} \Gamma b_{\Gamma}^{4} \text { and } a_{\Gamma}^{3} \Gamma b_{\Gamma}^{3} \sigma_{\Gamma}^{\prime} b_{\Gamma}^{2} \Gamma a_{\Gamma}^{4},
\end{aligned}
$$

which implies that $\left(b_{\Gamma}^{2} \Gamma a\right)_{\Gamma}^{2} \sigma_{\Gamma}^{\prime} a_{\Gamma}^{3} \Gamma b_{\Gamma}^{3} \sigma_{\Gamma}^{\prime}\left(a_{\Gamma}^{2} \Gamma b\right)_{\Gamma}^{2}$, and as σ_{Γ}^{\prime} is separative and $\left(b_{\Gamma}^{2} \Gamma a\right) \Gamma\left(a_{\Gamma}^{2} \Gamma b\right)=\left(b_{\Gamma}^{2} \Gamma a_{\Gamma}^{2}\right) \Gamma(a \Gamma b)=\left(a_{\Gamma}^{2} \Gamma b_{\Gamma}^{2}\right) \Gamma(a \Gamma b)=a_{\Gamma}^{3} \Gamma b_{\Gamma}^{3}$, so $a_{\Gamma}^{2} \Gamma b \sigma^{\prime} \Gamma b_{\Gamma}^{2} \Gamma a$.
Now we get

$$
\begin{aligned}
& \left(a_{\Gamma}^{2} \Gamma b\right) \Gamma a \sigma^{\prime} \Gamma\left(b_{\Gamma}^{2} \Gamma a\right) \Gamma a \\
& (a \Gamma b) \Gamma a_{\Gamma}^{2} \sigma_{\Gamma}^{\prime} a_{\Gamma}^{2} \Gamma b_{\Gamma}^{2} \\
& a_{\Gamma}^{2} \Gamma(b \Gamma a) \sigma_{\Gamma}^{\prime} a_{\Gamma}^{2} \Gamma b_{\Gamma}^{2} \\
& b \Gamma a_{\Gamma}^{3} \sigma_{\Gamma}^{\prime} a_{\Gamma}^{2} \Gamma b_{\Gamma}^{2} \text { but } b \Gamma a_{\Gamma}^{3} \sigma_{\Gamma}^{\prime} a_{\Gamma}^{4},
\end{aligned}
$$

Thus $(b \Gamma a)_{\Gamma}^{2} \sigma_{\Gamma}^{\prime} b \Gamma a_{\Gamma}^{3} \sigma_{\Gamma}^{\prime}\left(a_{\Gamma}^{2}\right)_{\Gamma}^{2}$, now since σ_{Γ}^{\prime} is separative and $a_{\Gamma}^{2} \Gamma(b \Gamma a)=$ $b \Gamma a_{\Gamma}^{3}$, so we get $b \Gamma a \sigma_{\Gamma}^{\prime} a_{\Gamma}^{2}$.

Similarly we can obtain $a \Gamma b \sigma_{\Gamma}^{\prime} b_{\Gamma}^{2}$.
Also it is easy to show that (13) holds for $k=2$.
Thus if (5) holds for k, it holds for $k=1$. By induction down from k, it follows that (5) holds for $k=1, a \Gamma b \sigma_{\Gamma} b_{\Gamma}^{2}$ and $b \Gamma a \sigma_{\Gamma} a_{\Gamma}^{2}$. Now it is easy to see that $a \Gamma b \sigma_{\Gamma} b_{\Gamma}^{2}$, we get $(b \Gamma a)_{\Gamma}^{2} \sigma_{\Gamma} b_{\Gamma}^{3} \Gamma a$, and again from $a \Gamma b \sigma_{\Gamma} b_{\Gamma}^{2}$ we get $b_{\Gamma}^{3} \Gamma a \sigma_{\Gamma} b_{\Gamma}^{4}$. So $(b \Gamma a)_{\Gamma}^{2} \sigma_{\Gamma} b_{\Gamma}^{3} \Gamma a \sigma b_{\Gamma}^{4}$ implies that $b \Gamma a \sigma_{\Gamma} b_{\Gamma}^{2}$ which further implies that $a \Gamma b \sigma_{\Gamma} b \Gamma a$. Thus we obtain $a \sigma_{\Gamma} b$. Hence $\rho_{\Gamma} \subseteq \sigma_{\Gamma}$ and so S / ρ_{Γ} is the maximal separative commutative image of S.

Lemma 67 If $x \Gamma a=x\left(a=a_{\Gamma}^{2}\right)$ for some x in a locally associative Γ $A G^{* *}$-groupoid then $x_{\Gamma}^{n} \Gamma a=x_{\Gamma}^{n}$ for some positive integer n.

Proof. Let $n=2$, then using (2), we get

$$
x_{\Gamma}^{2} \Gamma a=(x \Gamma x) \Gamma(a \Gamma a)=(x \Gamma a) \Gamma(x \Gamma a)=x \Gamma x=x_{\Gamma}^{2} .
$$

Let the result be true for k, that is, $x_{\Gamma}^{k} \Gamma a=x_{\Gamma}^{k}$. Then by (2) and Proposition 1 , we get

$$
x_{\Gamma}^{k+1} \Gamma a=\left(x \Gamma x_{\Gamma}^{k}\right) \Gamma(a \Gamma a)=(x \Gamma a) \Gamma\left(x_{\Gamma}^{k} \Gamma a\right)=x \Gamma x_{\Gamma}^{k}=x_{\Gamma}^{k+1} .
$$

Hence $x_{\Gamma}^{n} \Gamma a=x_{\Gamma}^{n}$ for all positive integers n.
Lemma 68 If S is a Γ-A G-groupoid, then $Q=\{x \mid x \in S, x \Gamma a=x$ and $\left.a=a_{\Gamma}^{2}\right\}$ is a commutative subsemigroup.

Proof. As $a \Gamma a=a$, we have $a \in Q$. Now if $x, y \in Q$, then by identity (2),

$$
x \Gamma y=(x \Gamma a) \Gamma(y \Gamma a)=(x \Gamma y) \Gamma(a \Gamma a)=(x \Gamma y) \Gamma a .
$$

To prove that Q is commutative and associative, assume that x, y and z belong to Q. Then by using (1), we get

$$
\begin{gathered}
x \Gamma y=(x \Gamma a) \Gamma y=(y \Gamma a) \Gamma x=y \Gamma x . \text { Also } \\
(x \Gamma y) \Gamma z=(z \Gamma y) \Gamma x=x \Gamma(y \Gamma z) .
\end{gathered}
$$

Hence Q is a commutative subsemigroup of S.
Theorem 69 Let ρ_{Γ} and σ_{Γ} be separative congruences on locally associative Γ - $A G^{* *}$-groupoid S and $x_{\Gamma}^{2} a=x_{\Gamma}^{2}\left(a=a_{\Gamma}^{2}\right)$ for all x in S. If $\rho_{\Gamma} \cap\left(Q_{\Gamma} \times Q_{\Gamma}\right) \subseteq \sigma_{\Gamma} \cap\left(Q_{\Gamma} \times Q_{\Gamma}\right)$, then $\rho_{\Gamma} \subseteq \sigma_{\Gamma}$.

Proof. If $x \rho_{\Gamma} y$ then,

$$
\left(x_{\Gamma}^{2} \Gamma(x \Gamma y)\right)_{\Gamma}^{2} \rho_{\Gamma}\left(x_{\Gamma}^{2} \Gamma(x \Gamma y) \Gamma\left(x_{\Gamma}^{2} \Gamma y_{\Gamma}^{2}\right) \rho_{\Gamma}\left(x_{\Gamma}^{2} y_{\Gamma}^{2}\right)_{\Gamma}^{2} .\right.
$$

It follows that $\left(x_{\Gamma}^{2} \Gamma(x \Gamma y)\right)_{\Gamma}^{2},\left(x_{\Gamma}^{2} y_{\Gamma}^{2}\right)_{\Gamma}^{2} \in Q_{\Gamma}$. Now by (2), (1), (3), respectively, we get,

$$
\begin{aligned}
\left(x_{\Gamma}^{2}(x \Gamma y)\right) \Gamma\left(x_{\Gamma}^{2} \Gamma y_{\Gamma}^{2}\right) & =\left(x_{\Gamma}^{2} \Gamma x_{\Gamma}^{2}\right) \Gamma\left((x \Gamma y) \Gamma y_{\Gamma}^{2}\right)=\left(x_{\Gamma}^{2} \Gamma x_{\Gamma}^{2}\right) \Gamma\left(y_{\Gamma}^{3} \Gamma x\right) \\
& =x_{\Gamma}^{4} \Gamma\left(y_{\Gamma}^{3} \Gamma x\right)=y_{\Gamma}^{3} \Gamma\left(x_{\Gamma}^{4} \Gamma x\right)=y_{\Gamma}^{3} \Gamma x_{\Gamma}^{5} \text { and } \\
\left(y_{\Gamma}^{3} \Gamma x_{\Gamma}^{5}\right) \Gamma a & =\left(y_{\Gamma}^{3} \Gamma x_{\Gamma}^{5}\right) \Gamma(a \Gamma a)=\left(y_{\Gamma}^{3} \Gamma a\right) \Gamma\left(x_{\Gamma}^{5} \Gamma a\right)=y_{\Gamma}^{3} \Gamma x_{\Gamma}^{5} .
\end{aligned}
$$

So $x_{\Gamma}^{2} \Gamma(x \Gamma y) \Gamma\left(x_{\Gamma}^{2} \Gamma y_{\Gamma}^{2}\right) \in Q$. Hence $\left(x_{\Gamma}^{2} \Gamma(x \Gamma y)\right)_{\Gamma}^{2} \sigma_{\Gamma}\left(x_{\Gamma}^{2}(x \Gamma y) \Gamma\left(x_{\Gamma}^{2} \Gamma y_{\Gamma}^{2}\right) \sigma_{\Gamma}\left(x_{\Gamma}^{2} y_{\Gamma}^{2}\right)_{\Gamma}^{2}\right.$ implies that

$$
x_{\Gamma}^{2} \Gamma(x \Gamma y) \sigma x_{\Gamma}^{2} \Gamma y_{\Gamma}^{2} .
$$

Since $x_{\Gamma}^{2} \Gamma y_{\Gamma}^{2} \rho_{\Gamma} x_{\Gamma}^{4}$ and $\left(x_{\Gamma}^{2} \Gamma y_{\Gamma}^{2}\right), x_{\Gamma}^{4} \in Q$. Thus $x_{\Gamma}^{2} \Gamma y_{\Gamma}^{2} \sigma_{\Gamma} x_{\Gamma}^{4}$ and we get $\left(x_{\Gamma}^{2}\right)_{\Gamma}^{2} \sigma_{\Gamma} x_{\Gamma}^{2}(x \Gamma y) \sigma_{\Gamma}(x \Gamma y)_{\Gamma}^{2}$ which implies that $x_{\Gamma}^{2} \sigma_{\Gamma} x \Gamma y$. Finally, $x_{\Gamma}^{2} \rho_{\Gamma} y_{\Gamma}^{2}$ and $x_{\Gamma}^{2}, y_{\Gamma}^{2} \in Q$, implying that $x_{\Gamma}^{2} \sigma_{\Gamma} y_{\Gamma}^{2}, x_{\Gamma}^{2} \sigma_{\Gamma} x \Gamma y \sigma_{\Gamma} y_{\Gamma}^{2}$. Thus $x \sigma_{\Gamma} y$ because σ_{Γ} is separative.

Lemma 70 Every left zero congruence is commutative.
Proof. Let $a \sigma_{\Gamma} a$ and $b \sigma_{\Gamma} b$ which implies that $a \Gamma b \sigma_{\Gamma} a \Gamma b,(a \Gamma b) \Gamma(a \Gamma b) \sigma(a \Gamma b)_{\Gamma}^{2}=$ $\left(b_{\Gamma} a\right)_{\Gamma}^{2}$ and so we obtain $a \Gamma b \sigma_{\Gamma} b \Gamma a$.

The relation η_{Γ} define on S by $a \eta_{\Gamma} b$ if and only if there exists some positive integers m, n such that $b_{\Gamma}^{m} \in a \Gamma S$ and $a_{\Gamma}^{n} \in b \Gamma S$.

Theorem 71 Let S be a locally associative Γ - $A G^{* *}$-groupoid. Then the relation η_{Γ} is the least semilattice congruence on S.

Proof. The relation η_{Γ} is obviously reflexive and symmetric. To show transitivity, let $a \eta_{\Gamma} b$ and $b \eta_{\Gamma} c$, where $a, b, c \in S$. Then $a \Gamma x=b_{\Gamma}^{m}$ for some x and $b \Gamma y=c_{\Gamma}^{n}$, for some x and $y \in S$. Then we get

$$
c_{\Gamma}^{m n}=\left(c_{\Gamma}^{n}\right)_{\Gamma}^{m}=\left(b_{\Gamma} y\right)_{\Gamma}^{m}=y_{\Gamma}^{m} \Gamma b_{\Gamma}^{m}=y_{\Gamma}^{m} \Gamma(a \Gamma x)=a \Gamma\left(y_{\Gamma}^{m} \Gamma x\right),
$$

implies that $c_{\Gamma}^{k}=a \Gamma z$, where $k=m n$ and $z=\left(y_{\Gamma}^{m} \Gamma x\right)$. Similarly, $b \Gamma x^{\prime}=$ $a_{\Gamma}^{m \prime}$ and $c \Gamma y^{\prime}=b_{\Gamma}^{n^{\prime}}$ implies that $a_{\Gamma}^{k^{\prime}}=c \Gamma z^{\prime}$.

Let $a, b, c \in S$ and $a \eta_{\Gamma} b \Leftrightarrow\left(\exists m, n \in Z^{+}\right)(\exists x, y \in S) b_{\Gamma}^{m}=a \Gamma x, a_{\Gamma}^{n}=$ $b \Gamma y$. If $m=1, n>1$, that is $b=a \Gamma x, a_{\Gamma}^{n}=b \Gamma y$ for some $x, y \in S$, then

$$
b_{\Gamma}^{3}=(b \Gamma b) \Gamma(a \Gamma x)=a \Gamma\left(b_{\Gamma}^{2} \Gamma x\right) \in a \Gamma S .
$$

Similarly we can consider the case $m=n=1$. Suppose that $m, n>1$. Then we obtain

$$
\begin{aligned}
(b \Gamma c)_{\Gamma}^{m} & =b_{\Gamma}^{m} \Gamma c_{\Gamma}^{m}=(a \Gamma x) \Gamma c_{\Gamma}^{m}=(a \Gamma x) \Gamma\left(c \Gamma c_{\Gamma}^{m-1}\right) \\
& =(a \Gamma c) \Gamma\left(x \Gamma c^{m-1}\right)=(a \Gamma c) \Gamma y, \text { where } y=x \Gamma c_{\Gamma}^{m-1}
\end{aligned}
$$

Thus $a \Gamma c \eta b \Gamma c$ and $c \Gamma a \eta c \Gamma b$.
Now to show that η_{Γ} is a semilattice congruence on S, first we need to show that $a \eta_{\Gamma} b$ implies $a \Gamma b \eta_{\Gamma} a$.

Let $a \eta_{\Gamma} b$, then $b_{\Gamma}^{m}=a \Gamma x$ and $a_{\Gamma}^{n}=b \Gamma y$ for some x and $y \in S$. So

$$
(a \Gamma b)_{\Gamma}^{m}=a_{\Gamma}^{m} \Gamma b_{\Gamma}^{m}=a_{\Gamma}^{m} \Gamma(a \Gamma x)=a \Gamma\left(a_{\Gamma}^{m} \Gamma x\right)
$$

Also $a_{\Gamma}^{n}=b \Gamma y$ implies that $a_{\Gamma}^{n+2}=a_{\Gamma}^{2} \Gamma a_{\Gamma}^{n}=(a \Gamma a) \Gamma(b \Gamma y)=(a \Gamma b) \Gamma(a \Gamma y)$. Hence $a \Gamma b \eta_{\Gamma} a$ which implies that $a_{\Gamma}^{2} \eta_{\Gamma} a,\left(a_{\eta}^{2}\right)_{\Gamma}=\left(a_{\eta}\right)_{\Gamma}$ and so S / η_{Γ} is idempotent.

Next we show that η_{Γ} is commutative. By Proposition 4, $(a \Gamma b)_{\Gamma}^{2}=$ $(b \Gamma a)_{\Gamma}^{2}$, which shows that $a \Gamma b \eta b \Gamma a$ that is $a_{\eta} \Gamma b_{\eta}=b_{\eta} \Gamma a_{\eta}$, that is S / η_{Γ} is a commutative AG-groupoid and so is left zero commutative semigroup of idempotents. Therefore η_{Γ} is a semilattice congruence on S. Next we will show that η_{Γ} is contained in any other left zero semilattice congruence ρ_{Γ} on S. Let $a \eta_{\Gamma} b$, then $b_{\Gamma}^{m}=a \Gamma x$ and $a_{\Gamma}^{n}=b \Gamma y$. Now since $a \rho_{\Gamma} a_{\Gamma}^{2}$ and $b \rho_{\Gamma} b_{\Gamma}^{2}$, it implies that $a \Gamma x \rho_{\Gamma} a_{\Gamma}^{2} \Gamma x, a \rho_{\Gamma} a_{\Gamma}^{n}$ and $b \rho_{\Gamma} b_{\Gamma}^{m}$ which further implies that $a \rho_{\Gamma} b \Gamma y$ and $b \rho_{\Gamma} a \Gamma x$. It is easy fact that $a \Gamma b \rho b \Gamma a$, for some $\Gamma \in \Gamma$. Also
since $b \rho_{\Gamma} b_{\Gamma}^{2}$ and ρ_{Γ} is compatable, so we get $b \Gamma y \rho_{\Gamma} b_{\Gamma}^{2} \Gamma y$. We can easily see that $b \Gamma a \rho_{\Gamma} a \Gamma b \rho_{\Gamma} a \rho_{\Gamma} b \Gamma y \rho_{\Gamma} b_{\Gamma}^{2} \Gamma y$ which implies that $b \Gamma a \rho_{\Gamma} b_{\Gamma}^{2} \Gamma y$. Similarly we can show that $a \Gamma b \rho_{\Gamma} a_{\Gamma}^{2} \Gamma x$. So $a \rho_{\Gamma} b \Gamma y \rho_{\Gamma} b_{\Gamma}^{2} \Gamma y b \Gamma a \rho_{\Gamma} a \Gamma b \rho_{\Gamma} a_{\Gamma}^{2} \Gamma x \rho_{\Gamma} a \Gamma x \rho_{\Gamma} b$ implies that $a \rho_{\Gamma} b$. Thus η_{Γ} is a least semilattice congruence on S.

Theorem $72 \eta_{\Gamma}$ is separative.
Proof. Let $a_{\Gamma}^{2} \eta_{\Gamma} a \Gamma b$ and $a \Gamma b \eta_{\Gamma} b_{\Gamma}^{2}$, then there exist positive integers m, m^{\prime} and n, n such that:

$$
\begin{aligned}
\left(a_{\Gamma}^{2}\right)_{\Gamma}^{m} & =(a \Gamma b)_{\Gamma}^{2} \Gamma x,(a \Gamma b)_{\Gamma}^{m}=\left(a_{\Gamma}^{2}\right)_{\Gamma}^{2} \Gamma x^{\prime} \text { and } \\
(a \Gamma b)_{\Gamma}^{n} & =\left(b_{\Gamma}^{2}\right)_{\Gamma}^{2} \Gamma y^{\prime},\left(b_{\Gamma}^{2}\right)_{\Gamma}^{n}=(a \Gamma b)_{\Gamma}^{2} \Gamma y
\end{aligned}
$$

Now we get,

$$
\begin{aligned}
a_{\Gamma}^{2 m+2} & =a_{\Gamma}^{2 m} \Gamma a_{\Gamma}^{2}=\left(a_{\Gamma}^{2}\right)_{\Gamma}^{m} \Gamma a_{\Gamma}^{2}=\left(\left(a_{\Gamma} \Gamma b\right)_{\Gamma}^{2} \Gamma x\right) \Gamma a_{\Gamma}^{2} \\
& =\left(a^{2} \Gamma x\right) \Gamma(a \Gamma b)_{\Gamma}^{2}=\left(a^{2} \Gamma x\right) \Gamma\left(a_{\Gamma}^{2} \Gamma b_{\Gamma}^{2}\right)=\left(a^{2} \Gamma x\right) \Gamma\left(b_{\Gamma}^{2} \Gamma a_{\Gamma}^{2}\right) \\
& =b_{\Gamma}^{2} \Gamma\left(\left(a_{\Gamma}^{2} \Gamma x\right) \Gamma a_{\Gamma}^{2}\right)=b_{\Gamma}^{2} \Gamma t_{6}, \text { where } t_{6}=\left(\left(a_{\Gamma}^{2} \Gamma x\right) \Gamma a_{\Gamma}^{2}\right)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
b_{\Gamma}^{2 n+2} & =b_{\Gamma}^{2 n} \Gamma b_{\Gamma}^{2}=\left((a \Gamma b)_{\Gamma}^{2} \Gamma y\right) \Gamma b_{\Gamma}^{2}=\left(b_{\Gamma}^{2} \Gamma y\right) \Gamma\left(a_{\Gamma}^{2} \Gamma b_{\Gamma}^{2}\right)=a_{\Gamma}^{2} \Gamma\left(\left(b_{\Gamma}^{2} \Gamma y\right) \Gamma b_{\Gamma}^{2}\right) \\
& =a^{2} \Gamma t_{7}, \text { where } t_{7}=\left(\left(b_{\Gamma}^{2} \Gamma y\right) \Gamma b_{\Gamma}^{2}\right)
\end{aligned}
$$

Hence η_{Γ} is separative.
Theorem 73 Let S be a locally associative Γ - $A G^{* *}$-groupoid. Then S / η_{Γ} is a maximal semilattice separative image of S.

Proof. By Theorem 6, η_{Γ} is the least semilattice congruence on S and S / η_{Γ} is a semilattice. Hence S / η_{Γ} is a maximal semilattice separative image of S.

2.3 Decomposition to Archimedean Locally Associative AG-subgroupoids

Theorem 74 Every locally associative Γ - $A G^{* *}$-groupoid S is uniquely expressible as a semilattice Y of Archimedean locally associative $\Gamma-A G^{* *}$ groupoids $\left(S_{\pi}\right)_{\Gamma}(\pi \in Y)$. The semilattice Y is isomorphic with the maximal semilattics separative image S / η_{Γ} of S and $\left(S_{\pi}\right)_{\Gamma}(\pi \in Y)$ are the equivalence classes of $S \bmod \eta_{\Gamma}$.
Proof. η_{Γ} is least semilattice congruence on S. Next we will prove that equivalence classes $\bmod \eta_{\Gamma}$ are Archimedean locally associative $\Gamma-\mathrm{AG}^{* *}$ groupoids and the semilattice Y is isomorphic to S / η_{Γ}. Let $a, b \in\left(S_{\pi}\right)_{\Gamma}$,
where $\pi \in Y$, then $a \eta_{\Gamma} b$ implies that $a_{\Gamma}^{m} \in b \Gamma S, b_{\Gamma}^{n} \in a \Gamma S$, so $a_{\Gamma}^{m}=b \Gamma x$ and $b_{\Gamma}^{n}=a \Gamma y$, where $x, y \in S$. If $x \in S_{\theta}, \theta \neq \pi$ then $\pi=\pi \theta$, then we get $a_{\Gamma}^{m+1}=a \Gamma a_{\Gamma}^{m}=a \Gamma(b \Gamma x)=b \Gamma(a \Gamma x) \in b \Gamma\left(S_{\pi \theta}\right)_{\Gamma}=b \Gamma\left(S_{\pi}\right)_{\Gamma}$. Similarly one can show that $b_{\Gamma}^{n+1} \in a \Gamma\left(S_{\pi}\right)_{\Gamma}$. This shows that $\left(S_{\pi}\right)_{\Gamma}$ is right Archimedean and so is locally associative Archimedean Γ-AG**-groupoid S. Next we show the uniqueness. Let S be a semilattice Y of Archimedean AG**-groupoid $\left(S_{\pi}\right)_{\Gamma},{ }_{\pi} \in Y$. We need to show that $\left(S_{\pi}\right)_{\Gamma}$ are equivalence classes of $S \bmod \eta_{\Gamma}$. Let $a, b \in S$. Then we show that $a \eta_{\Gamma} b$ if and only if a and b belong to the same $\left(S_{\pi}\right)_{\Gamma}$. If a and b both belong to the same $\left(S_{\pi}\right)_{\Gamma}$, then each divides the power of the other. Since $\left(S_{\pi}\right)_{\Gamma}$ is Archimedean, $a \eta_{\Gamma} b$ by definition. Conversely, if $a \eta_{\Gamma} b$ then $a \Gamma x=b_{\Gamma}^{m}$ and $b \Gamma y=a_{\Gamma}^{n}$ for some $x, y \in S$ and some $m, n \in Z^{+}$. If $x \in\left(S_{\partial}\right)_{\Gamma}$, then $a \Gamma x \in\left(S_{\pi \partial}\right)_{\Gamma}$ and $b_{\Gamma}^{m} \in\left(S_{\theta}\right)_{\Gamma}$, so that $\pi \partial=\theta$. Hence $\theta \leq \pi$, in the semilattice Y. By symmetry, it follows that $\pi \leq \theta$ that is $\pi=\theta$.

3

Embedding and Direct Product of AG-groupoids

3.1 Embedding in AG-groupoids

In this chapter we prove that under certain conditions a right cancellative AG**-groupoid can be embedded in a cancellative commutative monoid whose special type of elements form an abelian group and the identity of this group coincides with the identity of the commutative monoid.

An element a in an AG-groupoid S is called left cancellative, if $a b=a c$ implies that $b=c$. Similarly, c is right cancellative, if $a c=b c$ implies that $a=b$.

In this chapter we shall consider that S is a right cancellative $\mathrm{AG}^{* *}$ groupoid with left identity and T is a subgroupoid of S such that elements of S commute with elements of T^{2}. A relation ρ has been introduced on the subset N of $S \times T^{2}$, so that we obtain an AG-groupoid with right identity. We have proved that N / ρ is a cancellative commutative monoid. A mapping from S to N / ρ has been defined to show that it is in fact an epimorphism from S to a commutative sub-monoid A, of N / ρ. At the end it has been shown that special type of elements of N / ρ form an Abelian group.

Lemma 75 If S is an $A G^{* *}$-groupoid, then $(a b)^{2}=a^{2} b^{2}=b^{2} a^{2}$, for all a, b in S.

Proof. By (2) and (4), we get $(a b)^{2}=(a b)(a b)=(a a)(b b)=a^{2} b^{2}$, also $(a b)^{2}=(a b)(a b)=(b a)(b a)=b^{2} a^{2}$.

Example 76 Let $S=\{a, b, c\}$, and the binary operation (\cdot) be defined on S as follows:

\cdot	a	b	c
a	c	a	b
b	b	c	a
c	a	b	c

Then (S, \cdot) is an $A G^{* *}$-groupoid with left identity c. Clearly it is cancellative.

Example 77 Let $S=\{1,2,3,4\}$, the binary operation (.) be defined on S
as follows:

\cdot	1	2	3	4
1	1	2	3	4
2	4	3	3	3
3	3	3	3	3
4	2	3	3	3

It is non-commutative and non-associative because $4=1 \cdot 4 \neq 4 \cdot 1=2$, $2=(2 \cdot 1) \cdot 1 \neq 2 \cdot(1 \cdot 1)=4 .(S, \cdot)$ is an $A G^{* *}$-groupoid. The subset $A=\{2,4\}$, of S, is a commutative sub-semigroup of S.

3.2 Main Results

Theorem 78 If T is a subgroupoid of a right cancellative $A G^{* *}$-groupoid S with left identity and elements of S commute with elements of T^{2}, then S becomes a commutative monoid.

Proof. Let $N=\left\{\left(s_{i} t_{j}^{2}, t_{k}^{2}\right): s_{i} \in S\right.$ and $\left.t_{j}, t_{k} \in T\right\}$, clearly N is closed because by (2) and lemma 75 , we get $\left(s_{i} t_{j}^{2}, t_{k}^{2}\right)\left(s_{l} t_{m}^{2}, t_{n}^{2}\right)=\left(\left(s_{i} s_{l}\right)\left(t_{j} t_{m}\right)^{2},\left(t_{k} t_{n}\right)^{2}\right)$, for all $s_{i}, s_{l} \in S$ and $t_{j}, t_{m}, t_{k}, t_{n} \in T$. Define a relation ρ on N as $\left(s_{i} t_{j}^{2}\right.$, $\left.t_{k}^{2}\right) \rho\left(s_{l} t_{m}^{2}, t_{n}^{2}\right)$ if and only if $\left(s_{i} t_{j}^{2}\right) t_{n}^{2}=\left(s_{l} t_{m}^{2}\right) t_{k}^{2}$. It is easy to prove that ρ is reflexive and symmetric. To prove that ρ is transitive, we proceed as follows. Let $\left(s_{i} t_{j}^{2}, t_{k}^{2}\right) \rho\left(s_{l} t_{m}^{2}, t_{n}^{2}\right)$ and $\left(s_{l} t_{m}^{2}, t_{n}^{2}\right) \rho\left(s_{p} t_{q}^{2}, t_{r}^{2}\right)$. Then $\left(s_{i} t_{j}^{2}\right) t_{n}^{2}=\left(s_{l} t_{m}^{2}\right) t_{k}^{2}$ and $\left(s_{l} t_{m}^{2}\right) t_{r}^{2}=\left(s_{p} t_{q}^{2}\right) t_{n}^{2}$. Multiply the first equation from left by t_{r}^{2}, then by lemma 75 , we obtain $t_{n}^{2}\left(\left(s_{i} t_{j}^{2}\right) t_{r}^{2}\right)=t_{n}^{2}\left(\left(s_{p} t_{q}^{2}\right) t_{k}^{2}\right)$ which implies that $\left(s_{i} t_{j}^{2}\right) t_{r}^{2}=\left(s_{p} t_{q}^{2}\right) t_{k}^{2}$, thus $\left(s_{i} t_{j}^{2}, t_{k}^{2}\right) \rho\left(s_{p} t_{q}^{2}, t_{r}^{2}\right)$, proving that ρ is transitive.

If $\left(s_{i} t_{j}^{2}, t_{k}^{2}\right) \rho\left(s_{l} t_{m}^{2}, t_{n}^{2}\right)$, then $\left(s_{i} t_{j}^{2}\right) t_{n}^{2}=\left(s_{l} t_{m}^{2}\right) t_{k}^{2}$, now we get $\left(t_{n}^{2} t_{j}^{2}\right) s_{i}=$ $\left(t_{k}^{2} t_{m}^{2}\right) s_{l}$. Multiplying this equation by s_{p} from left side and we get $\left(t_{n}^{2} t_{j}^{2}\right)\left(s_{p} s_{i}\right)=$ $\left(t_{k}^{2} t_{m}^{2}\right)\left(s_{p} s_{l}\right)$, now multiply this equation by $t_{q}^{2} t_{r}^{2}$ from right side and using lemma 75 , we get $\left(\left(s_{i} t_{j}^{2}\right)\left(s_{p} t_{q}^{2}\right)\right)\left(t_{n}^{2} t_{r}^{2}\right)=\left(s_{l} t_{m}^{2}\right)\left(s_{p} t_{q}^{2}\right)\left(t_{k}^{2} t_{r}^{2}\right)$. Thus

$$
\left(\left(s_{i} t_{j}^{2}\right)\left(s_{p} t_{q}^{2}\right), t_{k}^{2} t_{r}^{2}\right) \rho\left(\left(s_{l} t_{m}^{2}\right)\left(s_{p} t_{q}^{2}\right), t_{n}^{2} t_{r}^{2}\right)
$$

that is,

$$
\left(s_{i} t_{j}^{2}, t_{k}^{2}\right)\left(s_{p} t_{q}^{2}, t_{r}^{2}\right) \rho\left(s_{l} t_{m}^{2}, t_{n}^{2}\right)\left(s_{p} t_{q}^{2}, t_{r}^{2}\right)
$$

This shows that ρ is right compatible. Similarly we can show that ρ is left compatible. Hence ρ is a congruence relation on N.

Let $M=N / \rho=\left\{\left[\left(s_{i} t_{j}^{2}, t_{k}^{2}\right)\right]: s_{i} \in S\right.$ and $\left.t_{j}, t_{k} \in T\right\}$ where $\left[\left(s_{i} t_{j}^{2}, t_{k}^{2}\right)\right]$ represents any class in N / ρ. Then it is easy to see that M is an $\mathrm{AG}^{* *}{ }_{-}$ groupoid. Clearly $\left[\left(t_{o}^{2}, t_{o}^{2}\right)\right]$ is the right identity in M, where t_{0} is an arbitrary element of T, because if $\left[\left(s_{i} t_{j}^{2}, t_{k}^{2}\right)\right]$ is an arbitrary element in M, then $\left(\left(s_{i} t_{j}^{2}\right) t_{o}^{2}\right) t_{k}^{2}=\left(s_{i} t_{j}^{2}\right)\left(t_{k}^{2} t_{o}^{2}\right)$. Therefore $\left(\left(s_{i} t_{j}^{2}\right) t_{o}^{2}, t_{k}^{2} t_{o}^{2}\right) \rho\left(s_{i} t_{j}^{2}, t_{k}^{2}\right)$ which implies that $\left(s_{i} t_{j}^{2}, t_{k}^{2}\right)\left(t_{o}^{2}, t_{o}^{2}\right) \rho\left(s_{i} t_{j}^{2}, t_{k}^{2}\right)$ or $\left[\left(s_{i} t_{j}^{2}, t_{k}^{2}\right)\right]\left[\left(t_{o}^{2}, t_{o}^{2}\right)\right]=\left[\left(s_{i} t_{j}^{2}, t_{k}^{2}\right)\right]$.

Hence $\left[\left(t_{o}^{2}, t_{o}^{2}\right)\right]$ is the right identity in M. Since M is an $\mathrm{AG}^{* *}$-groupoid with right identity so it will become a commutative monoid.

Let t_{x} be any fixed element of T. We define a mapping $\Phi: S \longrightarrow M$ by $\left(s_{i}\right) \Phi=\left[\left(s_{i} t_{x}^{2}, t_{x}^{2}\right)\right]$, for all $s_{i} \in S$ and $t_{x} \in T$. Suppose $s_{i}, s_{j} \in S$ such that $s_{i}=s_{j}$. Then clearly $\left[\left(s_{i} t_{x}^{2}, t_{x}^{2}\right)\right]=\left[\left(s_{j} t_{x}^{2}, t_{x}^{2}\right)\right]$ for $t_{x} \in T$. Thus $\left(s_{i}\right) \Phi=\left(s_{j}\right) \Phi$. This shows that Φ is well defined. Next we show that $\left(s_{i} s_{j}\right) \Phi=\left(s_{i}\right) \Phi\left(s_{j}\right) \Phi$. Since $\left(s_{i}\right) \Phi\left(s_{j}\right) \Phi=\left[\left(\left(s_{i} s_{j}\right)\left(t_{x}^{2} t_{x}^{2}\right), t_{x}^{2} t_{x}^{2}\right)\right]$. Also using lemma 75, we get $\left.\left.\left(\left(s_{i} s_{j}\right)\left(t_{x}^{2} t_{x}^{2}\right)\right) t_{x}^{2}=\left(t_{x}^{2}\left(t_{x}^{2} t_{x}^{2}\right)\right)\left(s_{i} s_{j}\right)\right)=\left(\left(t_{x}^{2} t_{x}^{2}\right) t_{x}^{2}\right)\left(s_{i} s_{j}\right)\right)=$ $\left(\left(s_{i} s_{j}\right) t_{x}^{2}\right)\left(t_{x}^{2} t_{x}^{2}\right)$, this implies that $\left(\left(s_{i} s_{j}\right)\left(t_{x}^{2} t_{x}^{2}\right), t_{x}^{2} t_{x}^{2}\right) \rho\left(\left(s_{i} s_{j}\right) t_{x}^{2}, t_{x}^{2}\right)$ and so $\left[\left(\left(s_{i} s_{j}\right)\left(t_{x}^{2} t_{x}^{2}\right), t_{x}^{2} t_{x}^{2}\right)\right]=\left[\left(\left(s_{i} s_{j}\right) t_{x}^{2}, t_{x}^{2}\right)\right]=\left(s_{i} s_{j}\right) \Phi$. Hence $\left(s_{i}\right) \Phi\left(s_{j}\right) \Phi=\left(s_{i} s_{j}\right) \Phi$.
This shows that Φ is a homomorphism.
It is one-to-one, because $\left(s_{i}\right) \Phi=\left(s_{j}\right) \Phi$ implies that $\left[\left(s_{i} t_{x}^{2}, t_{x}^{2}\right)\right]=\left[\left(s_{j} t_{x}^{2}, t_{x}^{2}\right)\right]$, that is, $\left(s_{i} t_{x}^{2}, t_{x}^{2}\right) \rho\left(s_{j} t_{x}^{2}, t_{x}^{2}\right)$. Thus $\left(s_{i} t_{x}^{2}\right) t_{x}^{2}=\left(s_{j} t_{x}^{2}\right) t_{x}^{2}$, which implies that $s_{i}=s_{j}$.

If $A=\left\{\left[\left(s_{i} t_{x}^{2}, t_{x}^{2}\right)\right]: s_{i} \in S\right.$ and $\left.t_{x} \in T\right\}$. Then $A \subset M$ and monomorphism $\Phi: S \longrightarrow A$ is onto. As for every $\left[\left(s_{i} t_{x}^{2}, t_{x}^{2}\right)\right]$ in A there exists s_{i} such that $\left(s_{i}\right) \Phi=\left[\left(s_{i} t_{x}^{2}, t_{x}^{2}\right)\right]$. Clearly $\left[\left(t_{o}^{2}, t_{o}^{2}\right)\right]$ belongs to A.

Lemma 79 A right cancellative $A G$-groupoid with left identity is left cancellative.

Proof. It is easy.
Since S contains the left identity so it is easy to see that $\left[\left(t_{j}^{2}, t_{k}^{2}\right)\right] \in M$.
Now we prove the following theorem.
Theorem $80 M$ is cancellative and elements of the form $\left[\left(t_{i}^{2}, t_{j}^{2}\right)\right]$ in M, form an Abelian group.

Proof. Let us suppose that $\left(s_{i} t_{j}^{2}, t_{k}^{2}\right)\left(s_{p} t_{q}^{2}, t_{r}^{2}\right) \rho\left(s_{l} t_{m}^{2}, t_{n}^{2}\right)\left(s_{p} t_{q}^{2}, t_{r}^{2}\right)$, that is,

$$
\left[\left(s_{i} t_{j}^{2}, t_{k}^{2}\right)\right]\left[\left(s_{p} t_{q}^{2}, t_{r}^{2}\right)\right]=\left[\left(s_{l} t_{m}^{2}, t_{n}^{2}\right)\right]\left[\left(s_{p} t_{q}^{2}, t_{r}^{2}\right)\right]
$$

which implies that

$$
\left.\left.\left[\left(s_{i} t_{j}^{2}\right)\left(s_{p} t_{q}^{2}\right), t_{k}^{2} t_{r}^{2}\right)\right]=\left[\left(s_{l} t_{m}^{2}\right)\left(s_{p} t_{q}^{2}\right), t_{n}^{2} t_{r}^{2}\right)\right]
$$

Then we get,

$$
\left.\left.\left[\left(s_{i} s_{p}\right)\left(t_{j}^{2} t_{q}^{2}\right), t_{k}^{2} t_{r}^{2}\right)\right]=\left[\left(s_{l} s_{p}\right)\left(t_{m}^{2} t_{q}^{2}\right), t_{n}^{2} t_{r}^{2}\right)\right]
$$

which implies that

$$
\left(\left(s_{i} s_{p}\right)\left(t_{j}^{2} t_{q}^{2}\right)\right)\left(t_{n}^{2} t_{r}^{2}\right)=\left(\left(s_{l} s_{p}\right)\left(t_{m}^{2} t_{q}^{2}\right)\right)\left(t_{k}^{2} t_{r}^{2}\right)
$$

Now lemma 75, we get

$$
\left(\left(s_{i} s_{p}\right)\left(t_{n}^{2} t_{j}^{2}\right)\right)\left(t_{r}^{2} t_{q}^{2}\right)=\left(\left(s_{l} s_{p}\right)\left(t_{k}^{2} t_{m}^{2}\right)\right)\left(t_{r}^{2} t_{q}^{2}\right)
$$

now since S is right cancellative so we get $\left(s_{i} s_{p}\right)\left(t_{n}^{2} t_{j}^{2}\right)=\left(s_{l} s_{p}\right)\left(t_{k}^{2} t_{m}^{2}\right)$ which by lemma 75 implies that $s_{p}\left(\left(t_{n}^{2} t_{j}^{2}\right) s_{i}\right)=s_{p}\left(\left(t_{k}^{2} t_{m}^{2}\right) s_{l}\right)$, therefore by lemma 79, we get $\left(t_{n}^{2} t_{j}^{2}\right) s_{i}=\left(t_{k}^{2} t_{m}^{2}\right) s_{l}$, using we get, $\left(s_{i} t_{j}^{2}\right) t_{n}^{2}=\left(s_{l} t_{m}^{2}\right) t_{k}^{2}$. Thus $\left(s_{i} t_{j}^{2}, t_{k}^{2}\right) \rho\left(s_{l} t_{m}^{2}, t_{n}^{2}\right)$. Hence M is right cancellative. Similarly we can show that M is left cancellative. Now using lemma 75, we can easily see that $\left(t_{i}^{2} t_{j}^{2}\right) t_{o}^{2}=\left(t_{j}^{2} t_{i}^{2}\right) t_{o}^{2}$ which implies that $\left(t_{i}^{2} t_{j}^{2}, t_{o}^{2}\right) \rho\left(t_{j}^{2} t_{i}^{2}, t_{o}^{2}\right)$, that is, $\left[\left(t_{i}^{2}, t_{j}^{2}\right)\right]\left[\left(t_{j}^{2}, t_{i}^{2}\right)\right]=\left[\left(t_{o}^{2}, t_{o}^{2}\right)\right]$. Thus $\left[\left(t_{i}^{2}, t_{j}^{2}\right)\right]$ is the inverse of $\left[\left(t_{j}^{2}, t_{i}^{2}\right)\right]$. Hence all the cancellative elements $\left[\left(t_{i}^{2}, t_{j}^{2}\right)\right]$ of M form an Abelian group G in M. We note that the product of two cancellative elements of G, is in G. We have proved in theorem 1 , that $\left[\left(t_{o}^{2}, t_{o}^{2}\right)\right]$ is the identity element of M, since G contains elements of the form $\left[\left(t_{x}^{2}, t_{y}^{2}\right)\right]$, therefore $\left[\left(t_{o}^{2}, t_{o}^{2}\right)\right]$ is in G which is unique since G is a group.

3.3 Direct Products in AG-groupoids

In this section we show that the direct product of regular $\mathcal{A G}$-groupoids is the most generalized class of the direct product of an $\mathcal{A G}$-groupoids. It has proved that the direct product of weakly regular, intra-regular, right regular, left regular, left quasi regular, completely regular and (2,2)regular $\mathcal{A G}$-groupoids with left identity coincide. Also we have proved that the direct product of intra-regular $\mathcal{A G}$-groupoids with left identity $\left(\mathcal{A G}^{* *}\right.$ groupoids) is regular but the converse is not true in general. Further we have shown that non-associative direct product of regular, weakly regular, intra-regular, right regular, left regular, left quasi regular, completely regular, $(2,2)$-regular and strongly regular $\mathcal{A G}^{*}$-groupoids do not exist.

If \mathcal{S}_{1} and \mathcal{S}_{2} are AG-groupoids, then $\mathcal{S}_{1} \times \mathcal{S}_{2}=\left\{\left(s_{1}, s_{2}\right): s_{1} \in \mathcal{S}_{1}\right.$ and $\left.s_{2} \in \mathcal{S}_{2}\right\}$ is an AG-groupoid under the point-wise multiplication of ordered pairs.

An element (a, b) of an $\mathcal{A G}$-groupoid $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is called a regular element of $\mathcal{S}_{1} \times \mathcal{S}_{2}$ if there exist $x \in \mathcal{S}_{1}$ and $m \in \mathcal{S}_{2}$ such that $(a, b)=((a x) a,(b m) b)$ and $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is called regular if all elements of \mathcal{S} are regular.

An element (a, b) of an $\mathcal{A G}$-groupoid $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is called a weakly regular element of $\mathcal{S}_{1} \times \mathcal{S}_{2}$ if there exist $x, y \in \mathcal{S}_{1}$ and $l, m \in \mathcal{S}_{2}$ such that $(a, b)=$ ((ax)(ay),(bl)(bm)) and $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is called weakly regular if all elements of $\mathcal{S}_{1} \times \mathcal{S}_{2}$ are weakly regular.

An element (a, b) of an $\mathcal{A \mathcal { G }}$-groupoid $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is called an intra-regular element of $\mathcal{S}_{1} \times \mathcal{S}_{2}$ if there exist $x, y \in \mathcal{S}_{1}$ and $l, m \in \mathcal{S}_{2}$ such that $(a, b)=$ $\left(\left(x a^{2}\right) y,\left(l b^{2}\right) m\right)$ and $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is called intra-regular if all elements of $\mathcal{S}_{1} \times \mathcal{S}_{2}$ are intra-regular.

An element (a, b) of an $\mathcal{A \mathcal { G }}$-groupoid $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is called a right regular element of $\mathcal{S}_{1} \times \mathcal{S}_{2}$ if there exists $x \in \mathcal{S}_{1}$ and $m \in \mathcal{S}_{2}$ such that $(a, b)=$ $\left(a^{2} x, b^{2} m\right)=((a a) x,(b b) m)$ and $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is called right regular if all elements of $\mathcal{S}_{1} \times \mathcal{S}_{2}$ are right regular.

An element (a, b) of an $\mathcal{A} \mathcal{G}$-groupoid $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is called a left regular element of $\mathcal{S}_{1} \times \mathcal{S}_{2}$ if there exists $x \in \mathcal{S}_{1}$ and $m \in \mathcal{S}_{2}$ such that $(a, b)=$ $\left(x a^{2}, m b^{2}\right)=(x(a a), m(b b))$ and $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is called left regular if all elements of $\mathcal{S}_{1} \times \mathcal{S}_{2}$ are left regular.

An element (a, b) of an $\mathcal{A G}$-groupoid $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is called a left quasi regular element of $\mathcal{S}_{1} \times \mathcal{S}_{2}$ if there exist $x, y \in \mathcal{S}_{1}$ and $l, m \in \mathcal{S}_{2}$ such that $(a, b)=((x a)(y a),(l b)(m b))$ and $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is called left quasi regular if all elements of $\mathcal{S}_{1} \times \mathcal{S}_{2}$ are left quasi regular.

An element (a, b) of an $\mathcal{A G}$-groupoid $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is called a completely regular element of \mathcal{S} if (a, b) is regular, left regular and right regular. $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is called completely regular if it is regular, left and right regular.

An element (a, b) of an $\mathcal{A G}$-groupoid $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is called a (2,2)-regular element of $\mathcal{S}_{1} \times \mathcal{S}_{2}$ if there exists $x \in \mathcal{S}_{1}$ and $m \in \mathcal{S}_{2}$ such that $(a, b)=$ $\left(\left(a^{2} x\right) a^{2},\left(b^{2} m\right) b^{2}\right)$ and $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is called (2,2)-regular $\mathcal{A} \mathcal{G}$-groupoid if all elements of $\mathcal{S}_{1} \times \mathcal{S}_{2}$ are (2,2)-regular.

An element (a, b) of an $\mathcal{A G}$-groupoid $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is called a strongly regular element of $\mathcal{S}_{1} \times \mathcal{S}_{2}$ if there exists $x \in \mathcal{S}_{1}$ and $m \in \mathcal{S}_{2}$ such that $(a, b)=$ $((a x) a,(b m) b)$ and $a x=x a, b m=m b . \mathcal{S}_{1} \times \mathcal{S}_{2}$ is called strongly regular $\mathcal{A G}$-groupoid if all elements of $\mathcal{S}_{1} \times \mathcal{S}_{2}$ are strongly regular.

Example 81 Let us consider an $\mathcal{A G}$-groupoid $\mathcal{S}=\{a, b, c\}$ in the following multiplication table.

.	a	b	c
a	c	c	c
b	c	c	a
c	c	c	a

Clearly \mathcal{S} is non-commutative and non-associative, because $b c \neq c b$ and $(c c) a \neq c(c a)$. Note that \mathcal{S} has no left identity.

Example 82 Let us consider an $\mathcal{A} \mathcal{G}$-groupoid $\mathcal{S}_{1}=\{a, b, c, d, e, f\}$ with left identity e and $\mathcal{S}_{2}=\{g, h, i, j, k, l\}$ with left identity j in the following Cayley's tables.

.	a	b	c	d	e	f
a						
b	a	b	b	b	b	b
c	a	b	f	f	d	f
d	a	b	f	f	c	f
e	a	b	c	d	e	f
f	a	b	f	f	f	f

\cdot	g	h	i	j	k	l
g						
h	g	h	h	h	h	h
i	g	h	l	l	i	l
j	g	h	i	j	k	l
k	g	h	l	l	l	l
l	g	h	l	l	j	l

Clearly $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is non-commutative and non-associative, because $(e d, i k) \neq$ $(d e, k i)$ and $((d e) e,(i k) k) \neq(d(e e), i(k k))$.

Lemma 83 If $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is a regular, weakly regular, intra-regular, right regular, left regular, left quasi regular, completely regular, $(2,2)$-regular or strongly regular $\mathcal{A G}$-groupoid, then $\mathcal{S}_{1} \times \mathcal{S}_{2}=\left(\mathcal{S}_{1} \times \mathcal{S}_{2}\right)^{2}$.

Proof. Let $\mathcal{S}_{1} \times \mathcal{S}_{2}$ be a regular $\mathcal{A G}$-groupoid, then $\left(\mathcal{S}_{1} \times \mathcal{S}_{2}\right)^{2} \subseteq \mathcal{S}_{1} \times \mathcal{S}_{2}$ is obvious. Let $(a, b) \in \mathcal{S}_{1} \times \mathcal{S}_{2}$ where $a \in \mathcal{S}_{1}$ and $b \in \mathcal{S}_{2}$, then since $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is regular so there exists $(x, y) \in \mathcal{S}_{1} \times \mathcal{S}_{2}$ such that $(a, b)=((a x) a,(b y) b)$. Now by using (2), we have

$$
(a, b)=((a x) a,(b y) b)=((a x)(b y),(a b)) \in\left(\mathcal{S}_{1} \times \mathcal{S}_{2}\right)\left(\mathcal{S}_{1} \times \mathcal{S}_{2}\right)=\left(\mathcal{S}_{1} \times \mathcal{S}_{2}\right)^{2}
$$

Similarly if $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is weakly regular, intra-regular, right regular, left regular, left quasi regular, completely regular, $(2,2)$-regular or strongly regular, then we can show that $\mathcal{S}_{1} \times \mathcal{S}_{2}=\left(\mathcal{S}_{1} \times \mathcal{S}_{2}\right)^{2}$.

The converse is not true in general, because $\mathcal{S}_{1} \times \mathcal{S}_{2}=\left(\mathcal{S}_{1} \times \mathcal{S}_{2}\right)^{2}$ holds but $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is not regular, weakly regular, intra-regular, right regular, left regular, left quasi regular, completely regular, (2,2)-regular and strongly regular, because $(d, k) \in \mathcal{S}_{1} \times \mathcal{S}_{2}$ is not regular, weakly regular, intraregular, right regular, left regular, left quasi regular, completely regular, $(2,2)$-regular and strongly regular.

Theorem 84 If $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is an $\mathcal{A G}$-groupoid with left identity $\left(\mathcal{A G}^{* *}\right.$-groupoid), then $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is intra-regular if and only if for all $(a, b) \in \mathcal{S}_{1} \times \mathcal{S}_{2},(a, b)=$ $((x a)(a z),(l b)(b m))$ holds for some $x, z \in \mathcal{S}_{1}$ and $l, m \in \mathcal{S}_{2}$.

Proof. Let $\mathcal{S}_{1} \times \mathcal{S}_{2}$ be an intra-regular $\mathcal{A G}$-groupoid with left identity $\left(\mathcal{A G}^{* *}\right.$ groupoid), then for any $(a, b) \in \mathcal{S}_{1} \times \mathcal{S}_{2}$, there exist $x, y \in \mathcal{S}_{1}$ and $l, k \in \mathcal{S}_{2}$ such that $(a, b)=\left(\left(x a^{2}\right) y,\left(l b^{2}\right) k\right)$. Now $y=u v$ and $k=p q$ for some
$u, v \in \mathcal{S}_{1}$ and $p, q \in \mathcal{S}_{2}$. Thus we have

$$
\begin{aligned}
(a, b) & =\left(\left(x a^{2}\right) y,\left(l b^{2}\right) k\right)=((x(a a)) y,(l(b b)) k) \\
& =((a(x a)) y,(b(l b)) k)=((y(x a)) a,(k(l b)) b) \\
& =\left((y(x a))\left(\left(x a^{2}\right) y\right),(k(l b))\left(\left(l b^{2}\right) k\right)\right) \\
& =\left(((u v)(x a))\left(\left(x a^{2}\right) y\right),((p q)(l b))\left(\left(l b^{2}\right) k\right)\right) \\
& =\left(((a x)(v u))\left(\left(x a^{2}\right) y\right),((b l)(q p))\left(\left(l b^{2}\right) k\right)\right) \\
& =\left(((a x) t)\left(\left(x a^{2}\right) y\right),((b l) j)\left(\left(l b^{2}\right) k\right)\right) \\
& =\left(\left(\left(\left(x a^{2}\right) y\right) t\right)(a x),\left(\left(\left(l b^{2}\right) k\right) j\right)(b l)\right) \\
& \left.=\left(\left((t y)\left(x a^{2}\right)\right)(a x),\left((j k)\left(l b^{2}\right)\right)\right)(b l)\right) \\
& =\left(\left(\left(a^{2} x\right)(y t)\right)(a x),\left(\left(b^{2} l\right)(k j)\right)(b l)\right) \\
& =\left(\left(\left(a^{2} x\right) s\right)(a x),\left(\left(b^{2} l\right) r\right)(b l)\right) \\
& =(((s x)(a a))(a x),((r l)(b b))(b l)) \\
& =(((a a)(x s))(a x),((b b))(l r))(b l)) \\
& =(((a a) w)(a x),((b b)))(b l)) \\
& =(((w a) a)(a x),((n b) b)(b l)) \\
& =((z a)(a x),(m b)(b l)) \\
& =((x a)(a z),(l b)(b m)),
\end{aligned}
$$

where $v u=t, q p=j, y t=s, k j=r, x s=w, l r=n, w a=z$ and $n b=m$ for some $t, s, w, z \in \mathcal{S}_{1}$ and $j, r, n, m \in \mathcal{S}_{2}$.

Conversely, let for all $(a, b) \in \mathcal{S}_{1} \times \mathcal{S}_{2},(a, b)=((x a)(a z),(l b)(b m))$ holds for some $x, z \in \mathcal{S}_{1}$ and $l, m \in \mathcal{S}_{2}$. Now we have

$$
\begin{aligned}
(a, b) & =((x a)(a z),(l b)(b m))=(a((x a) z), b((l b) m)) \\
& =(((x a)(a z))((x a) z),((l b)(b m))((l b) m)) \\
& =((a((x a) z))((x a) z),(b((l b) m))((l b) m)) \\
& =((((x a) z)((x a) z)) a,(((l b) m)((l b) m)) b) \\
& =((((x a)(x a))(z z)) a,(((l b)(l b)))(m m)) b) \\
& =((((a x)(a x))(z z)) a,(((b l)(b l)))(m m)) b) \\
& =(((a((a x) x))(z z)) a,((b((b l))))(m m)) b) \\
& =((((z z)((a x) x)) a) a,(((m m)((b l) l)) b) b) \\
& =\left(\left(\left(z^{2}((a x) x)\right) a\right) a,\left(\left(m^{2}((b l) l)\right) b\right) b\right) \\
& =\left(\left(\left((a x)\left(z^{2} x\right)\right) a\right) a,\left(\left((b l)\left(m^{2} l\right)\right) b\right) b\right) \\
& =\left(\left(\left(\left(\left(z^{2} x\right) x\right) a\right) a\right) a,\left(\left(\left(\left(m^{2} l\right) l\right) b\right) b\right) b\right) \\
& =\left(\left(\left(\left(x^{2} z^{2}\right) a\right) a\right) a,\left(\left(\left(l^{2} m^{2}\right) b\right) b\right) b\right) \\
& =\left(\left(a^{2}\left(x^{2} z^{2}\right)\right) a,\left(b^{2}\left(l^{2} m^{2}\right)\right) b\right) \\
& \left.=\left(\left(a\left(x^{2} z^{2}\right)\right)\right)(a a),\left(b\left(l^{2} m^{2}\right)\right)(b b)\right) \\
& =((a t)(a a),(b s)(b b)),
\end{aligned}
$$

where $x^{2} z^{2}=t$ and $l^{2} m^{2}=s$ for some $t \in \mathcal{S}_{1}, s \in \mathcal{S}_{2}$.
Now we have

$$
\begin{aligned}
(a, b) & =((a t)(a a),(b s)(b b)) \\
& =((((a t)(a a)) t)(a a),(((b s)(b b)) s)(b b)) \\
& =((((a a)(t a)) t)(a a),(((b b)(s b)) s)(b b)) \\
& =\left(\left(\left(a^{2}(t a)\right) t\right)(a a),\left(\left(b^{2}(s b)\right) s\right)(b b)\right) \\
& =\left(\left((t(t a)) a^{2}\right)(a a),\left((s(s b)) b^{2}\right)(b b)\right) \\
& =\left(\left(u a^{2}\right) v,\left(p b^{2}\right) q\right) .
\end{aligned}
$$

Where $t(t a)=u, a a=v, s(s b)=p$ and $b b=q$ for some $u, v \in \mathcal{S}_{1}$, $p, q \in \mathcal{S}_{2}$. Thus $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is intra-regular.

Theorem 85 If $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is an $\mathcal{A G}$-groupoid with left identity ($\mathcal{A G}^{* *}$-groupoid), then the following are equivalent.
(i) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is weakly regular.
(ii) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is intra-regular.

Proof. $(i) \Longrightarrow($ ii $)$ Let $\mathcal{S}_{1} \times \mathcal{S}_{2}$ be a weakly regular $\mathcal{A} \mathcal{G}$-groupoid with left identity $\left(\mathcal{A G}^{* *}\right.$-groupoid), then for any $(a, b) \in \mathcal{S}_{1} \times \mathcal{S}_{2}$ there exist $x, y \in \mathcal{S}_{1}$ and $l, m \in \mathcal{S}_{2}$ such that $(a, b)=((a x)(a y),(b l)(b m))$ and $x=u v, l=p q$ for some $u, v \in \mathcal{S}_{1}, p, q \in \mathcal{S}_{2}$. Let $v u=t \in \mathcal{S}_{1}$ and $q p=n \in \mathcal{S}_{2}$. Now we have

$$
\begin{aligned}
(a, b) & =((a x)(a y),(b l)(b m)) \\
& =((y a)(x a),(m b)(l b)) \\
& =((y a)((u v) a),(m b)((p q) b)) \\
& =((y a)((a v) u),(m b)((b q) p)) \\
& =((a v)((y a) u),(b q)((m b) p)) \\
& =((a(y a))(v u),(b(m b))(q p)) \\
& =((a(y a)) t,(b(m b)) n) \\
& =((y(a a)) t,(m(b b)) n)=\left(\left(y a^{2}\right) t,\left(m b^{2}\right) n\right) .
\end{aligned}
$$

Thus $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is intra-regular.
$(i i) \Longrightarrow(i)$ It is easy.
Theorem 86 If $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is an $\mathcal{A \mathcal { G }}$-groupoid $\left(\mathcal{A G}^{* *}\right.$-groupoid $)$, then the following are equivalent.
(i) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is weakly regular.
(ii) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is right regular.

Proof. $($ i $) \Longrightarrow\left(\right.$ ii) Let $\mathcal{S}_{1} \times \mathcal{S}_{2}$ be a weakly regular $\mathcal{A G}$-groupoid $\left(\mathcal{A G}^{* *}{ }_{-}\right.$ groupoid), then for any $(a, b) \in \mathcal{S}_{1} \times \mathcal{S}_{2}$ there exist $x, y \in \mathcal{S}_{1}$ and $m, n \in \mathcal{S}_{2}$ such that $(a, b)=((a x)(a y),(b m)(b n))$. Now let $x y=t$ and $m n=s$ for
some $t \in \mathcal{S}$. Now

$$
\begin{aligned}
(a, b) & =((a x)(a y),(b m)(b n)) \\
& =((a a)(x y),(b b)(m n))=\left(a^{2} t, b^{2} s\right)
\end{aligned}
$$

Thus $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is right regular.
$(i i) \Longrightarrow(i)$ It is easy.
Theorem 87 If $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is an $\mathcal{A \mathcal { G }}$-groupoid with left identity $\left(\mathcal{A G}^{* *}\right.$-groupoid), then the following are equivalent.
(i) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is weakly regular.
(ii) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is left regular.

Proof. $(i) \Longrightarrow($ ii $)$ Let $\mathcal{S}_{1} \times \mathcal{S}_{2}$ be a weakly regular $\mathcal{A} \mathcal{G}$-groupoid with left identity $\left(\mathcal{A G}^{* *}\right.$-groupoid), then for any $(a, b) \in \mathcal{S}_{1} \times \mathcal{S}_{2}$ there exist $x, y \in \mathcal{S}_{1}$ and $m, n \in \mathcal{S}_{2}$ such that $(a, b)=((a x)(a y),(b m)(b n))$. Now by using (2) and (3), we have

$$
\begin{aligned}
(a, b) & =((a x)(a y),(b m)(b n))=((a a)(x y),(b b)(m n)) \\
& =((y x)(a a),(n m)(b b))=\left((y x) a^{2},(n m) b^{2}\right) \\
& =\left(\left(t a^{2}\right),\left(s b^{2}\right)\right) \text { where } y x=t, n m=s \text { for some } t \in \mathcal{S}_{1} \text { and } s \in \mathcal{S}_{2} .
\end{aligned}
$$

Thus $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is left regular.
$(i i) \Longrightarrow(i)$ It follows easily.
Theorem 88 If $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is an $\mathcal{A \mathcal { G }}$-groupoid with left identity ($\mathcal{A G}^{* *}$-groupoid), then the following are equivalent.
(i) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is weakly regular.
(ii) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is left quasi regular.

Proof. The proof of this Lemma is straight forward, so is omitted.
Theorem 89 If $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is an $\mathcal{A \mathcal { G }}$-groupoid with left identity, then the following are equivalent.
(i) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is (2,2)-regular.
(ii) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is completely regular.

Proof. $(i) \Longrightarrow(i i)$ Let $\mathcal{S}_{1} \times \mathcal{S}_{2}$ be a (2,2)-regular $\mathcal{A} \mathcal{G}$-groupoid with left identity, then for $(a, b) \in \mathcal{S}_{1} \times \mathcal{S}_{2}$ there exist $x \in \mathcal{S}_{1}$ and $m \in \mathcal{S}_{2}$ such that $(a, b)=\left(\left(a^{2} x\right) a^{2},\left(b^{2} m\right) b^{2}\right)$. Now
$(a, b)=\left(\left(a^{2} x\right) a^{2},\left(b^{2} m\right) b^{2}\right)=\left(y a^{2}, n b^{2}\right)$, where $a^{2} x=y \in \mathcal{S}_{1}$ and $b^{2} m=n \in \mathcal{S}_{2}$,
and by using (3), we have

$$
\begin{aligned}
(a, b) & =\left(\left(a^{2} x\right)(a a),\left(b^{2} m\right)(b b)\right) \\
& =\left((a a)\left(x a^{2}\right),(b b)\left(m b^{2}\right)\right) \\
& =\left(a^{2} z, b^{2} l\right), \text { where } x a^{2}=z \in \mathcal{S}_{1} \text { and } m b^{2}=l \in \mathcal{S}_{2} .
\end{aligned}
$$

And we have

$$
\begin{aligned}
(a, b) & =\left(\left(a^{2} x\right)(a a),\left(b^{2} m\right)(b b)\right) \\
& =\left((a a)\left(x a^{2}\right),(b b)\left(m b^{2}\right)\right) \\
& =((a a)((e x)(a a)),(b b)((e m)(b b))) \\
& =((a a)((a a)(x e)),(b b)((b b)(m e))) \\
& =\left((a a)\left(a^{2} t\right),(b b)\left(b^{2} s\right)\right) \\
& =\left(\left(\left(a^{2} t\right) a\right) a,\left(\left(b^{2} s\right) b\right) b\right) \\
& =((((a a) t) a) a,(((b b) s) b) b) \\
& =((((t a) a) a) a,(((s b) b) b) b) \\
& =(((a a)(t a)) a,((b b)(s b)) b) \\
& =(((a t)(a a)) a,((b s)(b b)) b) \\
& =((a((a t) a)) a,(b((b s) b)) b) \\
& =((a y) a,(b n) b), \text { where } x e=t \in \mathcal{S}_{1}, \\
m e & =s \in \mathcal{S}_{2} \text { and }(a t) a=y \in \mathcal{S}_{1},(b s) b=n \in \mathcal{S}_{2} .
\end{aligned}
$$

Thus $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is left regular, right regular and regular, so $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is completely regular.
(ii) $\Longrightarrow(i)$ Assume that $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is a completely regular $\mathcal{A} \mathcal{G}$-groupoid with left identity, then for any $(a, b) \in \mathcal{S}_{1} \times \mathcal{S}_{2}$ there exist $x, y, z \in \mathcal{S}_{1}$ and $l, m, n \in \mathcal{S}_{2}$ such that $(a, b)=((a x) a,(b l) b),(a, b)=\left(a^{2} y, b^{2} m\right),(a, b)=$ $\left(z a^{2}, n b^{2}\right)$. Now

$$
\begin{aligned}
(a, b) & =((a x) a,(b l) b) \\
& =\left(\left(\left(a^{2} y\right) x\right)\left(z a^{2}\right),\left(\left(b^{2} m\right) l\right)\left(n b^{2}\right)\right) \\
& =\left(\left((x y) a^{2}\right)\left(z a^{2}\right),\left((l m) b^{2}\right)\left(n b^{2}\right)\right) \\
& =\left(\left(\left(z a^{2}\right) a^{2}\right)(x y),\left(\left(n b^{2}\right) b^{2}\right)(l m)\right) \\
& =\left(\left(\left(a^{2} a^{2}\right) z\right)(x y),\left(\left(b^{2} b^{2}\right) n\right)(l m)\right) \\
& =\left(((x y) z)\left(a^{2} a^{2}\right),((l m) n)\left(b^{2} b^{2}\right)\right) \\
& =\left(a^{2}\left(((x y) z) a^{2}\right), b^{2}\left(((l m) n) b^{2}\right)\right) \\
& =\left(\left(e a^{2}\right)\left(((x y) z) a^{2}\right),\left(e b^{2}\right)\left(((l m) n) b^{2}\right)\right) \\
& =\left(\left(a^{2}((x y) z)\right)\left(a^{2} e\right),\left(b^{2}((l m) n)\right)\left(b^{2} e\right)\right) \\
& =\left(\left(a^{2}((x y) z)\right)((a a) e),\left(b^{2}((l m) n)\right)((b b) e)\right) \\
& =\left(\left(a^{2}((x y) z)\right)((e a) a),\left(b^{2}((l m) n)\right)((e b) b)\right) \\
& =\left(\left(a^{2}((x y) z)\right)(a a),\left(b^{2}((l m) n)\right)(b b)\right) \\
& =\left(\left(a^{2} t\right) a^{2},\left(b^{2} s\right) b^{2}\right), \text { where }(x y) z=t \in \mathcal{S}_{1} \text { and }(l m) n=s \in \mathcal{S}_{2} .
\end{aligned}
$$

This shows that $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is (2,2)-regular.
Lemma 90 Every weakly regular $\mathcal{A \mathcal { G }}$-groupoid $\mathcal{S}_{1} \times \mathcal{S}_{2}$ with left identity $\left(\mathcal{A G}^{* *}\right.$-groupoid) is regular.

Proof. Assume that $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is a weakly regular $\mathcal{A G}$-groupoid with left identity $\left(\mathcal{A \mathcal { G } ^ { * * }}\right.$-groupoid), then for any $(a, b) \in \mathcal{S}_{1} \times \mathcal{S}_{2}$ there exist $x, y \in \mathcal{S}_{1}$ and $m, n \in \mathcal{S}_{2}$ such that $(a, b)=((a x)(a y),(b m)(b n))$. Let $x y=t \in \mathcal{S}_{1}$, $t((y x) a)=u \in \mathcal{S}_{1}$ and $m n=s \in \mathcal{S}_{2}, s((n m) b)=l \in \mathcal{S}_{2}$. Now by using (1), (2), (3) and (4), we have

$$
\begin{aligned}
(a, b) & =((a x)(a y),(b m)(b n))=(((a y) x) a,((b n) m) b) \\
& =(((x y) a) a,((m n) b) b)=((t a) a,(s b) b) \\
& =((t((a x)(a y))) a,(s((b m)(b n))) b) \\
& =((t((a a)(x y))) a,(s((b b)(m n))) b) \\
& =((t((y x)(a a))) a,(s((n m)(b b))) b) \\
& =((t(a((y x) a))) a,(s(b((n m) b))) b) \\
& =((a(t((y x) a))) a,(b(s((n m) b))) b) \\
& =((a u) a,(b l) b) .
\end{aligned}
$$

Thus $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is regular.
The converse of above Lemma is not true in general, as can be seen from the following example.

Example 91 [51] Let us consider an $\mathcal{A G}$-groupoid $\mathcal{S}_{1}=\{1,2,3,4\}$ with left identity 3 and $\mathcal{S}_{2}=\{5,6,7,8\}$ with left identity 6 in the following Cayley's tables.

.	1	2	3	4
1	2	2	4	4
2	2	2	2	2
3	1	2	3	4
4	1	2	1	2

.	5	6	7	8
5	6	6	6	6
6	5	6	7	8
7	5	6	5	6
8	6	6	8	8

Clearly $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is regular, because $(1,5)=((1.3) .1,(5.6) .5),(2,6)=$ $((2.1) .2,(6.8) .6),(3,7)=((3.3) .3,(7.6) .7)$ and $(4,8)=((4.1) \cdot 4,(8.6) .8)$, but $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is not weakly regular, because $(1,5) \in \mathcal{S}_{1} \times \mathcal{S}_{2}$ is not a weakly regular element of $\mathcal{S}_{1} \times \mathcal{S}_{2}$.

Theorem 92 If $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is an $\mathcal{A} \mathcal{G}$-groupoid with left identity ($\mathcal{A G}^{* *}$-groupoid), then the following are equivalent.
(i) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is weakly regular.
(ii) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is completely regular.

Proof. $(i) \Longrightarrow(i i)$ It follows easily $(i i) \Longrightarrow(i)$ It is easy.

Lemma 93 Every strongly regular $\mathcal{A G}$-groupoid $\mathcal{S}_{1} \times \mathcal{S}_{2}$ with left identity ($\mathcal{A G}^{* *}$-groupoid) is completely regular.

Proof. Assume that $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is a strongly regular $\mathcal{A} \mathcal{G}$-groupoid with left identity $\left(\mathcal{A G}^{* *}\right.$-groupoid), then for any $(a, b) \in \mathcal{S}_{1} \times \mathcal{S}_{2}$ there exist $x \in \mathcal{S}_{1}$, $y \in \mathcal{S}_{2}$ such that $(a, b)=((a x) a,(b y) b), a x=x a$ and $b y=y b$. Now by using (1), we have

$$
\begin{aligned}
(a, b) & =((a x) a,(b y) b)=((x a) a,(y b) b) \\
& =((a a) x,(b b) y)=\left(a^{2} x, b^{2} y\right)
\end{aligned}
$$

This shows that $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is right regular and so $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is completely regular.
Note that a completely regular $\mathcal{A G}$-groupoid $\mathcal{S}_{1} \times \mathcal{S}_{2}$ need not to be a strongly regular $\mathcal{A} \mathcal{G}$-groupoid, as can be seen from the following example.

Example 94 Let $\mathcal{S}=\{a, b, c, d, e, f, g\}$ be an $\mathcal{A G}$-groupoid with the following multiplication table.

.	a	b	c	d	e	f	g
a	b	d	f	a	c	e	g
b	e	g	b	d	f	a	c
c	a	c	e	g	b	d	f
d	d	f	a	c	e	g	b
e	g	b	d	f	a	c	e
f	c	e	g	b	d	f	a
g	f	a	c	e	g	b	d

Clearly $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is completely regular. Indeed, $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is regular, as $a=$ (a.e).a, $b=(b . a) \cdot b, c=(c . d) \cdot c, d=(d . g) \cdot d, e=(e . c) \cdot e, f=(f \cdot f) \cdot f, g=$ $(g . b) . g$, also $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is right regular, as $a=(a . a) . f, b=(b . b) . f, c=(c . c) . f$, $d=(d . d) \cdot f, e=(e . e) \cdot f, f=(f \cdot f) \cdot f, g=(g \cdot g) \cdot f$, and $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is left regular, as $a=g .(a . a), b=d .(b . b), c=a .(c . c), d=e .(d . d), e=b .(e . e), f=f .(f . f)$, $g=c .(g . g)$, but $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is not strongly regular, because $a x \neq x a$ for all $a \in \mathcal{S}_{1} \times \mathcal{S}_{2}$.

Theorem 95 In an $\mathcal{A \mathcal { G }}$-groupoid $\mathcal{S}_{1} \times \mathcal{S}_{2}$ with left identity ($\mathcal{A} \mathcal{G}^{* *}$-groupoid), the following are equivalent.
(i) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is weakly regular.
(ii) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is intra-regular.
(iii) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is right regular.
(iv) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is left regular.
(v) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is left quasi regular.
(vi) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is completely regular.
(vii) For all $(a, b) \in \mathcal{S}_{1} \times \mathcal{S}_{2}$, there exist $x, y \in \mathcal{S}_{1}$ and $l, m \in \mathcal{S}_{1}$ such that $(a, b)=((x a)(a z),(l b)(b m))$.
Proof. $(i) \Longrightarrow(i i)$ It follows from above Theorem.
$(i i) \Longrightarrow($ iii $)$ It follows from above Theorems.
(iii) $\Longrightarrow(i v)$ It follows from above Theorem.
$(i v) \Longrightarrow(v)$ It follows from above Theorem.
$(v) \Longrightarrow(v i)$ It follows from above Theorems.
$(v i) \Longrightarrow(i)$ It follows from above Theorem.
(ii) \Longleftrightarrow (vii) It follows from above Theorem.

Remark 96 Every intra-regular, right regular, left regular, left quasi regular and completely regular $\mathcal{A G}$-groupoids $\mathcal{S}_{1} \times \mathcal{S}_{2}$ with left identity $\left(\mathcal{A} \mathcal{G}^{* *}\right.$ groupoids) are regular.

The converse of above is not true in general. Indeed, from above Example regular $\mathcal{A} \mathcal{G}$-groupoid with left identity is not necessarily intra-regular.

Theorem 97 In an $\mathcal{A G}$-groupoid $\mathcal{S}_{1} \times \mathcal{S}_{2}$ with left identity, the following are equivalent.
(i) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is weakly regular.
(ii) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is intra-regular.
(iii) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is right regular.
(iv) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is left regular.
(v) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is left quasi regular.
(vi) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is completely regular.
(vii) For all $(a, b) \in \mathcal{S}_{1} \times \mathcal{S}_{2}$, there exist $x, y \in \mathcal{S}_{1}$ and $l, m \in \mathcal{S}_{1}$ such that $(a, b)=((x a)(a z),(l b)(b m))$.
(viii) $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is (2,2)-regular.

Proof. It is easy.
Remark $98(2,2)$-regular and strongly regular $\mathcal{A} \mathcal{G}$-groupoids $\mathcal{S}_{1} \times \mathcal{S}_{2}$ with left identity are regular.

The converse of above is not true in general, as can be seen from above Example.

Theorem 99 Direct product of regular, weakly regular, intra-regular, right regular, left regular, left quasi regular, completely regular, (2,2)-regular and strongly regular $\mathcal{A G}^{*}$-groupoids $\mathcal{S}_{1} \times \mathcal{S}_{2}$ becomes semigroups.

4

Ideals in Abel-Grassmann's Groupoids

In this chapter we introduce the concept of left, right, bi, quasi, prime (quasi-prime) semiprime (quasi-semiprime) ideals in AG-groupoids. We introduce m -system in AG-groupoids. We characterize quasi-prime and quasisemiprime ideals and find their links with m systems. We characterize ideals in intra-regular AG-groupoids. Then we characterize intra-regular AG-groupoids using the properties of these ideals.

4.1 Preliminaries

Let S be an AG-groupoid. By an AG-subgroupoid of S, we means a non-empty subset A of S such that $A^{2} \subseteq A$.

A non-empty subset A of an AG-groupoid S is called a left (right) ideal of S if $S A \subseteq A(A S \subseteq A)$ and it is called a two-sided ideal if it is both left and a right ideal of S.

A non-empty subset A of an AG-groupoid S is called a generalized bi-ideal of S if $(A S) A \subseteq A$ and an AG-subgroupoid A of S is called a bi-ideal of S if $(A S) A \subseteq A$.

A non-empty subset A of an AG-groupoid S is called a quasi-ideal of S if $S A \cap A S \subseteq A$.

Note that every one sided ideal of an AG-groupoid S is a quasi-ideal and right ideal of S is bi-ideal of S.

A non-empty subset A of an AG-groupoid S is called semiprime if $a^{2} \in A$ implies $a \in A$.

An AG-subgroupoid A of an AG-groupoid S is called a interior ideal of S if $(S A) S \subseteq A$.

An ideal P of an AG-groupoid S is said to be prime if $A B \subseteq P$ implies that either $A \subseteq P$ or $B \subseteq P$, where A and B are ideals of S. A left ideal P of an AG-groupoid S is said to be a quasi-prime if for left ideals A and B of S such that $A B \subseteq P$, we have either $A \subseteq P$ or $B \subseteq P$.

An ideal P of an AG-groupoid S is called strongly irreducible if $A \cap$ $B \subseteq P$ implies either $A \subseteq P$ or $B \subseteq P$, for all ideals A, B and P of S.

If S is an AG-groupoid with left identity e then the principal left ideal generated by a fixed element " a " is defined as $\langle a\rangle=S a=\{s a: s \in S\}$. Clearly, $\langle a\rangle$ is a left ideal of S contains a. Note that if A is an ideal of S, then A^{2} is an ideal of S. Also it is easy to verify that $A=\langle A\rangle$ and
$A^{2}=\left\langle A^{2}\right\rangle$.
If an AG-groupoid S contains left identity e then $S=e S \subseteq S^{2}$. Therefore $S=S^{2}$. Also $S a$ becomes bi-ideal and quasi-ideal of S. Using paramedial, medial and left invertive law we get

$$
((S a) S) S a \subseteq(S S)(S a)=(a S)(S S)=(a S) S=(S S) a=S a,
$$

It is easy to show that $(S a)(S a) \subseteq S(S a)$. Hence $S a$ is a bi-ideal of S. Also

$$
S(S a) \cap(S a) S \subseteq S(S a) \subseteq S a .
$$

Therefore $S a$ is a quasi-ideal of S. Also using medial and paramedial laws and (1), we get

$$
\begin{aligned}
(S a)^{2} & =(S a)(S a)=(S S) a^{2}=(a a)(S S)=S((a a) S) \\
& =(S S)((a a) S)=\left(S a^{2}\right) S S=\left(S a^{2}\right) S .
\end{aligned}
$$

Therefore $S a^{2}=a^{2} S=\left(S a^{2}\right) S$.
Example 100 Let $S=\{1,2,3,4,5,6\}$, and the binary operation "." be defined on S as follows:

\cdot	1	2	3	4	5	6
1	x	x	x	x	x	x
2	x	x	x	x	x	x
3	x	x	x	x	x	x
4	x	x	x	x	x	x
5	x	x	x	x	x	x
6	x	2	x	x	x	x

Where $x \in\{1,3,4,5\}$. Then ($S,$.) is an AG-groupoid and $\{2, x\}$ is an ideal of S.

A subset M of an AG-groupoid S is called an m-system if for all $a, b \in M$, there exists $a_{1} \in\langle a\rangle$, there exists $b_{1} \in\langle b\rangle$ such that $a_{1} b_{1} \in M$ [50].
Example 101 Let $S=\{1,2,3,4,5,6,7,8\}$, the binary operation "." be defined on S as follows:

\cdot	1	2	3	4	5	6	7	8
1	1	2	4	4	4	4	4	8
2	8	4	4	4	4	4	4	4
3	4	4	4	4	4	4	4	4
4	4	4	4	4	4	4	4	4
5	4	4	4	4	4	4	4	4
6	4	4	4	4	4	4	4	4
7	4	4	4	4	4	4	4	4
8	2	4	4	4	4	4	4	4

Then ($S, \cdot \cdot$) is an $A G$-groupoid. The set $\{1,2,4,8\}$ is an m-system in S, because if $1,2 \in M$, then $4 \in<1>, 8 \in<2>$ and $4 \cdot 8=4 \in M$.

Lemma 102 Product of two right ideals of an AG-groupoid with left identity is an ideal.

Proof. Let S be an AG-groupoid with left identity, therefore $S=S^{2}$. Now using medial law, we get

$$
(A B) S=(A B)(S S)=(A S)(B S) \subseteq A B
$$

Lemma 103 Product of two left ideals of an AG-groupoid with left identity is a left ideal.

Proof. Let S be an AG-groupoid with left identity, therefore $S=S^{2}$. Now using medial law, we get

$$
S(A B)=(S S)(A B)=(S A)(S B) \subseteq A B
$$

Lemma 104 Let P be a left ideal of an AG-groupoid S with left identity e, then the following are equivalent,
(i) P is quasi-prime ideal.
(ii) For all left ideals A and B of $S: A B=\langle A B\rangle \subseteq P \Rightarrow A \subseteq P$ or $B \subseteq P$.
(iii) For all left ideals A and B of $S: A \nsubseteq P$ and $B \nsubseteq P \Rightarrow A B \nsubseteq P$.
(iv) For all $a, b \in S:\langle a\rangle\langle b\rangle \subseteq P \Rightarrow a \in P$ or $b \in P$.

Proof. $(i) \Leftrightarrow(i i) \Leftrightarrow(i i i)$ is trivial.
$(i) \Rightarrow(i v)$
Let $\langle a\rangle\langle b\rangle \subseteq P$, then by (i) either $\langle a\rangle \subseteq P$ or $\langle b\rangle \subseteq P$, which implies that either $a \in P$ or $b \in P$.
$(i v) \Rightarrow(i i)$
Let $A B \subseteq P$. Let $a \in A$ and $b \in B$, then $\langle a\rangle\langle b\rangle \subseteq P$, now by (iv) either $a \in P$ or $b \in P$, which implies that either $A \subseteq P$ or $B \subseteq P$.

Theorem 105 A left ideal P of an $A G$-groupoid S with left identity is quasi-prime if and only if $S \backslash P$ is an m-system.

Proof. Let P is quasi-prime ideal of an AG-groupoid S with left identity and let $a, b \in S \backslash P$ which implies that $a, b \notin P$. Now by lemma $104(i v)$, we have $\langle a\rangle\langle b\rangle \nsubseteq P$ and so $\langle a\rangle\langle b\rangle \subseteq S \backslash P$. Now let $a_{1} \in\langle a\rangle$ and $b_{1} \in\langle b\rangle$ which implies that $a_{1} b_{1} \in S \backslash P$. Hence $S \backslash P$ is an m-system.

Conversely, assume that $S \backslash P$ be an m-system. Let $a \notin P$ and $b \notin P$, then $a, b \in S \backslash P$. Now there exists a_{1} in $\langle a\rangle$ and b_{1} in $\langle b\rangle$ such that $a_{1} b_{1} \in S \backslash P$. This implies that $a_{1} b_{1} \notin P$, which further implies that $\langle a\rangle\langle b\rangle \nsubseteq P$. Hence by lemma $104(i v), P$ is a quasi-prime ideal.

Let P be a left ideal of an AG-groupoid S, P is called quasi-semiprime if for any left ideal A of S such that $A^{2} \subseteq P$, we have $A \subseteq P$.

Lemma 106 Let A be a left ideal of an AG-groupoid S with left identity e, then the following are equivalent,
(i) A is quasi-semiprime.
(ii) For any left ideals I of $S: I^{2}=\left\langle I^{2}\right\rangle \subseteq A \Rightarrow I \subseteq A$.
(iii) For any left ideals I of $S: I \nsubseteq A \Rightarrow I^{2} \nsubseteq A$.
(iv) For all $a \in S:[\langle a\rangle]^{2} \subseteq A \Rightarrow a \in A$.

Proof. $(i) \Leftrightarrow(i i) \Leftrightarrow(i i i)$ are trivial.
$(i) \Rightarrow(i v)$
Let $[\langle a\rangle]^{2} \subseteq A$, then by $(i)\langle a\rangle \subseteq A$, which implies that $a \in A$.
$(i v) \Rightarrow(i i)$
Let $I^{2} \subseteq A$, if $a \in I$, then $[\langle a\rangle]^{2} \subseteq A$, now by (iv) $a \in A$, which implies that $I \subseteq A$.

A subset P of an AG-groupoid S with left identity is called an sp-system if for all $a \in P$, there exists $a_{1}, b_{1} \in\langle a\rangle$ such that $a_{1} b_{1} \in P$ [50].

Lemma 107 Every right ideal of an AG-groupoid S with left identity e is an sp-system.

Proof. Let I be a right ideal of an AG-groupoid S with left identity e. Now let $i \in I$ and $s \in S$. Then by left invertive law, we get $s i=(e s) i=(i s) e \in$ $(I S) S \subseteq I$. Therefore I becomes an ideal of S. Also $\langle i\rangle=\mathrm{Si} \subseteq S I \subseteq I$. Now let $i_{1}, i_{2} \in\langle i\rangle$, which implies that $i_{1} i_{2} \in I$. Hence I is an sp-system.

Note that every right ideal of an AG-groupoid S with left identity becomes an ideal of S.

Theorem 108 (a) Each m-system is an sp-system.
(b) A left ideal I of an AG-groupoid S is quasi-semiprime if and only if $S \backslash I$ is an sp-system.

Proof. (a) Let $a \in M$, then there exists $a_{1}, b_{1} \in\langle a\rangle$, such that $a_{1} b_{1} \in M$ implying that M is an sp-system.
(b) A left ideal A of an AG-groupoid S with left identity and let $a \in S \backslash A$ which implies that $a \notin A$. Now let $a_{1}, b_{1} \in\langle a\rangle$ which by lemma $106(i v)$, implies that $a_{1} b_{1} \in[\langle a\rangle]^{2}$ but $[\langle a\rangle]^{2} \nsubseteq A$. Therefore $a_{1} b_{1} \notin A$. Hence $a_{1} b_{1} \in S \backslash A$, which shows that $S \backslash A$ is an sp-system.

Conversely, assume that $S \backslash A$ is an sp-system. Let $a \notin A$, then $a \in S \backslash A$. Now there exists a_{1} and b_{1} in $\langle a\rangle$, such that $a_{1} b_{1} \in S \backslash A$ which implies that $a_{1} b_{1} \notin A$, which further implies that $[\langle a\rangle]^{2} \nsubseteq A$. Hence by lemma 106(iv), A is a quasi-semiprime ideal.

4.2 Quasi-ideals of Intra-regular Abel-Grassmann's Groupoids

Here we begin with examples of intra-regular AG-groupoids.

Example 109 Let $S=\{1,2,3,4,5,6\}$, then (S, \cdot) is an $A G$-groupoid with left identity 5 as given in the following multiplication table:

\cdot	1	2	3	4	5	6
1	4	5	6	1	2	3
2	3	4	5	6	1	2
3	2	3	4	5	6	1
4	1	2	3	4	5	6
5	6	1	2	3	4	5
6	5	6	1	2	3	4

Clearly (S, \cdot) is intra-regular because, $1=\left(3 \cdot 1^{2}\right) \cdot 2,2=\left(1 \cdot 2^{2}\right) \cdot 5,3=$ $\left(2 \cdot 3^{2}\right) \cdot 5,4=\left(4 \cdot 4^{2}\right) \cdot 4,5=\left(3 \cdot 5^{2}\right) \cdot 6,6=\left(2 \cdot 6^{2}\right) \cdot 2$.

Example 110 Let $S=\{a, b, c, d, e\}$, and the binary operation "." be defined on S as follows:

$*$	1	2	3	4	5	6
1	1	1	1	1	1	1
2	1	2	1	1	1	1
3	1	1	3	4	5	6
4	1	1	6	3	4	5
5	1	1	5	6	3	4
6	1	1	4	5	6	1

Then clearly $(S, *)$ is an AG-groupoid. Also $1=\left(1 * 1^{2}\right) * 1,2=\left(2 * 2^{2}\right) * 2$, $3=\left(3 * 3^{2}\right) * 3,4=\left(3 * 4^{2}\right) * 4$ and $5=\left(4 * 5^{2}\right) * 4,6=\left(3 * 6^{2}\right) * 6$. Therefore (S, \cdot) is an intra-regular AG-groupoid. It is easy to see that $\{1\}$ and $\{1,2\}$ are quasi-ideals of S.

In the rest by S we shall mean $\mathrm{AG}^{* *}$-groupoid such that $S=S^{2}$.

Theorem 111 For S the following conditions are equivalent.
(i) S is intra-regular.
(ii) $R \cap L=R L$, for every semiprime right ideal R and every left ideal L.
(iii) $A=(A S) A$, for every quasi-ideal A.

Proof. $(i) \Rightarrow($ iii $)$: Let A be a quasi ideal of S then, A is an ideal of S, thus $(A S) A \subseteq A$.

Now let $a \in A$, and since S is intra-regular so there exist elements x, y in S such that $a=\left(x a^{2}\right) y$. Now by using medial law with left identity, left
invertive law, medial law and paramedial law, we have

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a \\
& =\left(y\left(x\left(\left(x a^{2}\right) y\right)\right)\right) a=\left(y\left(\left(x a^{2}\right)(x y)\right)\right) a \\
& =\left(\left(x a^{2}\right)(y(x y))\right) a=((x(a a))(y(x y))) a \\
& =((a(x a))(y(x y))) a=((a y)((x a)(x y))) a \\
& =((x a)((a y)(x y))) a=\left((x a)\left((a x) y^{2}\right)\right) a \\
& =\left(\left(y^{2}(a x)\right)(a x)\right) a=\left(a\left(\left(y^{2}(a x)\right) x\right)\right) a \in(A S) A .
\end{aligned}
$$

Hence $A=(A S) A$.
$($ iii $) \Rightarrow(i i):$ Clearly $R L \subseteq R \cap L$ holds. Now

$$
\begin{aligned}
S(R \cap L) \cap(R \cap L) S & =S R \cap S L \cap R S \cap L S=R S \cap S L \cap S R \cap L S \\
& \subseteq R \cap L \cap(S R \cap L S) \subseteq R \cap L . \text { And } \\
R \cap L & =((R \cap L) S)(R \cap L)=(R S \cap L S)(R \cap L) \\
& \subseteq(R \cap L S)(R \cap L) \subseteq R L .
\end{aligned}
$$

Hence $R \cap L=R L$.
(ii) $\Rightarrow(i):$ Assume that $R \cap L=R L$ for every right ideal R and every left ideal L of S. Since $a^{2} \in a^{2} S$, which is a right ideal of S and as by given assumption $a^{2} S$ is semiprime which implies that $a \in a^{2} S$. Now clearly $S a$ is a left ideal of S and $a \in S a$, Therefore by using left invertive law, medial law, paramedial law and medial law with left identity, we have

$$
\begin{aligned}
a & \in S a \cap a^{2} S=(S a)\left(a^{2} S\right)=(S a)((a a) S)=(S a)((S a)(e a)) \\
& \subseteq(S a)((S a)(S a))=(S a)((S S)(a a)) \subseteq(S a)((S S)(S a)) \\
& =(S a)((a S)(S S))=(S a)((a S) S)=(a S)((S a) S) \\
& =(a(S a))(S S)=(a(S a)) S=(S(a a)) S=\left(S a^{2}\right) S .
\end{aligned}
$$

Hence S is intra-regular.
Theorem 112 For S the following conditions are equivalent.
(i) S is intra-regular.
(ii) For an ideal I and quasi-ideal $Q, I \cap Q=I Q$ and I is semiprime.
(iii) For quasi-ideals Q_{1} and $Q_{2}, Q_{1} \cap Q_{2}=Q_{1} Q_{2}$ and Q_{1} and Q_{2} are semiprime.

Proof. $(i) \Longrightarrow($ iii $)$: Let Q_{1} and Q_{2} be a quasi-ideal of S. Now Q_{1} and Q_{2} become ideals of S. Therefore $Q_{1} Q_{2} \subseteq Q_{1} \cap Q_{2}$. Now let $a \in Q_{1} \cap Q_{2}$ which implies that $a \in Q_{1}$ and $a \in Q_{2}$. For $a \in S$ there exists x, y in S such that $a=\left(x a^{2}\right) y$. Now using (1) and left invertive law, we get
$a=\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a \in\left(S\left(S Q_{1}\right)\right) Q_{2} \subseteq\left(S Q_{1}\right) Q_{2} \subseteq Q_{1} Q_{2}$.

This implies that $Q_{1} \cap Q_{2} \subseteq Q_{1} Q_{2}$. Hence $Q_{1} \cap Q_{2}=Q_{1} Q_{2}$. Next we will show that Q_{1} and Q_{2} are semiprime. For this let $a^{2} \in Q_{1}$. Therefore $a=\left(x a^{2}\right) y \in\left(S Q_{1}\right) S \subseteq Q_{1}$. Similarly Q_{2} is semiprime.
$($ iii $) \Longrightarrow(i i)$ is obvious.
$(i i) \Longrightarrow(i)$: Obviously $S a$ is a quasi-ideal contains a and $S a^{2}$ is an ideal contains a^{2}. By (ii) $S a^{2}$ is semiprime so $a \in S a^{2}$. Therefore by (ii) we get

$$
a \in S a^{2} \cap S a=\left(S a^{2}\right)(S a) \subseteq\left(S a^{2}\right) S
$$

Hence S is intra-regular.
Theorem 113 For S the following conditions are equivalent.
(i) S is intra-regular.
(ii) For quasi-ideals Q_{1} and $Q_{2}, Q_{1} \cap Q_{2}=\left(Q_{1} Q_{2}\right) Q_{1}$.

Proof. $(i) \Longrightarrow(i i)$: Let Q_{1} and Q_{2} be quasi-ideals of S. Now Q_{1} and Q_{2} become ideals of S. Therefore $\left(Q_{1} Q_{2}\right) Q_{1} \subseteq\left(Q_{1} S\right) Q_{1} \subseteq Q_{1}$ and $\left(Q_{1} Q_{2}\right) Q_{1} \subseteq$ $\left(S Q_{2}\right) S \subseteq Q_{2}$. This implies that $\left(Q_{1} Q_{2}\right) Q_{1} \subseteq Q_{1} \cap Q_{2}$. We can easily see that $Q_{1} \cap Q_{2}$ becomes an ideal. Now, we get,

$$
\begin{aligned}
Q_{1} \cap Q_{2} & =\left(Q_{1} \cap Q_{2}\right)^{2}=\left(Q_{1} \cap Q_{2}\right)^{2}\left(Q_{1} \cap Q_{2}\right) \\
& =\left(\left(Q_{1} \cap Q_{2}\right)\left(Q_{1} \cap Q_{2}\right)\right)\left(Q_{1} \cap Q_{2}\right) \subseteq\left(Q_{1} Q_{2}\right) Q_{1}
\end{aligned}
$$

Thus $Q_{1} \cap Q_{2} \subseteq\left(Q_{1} Q_{2}\right) Q_{1}$. Hence $Q_{1} \cap Q_{2}=\left(Q_{1} Q_{2}\right) Q_{1}$.
$(i i) \Longrightarrow(i)$: Let Q be a quasi-ideal of S, then by (ii), we get $Q=Q \cap Q=$
$(Q Q) Q \subseteq Q^{2} Q \subseteq Q Q=Q^{2}$. This implies that $Q \subseteq Q^{2}$ therefore $Q^{2}=Q$. Now since $S a$ is a quasi-ideal, therefore $a \in S a=(S a)^{2}=S a^{2}=\left(S a^{2}\right) S$.
Hence S is intra-regular.
Theorem 114 For S the following conditions are equivalent.
(i) S is intra-regular.
(ii) For quasi-ideal Q and ideal $J, Q \cap J \subseteq J Q$, and J is semiprime.

Proof. $(i) \Longrightarrow(i i)$: Assume that Q is a quasi-ideal and J is an ideal of S. Let $a \in Q \cap J$, then $a \in Q$ and $a \in J$. For each $a \in S$ there exists x, y in S such that $a=\left(x a^{2}\right) y$. Then using (1) and left invertive law we get,

$$
a=\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a \in(S(S J) Q \subseteq J Q
$$

Therefore $Q \cap J \subseteq J Q$. Next let $a^{2} \in J$. Thus $a=\left(x a^{2}\right) y \in(S J) S \subseteq J$. Hence J is semiprime.
$(i i) \Longrightarrow(i)$: Since $S a$ is a quasi and $a^{2} S$ is a an ideal of S containing a and a^{2} respectively. Thus by (ii) J is semiprime so $a \in a^{2} S$. Therefore by hypothesis, paramedial and medial laws, we get

$$
a \in S a \cap a^{2} S \subseteq(S a)\left(a^{2} S\right)=\left(S a^{2}\right)(a S) \subseteq\left(S a^{2}\right) S
$$

Hence S is intra-regular.

Theorem 115 If A is an interior ideal of S, then A^{2} is also interior ideal.
Proof. Using medial law we immediately obtained the following

$$
\begin{aligned}
\left(S A^{2}\right) S & =((S S)(A A))(S S)=((S A)(S A))(S S) \\
& =((S A) S)((S A) S) \subseteq A A=A^{2}
\end{aligned}
$$

Theorem 116 For S the following conditions are equivalent.
(i) S is intra-regular.
(ii) For quasi-ideal Q, right ideal R and two sided ideal $I,(Q \cap R) \cap I \subseteq$ $(Q R) I$ and R, I are semiprime.
(iii) For quasi-ideal Q, right ideal R and right ideal $I,(Q \cap R) \cap I \subseteq(Q R) I$ and R, I are semiprime.
(iv) For quasi-ideal Q, right ideal R and interior ideal $I,(Q \cap R) \cap I \subseteq$ $(Q R) I$ and R, I are semiprime.

Proof. $(i) \Longrightarrow(i v)$: Let $a \in(Q \cap R) \cap I$. This implies that $a \in Q, a \in R$, $a \in I$. Since S is intra-regular therefore for each $a \in S$ there exists $x, y \in S$ such that $a=\left(x a^{2}\right) y$. Now using left invertive law, medial law, paramedial law and (1) we get,

$$
\begin{aligned}
a & \left.=\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=\left(a\left(x\left(\left(x a^{2}\right) y\right)\right)\right)\right) y \\
& =\left(a\left(\left(x a^{2}\right)(x y)\right)\right) y=\left(y\left(\left(x a^{2}\right)(x y)\right)\right) a=(y((x(a a))(x y)) a \\
& =(y((a(x a))(x y))) a=((a(x a))(y(x y))) a \\
& =(((y(x y))(x a)) a) a \in(((S(S S))(S Q)) R) I \subseteq(Q R) I .
\end{aligned}
$$

Therefore $(Q \cap R) \cap I \subseteq(Q R) I$. Next let $a^{2} \in R$. Then using left invertive law, we get

$$
a=\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a \in R T
$$

This implies that $a \in R$. Similarly we can show that I is semiprime.
$(i v) \Longrightarrow(i i i) \Longrightarrow(i i):$ are obvious.
$(i i) \Longrightarrow(i)$: We know that $S a$ is a quasi and $S a^{2}$ is right as well as two sided ideal of S containing a and a^{2} respectively, and by (ii) $S a^{2}$ is semiprime so $a \in S a^{2}$. Then by hypothesis and left invertive law, paramedial and medial laws, we get

$$
\begin{aligned}
a & \in\left(S a \cap S a^{2}\right) \cap S a^{2}=\left((S a)\left(S a^{2}\right)\right) S a^{2}=\left(\left(S a^{2}\right)\left(S a^{2}\right)\right) S a \\
& \subseteq\left(\left(S a^{2}\right) S\right) S=(S S)\left(S a^{2}\right)=\left(a^{2} S\right)(S S)=\left(S a^{2}\right) S
\end{aligned}
$$

Hence S is intra-regular.
Theorem 117 For S the following conditions are equivalent.
(i) S is intra-regular.
(ii) For every bi-ideal B and quasi-ideal $Q, B \cap Q \subseteq B Q$.
(iii) For every generalized bi-ideal B and quasi-ideal $Q, B \cap Q \subseteq B Q$.

Proof. $(i) \Longrightarrow(i i i)$: Let B is a bi-ideal and Q is a quasi-ideal of S. Let $a \in B \cap Q$ which implies that $a \in B$ and $a \in Q$. Since S is intra-regular so for $a \in S$ there exists $x, y \in S$ such that $a=\left(x a^{2}\right) y$. Now B and Q become ideals of S. Then using (1) and left invertive law, we get

$$
a=\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a \in(S(S B) Q \subseteq B Q
$$

Hence $B \cap Q \subseteq B Q$.
$($ iii) $\Longrightarrow(i i)$ is obvious.
$(i i) \Longrightarrow(i)$: Using (ii) we get

$$
a \in S a \cap S a \subseteq S a^{2}=\left(S a^{2}\right) S
$$

Hence S is intra-regular.
Theorem 118 For S the following conditions are equivalent.
(i) S is intra-regular.
(ii) For quasi-ideal Q_{1}, two sided ideal I and quasi-ideal $Q_{2},\left(Q_{1} \cap I\right) \cap$ $Q_{2} \subseteq\left(Q_{1} I\right) Q_{2}$, and I is semiprime.
(iii) For quasi-ideal Q_{1}, right ideal I and quasi ideal $Q_{2},\left(Q_{1} \cap I\right) \cap Q_{2} \subseteq$ $\left(Q_{1} I\right) Q_{2}$, and I is semiprime.
(iv) For quasi-ideal Q_{1}, interior ideal I and quasi-ideal $Q_{2}\left(Q_{1} \cap I\right) \cap$ $Q_{2} \subseteq\left(Q_{1} I\right) Q_{2}$, and I is semiprime.

Proof. $(i) \Longrightarrow(v)$: Let Q_{1} and Q_{2} be quasi-ideals and I be an interior ideal of S respectively. Let $a \in\left(Q_{1} \cap I\right) \cap Q_{2}$. This implies that $a \in Q_{1}, a \in I$ and $a \in Q_{2}$. For $a \in S$ there exists $x, y \in S$ such that $a=\left(x a^{2}\right) y$. Now Q_{1}, Q_{2} and I become ideals of S. Therefore by left invertive law, medial law and paramedial law we get,

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a=(y(x a))((y(x a)) a) \\
& =[a\{y(x a)\}][(x a) y] \in\left[Q_{1}\{S(S I)\}\right]\left[\left(S Q_{2}\right) S\right] \subseteq\left(Q_{1} I\right) Q_{2} .
\end{aligned}
$$

Hence $\left(Q_{1} \cap I\right) \cap Q_{2} \subseteq\left(Q_{1} I\right) Q_{2}$. Next let $a^{2} \in I$. Then $a=\left(x a^{2}\right) y=$ $I^{2} \subseteq I$. This implies that $a \in I$. Hence that I is semiprime.
$(v) \Longrightarrow(i v) \Longrightarrow(i i i) \Longrightarrow(i i)$ are obvious.
$(i i) \Longrightarrow(i)$: Since $S a$ is a quasi and $S a^{2}$ is an ideal of S containing a and a^{2} respectively. Also by (ii) $S a^{2}$ is semiprime so $a \in S a^{2}$. Thus by using paramedial and medial laws, we get

$$
\begin{aligned}
a & \in\left(S a \cap S a^{2}\right) \cap S a \subseteq\left((S a)\left(S a^{2}\right)\right) S a=\left(\left(a^{2} S\right)(a S)\right) S a \\
& =\left(\left(a^{2} S\right)(S S)\right)(S S)=\left(\left(a^{2} S\right) S\right) S=\left((S S) a^{2}\right) S=\left(S a^{2}\right) S
\end{aligned}
$$

Hence S is intra-regular.
Theorem 119 For S the following conditions are equivalent.
(i) S is intra-regular.
(ii) Every quasi-ideal is idempotent.
(iii) For quasi-ideals $A, B, A \cap B=A B \cap B A$.

Proof. $(i) \Longrightarrow(i i i)$: Let A and B be quasi-ideals of S. Thus

$$
A B \cap B A \subseteq A B \subseteq S B \subseteq B \text { and } A B \cap B A \subseteq B A \subseteq S A \subseteq A
$$

Hence $A B \cap B A \subseteq A \cap B$. Now let $a \in A \cap B$. This implies that $a \in A$ and $a \in B$. Since S is intra-regular AG-groupoid so for a in S there exists $x, y \in S$ such that $a=\left(x a^{2}\right) y$ and $y=u v$ for some u, v in S. Then by (1) and medial law, we get

$$
a=\left(x a^{2}\right) y=(x(a a)) y=(a(x a))(u v)=(a u)((x a) v) \in(A S)((S B) S) \subseteq A B
$$

Similarly we can show that $a \in B A$. Thus $A \cap B \subseteq A B \cap B A$. Therefore $A \cap B=A B \cap B A$.
$($ iii $) \Longrightarrow($ ii $)$: Let Q be a quasi-ideal of S. Thus by (iii), $Q \cap Q=$ $Q Q \cap Q Q$. Hence $Q=Q Q$.
$(i i) \Longrightarrow(i)$: Since $S a$ is a quasi-ideal of S contains a and by (ii) it is idempotent therefore by medial law, we have

$$
a \in S a=(S a)^{2}=(S a)(S a)=(S S) a^{2}=S a^{2}=\left(S a^{2}\right) S
$$

Hence S is intra-regular.
Theorem 120 For S the following conditions are equivalent.
(i) S is intra-regular.
(ii) For bi-ideal B, two sided ideal I and quasi-ideal $Q,(B \cap I) \cap Q \subseteq$ $(B I) Q$ and I is semiprime.
(iii) For bi-ideal B, right ideal I and quasi-ideal $Q,(B \cap I) \cap Q \subseteq(B I) Q$ and I is semiprime.
(iv) For generalized bi-ideal B, interior ideal I and quasi-ideal $Q,(B \cap$ $I) \cap Q \subseteq(B I) Q$ and I is semiprime.

Proof. $(i) \Longrightarrow(i v)$: Let B be a generalized bi-ideal, I be an interior ideal and Q be a quasi-ideal of S respectively. Let $a \in(B \cap I) \cap Q$. This implies that $a \in B, a \in I$ and $a \in Q$. Since S is intra-regular so for $a \in S$ there exists $x, y \in S$ such that $a=\left(x a^{2}\right) y$. Now B, I and Q become ideals of S. Therefore using left invertive law, medial law, paramedial law and (1) we get,

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a=(y(x a))((y(x a)) a) \\
& =[a\{y(x a)\}][(x a) y] \in[B\{S(S I)\}][(S Q) S] \subseteq(B I) Q
\end{aligned}
$$

Therefore $(B \cap I) \cap Q \subseteq(B I) Q$. Next let $a^{2} \in I$. Then $a=\left(x a^{2}\right) y=I^{2} \subseteq I$. This implies that $a \in I$.
$(i v) \Longrightarrow(i i i) \Longrightarrow(i i)$ are obvious.
$(i i) \Longrightarrow(i)$: Clearly $S a$ is both quasi and bi-ideal containing a and $S a^{2}$ is two sided ideal contains a^{2} respectively. Now by (ii) $S a^{2}$ is semiprime so
$a \in S a^{2}$. Therefore using paramedial, medial laws and left invertive law we get,

$$
\begin{aligned}
a & \in\left(S a \cap S a^{2}\right) \cap S a \subseteq\left((S a)\left(S a^{2}\right)\right)(S a) \subseteq\left(\left(a^{2} S\right)(a S)\right)(S S) \\
& \subseteq\left(\left(a^{2} S\right)(S S)\right)(S S)=\left(\left(a^{2} S\right) S\right) S=\left((S S) a^{2}\right) S=\left(S a^{2}\right) S
\end{aligned}
$$

Hence S is intra-regular.
Theorem 121 For S the following conditions are equivalent.
(i) S is intra-regular.
(ii) For quasi-ideals Q and bi-ideal $B, Q \cap B \subseteq Q B$.
(iii) For quasi-ideal Q and generalized bi-ideal $B, Q \cap B \subseteq Q B$.

Proof. $(i) \Longrightarrow(i i i)$: Let Q and B be quasi and generalized bi-ideal of S. Let $a \in Q \cap B$. This implies that $a \in Q$ and $a \in B$. Since S is intra-regular so for $a \in S$ there exists $x, y \in S$ such that $a=\left(x a^{2}\right) y$. Now, Q and B becomes ideals of S. Therefore using and left invertive law, we get,

$$
a=\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a \in(S(S Q) B \subseteq Q B
$$

Thus $a \in Q B$. Hence $Q \cap B \subseteq Q B$.
$($ iii $) \Longrightarrow(i i)$ is obvious.
$(i) \Longrightarrow(i i)$: Clearly $S a$ is both quasi and bi-ideal of S containing a. Therefore using (ii), paramedial law, medial law we get

$$
a \in S a \cap S a \subseteq(S a)(S a)=\left(S a^{2}\right)=\left(S a^{2}\right) S
$$

Hence S is intra-regular.
Theorem 122 For S the following conditions are equivalent.
(i) S is intra-regular.
(ii) For every quasi-ideal Q of $S, Q=(S Q)^{2} \cap(Q S)^{2}$.

Proof. $(i) \Longrightarrow(i i)$: Let Q be any quasi-ideal of S. Now it becomes an ideal of S. Now using medial law and paramedial law we get

$$
(S Q)^{2} \cap(Q S)^{2}=(S Q)(S Q) \cap(Q S)(Q S)=Q Q \cap Q Q \subseteq Q
$$

Now let $a \in Q$ and since S is intra-regular so there exists $x, y \in S$ such that $a=\left(x a^{2}\right) y$. Then using left invertive law, medial law and paramedial law, we get

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(a(x a)) y=(y(x a)) a=(y(x a))\left(\left(x a^{2}\right) y\right)=\left(x a^{2}\right)((y(x a)) y) \\
& =(y(y(x a)))((a a) x)=(a a)((y(y(x a))) x)=(x(y(y(x a))))(a a) \\
& \in S(Q Q)=(S S)(Q Q)=(S Q)(S Q)=(S Q)^{2} .
\end{aligned}
$$

Thus $a \in(S Q)^{2}$. It is easy to see that $(S Q)^{2}=(Q S)^{2}$. Therefore $a \in$ $(S Q)^{2} \cap(Q S)^{2}$. Thus $Q \subseteq(S Q)^{2} \cap(Q S)^{2}$. Hence $(S Q)^{2} \cap(Q S)^{2}=Q$.
$(i i) \Rightarrow(i)$: Clearly $S a$ is a quasi-ideal containing a. Thus by (ii) and paramedial law, medial law and left invertive law we get,

$$
\begin{aligned}
a & \in S a=(S(S a))^{2}=((S S)(S a))^{2}=((a S)(S S))^{2}=((S S) a)^{2} \\
& =(S a)^{2}=\left(S a^{2}\right)=\left(S a^{2}\right) S .
\end{aligned}
$$

Hence S is intra-regular.
Theorem 123 For S the following conditions are equivalent.
(i) S is intra-regular.
(ii) For every quasi-ideal of $S, Q=(S Q)^{2} Q \cap(Q S)^{2} Q$.

Proof. $(i) \Longrightarrow(i i)$: Let Q be a quasi-ideal of an intra-regular AG-groupoid S with left identity. Now it becomes an ideal of S. Then obviously

$$
(S Q)^{2} Q \cap(Q S)^{2} Q \subseteq Q .
$$

Now let $a \in Q$ and since S is intra-regular so there exists $x, y \in S$ such that $a=\left(x a^{2}\right) y$. Then using left invertive law, paramedial law and medial law, we have,

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(a(x a)) y=(y(x a)) a=(y(x a)) a=\left(y\left(x\left(\left(x a^{2}\right) y\right)\right)\right) a \\
& =\left(y\left(\left(x a^{2}\right)(x y)\right)\right) a=\left(\left(x a^{2}\right)(y(x y))\right) a=\left((x y)\left(a^{2}(x y)\right)\right) a \\
& =\left(a^{2}((x y)(x y))\right) a=(a(x y))^{2} a .
\end{aligned}
$$

Therefore $a \in\left((Q(S S))^{2} Q=(Q S)^{2} Q\right.$. This implies that $a \in(Q S)^{2} Q$. Hence $Q \subseteq(Q S)^{2} Q$. Now since $(Q S)^{2}=(S Q)^{2}$, thus $Q \subseteq(S Q)^{2} Q$. Therefore $Q \subseteq(S Q)^{2} Q \cap(Q S)^{2} Q$. Hence $Q=(S Q)^{2} Q \cap(Q S)^{2} Q$.
$(i i) \Rightarrow(i)$: Clearly $S a$ is a quasi-ideal containing a. Therefore by (ii) we get,

$$
a \in S a=(S(S a))^{2}(S a) \subseteq(S a)^{2}(S a)=\left(S a^{2}\right)(S a) \subseteq\left(S a^{2}\right) S .
$$

Hence S is intra-regular.
Theorem 124 For S the following conditions are equivalent.
(i) S is intra-regular.
(ii) For any quasi-ideals Q_{1} and Q_{2} of $S, Q_{1} Q_{2} \subseteq Q_{2} Q_{1}$ and Q_{1}, Q_{2} are semiprime.

Proof. $(i) \Longrightarrow(i i)$: Let Q_{1} and Q_{2} be any quasi-ideals of an intra-regular AG-groupoid S with left identity. Now Q_{1} and Q_{2} become ideals of S. Let $a \in Q_{1} Q_{2}$. Then $a=u v$ where $u \in Q_{1}$ and $v \in Q_{2}$. Now since S in intraregular therefore for u and v in S there exists $x_{1}, x_{2}, y_{1}, y_{2} \in S$ such that $a=\left(\left(\left(x_{1} u^{2}\right) y_{1}\right)\left(\left(x_{2} v^{2}\right) y_{2}\right)\right)$. Using medial law, paramedial law, medial law
and left invertive law, we have

$$
\begin{aligned}
a & =\left(\left(\left(x_{1} u^{2}\right) y_{1}\right)\left(\left(x_{2} v^{2}\right) y_{2}\right)\right)=\left(\left(x_{1} u^{2}\right)\left(x_{2} v^{2}\right)\right)\left(y_{2} y_{1}\right) \\
& =\left(\left(x_{1}(u u)\right)\left(x_{2}(v v)\right)\right)\left(y_{2} y_{1}\right)=\left(\left(u\left(x_{1} u\right)\right)\left(v\left(x_{2} v\right)\right)\right)\left(y_{2} y_{1}\right) \\
& =\left(\left(\left(x_{2} v\right)\left(x_{1} u\right)\right)(v u)\right)\left(y_{2} y_{1}\right)=\left(\left(\left(x_{2} x_{1}\right)(v u)\right)(v u)\right)\left(y_{2} y_{1}\right) \\
& =\left(((v u)(v u))\left(x_{2} x_{1}\right)\right)\left(y_{2} y_{1}\right)=\left(\left(y_{2} y_{1}\right)\left(x_{2} x_{1}\right)\right)(((v u)(v u)) \\
& =\left(\left(y_{2} y_{1}\right)\left(x_{2} x_{1}\right)\right)\left(v^{2} u^{2}\right)=\left(\left(y_{2} y_{1}\right) v^{2}\right)\left(\left(x_{2} x_{1}\right) u^{2}\right) . \\
& \in\left((S S) Q_{2}^{2}\right)\left((S S) Q_{2}^{2}\right) \subseteq\left(S Q_{2}\right)\left(S Q_{1}\right) \subseteq Q_{2} Q_{1} .
\end{aligned}
$$

Thus $a \in Q_{2} Q_{1}$. Hence $Q_{1} Q_{2} \subseteq Q_{2} Q_{1}$. Let $a^{2} \in Q_{1}$. Then since S is intra-regular so for $a \in S$ there exists $x, y \in S$ such that, $a=\left(x a^{2}\right) y$. Then using left invertive law, we get

$$
a=\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a \in\left((S S) Q_{1}\right) Q_{1} \subseteq Q_{1} .
$$

Similarly we can show that Q_{2} semiprime.
$(i i) \Longrightarrow(i)$: Let $S a$ be a quasi-ideal of S containing a then by $(i i)$ and using medial law we get,

$$
a \in S a \cap S a=(S a)(S a)=\left(S a^{2}\right)=\left(S a^{2}\right) S
$$

Hence S is intra-regular.
Theorem 125 For S the following conditions are equivalent.
(i) S is intra-regular.
(ii) For any quasi-ideal A and two sided ideal B of $S, A \cap B=(A B) A$ and B is semiprime.
(iii) For any quasi-ideal A and right ideal B of $S, A \cap B=(A B) A$ and B is semiprime.
(iv) For any quasi-ideal A and interior ideal B of $S, A, B, A \cap B=(A B) A$ and B is semiprime.

Proof. $(i) \Rightarrow(i v)$: Let A and B be a quasi-ideal and an interior ideal of S respectively. Now A and B are ideals of S. Then $(A B) A \subseteq(A S) A \subseteq A$ and $A B) A \subseteq(S B) S \subseteq B$. Thus $(A B) A \subseteq A \cap B$. Next let $a \in A \cap B$, which implies that $a \in A$ and $a \in B$. Since S is intra-regular so for a there exists $x, y \in S$, such that $a=\left(x a^{2}\right) y$. Then using left invertive law, we get,

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(a(x a)) y=(y(x a)) a=(y(x a)) a \\
& =\left(y\left(x\left(\left(x a^{2}\right) y\right)\right)\right) a=\left(y\left(\left(x a^{2}\right)(x y)\right)\right) a \\
& =\left(\left(x a^{2}\right)(y(x y))\right) a=((a(x a))(y(x y))) a \\
& =(((y(x y))(x a)) a) a=(a a)((y(x y))(x a)) \\
& \subseteq(A B)(S(S A)) \subseteq(A B) A .
\end{aligned}
$$

Thus $A \cap B=(A B) A$. Next to show that B is semiprime let $a^{2} \in B$. Therefore for each $a \in S$ there exists $x, y \in S$ such that $a=\left(x a^{2}\right) y \in$ $B B \subseteq B$. Thus $a^{2} \in B$. This implies that $a \in B$. Hence B is semiprime.
$(i v) \Longrightarrow(i i i) \Longrightarrow(i i)$ are obvious.
$(i i) \Longrightarrow(i)$: Since $S a$ is quasi-ideal and $S a^{2}$ be two sided ideal containing a and a^{2} respectively. And by (ii) $S a^{2}$ is semiprime so $a \in S a^{2}$. Therefore using (ii), left invertive law, medial law, and paramedial law, we get

$$
\begin{aligned}
S a \cap S a^{2} & =\left((S a)\left(S a^{2}\right)\right)(S a) \subseteq\left((S S)\left(S a^{2}\right)\right)(S S)=\left(\left(a^{2} S\right)(S S)\right) S \\
& =\left(\left(a^{2} S\right) S\right) S=\left((S S) a^{2}\right) S=\left(S a^{2}\right) S .
\end{aligned}
$$

Hence S is intra-regular.
Theorem 126 For S the following conditions are equivalent.
(i) S is intra-regular.
(ii) For every left ideal A and B of $S, A \cap B=(A B) \cap(B A)$.
(iii) For every quasi ideal A and every left ideal B of $S, A \cap B=(A B) \cap$ (BA).
(iv) For every quasi ideals A and B of $S, A \cap B=(A B) \cap(B A)$.

Proof. $(i) \Longrightarrow(i v)$: Let A and B be any generalized bi-ideal of S, then A and B are ideals of S. Clearly $A B \subseteq A \cap B$, now $A \cap B$ is an ideal and $A \cap B=(A \cap B)^{2}$. Now $A \cap B=(A \cap B)^{2} \subseteq A B$. Thus $A \cap B=A B$ and then $A \cap B=B \cap A=B A$. Hence $A \cap B=(A B) \cap(B A)$.
$(i v) \Longrightarrow(i i i) \Longrightarrow(i i)$ are obvious.
$(i i) \Rightarrow(i)$: Since $S a$ is a left ideal of an AG-groupoid S with left identity containing a. Therefore by (ii) and medial law we get

$$
S a \cap S a=(S a)(S a)=S a^{2}=\left(S a^{2}\right) S
$$

Hence S is intra-regular.
Theorem 127 For S the following conditions are equivalent.
(i) S is intra-regular.
(ii) For any quasi-ideals Q and two sided ideal I of $S, Q \cap I=(Q I) Q$ and I is semiprime.
(iii) For any quasi-ideals Q and right ideal I of $S, Q \cap I=(Q I) Q$ and I is semiprime.
(iv) For any quasi ideals Q and interior ideal I of $S, Q \cap I=(Q I) Q$ and I is semiprime.

Proof. $(i) \Rightarrow(v)$: Let Q and I be a quasi-ideal and an interior ideal of S respectively. Now Q and I are ideals of S. Then $(Q I) Q \subseteq(Q S) Q \subseteq Q$ and $(Q I) Q \subseteq(S I) S \subseteq I$. Thus $(Q I) Q \subseteq Q \cap I$. Next let $a \in Q \cap I$, which implies that $a \in Q$ and $a \in I$. Since S is intra-regular so for a there exists $x, y \in S$, such that $a=\left(x a^{2}\right) y$. Then left invertive law, we get,

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=\left(a\left(x\left(\left(x a^{2}\right) y\right)\right)\right) y \\
& =\left(a\left(\left(x a^{2}\right)(x y)\right)\right) y=\left(y\left(\left(x a^{2}\right)(x y)\right)\right) a=(y((x(a a))(x y))) a \\
& =(y((a(x a))(x y))) a=((a(x a))(y(x y))) a=(((y(x y))(x a)) a) a \\
& =(a a)((y(x y))(x a)) \in(Q I)(S(S S)(S Q) \subseteq(Q I) Q .
\end{aligned}
$$

Thus $Q \cap I=(Q I) Q$. Next to show that I is semiprime let $a^{2} \in I$. Therefore for each $a \in S$ there exists $x, y \in S$ such that $a=\left(x a^{2}\right) y \in$ $(S I) S \subseteq I$. Thus $a^{2} \in I$. This implies that $a \in I$. Hence I is semiprime.
$(v) \Longrightarrow(i v) \Longrightarrow(i i i) \Longrightarrow(i i)$ are obvious.
$(i i) \Longrightarrow(i)$: Since $S a$ is a quasi-ideal and $S a^{2}$ be a two sided ideal containing a and a^{2} respectively. And by (ii) $S a^{2}$ is semiprime so $a \in S a^{2}$. Therefore using (ii), left invertive law, medial law and paramedial we get,

$$
\begin{aligned}
S a \cap S a^{2} & =\left((S a)\left(S a^{2}\right)\right)(S a)=\left((S S)\left(S a^{2}\right)\right)(S S)=\left(\left(a^{2} S\right)(S S)\right) S \\
& =\left(\left(a^{2} S\right) S\right) S=\left((S S) a^{2}\right) S=\left(S a^{2}\right) S
\end{aligned}
$$

Hence S is intra-regular.

4.3 Characterizations of Ideals in Intra-regular AG-groupoids

An element a of an AG-groupoid S is called intra-regular if there exist $x, y \in S$ such that $a=\left(x a^{2}\right) y$ and S is called intra-regular, if every element of S is intra-regular.

Example 128 Let us consider an $A G$-groupoid $S=\{a, b, c, d, e, f\}$ with left identity e in the following Clayey's table.

.	a	b	c	d	e	f
a						
b	a	b	b	b	b	b
c	a	b	f	f	d	f
d	a	b	f	f	c	f
e	a	b	c	d	e	f
f	a	b	f	f	f	f

Example 129 Let us consider the set $(\mathbb{R},+)$ of all real numbers under the binary operation of addition. If we define $a * b=b-a-r$, where $a, b, r \in R$, then $(\mathbb{R}, *)$ becomes an $A G$-groupoid as,
$(a * b) * c=c-(a * b)-r=c-(b-a-r)-r=c-b+a+r-r=c-b+a$
and
$(c * b) * a=a-(c * b)-r=a-(b-c-r)-r=a-b+c+r-r=a-b+c$.
Since $(\mathbb{R},+)$ is commutative so $(a * b) * c=(c * b) * a$ and therefore $(\mathbb{R}, *)$ satisfies a left invertive law. It is easy to observe that $(R, *)$ is noncommutative and non-associative. The same is hold for set of integers and rationals. Thus $(\mathbb{R}, *)$ is an $A G$-groupoid which is the generalization of an

AG-groupoid given in 1988 (see [39]). Similarly if we define $a * b=b a^{-1} r^{-1}$, then $(\mathbb{R} \backslash\{0\}, *)$ becomes an $A G$-groupoid and the same holds for the set of integers and rationals. This AG-groupoid is also the generalization of an AG-groupoid given in 1988 (see [39]).

An element a of an AG-groupoid S is called an intra-regular if there exist $x, y \in S$ such that $a=\left(x a^{2}\right) y$ and S is called intra-regular, if every element of S is intra-regular.

Example 130 Let $S=\{a, b, c, d, e\}$ be an AG-groupoid with left identity b in the following multiplication table.

\cdot	a	b	c	d	e
a	a	a	a	a	a
b	a	b	c	d	e
c	a	e	b	c	d
d	a	d	e	b	c
e	a	c	d	e	b

Clearly S is intra-regular because, $a=\left(a a^{2}\right) a, b=\left(c b^{2}\right) e, c=\left(d c^{2}\right) e$, $d=\left(c d^{2}\right) c, e=\left(b e^{2}\right) e$.

An element a of an AG-groupoid S with left identity e is called a left (right) invertible if there exits $x \in S$ such that $x a=e(a x=e)$ and a is called invertible if it is both a left and a right invertible. An AG-groupoid S is called a left (right) invertible if every element of S is a left (right) invertible and S is called invertible if it is both a left and a right invertible.

Note that in an AG-groupoid S with left identity, $S=S^{2}$.
Theorem 131 Every AG-groupoid S with left identity is an intra-regular if S is left (right) invertible.

Proof. Let S be a left invertible AG-groupoid with left identity, then for $a \in S$ there exists $a^{\prime} \in S$ such that $a^{\prime} a=e$. Now by using left invertive law, medial law with left identity and medial law, we have

$$
\begin{aligned}
a & =e a=e(e a)=\left(a^{\prime} a\right)(e a) \in(S a)(S a)=(S a)((S S) a) \\
& =(S a)((a S) S)=(a S)((S a) S)=(a(S a))(S S) \\
& =(a(S a)) S=(S(a a)) S=\left(S a^{2}\right) S
\end{aligned}
$$

Which shows that S is intra-regular. Similarly in the case of right invertible.

Theorem 132 An AG-groupoid S is intra-regular if $S a=S$ or $a S=S$ holds for all $a \in S$.

Proof. Let S be an AG-groupoid such that $S a=S$ holds for all $a \in S$, then $S=S^{2}$. Let $a \in S$, therefore by using medial law, we have

$$
a \in S=(S S) S=((S a)(S a)) S=((S S)(a a)) S \subseteq\left(S a^{2}\right) S
$$

Which shows that S is intra-regular.
Let $a \in S$ and assume that $a S=S$ holds for all $a \in S$, then by using left invertive law, we have

$$
a \in S=S S=(a S) S=(S S) a=S a
$$

Thus $S a=S$ holds for all $a \in S$, therefore it follows from above that S is intra-regular.

The converse is not true in general from Example above.
Corollary 133 If S is an $A G$-groupoid such that $a S=S$ holds for all a $\in S$, then $S a=S$ holds for all $a \in S$.

Theorem 134 If S is intra-regular $A G$-groupoid with left identity, then $(B S) B=B \cap S$, where B is a bi-(generalized bi-) ideal of S.

Proof. Let S be an intra-regular AG-groupoid with left identity, then clearly $(B S) B \subseteq B \cap S$. Now let $b \in B \cap S$, which implies that $b \in B$ and $b \in S$. Since S is intra-regular so there exist $x, y \in S$ such that $b=\left(x b^{2}\right) y$. Now by using medial law with left identity, left invertive law, paramedial law and medial law, we have

$$
\begin{aligned}
b & =(x(b b)) y=(b(x b)) y=(y(x b)) b=\left(y\left(x\left(\left(x b^{2}\right) y\right)\right)\right) b \\
& =\left(y\left(\left(x b^{2}\right)(x y)\right)\right) b=\left(\left(x b^{2}\right)(y(x y))\right) b=\left(((x y) y)\left(b^{2} x\right)\right) b \\
& =((b b)(((x y) y) x)) b=((b b)((x y)(x y))) b=\left((b b)\left(x^{2} y^{2}\right)\right) b \\
& =\left(\left(y^{2} x^{2}\right)(b b)\right) b=\left(b\left(\left(y^{2} x^{2}\right) b\right)\right) b \in(B S) B .
\end{aligned}
$$

This shows that $(B S) B=B \cap S$.
The converse is not true in general. For this, let us consider an AGgroupoid S with left identity e in Example 128. It is easy to see that $\{a, b, f\}$ is a bi-(generalized bi-) ideal of S such that $(B S) B=B \cap S$ but S is not an intra-regular because $d \in S$ is not an intra-regular.

Corollary 135 If S is intra-regular AG-groupoid with left identity, then $(B S) B=B$, where B is a bi-(generalized bi-) ideal of S.

Theorem 136 If S is intra-regular $A G$-groupoid with left identity, then $(S B) S=S \cap B$, where B is an interior ideal of S.

Proof. Let S be an intra-regular AG-groupoid with left identity, then clearly $(S B) S \subseteq S \cap B$. Now let $b \in S \cap B$, which implies that $b \in S$ and $b \in B$. Since S is an intra-regular so there exist $x, y \in S$ such that $b=\left(x b^{2}\right) y$. Now by using paramedial law and left invertive law, we have

$$
b=((e x)(b b)) y=((b b)(x e)) y=(((x e) b) b) y \in(S B) S
$$

Which shows that $(S B) S=S \cap B$.

The converse is not true in general. It is easy to see that form Example 128 that $\{a, b, f\}$ is an interior ideal of an AG-groupoid S with left identity e such that $(S B) S=B \cap S$ but S is not an intra-regular because $d \in S$ is not an intra-regular.

Corollary 137 If S is intra-regular $A G$-groupoid with left identity, then $(S B) S=B$, where B is an interior ideal of S.

Let S be an AG-groupoid, then $\emptyset \neq A \subseteq S$ is called semiprime if $a^{2} \in$ A implies $a \in A$.

Theorem 138 An AG-groupoid S with left identity is intra-regular if $L \cup$ $R=L R$, where L and R are the left and right ideals of S respectively such that R is semiprime.

Proof. Let S be an AG-groupoid with left identity, then clearly $S a$ and $a^{2} S$ are the left and right ideals of S such that $a \in S a$ and $a^{2} \in a^{2} S$, because by using paramedial law, we have

$$
a^{2} S=(a a)(S S)=(S S)(a a)=S a^{2}
$$

Therefore by given assumption, $a \in a^{2} S$. Now by using left invertive law, medial law, paramedial law and medial law with left identity, we have

$$
\begin{aligned}
a & \in S a \cup a^{2} S=(S a)\left(a^{2} S\right)=(S a)((a a) S)=(S a)((S a)(e a)) \\
& \subseteq(S a)((S a)(S a))=(S a)((S S)(a a)) \subseteq(S a)((S S)(S a)) \\
& =(S a)((a S)(S S))=(S a)((a S) S)=(a S)((S a) S) \\
& =(a(S a))(S S)=(a(S a)) S=(S(a a)) S=\left(S a^{2}\right) S
\end{aligned}
$$

Which shows that S is intra-regular.
The converse is not true in general. In Example 128, the only left and right ideal of S is $\{a, b\}$, where $\{a, b\}$ is semiprime such that $\{a, b\} \cup\{a, b\}=$ $\{a, b\}\{a, b\}$ but S is not an intra-regular because $d \in S$ is not an intraregular.

Lemma 139 [38] If S is intra-regular regular AG-groupoid, then $S=S^{2}$.
Theorem 140 For a left invertible $A G$-groupoid S with left identity, the following conditions are equivalent.
(i) S is intra-regular.
(ii) $R \cap L=R L$, where R and L are any left and right ideals of S respectively.
Proof. $(i) \Longrightarrow(i i)$: Assume that S is intra-regular AG-groupoid with left identity and let $a \in S$, then there exist $x, y \in S$ such that $a=\left(x a^{2}\right) y$. Let R and L be any left and right ideals of S respectively, then obviously $R L \subseteq R \cap L$. Now let $a \in R \cap L$ implies that $a \in R$ and $a \in L$. Now by
using medial law with left identity, medial law and left invertive law, we have

$$
\begin{aligned}
a & =\left(x a^{2}\right) y \in\left(S a^{2}\right) S=(S(a a)) S=(a(S a)) S=(a(S a))(S S) \\
& =(a S)((S a) S)=(S a)((a S) S)=(S a)((S S) a)=(S a)(S a) \\
& \subseteq(S R)(S L)=((S S) R)(S L)=((R S) S)(S L) \subseteq R L
\end{aligned}
$$

This shows that $R \cap L=R L$.
$(i i) \Longrightarrow(i):$ Let S be a left invertible AG-groupoid with left identity, then for $a \in S$ there exists $a^{\prime} \in S$ such that $a^{\prime} a=e$. Since $a^{2} S$ is a right ideal and also a left ideal of S such that $a^{2} \in a^{2} S$, therefore by using given assumption, medial law with left identity and left invertive law, we have

$$
\begin{aligned}
a^{2} & \in a^{2} S \cap a^{2} S=\left(a^{2} S\right)\left(a^{2} S\right)=a^{2}\left(\left(a^{2} S\right) S\right)=a^{2}\left((S S) a^{2}\right) \\
& =(a a)\left(S a^{2}\right)=\left(\left(S a^{2}\right) a\right) a
\end{aligned}
$$

Thus we get, $a^{2}=\left(\left(x a^{2}\right) a\right) a$ for some $x \in S$.
Now by using left invertive law, we have

$$
\begin{aligned}
(a a) a^{\prime} & =\left(\left(\left(x a^{2}\right) a\right) a\right) a^{\prime} \\
\left(a^{\prime} a\right) a & =\left(a^{\prime} a\right)\left(\left(\left(x a^{2}\right) a\right)\right. \\
a & =\left(x a^{2}\right) a .
\end{aligned}
$$

This shows that S is intra-regular.
Lemma 141 [38] Every two-sided ideal of an intra-regular AG-groupoid S with left identity is idempotent.

Theorem 142 In an $A G$-groupoid S with left identity, the following conditions are equivalent.
(i) S is intra-regular.
(ii) $A=(S A)^{2}$, where A is any left ideal of S .

Proof. $(i) \Longrightarrow(i i)$: Let A be a left ideal of an intra-regular AG-groupoid S with left identity, then $S A \subseteq A$ and $(S A)^{2}=S A \subseteq A$. Now $A=A A \subseteq$ $S A=(S A)^{2}$, which implies that $A=(S A)^{2}$.
$(i i) \Longrightarrow(i)$: Let A be a left ideal of S, then $A=(S A)^{2} \subseteq A^{2}$, which implies that A is idempotent and by using Lemma 149, S is intra-regular.

Theorem 143 In an intra-regular $A G$-groupoid S with left identity, the following conditions are equivalent.
(i) A is a bi-(generalized bi-) ideal of S.
(ii) $(A S) A=A$ and $A^{2}=A$.

Proof. $(i) \Longrightarrow(i i)$: Let A be a bi-ideal of an intra-regular AG-groupoid S with left identity, then $(A S) A \subseteq A$. Let $a \in A$, then since S is intra-regular
so there exist $x, y \in S$ such that $a=\left(x a^{2}\right) y$. Now by using medial law with left identity, left invertive law, medial law and paramedial law, we have

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a \\
& =\left(y\left(x\left(\left(x a^{2}\right) y\right)\right)\right) a=\left(y\left(\left(x a^{2}\right)(x y)\right)\right) a \\
& =\left(\left(x a^{2}\right)(y(x y))\right) a=((x(a a))(y(x y))) a \\
& =((a(x a))(y(x y))) a=((a y)((x a)(x y))) a \\
& =((x a))((a y)(x y))) a=\left((x a)\left((a x) y^{2}\right)\right) a \\
& =\left(\left(y^{2}(a x)\right)(a x)\right) a=\left(a\left(\left(y^{2}(a x)\right) x\right)\right) a \in(A S) A .
\end{aligned}
$$

Thus $(A S) A=A$ holds. Now by using medial law with left identity, left invertive law, paramedial law and medial law, we have

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a=\left(y\left(x\left(\left(x a^{2}\right) y\right)\right)\right) a \\
& =\left(y\left(\left(x a^{2}\right)(x y)\right)\right) a=\left(\left(x a^{2}\right)(y(x y))\right) a=((x(a a))(y(x y))) a \\
& =((a(x a))(y(x y))) a=(((y(x y))(x a)) a) a=(((a x)((x y) y)) a) a \\
& =\left(\left((a x)\left(y^{2} x\right)\right) a\right) a=\left(\left(\left(a y^{2}\right)(x x)\right) a\right) a=\left(\left(\left(a y^{2}\right) x^{2}\right) a\right) a \\
& =\left(\left(\left(x^{2} y^{2}\right) a\right) a\right) a=\left(\left(\left(x^{2} y^{2}\right)((x(a a)) y)\right) a\right) a \\
& =\left(\left(\left(x^{2} y^{2}\right)((a(x a)) y)\right) a\right) a=\left(\left(\left(x^{2}(a(x a))\right)\left(y^{2} y\right)\right) a\right) a \\
& =\left(\left(\left(a\left(x^{2}(x a)\right)\right) y^{3}\right) a\right) a=\left(\left(\left((((x x)(x a))) y^{3}\right) a\right) a\right. \\
& =\left(\left((a((a x)(x x))) y^{3}\right) a\right) a=\left(\left(\left((a x)\left(a x^{2}\right)\right) y^{3}\right) a\right) a \\
& \left.=\left(\left(\left((a a)\left(x x^{2}\right)\right) y^{3}\right) a\right) a=\left(\left(\left(y^{3} x^{3}\right)\right)(a a)\right) a\right) a \\
& =\left(\left(a\left(\left(y^{3} x^{3}\right) a\right)\right) a\right) a \subseteq((A S) A) A \subseteq A A=A^{2} .
\end{aligned}
$$

Hence $A=A^{2}$ holds.
$(i i) \Longrightarrow(i)$ is obvious.
Theorem 144 In an intra-regular $A G$-groupoid S with left identity, the following conditions are equivalent.
(i) A is a quasi ideal of S.
(ii) $S Q \cap Q S=Q$.

Proof. $(i) \Longrightarrow(i i)$: Let Q be a quasi ideal of an intra-regular AG-groupoid S with left identity, then $S Q \cap Q S \subseteq Q$. Let $q \in Q$, then since S is intraregular so there exist $x, y \in S$ such that $q=\left(x q^{2}\right) y$. Let $p q \in S Q$, then by using medial law with left identity, medial law and paramedial law, we have

$$
\begin{aligned}
p q & =p\left(\left(x q^{2}\right) y\right)=\left(x q^{2}\right)(p y)=(x(q q))(p y)=(q(x q))(p y) \\
& =(q p)((x q) y)=(x q)((q p) y)=(y(q p))(q x) \\
& =q((y(q p)) x) \in Q S .
\end{aligned}
$$

Now let $q y \in Q S$, then by using left invertive law, medial law with left identity and paramedial law, we have

$$
\begin{aligned}
q p & =\left(\left(x q^{2}\right) y\right) p=(p y)\left(x q^{2}\right)=(p y)(x(q q))=x((p y)(q q)) \\
& =x((q q)(y p))=(q q)(x(y p))=((x(y p)) q) q \in S Q .
\end{aligned}
$$

Hence $Q S=S Q$. As by using medial law with left identity and left invertive law, we have

$$
q=\left(x q^{2}\right) y=(x(q q)) y=(q(x q)) y=(y(x q)) q \in S Q
$$

Thus $q \in S Q \cap Q S$ implies that $S Q \cap Q S=Q$.
$(i i) \Longrightarrow(i)$ is obvious.
Theorem 145 In an intra-regular AG-groupoid S with left identity, the following conditions are equivalent.
(i) A is an interior ideal of S.
(ii) $(S A) S=A$.

Proof. $(i) \Longrightarrow(i i)$: Let A be an interior ideal of an intra-regular AGgroupoid S with left identity, then $(S A) S \subseteq A$. Let $a \in A$, then since S is intra-regular so there exist $x, y \in S$ such that $a=\left(x a^{2}\right) y$. Now by using medial law with left identity, left invertive law and paramedial law, we have

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a=(y(x a))\left(\left(x a^{2}\right) y\right) \\
& =\left(\left(\left(x a^{2}\right) y\right)(x a)\right) y=\left((a x)\left(y\left(x a^{2}\right)\right)\right) y=\left(\left(\left(y\left(x a^{2}\right)\right) x\right) a\right) y \in(S A) S
\end{aligned}
$$

Thus $(S A) S=A$.
$(i i) \Longrightarrow(i)$ is obvious.
Theorem 146 In an intra-regular $A G$-groupoid S with left identity, the following conditions are equivalent.
(i) A is a $(1,2)$-ideal of S.
(ii) $(A S) A^{2}=A$ and $A^{2}=A$.

Proof. $(i) \Longrightarrow(i i)$: Let A be a $(1,2)$-ideal of an intra-regular AG-groupoid S with left identity, then $(A S) A^{2} \subseteq A$ and $A^{2} \subseteq A$. Let $a \in A$, then since S is intra-regular so there exist $x, y \in S$ such that $a=\left(x a^{2}\right) y$. Now by using medial law with left identity, left invertive law and paramedial law, we have

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a \\
& =\left(y\left(x\left(\left(x a^{2}\right) y\right)\right)\right) a=\left(y\left(\left(x a^{2}\right)(x y)\right)\right) a=\left(\left(x a^{2}\right)(y(x y))\right) a \\
& =\left(((x y) y)\left(a^{2} x\right)\right) a=\left(\left(y^{2} x\right)\left(a^{2} x\right)\right) a=\left(a^{2}\left(\left(y^{2} x\right) x\right)\right) a \\
& =\left(a^{2}\left(x^{2} y^{2}\right)\right) a=\left(a\left(x^{2} y^{2}\right)\right) a^{2}=\left(a\left(x^{2} y^{2}\right)\right)(a a) \in(A S) A^{2} .
\end{aligned}
$$

Thus $(A S) A^{2}=A$. Now by using medial law with left identity, left invertive law, paramedial law and medial law, we have

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a \\
& =(y(x a))\left(\left(x a^{2}\right) y\right)=\left(x a^{2}\right)((y(x a)) y)=(x(a a))((y(x a)) y) \\
& =(a(x a))((y(x a)) y)=(((y(x a)) y)(x a)) a=((a x)(y(y(x a)))) a \\
& =\left(\left(\left(\left(x a^{2}\right) y\right) x\right)(y(y(x a)))\right) a=\left(\left((x y)\left(x a^{2}\right)\right)(y(y(x a)))\right) a \\
& =\left(((x y) y)\left(\left(x a^{2}\right)(y(x a))\right)\right) a=\left(\left(y^{2} x\right)((x(a a))(y(x a)))\right) a \\
& =\left(\left(y^{2} x\right)((x y)((a a)(x a)))\right) a=\left(\left(y^{2} x\right)((a a)((x y)(x a)))\right) a \\
& =\left((a a)\left(\left(y^{2} x\right)((x y)(x a))\right)\right) a=\left((a a)\left(\left(y^{2} x\right)((x x)(y a))\right)\right) a \\
& =\left(\left(((x x)(y a))\left(y^{2} x\right)\right)(a a)\right) a=\left(\left(((a y)(x x))\left(y^{2} x\right)\right)(a a)\right) a \\
& =\left(\left(\left(\left(x^{2} y\right) a\right)\left(y^{2} x\right)\right)(a a)\right) a=\left(\left(\left(x y^{2}\right)\left(a\left(x^{2} y\right)\right)\right)(a a)\right) a \\
& =\left(\left(a\left(\left(x y^{2}\right)\left(x^{2} y\right)\right)\right)(a a)\right) a=\left(\left(a\left(x^{3} y^{3}\right)\right)(a a)\right) a \\
& \in\left((A S) A^{2}\right) A \subseteq A A=A^{2} .
\end{aligned}
$$

Hence $A^{2}=A$.
$(i i) \Longrightarrow(i)$ is obvious.
Lemma 147 [38]Every non empty subset A of an intra-regular AG-groupoid S with left identity is a left ideal of S if and only if it is a right ideal of S.

Theorem 148 In an intra-regular $A G$-groupoid S with left identity, the following conditions are equivalent.
(i) A is a (1,2)-ideal of S.
(ii) A is a two-sided ideal of S.

Proof. $(i) \Longrightarrow(i i)$: Assume that S is intra-regular AG-groupoid with left identity and let A be a (1,2)-ideal of S then, $(A S) A^{2} \subseteq A$. Let $a \in A$, then since S is intra-regular so there exist $x, y \in S$ such that $a=\left(x a^{2}\right) y$. Now by using medial law with left identity, left invertive law and paramedial law, we have

$$
\begin{aligned}
s a & =s\left(\left(x a^{2}\right) y\right)=\left(x a^{2}\right)(s y)=(x(a a))(s y)=(a(x a))(s y) \\
& =((s y)(x a)) a=((s y)(x a))\left(\left(x a^{2}\right) y\right)=\left(x a^{2}\right)(((s y)(x a)) y) \\
& =(y((s y)(x a)))\left(a^{2} x\right)=a^{2}((y((s y)(x a))) x) \\
& =(a a)((y((s y)(x a))) x)=(x(y((s y)(x a))))(a a) \\
& =(x(y((a x)(y s))))(a a)=(x((a x)(y(y s))))(a a) \\
& =((a x)(x(y(y s))))(a a)=\left(\left(\left(\left(x a^{2}\right) y\right) x\right)(x(y(y s)))\right)(a a) \\
& =\left(\left((x y)\left(x a^{2}\right)\right)(x(y(y s)))\right)(a a)=\left(\left(\left(a^{2} x\right)(y x)\right)(x(y(y s)))\right)(a a) \\
& =\left(\left(((y x) x) a^{2}\right)(x(y(y s)))\right)(a a)=\left(((y(y s)) x)\left(a^{2}((y x) x)\right)\right)(a a) \\
& =\left(((y(y s)) x)\left(a^{2}\left(x^{2} y\right)\right)\right)(a a)=\left(a^{2}\left(((y(y s)) x)\left(x^{2} y\right)\right)\right)(a a) \\
& =\left((a a)\left(((y(y s)) x)\left(x^{2} y\right)\right)\right)(a a)=\left(\left(\left(x^{2} y\right)((y(y s)) x)\right)(a a)\right)(a a) \\
& =\left(a\left(\left(x^{2} y\right)(((y(y s)) x) a)\right)\right)(a a) \in(A S) A^{2} \subseteq A .
\end{aligned}
$$

Hence A is a left ideal of S and A is a two-sided ideal of S.
$(i i) \Longrightarrow(i)$: Let A be a two-sided ideal of S. Let $y \in(A S) A^{2}$, then $y=(a s) b^{2}$ for some $a, b \in A$ and $s \in S$. Now by using medial law with left identity, we have

$$
y=(a s) b^{2}=(a s)(b b)=b((a s) b) \in A S \subseteq A
$$

Hence $(A S) A^{2} \subseteq A$, therefore A is a (1,2)-ideal of S.
Lemma 149 [38] Let S be an $A G$-groupoid, then S is intra-regular if and only if every left ideal of S is idempotent.

Lemma 150 [38]Every non empty subset A of an intra-regular AG-groupoid S with left identity is a two-sided ideal of S if and only if it is a quasi ideal of S.

Theorem 151 A two-sided ideal of an intra-regular $A G$-groupoid S with left identity is minimal if and only if it is the intersection of two minimal two-sided ideals of S.

Proof. Let S be intra-regular AG-groupoid and Q be a minimal two-sided ideal of S, let $a \in Q$. As $S(S a) \subseteq S a$ and $S(a S) \subseteq a(S S)=a S$, which shows that $S a$ and $a S$ are left ideals of S, so $S a$ and $a S$ are two-sided ideals of S.

Now

$$
\begin{aligned}
S(S a \cap a S) \cap(S a \cap a S) S & =S(S a) \cap S(a S) \cap(S a) S \cap(a S) S \\
& \subseteq(S a \cap a S) \cap(S a) S \cap S a \subseteq S a \cap a S
\end{aligned}
$$

This implies that $S a \cap a S$ is a quasi ideal of S, so, $S a \cap a S$ is a two-sided ideal of S. Also since $a \in Q$, we have

$$
S a \cap a S \subseteq S Q \cap Q S \subseteq Q \cap Q \subseteq Q
$$

Now since Q is minimal, so $S a \cap a S=Q$, where $S a$ and $a S$ are minimal two-sided ideals of S, because let I be an two-sided ideal of S such that $I \subseteq S a$, then $I \cap a S \subseteq S a \cap a S \subseteq Q$, which implies that $I \cap a S=Q$. Thus $Q \subseteq I$. Therefore, we have

$$
S a \subseteq S Q \subseteq S I \subseteq I, \text { gives } S a=I
$$

Thus $S a$ is a minimal two-sided ideal of S. Similarly $a S$ is a minimal twosided ideal of S.

Conversely, let $Q=I \cap J$ be a two-sided ideal of S, where I and J are minimal two-sided ideals of S, then, Q is a quasi ideal of S, that is $S Q \cap Q S \subseteq Q$. Let Q^{\prime} be a two-sided ideal of S such that $Q^{\prime} \subseteq Q$, then

$$
S Q^{\prime} \cap Q^{\prime} S \subseteq S Q \cap Q S \subseteq Q, \text { also } S Q^{\prime} \subseteq S I \subseteq I \text { and } Q^{\prime} S \subseteq J S \subseteq J
$$

Now

$$
S\left(S Q^{\prime}\right)=(S S)\left(S Q^{\prime}\right)=\left(Q^{\prime} S\right)(S S)=\left(Q^{\prime} S\right) S=(S S) Q^{\prime}=S Q^{\prime}
$$

which implies that $S Q^{\prime}$ is a left ideal and hence a two-sided ideal. Similarly $Q^{\prime} S$ is a two-sided ideal of S. Since I and J are minimal two-sided ideals of S, therefore $S Q^{\prime}=I$ and $Q^{\prime} S=J$. But $Q=I \cap J$, which implies that, $Q=S Q^{\prime} \cap Q^{\prime} S \subseteq Q^{\prime}$. This give us $Q=Q^{\prime}$ and hence Q is minimal.

4.4 Characterizations of Intra-regular AG-groupoids

Example 152 Let $S=\{a, b, c, d, e\}$ be an AG-groupoid with left identity b in the following multiplication table.

.	a	b	c	d	e
a	a	a	a	a	a
b	a	b	c	d	e
c	a	e	b	c	d
d	a	d	e	b	c
e	a	c	d	e	b

Clearly S is intra-regular because, $a=\left(a a^{2}\right) a, b=\left(c b^{2}\right) e, c=\left(d c^{2}\right) e$, $d=\left(c d^{2}\right) c, e=\left(b e^{2}\right) e$.

Example 153 Let $S=\{a, b, c, d, e\}$, and the binary operation "." be defined on S as follows:

\cdot	a	b	c	d	e
a	a	a	a	a	a
b	a	b	a	a	a
c	a	a	e	c	d
d	a	a	d	e	c
e	a	a	c	d	e

Then clearly (S, \cdot) is an AG-groupoid. Also $a=\left(a a^{2}\right) a, b=\left(b b^{2}\right) b$, $c=\left(e c^{2}\right) c, d=\left(e d^{2}\right) d$ and $e=\left(e e^{2}\right) e$. Therefore (S, \cdot) is an intra-regular AG-groupoid. It is easy to see that $\{a\}$ and $\{a, b\}$ are ideals of S.

Theorem 154 An AG-groupoid S is intra-regular if $S a=S$ or $a S=S$ holds for all $a \in S$.

Proof. Let S be an AG-groupoid such that $S a=S$ holds for all $a \in S$, then $S=S^{2}$. Let $a \in S$, therefore by using medial law, we have

$$
S=(S S) S=((S a)(S a)) S=((S S)(a a)) S \subseteq\left(S a^{2}\right) S
$$

Which shows that S is intra-regular.
Let $a \in S$ and assume that $a S=S$ holds for all $a \in S$, then by using left invertive law, we have

$$
S=S S=(a S) S=(S S) a=S a
$$

Thus $S a=S$ holds for all $a \in S$, therefore it follows from above that S is intra-regular.

Lemma 155 Intersection of two ideals of an AG-groupoid with left identity is either empty or an ideal.

Proof.

$$
(A \cap B) S=A S \cap B S \subseteq A \cap B
$$

Lemma 156 Product of two bi-ideals of an AG-groupoid with left identity is a bi-ideal.

Lemma 157 If I is an ideal of an intra-regular AG-groupoid S with left identity, then $I=I^{2}$.

Proof. Clearly $I^{2} \subseteq I$. Now let $i \in I$, then since S is intra-regular therefore there exists x and y in S such that $i=\left(x i^{2}\right) y$. Then $i=\left(x i^{2}\right) y \in\left(S I^{2}\right) S \subseteq$ I^{2}.

Theorem 158 The intersection of two quasi ideals of an AG-groupoid S is either empty or a quasi ideal of S.

Proof. Let Q_{1} and Q_{2} be quasi-ideals of S. Suppose that $Q_{1} \cap Q_{2}$ is nonempty, then

$$
\begin{aligned}
S\left(Q_{1} \cap Q_{2}\right) \cap\left(Q_{1} \cap Q_{2}\right) S \subseteq & \left(S Q_{1} \cap S Q_{2}\right) \cap\left(Q_{1} S \cap Q_{2} S\right) \\
\subseteq & \left(S Q_{1} \cap Q_{1} S\right) \cap\left(S Q_{2} \cap Q_{2} S\right) \\
& Q_{1} \cap Q_{2}
\end{aligned}
$$

Hence $Q_{1} \cap Q_{2}$ is a quasi-ideal of S.
Theorem 159 [38]For an intra-regular AG-groupoid S with left identity the following statements are equivalent.
(i) A is a left ideal of S.
(ii) A is a right ideal of S.
(iii) A is an ideal of S.
(iv) A is a bi-ideal of S.
(v) A is a generalized bi-ideal of S.
(vi) A is an interior ideal of S.
(vii) A is a quasi-ideal of S.
(viii) $A S=A$ and $S A=A$.

Theorem 160 Let S be an AG-groupoid with left identity e then the following conditions are equivalent.
(i) S is intra-regular.
(ii) Every left ideal is idempotent.

Proof. $(i) \Longrightarrow(i i)$
Let L be a left ideal of an intra-regular AG-groupoid S with left identity. Obviously $L^{2} \subseteq L$. Now let $l \in L$. Since S is intra-regular therefore for l there exists x and y in S such that $l=\left(x l^{2}\right) y$. Then using left invertive law, we get

$$
l=\left(x l^{2}\right) y=(l(x l)) y=(y(x l)) l \in(S(S L)) L \subseteq L^{2}
$$

Therefore $L \subseteq L^{2}$. Hence $L=L^{2}$.
$(i) \Longrightarrow(i i)$
Since $S a$ is a left ideal contains a. Therefore using (ii) we get, $a \in S a=$ $(S a)^{2}=S a^{2}=\left(S a^{2}\right) S$.

Theorem 161 For an AG-groupoid S with left identity, the following are equivalent.
(i) S is intra-regular.
(ii) Every quasi-ideal of S is idempotent.

Proof. $(i) \Longrightarrow(i i)$
Let Q be a quasi-ideal of S. Let $a \in Q$ which implies that $a^{2} \in Q$ then since S is intra-regular so there exist $x, y \in S$ such that $a=\left(x a^{2}\right) y$. Now by theorem 159, Q is an ideal and Q^{2} becomes an ideal. Therefore

$$
a=\left(x a^{2}\right) y \in\left(S Q^{2}\right) S \subseteq Q^{2}
$$

Hence $Q=Q^{2}$.
(ii) $\Longrightarrow(i)$

Clearly $S a$ is a quasi-ideal. Now by (ii) $S a$ is idempotent. Therefore $a \in S a=(S a)^{2}$ but $(S a)^{2}=\left(S a^{2}\right) S$. Hence $a \in S a=\left(S a^{2}\right) S$.

Theorem 162 For an $A G$-groupoid S with left identity, the following are equivalent.
(i) S is intra-regular.
(ii) $Q=(S Q)^{2} \cap(Q S)^{2}$, for every left ideal Q of S.
(iii) $Q=(S Q)^{2} \cap(Q S)^{2}$, for every quasi-ideal Q of S.

Proof. $(i) \Longrightarrow(v i)$
Let Q be a quasi-ideal of an intra-regular AG-groupoid S with left identity so by theorem $159, Q$ is an ideal and by theorem $161, Q$ is idempotent, then medial law we get

$$
\begin{aligned}
(S Q)^{2} \cap(Q S)^{2} & =(S Q)(S Q) \cap(Q S)(Q S)=(S S)(Q Q) \cap(Q Q)(S S) \\
& =(S Q) \cap(Q S) \subseteq Q
\end{aligned}
$$

Now let $a \in Q$ and since S is intra-regular so there exists $x, y \in S$ such that $a=\left(x a^{2}\right) y$. Then using, left invertive law, paramedial law and medial law, we have

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(a(x a)) y=(y(x a)) a=(y(x a))\left(\left(x a^{2}\right) y\right)=\left(x a^{2}\right)((y(x a)) y) \\
& =(y(y(x a)))((a a) x)=(a a)((y(y(x a))) x)=(x(y(y(x a))))(a a) \\
& \in S(Q Q)=(S S)(Q Q)=(S Q)(S Q)=(S Q)^{2} .
\end{aligned}
$$

Thus $a \in(S Q)^{2}$. It is easy to see that $(S Q)^{2}=(Q S)^{2}$. Therefore $a \in$ $(S Q)^{2} \cap(Q S)^{2}$. Thus $Q \subseteq(S Q)^{2} \cap(Q S)^{2}$. Hence $(S Q)^{2} \cap(Q S)^{2}=Q$.
(iii) $\Longrightarrow(i i)$ is obvious.
(ii) $\Rightarrow(i)$

Let Q be a left ideal of an AG-groupoid S with left identity then by $(i i)$, $Q=(S Q)^{2} \cap(Q S)^{2} \subseteq(S Q)^{2} \subseteq Q^{2}$. Thus $Q=Q^{2}$. Hence by theorem 160, S is intra-regular.

Theorem 163 Let S be an AG-groupoid with left identity e then the following conditions are equivalent.
(i) S is intra-regular.
(ii) $A \subseteq(A S) A$, for every quasi-ideal A and $A=A^{2}$.

Proof. $(i) \Rightarrow(i i)$
Let $a \in A$, and since S is intra-regular so there exists elements x, y in S such that $a=\left(x a^{2}\right) y$. Now using (1), left invertive law and medial law, we have

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a=\left(y\left(x\left(\left(x a^{2}\right) y\right)\right)\right) a \\
& \left.=\left(y\left(\left(x a^{2}\right)(x y)\right)\right) a=\left(\left(x a^{2}\right)(y(x y))\right) a=((x(a a)))(y(x y))\right) a \\
& =((a(x a))(y(x y))) a=((a y)((x a)(x y))) a=((x a)((a y)(x y))) a \\
& =\left((x a)\left((a x) y^{2}\right)\right) a=\left(\left(y^{2}(a x)\right)(a x)\right) a=\left(a\left(\left(y^{2}(a x)\right) x\right)\right) a \in(A S) A .
\end{aligned}
$$

Hence $A \subseteq(A S) A$. By theorem 159, A becomes an ideal and let $c^{2} \in A$. Now since S in intra-regular so for c there exists u and v in S such that $\left(u c^{2}\right) v$. Then

$$
c=\left(u c^{2}\right) v \in(S A) S \subseteq A
$$

Hence A is semiprime.
$(i i) \Rightarrow(i)$
It is same as the converse of theorem 161.
Theorem 164 Let S be an $A G$-groupoid with left identity e then the following conditions are equivalent.
(i) S is intra-regular.
(ii) $R \cap L=R L$, for every right ideal R and every left ideal L and R is semiprime.

Proof. $(i) \Longrightarrow(i i)$
Let R, L be right and left ideals of an intra-regular AG-groupoid S with left identity then by theorem $159, R$ and L become ideals of S and so $R L \subseteq R \cap L$. Now $R \cap L$ is an ideal and by $R \cap L=(R \cap L)^{2}$. Thus $R \cap L=(R \cap L)^{2} \subseteq R L$. Therefore $R \cap L=R L$. Next let $r^{2} \in R$. Then since S is intra-regular therefore for r there exists x and y such that $r=\left(x r^{2}\right) y$. Thus

$$
r=\left(x r^{2}\right) y \in(S R) S \subseteq R
$$

Hence R is semiprime.
$(i i) \Longrightarrow(i)$
Clearly $S a^{2}$ is a right ideal contains a^{2}. Therefore by (ii) $a \in S a^{2}$. Since $S a$ is left ideal and so we get

$$
a \in S a^{2} \cap S a=\left(S a^{2}\right)(S a) \subseteq\left(S a^{2}\right) S
$$

Theorem 165 Let S be an $A G$-groupoid with left identity e, then the following conditions are equivalent.
(i) S is intra-regular.
(ii) $B=(B S) B$, for every bi-ideal B and $B=B^{2}$.

Proof. $(i) \Longrightarrow(i i)$
Let B is bi-ideal of S then B is an ideal and $B=B^{2}$. Let $b \in B$, now since S is intra-regular therefore for b there exists x, y in S such that $b=\left(x b^{2}\right) y$. Also since $S=S^{2}$, therefore for y in S there exists u, v in S such that $y=u v$. Now using medial law and left invertive law, we get

$$
\begin{aligned}
b & =\left(x b^{2}\right) y=\left(x b^{2}\right)(u v)=(x u)\left(b^{2} v\right)=b^{2}((x u) v) \\
& \left.\left.=((x u) v) b) b=[(x u) v]\left[\left(x b^{2}\right) y\right]\right) b=\left(x b^{2}\right)[[(x u) v] y]\right) b \\
& =\{[x(b b)][(x u) v] y]\} b=\{[b(x b)][(x u) v] y]\} b \\
& =\{[y[(x u) v]][(x b) b]\} b=\{(x b)[y[(x u) v]] b]\} b \\
& =\{b[y[(x u) v]](b x)\} b=\{b[b[y[(x u) v]] x]\} b \subseteq(B S) B .
\end{aligned}
$$

Therefore $B=(B S) B$.
$(i i) \Longrightarrow(i)$
Since $S a$ is a bi-ideal contains a. Therefore using (ii) we get

$$
a \in S a=(S a)^{2}=S a^{2}=\left(S a^{2}\right) S
$$

Theorem 166 Let S be an AG-groupoid with left identity e, then the following conditions are equivalent.
(i) S is intra-regular.
(ii) Every bi-ideal is idempotent.

Proof. It is the part of theorem 165.
Theorem 167 Let S be an AG-groupoid with left identity e, then the following conditions are equivalent.
(i) S is intra-regular.
(ii) $L \cap R=L R$, for every right ideal R and every left ideal L and R is semiprime.

Proof. $(i) \Longrightarrow(i i)$
Let R is a right and L is a left ideal of an intra-regular AG-groupoid S with left identity. Then by theorem $159, R$ and L become ideals of S. Then clearly $L R \subseteq L \cap R$. Now let $a \in L \cap R$ which implies that $a \in L$ and $a \in R$. Then since S is intra-regular so for a there exists x, y in S such that $\left(x a^{2}\right) y$. Then using and left invertive law we get

$$
a=\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a \in L R .
$$

Therefore $L \cap R \subseteq L R$. Hence $L \cap R=L R$.
Let $r^{2} \in R$. Now since S in intra-regular therefore for r there exists u and v in S such that $r=\left(u r^{2}\right) v$. Thus

$$
r=\left(u r^{2}\right) v \in(S R) S \subseteq R
$$

Hence R is semiprime.
$(i i) \Longrightarrow(i)$
Clearly $S a^{2}$ is a right ideal contains a^{2}, therefore by (ii) it is semiprime. Thus $a \in S a^{2}$. Also we know that $S a$ is a left ideal of S. Therefore using paramedial and medial law we get

$$
a \in S a \cap S a^{2}=(S a)\left(S a^{2}\right)=\left(a^{2} S\right)(a S)=\left(S a^{2}\right)(a S) \subseteq\left(S a^{2}\right) S
$$

Theorem 168 For an AG-groupoid S with left identity, the following are equivalent.
(i) S is intra-regular.
(ii) $A \cap B=(A B) A$, for every bi-ideal A and every quasi-ideal B of S.
(iii) $A \cap B=(A B) A$, for every generalized bi-ideal A and every quasiideal B of S.
Proof. $(i) \Rightarrow(i i i)$
Let A and B be a generalized bi-ideal and quasi-ideal of an intra-regular AG-groupoid with left identity. Now by theorem 159, A and B are ideals of S. Then $(A B) A \subseteq(A S) A \subseteq A$ and $(A B) A \subseteq(S B) S \subseteq B$, which implies that $(A B) A \subseteq A \cap B$. Next let $a \in A \cap B$, which implies that $a \in A$ and $a \in B$. Since S is intra-regular so for a there exist $x, y \in S$, such that
$a=\left(x a^{2}\right) y$, then using (1) and left invertive law, we get

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(a(x a)) y=(y(x a)) a=(y(x a)) a=\left(y\left(x\left(\left(x a^{2}\right) y\right)\right)\right) a \\
& =\left(y\left(\left(x a^{2}\right)(x y)\right)\right) a=\left(\left(x a^{2}\right)(y(x y))\right) a==((a(x a))(y(x y))) a \\
& =(((y(x y))(x a)) a) a \subseteq(((S(S A) B) A \subseteq(A B) A .
\end{aligned}
$$

Thus $A \cap B=(A B) A$.
$($ iii) $\Longrightarrow(i i)$ is obvious.
(ii) $\Longrightarrow(i)$

Since $S a$ is both bi and quasi-ideal. Therefore by medial law, we get

$$
\begin{aligned}
a & \in S a \cap S a=((S a)(S a))(S a)=((S S)(a a))(S a) \\
& =\left(S a^{2}\right)(S a) \subseteq\left(S a^{2}\right) S
\end{aligned}
$$

Theorem 169 For an AG-groupoid S with left identity, the following are equivalent.
(i) S is intra-regular.
(ii) $(A \cap B) \cap C=(A B) C$, for every left ideal A, every two-sided ideal B and every left ideal C of S and B is semiprime.
(iii) $(A \cap B) \cap C=(A B) C$, for every left ideal A, every right ideal B and every left ideal C of S and B is semiprime.
(iv) $(A \cap B) \cap C=(A B) C$, for every left ideal A, every interior ideal B and every left ideal C of S and B is semiprime.

Proof. $(i) \Rightarrow(i v)$
Let S be a intra-regular AG-groupoid with left identity. Let A, B and C be left, interior and left ideal of S respectively. Now by theorem 159, A, B and C become ideals of S. Then
$(A B) C \subseteq(A S) S \subseteq A,(A B) C \subseteq(S B) S \subseteq B$ and $(A B) C \subseteq(S S) C \subseteq C$.
Thus $(A B) C \subseteq(A \cap B) \cap C$. Now let $a \in(A \cap B) \cap C$, which implies that $a \in A, a \in B$ and $a \in C$. Now for a there exists $x, y \in S$, such that $a=\left(x a^{2}\right) y$, then by using (1) and left invertive law, we get

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(a(x a)) y=(y(x a)) a=(y(x a)) a=\left(y\left(x\left(\left(x a^{2}\right) y\right)\right)\right) a \\
& =\left(y\left(\left(x a^{2}\right)(x y)\right)\right) a=\left(\left(x a^{2}\right)(y(x y))\right) a=((a(x a))(y(x y))) a \\
& =(((y(x y))(x a)) a) a \subseteq(((S(S A) B) C \subseteq(A B) C
\end{aligned}
$$

Therefore $(A \cap B) \cap C \subseteq(A B) C$. Hence $(A \cap B) \cap C=(A B) C$.
Next let $b^{2} \in B$. Now for b there exists u and v in S such that $b=\left(u b^{2}\right) v$. Thus

$$
b=\left(u b^{2}\right) v \in(S B) S \subseteq B
$$

Hence B is semiprime
$(i v) \Longrightarrow(i i i) \Longrightarrow(i i)$ are obvious.
(ii) $\Longrightarrow(i)$
$S a$ is left ideal and $S a^{2}$ (contains a^{2}) is an ideal. By (ii), $S a^{2}$ is semiprime, therefore $a \in S a^{2}$. Now using paramedial, medial and left invertive law, we get

$$
\begin{aligned}
a & \in S a \cap S a^{2} \cap S a=\left((S a)\left(S a^{2}\right)\right)(S a) \subseteq\left((S S)\left(S a^{2}\right)\right) S \\
& =\left(\left(\left(a^{2} S\right)(S S)\right) S=\left(\left(\left(a^{2} S\right) S\right) S=\left((S S) a^{2}\right) S=\left(S a^{2}\right) S\right.\right.
\end{aligned}
$$

Theorem 170 For an $A G$-groupoid S with left identity, the following are equivalent.
(i) S is intra-regular.
(ii) $A \cap B=(A B) \cap(B A)$, for every bi-ideal A and B of S.
(iii) $A \cap B=(A B) \cap(B A)$, for every bi-ideal A and every generalized bi-ideal B of S.
(iv) $A \cap B=(A B) \cap(B A)$, for every generalized bi-ideals A and B of S.

Proof. $(i) \Longrightarrow(i v)$
Let A and B be any generalized bi-ideal of an intra-regular AG-groupoid S with left identity, then by theorem $159, A$ and B are ideals of S. Clearly $A B \subseteq A \cap B$, now $A \cap B$ is an ideal and $A \cap B=(A \cap B)^{2}$. Now $A \cap B=$ $(A \cap B)^{2} \subseteq A B$. Thus $A \cap B=A B$ and then $A \cap B=B \cap A=B A$. Hence $A \cap B=(A B) \cap(B A)$.
$(i v) \Longrightarrow(i i i) \Longrightarrow(i i)$ are obvious.
(ii) $\Rightarrow(i)$

Let B be a ideal of an AG-groupoid S with left identity. Then by (ii) $B \cap B=(B B) \cap(B B)=B^{2}$, so by theorem 166,S is intra-regular.

Theorem 171 For an AG-groupoid S with left identity, the following are equivalent.
(i) S is intra-regular.
(ii) $B \cap G=(B G) B$, for every bi-ideal B and every quasi-ideal G.

Proof. $(i) \Longrightarrow(i i)$
Let $a \in B \cap G$. Now by theorem 159, B and G become ideals of S. Then using (1) and left invertive law, we get

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a=\left(y\left(x\left(\left(x a^{2}\right) y\right)\right)\right) a \\
& \left.\left.=\left(y\left(x a^{2}(x y)\right)\right) a=\left(x a^{2}\right)(y(x y))\right) a=(a(x a))(y(x y))\right) a \\
& =(y(x y)(x a)) a) a \in((S(S a)) a) a \subseteq((S(S B)) G) B=((S B) G) B \subseteq(B G) B .
\end{aligned}
$$

Therefore $B \cap G \subseteq(B G) B$.
Next $(B G) B \subseteq(B S) B \subseteq B$ and $(B G) B \subseteq(S G) S \subseteq G$. Therefore $(B G) B \subseteq B \cap G$. Hence $B \cap G=(B G) B$.
$(i i) \Longrightarrow(i)$
$S a$ is both bi and quasi-ideal of an AG-groupoid S with left identity. Therefore by medial law we get

$$
\begin{aligned}
a & \in S a \cap S a=((S a)(S a))(S a)=((S S)(a a))(S a) \\
& =\left(S a^{2}\right)(S a) \subseteq\left(S a^{2}\right) S
\end{aligned}
$$

Theorem 172 For an AG-groupoid S with left identity, the following are equivalent.
(i) S is intra-regular.
(ii) $B \cap I=B I(B \cap I \subseteq B I)$, for every bi-ideal B and every quasi-ideal I.

Proof. $(i) \Longrightarrow(i i)$
Let B and I be bi and quasi ideals of an AG-groupoid S with left identity. Then by theorem $159, B$ and I become ideals of S. Now clearly $B I \subseteq B \cap I$. Next let $a \in B \cap I$. Now since S is intra-regular so for a there exists x, y in S such that $a=\left(x a^{2}\right) y$. Now using left invertive law we get

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a \\
& \in(S(S B)) I \subseteq(S B) I \subseteq B I
\end{aligned}
$$

Therefore $B \cap I \subseteq B I$. Hence $B \cap I=B I$.
$(i i) \Longrightarrow(i)$
$S a$ is both bi and quasi-ideal. Therefore by medial law we get

$$
a \in S a \cap S a=(S a)(S a)=(S S) a^{2}=S a^{2}=\left(S a^{2}\right) S
$$

Theorem 173 For an AG-groupoid S with left identity the following conditions are equivalent.
(i) S is intra-regular.
(ii) Every left ideal of S is idempotent.
(iii) $A \cap B=A B$, for every ideals A, B of S and A, B are semiprime.
(iv) $A \cap B=A B$, for every ideal A, every bi-ideal B of S and A, B are semiprime.
(v) $A \cap B=A B$, for every bi-ideals A, B of S and A, B are semiprime.
(vi) The set of left ideals forms a semilattice structure.

Proof. $(i) \Longleftrightarrow(i i)$
It is same as theorem 160.
$(i) \Longrightarrow(v)$
Let A, B are bi-ideals of an intra-regular AG-groupoid S with left identity. Then by theorem $159, A$ and B are ideals of S. Now clearly $A B \subseteq$
$A \cap B$. Since $A \cap B$ is an ideal and $(A \cap B)^{2}=A \cap B$. Thus $A \cap B=$ $(A \cap B)^{2} \subseteq A B$. Therefore $(A \cap B)=A B$. Next let $a^{2} \in A$. Now for a there exists x, y in S such that $a=\left(x a^{2}\right) y$. Thus $a=\left(x a^{2}\right) y \in(S A) S \subseteq A$. Hence A is semiprime. Similarly we can show that B is semiprime.
$(v) \Longrightarrow(i)$
Assume that A is a bi-ideal of an AG-groupoid S with left identity then by $(v) A \cap A=A A$, that is, $A=A^{2}$ and by theorem $166, S$ is intra-regular.
$(i) \Longrightarrow(v i)$
Let \mathfrak{L}_{S} denote the set of all left ideas of an intra-regular AG-groupoid S with left identity and let I and $J \in \mathfrak{L}_{S}$. Now by theorem $159, I$ and J become ideals of S. Thus $I J \subseteq I \cap J$. Now $I \cap J$ is an ideal and so $I \cap J=(I \cap J)^{2}$. Therefore $I \cap J \subseteq I J$. Thus $I \cap J=I J$ which clearly implies that $I \cap J=J I$. Now clearly all elements (ideals) of \mathfrak{L}_{S} satisfy left invertive law. Therefore \mathfrak{L}_{S} form an AG-groupoid. Also $I J=J I$ and $I=I^{2}$, for all I and J in \mathfrak{L}_{S}. But we know that a commutative AG-groupoid becomes a commutative semigroup. Hence the set of all left ideals that is \mathfrak{L}_{S} form a semilattice structure.
$(v i) \Longrightarrow(i)$
If I is a left ideal of an AG-groupoid S with left identity, then by $(v i)$, $I=I^{2}$. The rest is same as $(i i) \Longrightarrow(i)$.
$(v) \Longrightarrow(i v) \Longrightarrow(i i i)$ are obvious.
$($ iii $) \Longrightarrow(i)$
Since $S a^{2}$ is an ideal of an AG-groupoid S with left identity. Then by (iii) it becomes semiprime and since S itself is an ideal, therefore by (iii) we get

$$
a \in S a^{2}=S a^{2} \cap S=\left(S a^{2}\right) S
$$

4.5 Characterizations of Intra-regular AG ${ }^{* *}$-groupoids

It is easy to see that every AG-groupoid with left identity becomes an $A G^{* *}$-groupoid but the converse is not true (see the example below)

Example 174 Let $S=\{1,2,3,4,5\}$, the binary operation"." be defined on S as follows:

\cdot	1	2	3	4	5
1	1	2	4	4	5
2	5	4	4	4	4
3	4	4	4	4	4
4	4	4	4	4	4
5	2	4	4	4	4

(S,.) is neither commutative nor associative because $5=1.5 \neq 5.1=2$ and $2=(2.1) .1 \neq 2 \cdot(2.1)=5$. Also by AG-test in [48], it is easy to check that S is an $A G^{* *}$-groupoid.

Here we begin with examples of intra-regular AG-groupoids.
Example 175 Let $S=\{1,2,3,4,5,6\}$, then by $A G$-test in [48], (S, \cdot) is an AG-groupoid with left identity 5 as given in the following multiplication table:

\cdot	1	2	3	4	5	6
1	5	6	1	2	3	4
2	4	5	6	1	2	3
3	3	4	5	6	1	2
4	2	3	4	5	6	1
5	1	2	3	4	5	6
6	6	1	2	3	4	5

Clearly (S, \cdot) is intra-regular because, $1=\left(4 \cdot 1^{2}\right) \cdot 2,2=\left(3 \cdot 2^{2}\right) \cdot 4,3=$ $\left(2 \cdot 3^{2}\right) \cdot 6,4=\left(1 \cdot 4^{2}\right) \cdot 2,5=\left(5 \cdot 5^{2}\right) \cdot 5,6=\left(3 \cdot 6^{2}\right) \cdot 2$.

Example 176 Let $S=\{a, b, c, d, e\}$, and the binary operation "." be defined on S as follows:

\cdot	a	b	c	d	e
a	a	a	a	a	a
b	a	b	a	a	a
c	a	a	e	c	d
d	a	a	d	e	c
e	a	a	c	d	e

Then clearly (S, \cdot) is an AG-groupoid. Also $a=\left(a a^{2}\right) a, b=\left(b b^{2}\right) b$, $c=\left(e c^{2}\right) c, d=\left(e d^{2}\right) d$ and $e=\left(e e^{2}\right) e$. Therefore (S, \cdot) is an intra-regular AG-groupoid. It is easy to see that $\{a\}$ and $\{a, b\}$ are ideals of S.

It is easy to note that if S is intra-regular AG-groupoid then $S=S^{2}$.
Lemma 177 Intersection of two ideals of an AG-groupoid is an ideal.
Lemma 178 Product of two bi-ideals of an $A G^{* *}$-groupoid is a bi-ideal.
Lemma 179 Let S be an $A G^{* *}$-groupoid such that $S=S^{2}$, then every right ideal is a left ideal.

Proof. Let R be a right ideal of S, then using left invertive law, we get

$$
S R=(S S) R=(R S) S \subseteq R S \subseteq R
$$

Lemma 180 If I is an ideal of an intra-regular $A G^{* *}$-groupoid S, then $I=I^{2}$.

Proof. It is same as in [38].
Lemma 181 Let S be an $A G^{* *}$-groupoid S such that $S=S^{2}$, then a subset I of S is a right ideal of S if and only if it is an interior ideal of S.

Proof. It is same as in [38].
Corollary 182 Every interior ideal of S becomes a left ideal of S.
Theorem 183 Let S be an intra-regular $A G^{* *}$-groupoid, then the following statements are equivalent.
(i) A is a left ideal of S.
(ii) A is a right ideal of S.
(iii) A is an ideal of S.
(iv) A is a bi-ideal of S.
(v) A is a generalized bi-ideal of S.
(vi) A is an interior ideal of S.
(vii) A is a quasi-ideal of S.
(viii) $A S=A$ and $S A=A$.

Proof. $(i) \Rightarrow(v i i i)$
Let A be a left ideal of S. Then clearly $S A \subseteq A$. Now let $a \in A$ and since S is intra-regular for a there exists x, y in S such that $a=\left(x a^{2}\right) y$. Using left invertive law we get

$$
a=\left(x a^{2}\right) y=[\{x(a a)\}] y=[\{a(x a)\}] y=[\{y(x a)\}] a \in S A .
$$

Thus $A \subseteq S A$. Therefore $S A=A$.
Now let $a \in A$ and $s \in S$, since S is an intra-regular, so there exist x, $y \in S$ such that $a=\left(x a^{2}\right) y$, therefore by left invertive law, we have

$$
\begin{aligned}
a s & =\left(\left(x a^{2}\right) y\right) s=((x(a a)) y) s \in((S(A A)) S) S \subseteq((S(S A)) S) S \subseteq((S A) S) S \\
& =(S S)(S A)=S(S A)=A
\end{aligned}
$$

Thus $A S \subseteq A$. Next let $a \in A$, then since $S=S^{2}$ so for y in S there exists y_{1}, y_{2} in S such that $y=y_{1} y_{2}$. Then using medial law, paramedial law we get

$$
a=\left(x a^{2}\right) y=\left(x a^{2}\right)\left(y_{1} y_{2}\right)=\left(y_{2} y_{1}\right)\left(a^{2} x\right)=a^{2}\left[\left(y_{2} y_{1}\right) x\right] \in A S
$$

Therefore $A S=S$.
$(v i i i) \Rightarrow(v i i) \Rightarrow(v i) \Rightarrow(v)$ are same as in [38].
$(v) \Rightarrow(i v)$
Let A be a generalized bi-ideal of S. Let $a, b \in A$, and since S is intraregular so there exist x, y in S such that $a=\left(x a^{2}\right) y$, then we have

$$
\begin{aligned}
a b & =\left(\left(x a^{2}\right) y\right) b=\left[a^{2}\left\{\left(y_{2} y_{1}\right) x\right\}\right] b=\left[\left\{\left(y_{2} y_{1}\right) x\right\} a^{2}\right] b \\
& =\left[a\left(\left\{\left(y_{2} y_{1}\right) x\right\} a\right)\right] b \in(A S) A \subseteq A
\end{aligned}
$$

Hence A is a bi-ideal of S.
$(i v) \Rightarrow(i i i)$ is same as in [38]
(iii) $\Rightarrow(i i)$ and $(i i) \Rightarrow(i)$ are obvious.

Lemma 184 In an intra-regular $A G^{* *}$-groupoid $S, I J=I \cap J$, for all ideals I and J in S.

Proof. Let I and J be ideals of S, then obviously $I J \subseteq I \cap J$. Since $I \cap J \subseteq I$ and $I \cap J \subseteq J$, then $(I \cap J)^{2} \subseteq I J$, also $I \cap J$ is an ideal of S, so we have $I \cap J=(I \cap J)^{2} \subseteq I J$. Hence $I J=I \cap J$.

An AG-groupoid S is called totally ordered under inclusion if P and Q are any ideals of S such that either $P \subseteq Q$ or $Q \subseteq P$.

An ideal P of an AG-groupoid S is called strongly irreducible if $A \cap B \subseteq P$ implies either $A \subseteq P$ or $B \subseteq P$, for all ideals A, B and P of S.

Lemma 185 Every ideal of an intra-regular S is prime if and only if it is strongly irreducible.

Proof. It is an easy.
Theorem 186 Every ideal of an intra-regular AG-groupoid S is prime if and only if S is totally ordered under inclusion.

Proof. Assume that every ideal of S is prime. Let P and Q be any ideals of S, so, $P Q=P \cap Q$, where $P \cap Q$ is ideal of S, so is prime, therefore $P Q \subseteq P \cap Q$, which implies that $P \subseteq P \cap Q$ or $Q \subseteq P \cap Q$, which implies that $P \subseteq Q$ or $Q \subseteq P$. Hence S is totally ordered under inclusion.

Conversely, assume that S is totally ordered under inclusion. Let I, J and P be any ideals of S such that $I J \subseteq P$. Now without loss of generality assume that $I \subseteq J$ then

$$
I=I^{2}=I I \subseteq I J \subseteq P
$$

Therefore either $I \subseteq P$ or $J \subseteq P$, which implies that P is prime.
Theorem 187 Let S be an intra-regular $A G^{* *}$-groupoid such that $S=S^{2}$, then the set of all ideals I_{S} of S, forms a semilattice structure.

Proof. Let $A, B \in I_{S}$, since A and B are ideals of S, therefore using medial law, we have

$$
\begin{aligned}
(A B) S & =(A B)(S S)=(A S)(B S) \subseteq A B \\
\text { Also } S(A B) & =(S S)(A B)=(S A)(S B) \subseteq A B
\end{aligned}
$$

Thus $A B$ is an ideal of S. Hence I_{s} is closed. Also we have, $A B=A \cap B=$ $B \cap A=B A$, which implies that I_{S} is commutative, so is associative. Now $A^{2}=A$, for all $A \in I_{S}$. Hence I_{S} is semilattice.

Theorem 188 Let S be an $A G^{* *}$-groupoid such that $S=S^{2}$, then the following conditions are equivalent.
(i) S is intra-regular.
(ii) For every generalized bi-ideal $B, B=B^{2}$.

Proof. Assume that S is an intra-regular $\mathrm{AG}^{* *}$-groupoid and B is a generalized bi-ideal of S. Let $b \in B$, and since S is intra-regular so there exist c, d in S such that $b=\left(c b^{2}\right) d$, then we have

$$
\begin{aligned}
b & =\left(c b^{2}\right) d=\{c(b b)\} d=\{b(c b)\} d=\{d(c b)\} b \\
& =\left[d\left\{c\left(\left(c b^{2}\right) d\right)\right\}\right] b=\left[d\left\{\left(c b^{2}\right)(c d)\right\}\right] b=\left[\left(c b^{2}\right)\{d(c d)\}\right] b \\
& =\left[\{(c d) d\}\left(b^{2} c\right)\right] b=\left[b^{2}(\{(c d) d\} c)\right] b=\left[(c\{(c d) d\}) b^{2}\right] b \\
& =[b((c\{(c d) d\}) b)] b \in((B S) B) B \subseteq B B .
\end{aligned}
$$

Thus $B \subseteq B^{2}$. Let $a, b \in B$, then $a b=\left[a\left(\left\{\left(y_{2} y_{1}\right) x\right\} a\right)\right] b \in(B S) B \subseteq B$, therefore $B^{2} \subseteq B$. Hence $B^{2}=B$.

Conversely, consider the subset $S a$ of S, then using paramedial law, medial law and left invertive law, we get

$$
((S a) S)(S a) \subseteq S(S a)=(S S)(S a)=(a S) S=(S S) a=S a
$$

Therefore $S a$ is a generalized bi-ideal. Now by assumption $S a$ is idempotent, so by using medial law, we have
$a \in(S a)(S a)=((S a)(S a))(S a)=((S S)(a a))(S a) \subseteq\left(S a^{2}\right)(S S)=\left(S a^{2}\right) S$.
Hence S is intra-regular.
Corollary 189 Let S be an $A G^{* *}$-groupoid such that $S=S^{2}$, then the following conditions are equivalent.
(i) S is intra-regular.
(ii) For every bi-ideal $B, B=B^{2}$.

Theorem 190 For an $A G^{* *}$-groupoid S, then S is intra-regular if and only if every ideal I is semiprime.

Proof. $(i) \Longrightarrow(i i)$
Let S be an intra-regular $\mathrm{AG}^{* *}$-groupoid. Now let $a \in S$ such that $a^{2} \in I$.
For $a \in S$ there exists x, y in S such that $a=\left(x a^{2}\right) y$. Therefore $a=$ $\left(x a^{2}\right) y \in(S I) S \subseteq I$. Hence I is semiprime.
$(i i) \Longrightarrow(i)$
Obviously $S a^{2}$ is an ideal contains a^{2}. And by (ii) it is semiprime so $a \in S a^{2}$. Therefore $a \in S a^{2}=\left(S a^{2}\right) S$. Hence S is intra-regular.

Corollary 191 For an $A G^{* *}$-groupoid S, then S is intra-regular if and only if every right ideal is semiprime.

Theorem 192 For an $A G^{* *}$-groupoid S, the following are equivalent.
(i) S is intra-regular.
(ii) For generalized bi-ideals B_{1} and $B_{2}, B_{1} \cap B_{2}=\left(B_{1} B_{2}\right) B_{1}$.

Proof. $(i) \Longrightarrow(i i)$
Let B_{1} and B_{2} be generalized bi-ideals of an intra-regular $\mathrm{AG}^{* *}$-groupoid S. Now B_{1} and B_{2} become ideals of S. Therefore $\left(B_{1} B_{2}\right) B_{1} \subseteq\left(B_{1} S\right) B_{1} \subseteq$ B_{1} and $\left(B_{1} B_{2}\right) B_{1} \subseteq\left(S B_{2}\right) S \subseteq B_{2}$. This implies that $\left(B_{1} B_{2}\right) B_{1} \subseteq B_{1} \cap B_{2}$. Now $B_{1} \cap B_{2}$ becomes an ideal and we get,

$$
\begin{aligned}
B_{1} \cap B_{2} & =\left(B_{1} \cap B_{2}\right)^{2}=\left(B_{1} \cap B_{2}\right)^{2}\left(B_{1} \cap B_{2}\right) \\
& =\left(\left(B_{1} \cap B_{2}\right)\left(B_{1} \cap B_{2}\right)\right)\left(B_{1} \cap B_{2}\right) \subseteq\left(B_{1} B_{2}\right) B_{1}
\end{aligned}
$$

Thus $B_{1} \cap B_{2} \subseteq\left(B_{1} B_{2}\right) B_{1}$. Hence $B_{1} \cap B_{2}=\left(B_{1} B_{2}\right) B_{1}$. $(i) \Longrightarrow(i i)$
Let B be a bi-ideal of an $\mathrm{AG}^{* *}$-groupoid S, then using (ii), we get
$B=B \cap B=(B B) B \subseteq B^{2} B \subseteq B B=B^{2}$. Hence by theorem $188, S$ is intra-regular.

Corollary 193 For an $A G^{* *}$-groupoid S, the following are equivalent.
(i) S is intra-regular.
(ii) For bi-ideals B_{1} and $B_{2}, B_{1} \cap B_{2}=\left(B_{1} B_{2}\right) B_{1}$.

Theorem 194 If A is an interior ideal of an intra-regular $A G^{* *}$-groupoid S such that $S=S^{2}$, then A^{2} is also interior ideal.

Proof. Using medial law we obtained,

$$
\begin{aligned}
\left(S A^{2}\right) S & =((S S)(A A))(S S)=((S A)(S A))(S S) \\
& =((S A) S)((S A) S) \subseteq A A=A^{2}
\end{aligned}
$$

Theorem 195 For an $A G^{* *}$-groupoid S, the following are equivalent.
(i) S is intra-regular.
(ii) Every two sided ideal is semiprime.
(iii) Every right ideal is semiprime.
(iv) Every interior ideal is semiprime.
(v) Every generalized interior ideal is semiprime.

Proof. $(i) \Longrightarrow(v)$
Let I be a generalized interior ideal of an intra-regular $\mathrm{AG}^{* *}$-groupoid S. Let $a^{2} \in I$. Then since S is intra-regular so for $a \in S$ there exists $x, y \in S$ such that, $a=\left(x a^{2}\right) y$. Then $a=\left(x a^{2}\right) y \in(S I) S \subseteq I$.
$(v) \Longrightarrow(i v) \Longrightarrow(i i i) \Longrightarrow(i i)$ are obvious.
(ii) $\Longrightarrow(i)$

It is same as the converse of theorem 190.

Theorem 196 For an $A G^{* *}$-groupoid S, the following are equivalent.
(i) S is intra-regular.
(ii) Every two sided ideal is semiprime.
(iii) Every bi-ideal is semiprime.
(iv) Every generalized bi-ideal is semiprime.

Proof. $(i) \Longrightarrow(i v)$
Let B be any generalized bi-ideal of an intra-regular $\mathrm{AG}^{* *}$-groupoid S. Let $a^{2} \in B$, since S is intra-regular so for $a \in S$ there exists $x, y \in S$ such that, $a=\left(x a^{2}\right) y$. No B becomes an ideal of S. Therefore $a=\left(x a^{2}\right) y \in$ $(S B) S \subseteq B$.
$(i v) \Longrightarrow(i i i) \Longrightarrow(i i)$ are obvious.
(ii) $\Longrightarrow(i)$

It is same as $(i i) \Longrightarrow(i)$ of theorem 195.
Theorem 197 For an $A G^{* *}$-groupoid S such that $S=S^{2}$, the following are equivalent.
(i) S is intra-regular.
(ii) Every left ideal is idempotent.
(iii) For every left ideal L of $S, L=(S L)^{2} \cap(L S)^{2}$.

Proof. $(i) \Longrightarrow(i i)$
Let L be any left ideal of an intra-regular $\mathrm{AG}^{* *}$-groupoid S so using medial law and paramedial law we get

$$
\begin{aligned}
(S L)^{2} \cap(L S)^{2} & =(S L)(S L) \cap(L S)(L S)=(S S)(L L) \cap(L L)(S S) \\
& =(S S)(L L) \cap(S S)(L L)=(S S)(L L)=(S L)(S L) \subseteq L L \subseteq L
\end{aligned}
$$

Now let $a \in L$ and since S is intra-regular so there exists $x, y \in S$ such that $a=\left(x a^{2}\right) y$. Then using left invertive law, medial law and paramedial law, we get

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(a(x a)) y=(y(x a)) a=(y(x a))\left(\left(x a^{2}\right) y\right)=\left(x a^{2}\right)((y(x a)) y) \\
& =(y(y(x a)))((a a) x)=(a a)((y(y(x a))) x)=(x(y(y(x a))))(a a) \\
& \in S(L L)=(S S)(L L)=(S L)(S L)=(S L)^{2} .
\end{aligned}
$$

Thus $a \in(S L)^{2}$. It is easy to see that $(S L)^{2}=(L S)^{2}$. Therefore $a \in$ $(S L)^{2} \cap(L S)^{2}$.

Thus $L \subseteq(S L)^{2} \cap(L S)^{2}$. Hence $(S L)^{2} \cap(L S)^{2}=L$.
(iii) $\Longrightarrow(i i)$ is obvious.
(ii) $\Rightarrow(i)$

Clearly $S a$ is a left ideal contains a, therefore by (ii) it is idempotent. Therefore using medial law, we get

$$
a \in S a=(S a)(S a)=\left(S a^{2}\right)=\left(S a^{2}\right) S
$$

Hence S is intra-regular.

Theorem 198 For an $A G^{* *}$-groupoid S such that $S=S^{2}$, the following are equivalent.
(i) S is intra-regular.
(ii) For every bi-ideal of $S, B=(S B)^{2} B \cap(B S)^{2} B$.

Proof. $(i) \Longrightarrow(i i)$
Let B be a bi-ideal of an intra-regular $\mathrm{AG}^{* *}$-groupoid S so by using medial law and paramedial law we get,

$$
\begin{aligned}
(S B)^{2} B \cap(B S)^{2} B & =((S B)(S B)) B \cap((B S)(B S)) B \\
& =((B B)(S S)) B \cap((B B)(S S)) B \\
& =\left(B^{2} S^{2}\right) B \cap\left(B^{2} S^{2}\right) B=\left(B^{2} S^{2}\right) B \\
& \subseteq(B S) B \subseteq B
\end{aligned}
$$

Now let $a \in B$ and since S is intra-regular so there exists $x, y \in S$ such that $a=\left(x a^{2}\right) y$. Then using left invertive law, paramedial law and medial law, we have,

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(a(x a)) y=(y(x a)) a=(y(x a)) a=\left(y\left(x\left(\left(x a^{2}\right) y\right)\right)\right) a \\
& =\left(y\left(\left(x a^{2}\right)(x y)\right)\right) a=\left(\left(x a^{2}\right)(y(x y))\right) a=\left((x y)\left(a^{2}(x y)\right)\right) a \\
& =\left(a^{2}((x y)(x y))\right) a=(a(x y))^{2} a
\end{aligned}
$$

Therefore $a \in\left((B(S S))^{2} B=(B S)^{2} B\right.$. This implies that $a \in(B S)^{2} B$. Hence $B \subseteq(B S)^{2} B$. Now since $(B S)^{2}=(S B)^{2}$, thus $B \subseteq(S B)^{2} B$. Therefore $B \subseteq(S B)^{2} B \cap(B S)^{2} B$. Hence $B=(S B)^{2} B \cap(B S)^{2} B$.
(ii) $\Rightarrow(i)$

Let B be a bi-ideal of an AG-groupoid S, then by (ii), medial law, para medial law, left invertive law and (1), we get

$$
\begin{aligned}
B & =(S B)^{2} B \cap(B S)^{2} B=(S B)^{2} B=\left(S^{2} B^{2}\right) B=\left(B^{2} S\right) B \\
& =(B S)(B B)=B[(B S) B] \subseteq B^{2}
\end{aligned}
$$

Thus $B \subseteq B^{2}$ but $B^{2} \subseteq B$. Therefore $B=B^{2}$ and hence by corollary 189, S is intra-regular.
Theorem 199 Let S be an $A G^{* *}$-groupoid such that $S=S^{2}$, then the following are equivalent
(i) S is intra-regular,
(ii) Every ideal of S is semiprime.
(ii) Every quasi-ideal of S is semiprime.

Proof. Let Q be a quasi-ideal of an intra-regular $\mathrm{AG}^{* *}$-groupoid S and let $a^{2} \in Q$. Then using paramedial and medial laws we get

$$
a=a^{2}\left(\left(y_{2} y_{1}\right) x\right)=\left(x\left(y_{2} y_{1}\right)\right) a^{2} \in Q S \cap S Q \subseteq Q
$$

Therefore $a \in Q$. Hence Q is semiprime.
Converse is same as $(i i) \Longrightarrow(i)$ of theorem 195.

5

Some Characterizations of Strongly Regular AG-groupoids

In this chapter, we introduce a new class of AG-groupoids namely strongly regular and characterize it using its ideals.

5.1 Regularities in AG-groupoids

An AG-groupoid S is said to be regular if for every a in S there exists some x in S such that $a=(a x) a$.

An AG-groupoid S is said to be intra-regular if for every a in S there exists some x, y in S such that $a=\left(x a^{2}\right) y$.

An AG-groupoid S is said to be strongly regular if for every a in S there exists some x in S such that $a=(a x) a$ and $a x=x a$.

Here we begin with examples of AG-groupoids.
Example 200 Let $S=\{1,2,3\}$, the binary operation "." be defined on S as follows:

\cdot	1	2	3
1	2	2	2
2	2	2	2
3	1	2	1

Clearly (S, \cdot) is an $A G$-groupoid without left identity.
Example 201 Let $S=\{1,2,3,4\}$, the binary operation "." be defined on S as follows:

\cdot	1	2	3	4
1	1	2	3	4
2	4	3	3	3
3	3	3	3	3
4	2	3	3	3

Clearly (S, \cdot) is an AG-groupoid with left identity 1.
Example 202 Let $S=\{1,2,3\}$, the binary operation "." be defined on S as follows:

\cdot	1	2	3
1	1	2	3
2	3	1	2
3	2	3	1

Clearly (S, \cdot) is a strongly regular $A G$-groupoid with left identity 1.
Note that every strongly regular AG-groupoid is regular, but converse is not true, for converse consider the following example.

Example 203 Let $S=\{1,2,3\}$, the binary operation "." be defined on S as follows:

\cdot	1	2	3
1	1	1	1
2	1	1	3
3	1	2	1

Clearly (S, \cdot) is regular AG-groupoid, but not strongly regular.
Theorem 204 Every strongly regular AG-groupoid is intra-regular.
Proof. Let S be strongly regular AG-groupoid,then for every $a \in S$ there exists some $x \in S$ such that $a=(a x) a$ and $a x=x a$, then using left invertive law we get

$$
\begin{aligned}
a & =(a x) a=(a x)[(a x) a]=(a x)[(x a) a]=(a x)\left(a^{2} x\right) \\
& =\left[\left(a^{2} x\right) a\right] x=\left[(a x) a^{2}\right] x=\left(u a^{2}\right) x, \text { where } u=a x .
\end{aligned}
$$

Hence S is intra-regular.
Converse of above theorem is not true, for converse consider the following example.

Example 205 Let $S=\{1,2,3,4,5,6,7\}$, the binary operation "." be defined on S as follows:

\cdot	1	2	3	4	5	6	7
1	1	3	5	7	2	4	6
2	4	6	1	3	5	7	2
3	7	2	4	6	1	3	5
4	3	5	7	2	4	6	1
5	6	1	3	5	7	2	4
6	2	4	6	1	3	5	7
7	5	7	2	4	6	1	3

Clearly (S, \cdot) is intra-regular $A G$-groupoid, but not strongly regular.

5.2 Some Characterizations of Strongly Regular AG-groupoids

Theorem 206 For an $A G$-groupoid S with left identity the following are equivalent,
(i) S is strongly regular,
(ii) $L \cap A \subseteq L A$ and L is strongly regular $A G$-subgroupoid, where L is any left ideal and A is any subset of S.

Proof. $(i) \Longrightarrow(i i)$
Let S be a strongly regular AG-groupoid with left identity. Let $a \in L \cap A$, now since S is strongly regular so there exists some $x \in S$ such that $a=$ $(a x) a$ and $a x=x a$. Then

$$
a=(a x) a=(x a) a \in(S L) A \subseteq L A
$$

Thus $L \cap A \subseteq L A$. Let $a \in L$, thus $a \in S$ and since S is strongly regular so there exists an x in S such that $a=(a x) a$ and $a x=x a$. Let $y=(x a) x$, then using left invertive law, we get

$$
y=(x a) x=(a x) x=x^{2} a \in S L \subseteq L
$$

Now using left invertive law and (1), we get

$$
y a=[(x a) x] a=(a x)(x a)=(x a)(a x)=a[(x a) x]=a y .
$$

Now using left invertive law we get

$$
\begin{aligned}
a & =(a x) a=(a x)[(a x) a]=(a x)[(x a) a]=(a x)\left(a^{2} x\right) \\
& =a^{2}[(a x) x]=(a a)[(x a) x]=(a a) y=(y a) a=(a y) a .
\end{aligned}
$$

Therefore L is strongly regular.
(ii) $\Longrightarrow(i)$

Since S itself is a left ideal, therefore by assumption S is strongly regular.

Theorem 207 For an AG-groupoid S with left identity the following are equivalent,
(i) S is strongly regular,
(ii) $B \cap A \subseteq B A$ and B is strongly regular $A G$-subgroupoid, where B is any bi ideal and A is any subset of S.

Proof. $(i) \Longrightarrow(i i)$
Let S be a strongly regular AG-groupoid with left identity. Let $a \in B \cap A$, now since S is strongly regular so there exists some $x \in S$ such that $a=$ ($a x$) a and $a x=x a$. Then using left invertive law, we get

$$
\begin{aligned}
a & =(a x) a=[\{(a x) a\} x] a=[(x a)(a x)] a \\
& =[(a x)(x a)] a=[\{(x a) x\} a] a=[\{(x\{(a x) a\}) x\} a] a \\
& =[\{\{(a x)(x a)\} x\} a] a=[\{\{x(x a)\}(a x)\} a] a=[(a\{\{x(x a)\} x\}) a] a \\
& =[(a t) a] a \in[(B S) B] A \subseteq B A, \text { where } t=x(x a) .
\end{aligned}
$$

Thus $B \cap A \subseteq B A$. Let $a \in B$, thus $a \in S$ and since S is strongly regular so there exists an x in S such that $a=(a x) a$ and $a x=x a$. Let $y=(x a) x$,
then using left invertive law, paramedial and medial law, we get

$$
\begin{aligned}
y & =(x a) x=(a x) x=x^{2} a=x^{2}[(a x) a]=x^{2}[(x a) a]=x^{2}\left(a^{2} x\right) \\
& =a^{2}\left(x^{2} x\right)=a^{2} t=(a a) t=(t a) a=[t\{(a x) a\}] a=[t\{(x a) a\}] a \\
& =\left[t\left(a^{2} x\right)\right] a=\left[a^{2}(t x)\right] a=[(a a)(t x)] a=[(x t)(a a)] a=[a\{(x t) a\}] a \\
& =(a v) a \in(B S) B \subseteq B, \text { where } t=\left(x^{2} x\right) \text { and } v=(x t) a
\end{aligned}
$$

Now using left invertive law, we get

$$
y a=[(x a) x] a=(a x)(x a)=(x a)(a x)=a[(x a) x]=a y .
$$

Now using left invertive law we get

$$
\begin{aligned}
a & =(a x) a=(a x)[(a x) a]=(a x)[(x a) a]=(a x)\left(a^{2} x\right) \\
& =a^{2}[(a x) x]=(a a)[(x a) x]=(a a) y=(y a) a=(a y) a .
\end{aligned}
$$

Therefore B is strongly regular.
$(i i) \Longrightarrow(i)$
Since S itself is a bi ideal, therefore by assumption S is strongly regular.

Theorem 208 For an AG-groupoid S with left identity the following are equivalent,
(i) S is strongly regular,
(ii) $Q \cap A \subseteq Q A$ and Q is strongly regular $A G$-subgroupoid, where Q is any quasi ideal and A is any subset of S.

Proof. $(i) \Longrightarrow(i i)$
Let S be a strongly regular AG-groupoid with left identity. Let $a \in Q \cap A$, now since S is strongly regular so there exists some $x \in S$ such that $a=$ $(a x) a$ and $a x=x a$. Now using left invertive law, we get

$$
\begin{aligned}
a x & =[(a x) a] x=[(x a) a] x=\left(a^{2} x\right) x=x^{2} a^{2}=x^{2}(a a) \\
& =a\left(x^{2} a\right) \in Q S . \\
a x & =[(a x) a] x=(x a)(a x)=(a x)(x a)=[(x a) x] a \in S Q .
\end{aligned}
$$

Thus $a x \in Q S \cap S Q \subseteq Q$.
Also $a=(a x) a \in Q A$. Let $a \in Q$, thus $a \in S$ and since S is strongly regular so there exists an x in S such that $a=(a x) a$ and $a x=x a$. Let $y=(x a) x$, then using left invertive law, paramedial, medial law, we get

$$
y=(x a) x=(a x) x=x^{2} a \in S Q
$$

and

$$
y=(x a) x=(x a)(e x)=(x e)(a x)=a[(x e) x] \in Q S .
$$

Thus $y \in Q S \cap S Q \subseteq Q$. Now using left invertive law and (1), we get

$$
y a=[(x a) x] a=(a x)(x a)=(x a)(a x)=a[(x a) x]=a y .
$$

Now using left invertive law, we get

$$
\begin{aligned}
a & =(a x) a=(a x)[(a x) a]=(a x)[(x a) a]=(a x)\left(a^{2} x\right) \\
& =a^{2}[(a x) x]=(a a)[(x a) x]=(a a) y=(y a) a=(a y) a .
\end{aligned}
$$

Therefore Q is strongly regular.
$(i i) \Longrightarrow(i)$
Since S itself is a quasi ideal, therefore by assumption S is strongly regular.

Theorem 209 Let S be a strongly regular AG-groupoid with left identity. Then, for every $a \in S$, there exists $y \in S$ such that $a=(a y) a, y=(y a) y$ and $a y=y a$.
Proof. Let $a \in S$, since S is strongly regular, there exists $x \in S$ such that $a=(a x) a$ and $a x=x a$. Now using paramedial law and medial law,
we get

$$
\begin{aligned}
a & =(a x) a=(x a) a=[x\{(a x) a\}] a=[x\{(a x)(e a)\}] a \\
& =[x\{(a e)(x a)\}] a=[(a e)\{x(x a)\}] a=[(a e)\{(e x)(a x)\}] a \\
& =[(a e)\{(x a)(x e)\}] a=[(x a)\{(a e)(x e)\}] a=[(x a)\{(e x)(e a)\}] a \\
& =[(x a)(x a)] a=[(a x)(a x)] a=[a\{(a x) x\}] a=[a\{(x a) x\}] a \\
& =(a y) a, \text { where } y=(x a) x .
\end{aligned}
$$

Now using and left invertive law, we get

$$
\begin{aligned}
y & =(x a) x=[x\{(a x) a\}] x=[(a x)(x a)] x \\
& =[\{(x a) x\} a] x=(y a) x=[y\{(a x) a\}] x \\
& =[x\{(a x) a\}] y=[x\{(a x) a\}] y=[(a x)(x a)] y \\
& =[\{(x a) x\} a] y=(y a) y .
\end{aligned}
$$

Now using left invertive law, we get

$$
a y=a[(x a) x]=(x a)(a x)=(a x)(x a)=[(x a) x] a=y a .
$$

Theorem 210 For an $A G$-groupoid S with left identity the following are equivalent,
(i) S is strongly regular,
(ii) S is left regular, right regular and $(S a) S$ is a strongly regular $A G$ subgroupoid, of S for every $a \in S$.
(iii) For every $a \in S$, we have $a \in a S$ and (Sa)S is a strongly regular AG-subgroupoid, of S.

Proof. $(i) \Longrightarrow(i i)$
Let $a \in S$, and S is strongly regular so there exists some $x \in S$ such that $a=(a x) a$ and $a x=x a$. Now left invertive law ,we get

$$
a=(a x) a=(x a) a=a^{2} x .
$$

This implies that S is right regular. Now using medial law and paramedial law, we get

$$
\begin{aligned}
a & =(a x) a=(a x)[(a x) a]=[a(a x)](x a) \\
& =[a(x a)](x a)=[x(a a)](x a)=\left(x a^{2}\right)(x a) \\
& =[x(a a)](x a)=[(e x)(a a)](x a)=[(a a)(x e)](x a) \\
& =\left[a^{2}(x e)\right](x a)=[(x a)(x e)] a^{2}=u a^{2}, \text { where } u=[(x a)(x e)] .
\end{aligned}
$$

Let $b \in(S a) S \subseteq S$, thus $b \in S$, and since S is strongly regular, so there exist $x_{1} \in S$, such that $b=\left(b x_{1}\right) b$ and $x_{1}=\left(x_{1} b\right) x_{1}$ and $b x_{1}=x_{1} b$, since $b \in(S a) S \Rightarrow b=(z a) t$, for some $z, t \in S$. Using paramedial, medial law, left invertive law, we get

$$
\begin{aligned}
x_{1} & =\left(x_{1} b\right) x_{1}=\left(x_{1} b\right)\left(e x_{1}\right)=\left(x_{1} e\right)\left(b x_{1}\right)=b\left[\left(x_{1} e\right) x_{1}\right]=b u \\
& =[(z a) t] u=(u t)(z a)=(a z)(t u)=[(t u) z] a=v a=v\left(a^{2} x\right) \\
& =a^{2}(v x)=(a a)(v x) \in(S a) S, \text { where } u=\left(x_{1} e\right) x_{1} \text { and } v=(t u) z
\end{aligned}
$$

This shows that $(S a) S$ is strongly regular.
(ii) \Longrightarrow (iii)

Let $a \in S$, and S is left regular so there exists some $y \in S$ such that $a=y a^{2}$.

Now using (1), we get

$$
a=y a^{2}=y(a a)=a(y a) \in a(S S)=a S
$$

$($ iii $) \Longrightarrow(i)$
Let $a \in a S$ so there exists some $t \in S$ such that $a=a t$, also $a \in S a$ so there exists some $z \in S$ such that $a=z a$.

Now

$$
a=a t=(z a) t \in(S a) S
$$

and as $(S a) S$ strongly regular so there exists some x in S such that $a=(a x) a$ and $a x=x a$. So S is strongly regular.

Theorem 211 For an $A G$-groupoid S with left identity the following are equivalent,
(i) S is strongly regular,
(ii) $(S a) S$ is strongly regular and S is left duo.

Proof. $(i) \Longrightarrow(i i)$
Let $a \in(S a) S$, so $a \in S$ and since S is strongly regular so there exists some $x \in S$ such that $a=(a x) a$ and $a x=x a$. Let $y=(x a) x$ for any $y \in S$. Now using (1) and left invertive law , we get

$$
\begin{aligned}
y & =(x a) x=[x\{(a x) a\}] x=[(a x)(x a)] x \\
& =[\{(x a) x\} a] x=(y a) x \in(S a) S .
\end{aligned}
$$

Now using paramedial law,medial law, we get

$$
\begin{aligned}
a & =(a x) a=(x a) a=[x\{(a x) a\}] a=[x\{(a x)(e a)\}] a \\
& =[x\{(a e)(x a)\}] a=[(a e)\{x(x a)\}] a=[(a e)\{(e x)(a x)\}] a \\
& =[(a e)\{(x a)(x e)\}] a=[(x a)\{(a e)(x e)\}] a=[(x a)\{(e x)(e a)\}] a \\
& =[(x a)(x a)] a=[(a x)(a x)] a=[a\{(a x) x\}] a=[a\{(x a) x\}] a \\
& =(a y) a,
\end{aligned}
$$

and using (1) and left invertive law, we get

$$
a y=a[(x a) x]=(x a)(a x)=(a x)(x a)=[(x a) x] a=y a .
$$

This shows that $(S a) S$ is strongly regular.
Let L be any left ideal in $S \Rightarrow S L \subseteq L$. Let $a \in L, s \in S$. Since S is strongly regular, so there exists some $x \in S$, such that, $a=(a x) a$ and $a x=x a$. Now $a s \in L S$
$a s=[(a x) a] s=[(x a) a] s=\left(a^{2} x\right) s=(s x) a^{2}=(s x)(a a) \in S(S L) \subseteq S L \subseteq L$.
This shows that L is also right ideal and S is left duo.
$(i i) \Longrightarrow(i)$
Using medial and paramedial laws we get $(S a)(S S)=(S S)(a S)=$ ($S a) S$. Now since S is left duo, so $a S \subseteq S a$. Also we can show that $S a \subseteq a S$. Thus $S a=a S$. Now let $a \in S$, also $a \in S a=a S \Rightarrow a=t a$ and $a=a v$ for some $t, v \in S$. Now

$$
a=a v=(t a) v \in(S a) S
$$

As $(S a) S$ is strongly regular, so there exists some $u \in(S a) S$, such that $a=(a u) a$ and $a u=u a$. Hence S is regular.

Theorem 212 For an $A G$-groupoid S with left identity the following are equivalent,
(i) S is strongly regular,
(ii) $S a$ is strongly regular for all a in S.

Proof. $(i) \Longrightarrow(i i)$
Let $a \in S a$, so $a \in S$ and S is strongly regular so there exists some $x \in S$ such that $a=(a x) a$ and $a x=x a$. Let $y=(x a) x$ for some $y \in S$. Now using left invertive law we get

$$
y=(x a) x=(a x) x=x^{2} a \in S a
$$

Now using paramedial law,medial law, we get

$$
\begin{aligned}
a & =(a x) a=(x a) a=[x\{(a x) a\}] a=[x\{(a x)(e a)\}] a \\
& =[x\{(a e)(x a)\}] a=[(a e)\{x(x a)\}] a=[(a e)\{(e x)(a x)\}] a \\
& =[(a e)\{(x a)(x e)\}] a=[(x a)\{(a e)(x e)\}] a=[(x a)\{(e x)(e a)\}] a \\
& =[(x a)(x a)] a=[(a x)(a x)] a=[a\{(a x) x\}] a=[a\{(x a) x\}] a \\
& =(a y) a
\end{aligned}
$$

and using left invertive law, we get

$$
\begin{aligned}
a y & =a[(x a) x]=(x a)(a x)=(a x)(x a) \\
& =[(x a) x] a=y a
\end{aligned}
$$

Which implies that $S a$ is strongly regular.
$(i i) \Longrightarrow(i)$
Let $a \in S$, so $a \in S a$ and $S a$ is strongly regular which implies S is strongly regular.

6

Fuzzy Ideals in Abel-Grassmann's Groupoids

In this chapter we introduce the fuzzy ideals in AG-groupoids and discuss their related properties.

A fuzzy subset f of an AG-groupoid \mathcal{S} is called a fuzzy AG-subgroupoid of \mathcal{S} if $f(x y) \geq f(x) \wedge f(y)$ for all $x, y \in \mathcal{S}$. A fuzzy subset f of an AG-groupoid \mathcal{S} is called a fuzzy left (right) ideal of \mathcal{S} if $f(x y) \geq f(y)$ $(f(x y) \geq f(x))$ for all $x, y \in \mathcal{S}$. A fuzzy subset f of an AG-groupoid \mathcal{S} is called a fuzzy two-sided ideal of \mathcal{S} if it is both a fuzzy left and a fuzzy right ideal of \mathcal{S}. A fuzzy subset f of an AG-groupoid \mathcal{S} is called a fuzzy quasi-ideal of S if $f \circ S \cap S \circ f \subseteq f$. A fuzzy subset f of an AG-groupoid \mathcal{S} is called a fuzzy generalized bi-ideal of \mathcal{S} if $f((x a) y) \geq f(x) \wedge f(y)$, for all x, a and $y \in \mathcal{S}$. A fuzzy AG-subgroupoid f of an AG-groupoid \mathcal{S} is called a fuzzy bi-ideal of \mathcal{S} if $f((x a) y) \geq f(x) \wedge f(y)$, for all x, a and $y \in \mathcal{S}$. A fuzzy AG-subgroupoid f of an AG-groupoid \mathcal{S} is called a fuzzy interior ideal of \mathcal{S} if $f((x a) y) \geq f(a)$, for all x, a and $y \in \mathcal{S}$.

Let f and g be any two fuzzy subsets of an AG-groupoid \mathcal{S}, then the product $f \circ g$ is defined by,
$(f \circ g)(a)=\left\{\begin{array}{l}\bigvee_{a=b c}\{f(b) \wedge g(c)\}, \text { if there exist } b, c \in \mathcal{S}, \text { such that } a=b c . \\ 0, \text { otherwise. }\end{array}\right.$
The symbols $f \cap g$ and $f \cup g$ will means the following fuzzy subsets of \mathcal{S}

$$
(f \cap g)(x)=\min \{f(x), g(x)\}=f(x) \wedge g(x), \text { for all } x \text { in } \mathcal{S}
$$

and

$$
(f \cup g)(x)=\max \{f(x), g(x)\}=f(x) \vee g(x), \text { for all } x \text { in } \mathcal{S}
$$

The proof of the following three lemma's are same as in [37].
Lemma 213 Let f be a fuzzy subset of an AG-groupoid S. Then the following properties hold.
(i) f is a fuzzy AG-subgroupoid of S if and only if $f \circ f \subseteq f$.
(ii) f is a fuzzy left(right) ideal of S if and only if $S \circ f \subseteq f(f \circ S \subseteq f)$.
(iii) f is a fuzzy two-sided ideal of S if and only if $S \circ f \subseteq f$ and $f \circ S \subseteq f$.

Lemma 214 Let f be a fuzzy $A G$-subgroupoid of an $A G$-groupoid S. Then f is a fuzzy bi-ideal of S if and only if $(f \circ S) \circ f \subseteq f$.

Lemma 215 Let f be a fuzzy $A G$-subgroupoid of an $A G$-groupoid S. Then f is a fuzzy interior ideal of S if and only if $(S \circ f) \circ S \subseteq f$.

The principal left, right and two-sided ideals of an AG-groupoid S is denoted by $L\left[a^{2}\right], R\left[a^{2}\right]$ and $J\left[a^{2}\right]$. Note that the principal left, right and two-sided ideals generated by a^{2} are equals, that is,

$$
L\left[a^{2}\right]=R\left[a^{2}\right]=J\left[a^{2}\right]=a^{2} S=S a^{2} S=S a^{2}=\left\{s a^{2}: s \in S\right\}
$$

The characteristic function C_{A} for a subset A of an AG-groupoid S is defined by

$$
C_{A}(x)=\left\{\begin{array}{l}
1, \text { if } x \in A, \\
0, \text { if } x \notin A .
\end{array}\right.
$$

The proof of the following three lemma's are same as in [29].
Lemma 216 Let A be a non-empty subset of an $A G$-groupoid S. Then the following properties hold.
(i) A is an AG-subgroupoid if and only if C_{A} is a fuzzy AG-subgroupoid of S.
(ii) A is a left(right, two-sided) ideal of S if and only if C_{A} is a fuzzy left(right, two-sided) of S.
(iii) A is a bi-ideal of S if and only if C_{A} is a fuzzy bi-ideal of S.

Lemma 217 Let A be a non-empty subset of an $A G$-groupoid S. Then A is a bi-ideal of S if and only if C_{A} is a fuzzy bi-ideal of S.

Lemma 218 Let A be a non-empty subset of an $A G$-groupoid S. Then A is an interior ideal of S if and only if C_{A} is a fuzzy interior ideal of S.

Example 219 Let $S=\{1,2,3,4\}$, the binary operation "." be defined on S as follows:

\cdot	1	2	3	4
1	4	4	2	2
2	4	4	4	4
3	4	4	2	4
4	4	4	4	4

Then (S, \cdot) is an $A G$-groupoid.
Let us denote the set of all fuzzy subsets of an AG-groupoid S by $F(S)$. Note that $S(x)=1$, for all $x \in S$.

Lemma 220 If S is an $A G$-groupoid with left identity e, then $F(S)$ is an AG-groupoid with left identity S.

Proof. Let f be any subset of $F(S)$, and for any $a \in S$, since e is left identity of S. So, $a=e a$, then we have

$$
(S \circ f)(a)=\bigvee_{a=e a}\{S(e) \wedge f(a)\}=\bigvee_{a=e a}\{1 \wedge f(a)\}=f(a)
$$

Now for uniqueness, suppose S and S^{\prime} be the two left identities of $F(S)$, then $S \circ S^{\prime}=S^{\prime}$, and $S^{\prime} \circ S=S$. Now by using (1), we have $S=S^{\prime} \circ S=$ $\left(S^{\prime} \circ S^{\prime}\right) \circ S=\left(S \circ S^{\prime}\right) \circ S^{\prime}=S^{\prime} \circ S^{\prime}=S^{\prime}$.

Lemma 221 In an $A G$-groupoid $F(S)$, every right identity S is a unique left identity.

Proof. Let f be any subset of $F(S)$, since S is a right identity of $F(S)$, then $f \circ S=f$. Now we have

$$
S \circ f=(S \circ S) \circ f=(f \circ S) \circ S=f \circ S=f
$$

Lemma 222 An $A G$-groupoid $F(S)$ with right identity is a commutative semigroup.

Proof. Since $F(S)$ is an AG-groupoid with right identity S. So by lemma 221, S is left identity of $F(S)$. Let f, g and $h \in F(S)$, then, we have

$$
\begin{gathered}
f \circ g=(S \circ f) \circ g=(g \circ f) \circ S=g \circ f, \text { and } \\
(f \circ g) \circ h=(h \circ g) \circ f=(g \circ h) \circ f=f \circ(g \circ h) .
\end{gathered}
$$

6.1 Inverses in AG-groupoids

Let f be any fuzzy subset of an AG-groupoid S with left identity. A fuzzy subset f^{\prime} of S is called left(right) inverse of f, if $f^{\prime} \circ f=S\left(f \circ f^{\prime}=S\right) . f^{\prime}$ is said to be inverse of f if it is both left inverse and right inverse.

Lemma 223 Every right inverse in an $A G$-groupoid $F(S)$, is left inverse.
Proof. Let f^{\prime} and f be any fuzzy subsets of S and f^{\prime} is the right inverse of f. Then by using (1), we have

$$
f^{\prime} \circ f=\left(S \circ f^{\prime}\right) \circ f=\left(f \circ f^{\prime}\right) \circ S=S \circ S=S
$$

which implies that f^{\prime} is left inverse of f. Now for uniqueness, let f^{\prime} and $f^{\prime \prime}$ be the two left inverses of f. So $f^{\prime} \circ f=S$ and $f^{\prime \prime} \circ f=S$. Now by using (1), we have

$$
f^{\prime \prime}=S \circ f^{\prime \prime}=\left(f^{\prime} \circ f\right) \circ f^{\prime \prime}=\left(f^{\prime \prime} \circ f\right) \circ f^{\prime}=S \circ f^{\prime}=f^{\prime}
$$

Let f, g and h be any fuzzy subsets of an AG-groupoid S, then $F(S)$ is called left (right) cancellative AG-groupoid if $f \circ g=f \circ h(g \circ f=h \circ f)$ implies that $g=h$, and $F(S)$ is called a cancellative AG-groupoid if it is both right and left cancellative.

Lemma 224 A left cancellative $A G$-groupoid $F(S)$ is a cancellative $A G$ groupoid.

Proof. Let $F(S)$ be left cancellative and f, g and h be any fuzzy subsets of an AG-groupoid S. Now let $g \circ f=h \circ f$, which implies that $(g \circ f) \circ k=$ $(h \circ f) \circ k$, where $k \in F(S)$, now we have $(k \circ f) \circ g=(k \circ f) \circ h$, which implies that $g=h$.

Lemma $225 A$ right cancellative $A G$-groupoid $F(S)$ with left identity S is a cancellative $A G$-groupoid.

Proof. Let f, g, h and k be any fuzzy subsets of an AG-groupoid S. Let $F(S)$ is right cancellative then $g \circ f=h \circ f$ implies that $g=f$. Let $f \circ g=f \circ h$ which implies that $g \circ f=h \circ f$ in [29] which implies that $g=f$.

Lemma 226 An AG-groupoid $F(S)$ is a semigroup if and only if $f \circ(g \circ$ $h)=(h \circ g) \circ f$. where f, g, h and k are fuzzy subsets of S.

Proof. Let $f \circ(g \circ h)=(h \circ g) \circ f$, holds for all fuzzy subsets f, g, h and k of S. Then by using (1), we have $f \circ(g \circ h)=(h \circ g) \circ f=(f \circ g) \circ h$.

Conversely, suppose that $F(S)$ is a semigroup, then it is easy to see that $f \circ(g \circ h)=(f \circ g) \circ h$.

Lemma 227 If f and g be any fuzzy bi-ideals of an $A G$-groupoid S with left identity, then $f \circ g$ and $g \circ f$ are fuzzy bi-ideals of S.

Proof. Let f and g be any fuzzy bi-ideals of an AG-groupoid S with left identity e, then

$$
\begin{aligned}
(f \circ g) \circ(f \circ g) & =(f \circ f) \circ(g \circ g) \subseteq f \circ g, \text { and } \\
((f \circ g) \circ S) \circ(f \circ g) & =((f \circ g) \circ(S \circ S)) \circ(f \circ g) \\
& =((f \circ S) \circ(g \circ S)) \circ(f \circ g) \\
& =((f \circ S) \circ f) \circ((g \circ S) \circ g) \subseteq f \circ g
\end{aligned}
$$

Hence $f \circ g$ is a fuzzy bi-ideal of S. Similarly $g \circ f$ is a fuzzy bi-ideal of S.

Lemma 228 Every fuzzy ideal of an AG-groupoid S, is a fuzzy bi-ideal and a fuzzy interior ideal of S.

Proof. Let S be an AG-groupoid and f be any fuzzy ideal of S, then for a, $b \in S$, we have $f(a b) \geq f(a)$ and $f(a b) \geq f(b)$, therefore $f(a b) \geq f(a) \wedge f(b)$, which implies that f is a fuzzy AG-subgroupoid. Now for any $x, y, z \in S$, we have $f((x y) z) \geq f(x y) \geq f(x)$, and $f((x y) z) \geq f(z)$, which implies that $f((x y) z) \geq f(x) \wedge f(z)$. Hence f is a fuzzy bi-ideal. Similarly it is easy to see that $f((x a) y) \geq f(a)$.

Lemma 229 Let f be a fuzzy subset of a completely regular AG-groupoid S with left identity, then the following are equivalent.
(i) f is a fuzzy ideal of S.
(ii) f is a fuzzy interior ideal of S.

Proof. $(i) \Rightarrow(i i)$, it is obvious.
$(i i) \Rightarrow(i)$
Since S is a completely regular AG-groupoid so for all $a, b \in S$ there exist $x, y \in S$ such that $a=(a x) a$ and $a x=x a, b=(b y) b$ and $b y=y b$, now by using we have

$$
f(a b)=f(((a x) a) b)=f((b a)(a x)) \geq f(a)
$$

Now we get

$$
f(a b)=f(a((b y) b))=f(a((y b) b))=f((y b)(a b)) \geq f(b)
$$

Theorem 230 Every fuzzy generalized bi-ideal of a completely regular AGgroupoid S with left identity, is a fuzzy bi-ideal of S.

Proof. Let f be any fuzzy generalized bi-ideal of an AG-groupoid S. Then, since S is completely regular, so for each $a \in S$ there exist $x \in S$ such that $a=(a x) a$ and $a x=x a$. Thus

$$
\begin{aligned}
f(a b) & =f(((a x) a) b)=f(((a x)(e a)) b)=f(((x a)(e a)) b) \\
& =f(((x e)(a a)) b)=f((a((x e) a)) b) \geq f(a) \wedge f(b) .
\end{aligned}
$$

Theorem 231 Let f, g and h be any fuzzy subset of an $A G$-groupoid S, then the following are equivalent.
(i) $f \circ(g \cup h)=(f \circ g) \cup(f \circ h) ;(g \cup h) \circ f=(g \circ f) \cup(h \circ f)$.
(ii) $f \circ(g \cap h)=(f \circ g) \cap(f \circ h) ;(g \cap h) \circ f=(g \circ f) \cap(h \circ f)$.

Proof. It is same as in [37].
Lemma 232 Let f, g and h be any fuzzy subsets of an $A G$-groupoid S, if $f \subseteq g$, then $f \circ h \subseteq g \circ h$ and $h \circ f \subseteq h \circ g$.

Proof. It is same as in [37].
A subset P of an AG-groupoid S is called semiprime, if for all $a \in S$, $a^{2} \in P$ implies $a \in P$.

A fuzzy subset f of an AG-groupoid S is called fuzzy semiprime, if $f(a) \geq$ $f\left(a^{2}\right)$, for all $a \in S$.

6.2 Fuzzy Semiprime Ideals

Lemma 233 In an intra-regular $A G$-groupoid S, every fuzzy interior ideal is fuzzy semiprime.

Proof. Since S intra-regular so for $a \in S$ there exist $x, y \in S$ such that $a=\left(x a^{2}\right) y$, so we have

$$
f(a)=f\left(\left(x a^{2}\right) y\right) \geq f\left(a^{2}\right) .
$$

Theorem 234 A non-empty subset A of an $A G$-groupoid S, is semiprime if and only if the characteristic function C_{A} of A is fuzzy semiprime.

Proof. Let $a^{2} \in A$, since A is semiprime so $a \in A$, hence $C_{A}(a)=1=$ $C_{A}\left(a^{2}\right)$. Also if $a^{2} \notin A$, then $C_{A}(a) \geq 0=C_{A}\left(a^{2}\right)$. In both cases, we have $C_{A}(a) \geq C_{A}\left(a^{2}\right)$ for all $a \in S$, which implies that C_{A} is fuzzy semiprime.

Conversely, assume that $a^{2} \in A$, since C_{A} is a fuzzy semiprime, so we have $C_{A}(a) \geq C_{A}\left(a^{2}\right)=1$, and so $C_{A}(a)=1$, which implies that $a \in A$.

Theorem 235 For any fuzzy $A G$-subgroupoid f of an $A G$-groupoid S, the following are equivalent.
(i) f is a fuzzy semiprime.
(ii) $f(a)=f\left(a^{2}\right)$, for all $a \in S$.

Proof. $(i) \Rightarrow(i i)$
Let $a \in S$, then since f is a fuzzy AG-subgroupoid of S, so we have

$$
f(a) \geq f\left(a^{2}\right)=f(a a) \geq f(a) \wedge f(a)=f(a) .
$$

$(i i) \Rightarrow(i)$, it is obvious.
An element a of an AG-groupoid S is called intra-regular if there exists elements $x, y \in S$ such that $a=\left(x a^{2}\right) y$. An AG-groupoid S is called intra-regular if every element of S is intra-regular.

Theorem 236 For an $A G$-groupoid S with left identity, the following are equivalent.
(i) S is intra-regular.
(ii) $f(a)=f\left(a^{2}\right)$, for all fuzzy two sided ideal f of S, for all $a \in S$.
(iii) $f(a)=f\left(a^{2}\right)$, for all fuzzy interior ideal f of S, for all $a \in S$.

Proof. $(i) \Rightarrow(i i i)$
Let f be any fuzzy interior ideal of an intra-regular AG-groupoid S. Now for any $a \in S$, there exist $x, y \in S$, such that $a=\left(x a^{2}\right) y$. Then we have

$$
\begin{aligned}
f(a) & =f\left(\left(x a^{2}\right) y\right) \geq f\left(a^{2}\right)=f(a a)=f\left(a\left(\left(x a^{2}\right) y\right)\right)=f\left(a\left(\left(y a^{2}\right) x\right)\right) \\
& =f(a((y(a a)) x))=f(a((a(y a)) x))=f(a((x(y a)) a)) \\
& =f((x(y a))(a a))=f((x a)((y a) a)) \geq f(a)
\end{aligned}
$$

Clearly $($ iii $) \Rightarrow(i i)$.
(ii) $\Rightarrow(i)$

Let $J\left[a^{2}\right]$ be the principal two sided ideal generated by a^{2}. Then, $C_{J\left[a^{2}\right]}$ is a fuzzy two sided ideal of S. Since $a^{2} \in J\left[a^{2}\right]$, so by (ii) we have $C_{J\left[a^{2}\right]}(a)=C_{J\left[a^{2}\right]}\left(a^{2}\right)=1$, hence $a \in J\left[a^{2}\right]=\left(S a^{2}\right) S$, which implies that there exist $x, y \in S$ such that $a=\left(x a^{2}\right) y$.

Theorem 237 Let f be a fuzzy interior ideal of an intra-regular $A G$ groupoid S with left identity, then $f(a b)=f(b a)$, for all a, b in S.

Proof. Let S be an intra-regular AG-groupoid and $a, b \in S$, then

$$
\begin{aligned}
f(a b) & =f\left((a b)^{2}\right)=f((a b)(a b))=f((b a)(b a)) \\
& =f((e(b a))(b a))=f((a b)((b a) e)) \\
& =f((a(b a))(b e)) \geq f(b a)=f\left((b a)^{2}\right) \\
& =f((b a)(b a))=f((a b)(a b)) \\
& =f((e(a b))(a b))=f((b a)((a b) e)) \\
& =f((b(a b))(a e)) \geq f(a b) .
\end{aligned}
$$

The following three propositions are well-known.
Proposition 238 Every locally associative AG-groupoid has associative powers.

Proposition 239 In a locally associative AG-groupoid S, $a^{m} a^{n}=a^{m+n}$, $\forall a \in S$ and positive integers m, n.

Proposition 240 In a locally associative $A G$-groupoid $S,\left(a^{m}\right)^{n}=a^{m n}$, for all $a \in S$ and positive integers m, n.

Theorem 241 Let f be a fuzzy semiprime interior ideal of a locally associative AG-groupoid S with left identity, then $f\left(a^{n}\right)=f\left(a^{n+1}\right)$, for all positive integer n.

Proof. Let n be any positive integer and f be any fuzzy interior ideal of S, then we have

$$
\begin{aligned}
f\left(a^{n}\right) & \geq f\left(\left(a^{n}\right)^{2}\right)=f\left(a^{2 n}\right) \geq f\left(a^{4 n}\right)=f\left(a^{n+2} a^{3 n-2}\right) \\
& =f\left(\left(a a^{n+1}\right) a^{3 n-2}\right) \geq f\left(a^{n+1}\right)
\end{aligned}
$$

An AG-groupoid S is called archimedean if for all $a, b \in S$, there exist a positive integer n such that $a^{n} \in(S b) S$.

Theorem 242 Let S be an archimedean locally associative AG-groupoid with left identity, then every fuzzy semiprime fuzzy interior ideal of S is a constant function.
Proof. Let f be any fuzzy semiprime fuzzy interior ideal of S and $a, b \in S$. Thus we have $f(a) \geq f\left(a^{2}\right) \geq f\left(a^{4}\right) \geq \ldots \geq f\left(a^{2 n}\right)=f\left(a^{m}\right)$, where $2 n=m$. Now since S is archimedean, so there exist a positive integer m and $x, y \in S$ such that $a^{m}=(x b) y$. Therefore $f(a) \geq f((x b) y) \geq f(b)$. Similarly we can prove that $f(b) \geq f(a)$. Hence f is a constant function.

An AG-groupoid S is called left (right) simple, if it contains no proper left (right) ideal and is called simple if it contain no proper two sided ideal.

An AG-groupoid S is called fuzzy simple, if every fuzzy subset of S is a constant function.

Theorem 243 An AG-groupoid S is simple if and only if $S=a^{2} S=$ $S a^{2}=\left(S a^{2}\right) S$, for all a in S.
Proof. It is easy.
An AG-groupoid S is called semisimple if every two-sided ideal of S is idempotent. It is easy to prove that S is semisimple if and only if $a \in$ $((S a) S)((S a) S)$, that is, for every $a \in S$, there exist $x, y, u, v \in S$ such that $a=((x a) y)((u a) v)$.

Theorem 244 Every fuzzy two-sided ideal of a semisimple AG-groupoid S is an idempotent.

Proof. Let f be fuzzy two-sided ideal of S. Obviously

$$
(f \circ f)(a)=\bigvee_{a=((x a) y)((u a) v)}\{f((x a) y) \wedge f((u a) v)\} \geq f(a)
$$

Theorem 245 Let f and g be any fuzzy ideal of a semisimple $A G$-groupoid S, then $f \circ g$ is a fuzzy ideal in S.

Proof. Clearly $f \circ g \subseteq f \cap g$. Now

$$
\begin{aligned}
(f \circ g)(a) & =\bigvee_{a=((x a) y)((u a) v)}\{f((x a) y) \wedge g((u a) v)\} \\
& \geq f((x a) y) \wedge g((u a) v) \geq f(x a) \wedge g(u a) \geq f(a) \wedge g(a) \\
& =(f \cap g)(a) .
\end{aligned}
$$

Hence $f \circ g$ is a fuzzy ideal of S.
Theorem 246 Every fuzzy interior ideal of a semisimple AG-groupoid S with left identity, is a fuzzy two-sided ideal of S.

Proof. Let f be a fuzzy interior ideal of S, and $a, b \in S$, then since S is semisimple, so there exist $x, y, u, v \in S$ and $p, q, r, s \in S$ such that $a=((x a) y)((u a) v)$ and $b=((p b) q)((r b) s)$. Thus we have

$$
\begin{aligned}
f(a b) & =f(((x a) y)((u a) v) b)=f((((x a)(u a))(y v)) b) \\
& =f((((x u)(a a))(y v)) b)=f((((a a)(u x))(y v)) b) \\
& =f((((y v)(u x))(a a)) b)=f(((a a)((u x)(y v))) b) \\
& =f((b((u x)(y v)))(a a))=f((b a)(((u x)(y v)) a)) \\
& =f(((((u x)(y v)) a) a) b) \geq f(a) .
\end{aligned}
$$

Now we have

$$
\begin{aligned}
f(a b) & =f(a(((p b) q)((r b) s)))=f(a(((p b)(r b))(q s))) \\
& =f(a(((p r)(b b))(q s)))=f(a(((b b)(r p))(q s))) \\
& =f(a((((r p) b) b)(q s))) \\
& =f((((r p) b) b)(a(q s))) \geq f(b) .
\end{aligned}
$$

Theorem 247 The set of fuzzy ideals of a semisimple AG-groupoid S forms a semilattice structure.
Proof. Let Θ_{I} be the set of fuzzy ideals of a semisimple AG-groupoid S and f, g and $h \in \Theta_{I}$, then clearly Θ_{I} is closed and we have $f=f^{2}$ and $f \circ g=f \cap g$, where f and g are ideals of S. Clearly $f \circ g=g \circ f$, and then, we get $(f \circ g) \circ h=(h \circ g) \circ f=f \circ(g \circ h)$.

A fuzzy ideal f of an AG-groupoid S is said to be strongly irreducible if and only if for fuzzy ideals g and h of $S, g \cap h \subseteq f$ implies that $g \subseteq f$ or $h \subseteq f$.

The set of fuzzy ideals of an AG-groupoid S is called totally ordered under inclusion if for any fuzzy ideals f and g of S either $f \subseteq g$ or $g \subseteq f$.

A fuzzy ideal h of an AG-groupoid S is called fuzzy prime ideal of S, if for any fuzzy ideals f and g of $S, f \circ g \subseteq h$, implies that $f \subseteq h$ or $g \subseteq h$.
Theorem 248 In a semisimple $A G$-groupoid S, a fuzzy ideal is strongly irreducible if and only if it is fuzzy prime.

Proof. It follows from theorem 245.
Theorem 249 Every fuzzy ideal of a semisimple AG-groupoid S is fuzzy prime if and only if the set of fuzzy ideals of S is totally ordered under inclusion.

Proof. It is easy.

7

$(\epsilon, \in \vee q)$ and $\left(\epsilon, \in \vee q_{k}\right)$-fuzzy Bi-ideals of AG-groupoids

In this chapter we characterize intra-regular AG-groupoids by the properties of the lower part of $(\in, \in \vee q)$-fuzzy bi-ideals. Moreover we characterize AG-groupoids using ($\in, \in \vee q_{k}$)-fuzzy.

Let f be a fuzzy subset of an AG-groupoid S and $t \in(0,1]$. Then $x_{t} \in f$ means $f(x) \geq t, x_{t} q f$ means $f(x)+t>1, x_{t} \alpha \vee \beta f$ means $x_{t} \alpha f$ or $x_{t} \beta f$, where α, β denotes any one of $\in, q, \in \vee q, \in \wedge q$. $x_{t} \alpha \wedge \beta f$ means $x_{t} \alpha f$ and $x_{t} \beta f, x_{t} \bar{\alpha} f$ means $x_{t} \alpha f$ does not holds.

Let f and g be any two fuzzy subsets of an AG-groupoid \mathcal{S}, then for $k \in[0,1)$, the product $f \circ_{0.5} g$ is defined by,
$\left(f \circ_{0.5} g\right)(a)=\left\{\begin{array}{c}\bigvee_{a=b c}\{f(b) \wedge g(c) \wedge 0.5\}, \text { if there exist } b, c \in \mathcal{S}, \text { such that } a=b c . \\ 0, \text { otherwise. }\end{array}\right.$
The following definitions for AG-groupoids are same as for semigroups in [56].

Definition 250 A fuzzy subset δ of an $A G$-groupoid S is called an $(\in$ $, \in \vee q)$-fuzzy $A G$-subgroupoid of S if for all $x, y \in S$ and $t, r \in(0,1]$, it satisfies,
$x_{t} \in \delta, y_{r} \in \delta$ implies that $(x y)_{\min \{t, r\}} \in \vee q \delta$.
Definition 251 A fuzzy subset δ of S is called an $(\in, \in \vee q)$-fuzzy left (right) ideal of S if for all $x, y \in S$ and $t, r \in(0,1]$, it satisfies,
$x_{t} \in \delta$ implies $(y x)_{t} \in \vee q \delta\left(x_{t} \in \delta\right.$ implies $\left.(x y)_{t} \in \vee q \delta\right)$.
Definition 252 A fuzzy $A G$-subgroupoid f of an $A G$-groupoid S is called an $(\in, \in \vee q)$-fuzzy interior ideal of S if for all $x, y, z \in S$ and $t, r \in(0,1]$ the following condition holds.
$y_{t} \in f$ implies $((x y) z)_{t} \in \vee q f$.
Definition 253 A fuzzy subset f of an AG-groupoid \mathcal{S} is called an $(\in$ $, \in \vee q)$-fuzzy quasi-ideal of S if it satisfies, $f(x) \geq \min \left(f \circ C_{S}(x), C_{S} \circ\right.$ $f(x), 0.5)$, where C_{S} is the fuzzy subset of S mapping every element of S on 1 .

Definition 254 A fuzzy subset f of an AG-groupoid S is called an $(\in, \in$ $\vee q)$-fuzzy generalized bi-ideal of S if $x_{t} \in f$ and $z_{r} \in f$ implies $((x y) z)_{\min \{t, r\}} \in$ $\vee q f$, for all $x, y, z \in S$ and $t, r \in(0,1]$.

Definition 255 A fuzzy subset f of an $A G$-groupoid S is called an $(\in, \in$ $\vee q)$-fuzzy bi-ideal of S if for all $x, y, z \in S$ and $t, r \in(0,1]$ the following conditions hold
(i) If $x_{t} \in f$ and $y_{r} \in S$ implies $(x y)_{\min \{t, r\}} \in \vee q f$,
(ii) If $x_{t} \in f$ and $z_{r} \in f$ implies $((x y) z)_{\min \{t, r\}} \in \vee q f$.

The proofs of the following four theorems are same as in [56].
Theorem 256 Let δ be a fuzzy subset of S. Then δ is an $(\in, \in \vee q)$-fuzzy $A G$-subgroupoid of S if and only if $\delta(x y) \geq \min \{\delta(x), \delta(y), 0.5\}$.

Theorem 257 A fuzzy subset δ of an AG-groupoid S is called an $(\in, \in$ $\vee q)$-fuzzy left (right) ideal of S if and only if
$\delta(x y) \geq \min \{\delta(y), 0.5\}(\delta(x y) \geq \min \{\delta(x), 0.5\})$.
Theorem 258 A fuzzy subset f of an $A G$-groupoid S is an $(\in, \in \vee q)$-fuzzy interior ideal of S if and only if it satisfies the following conditions.
(i) $f(x y) \geq \min \{f(x), f(y), 0.5\}$ for all $x, y \in S$ and $k \in[0,1)$.
(ii) $f((x y) z) \geq \min \{f(y), 0.5\}$ for all $x, y, z \in S$ and $k \in[0,1)$.

Theorem 259 Let f be a fuzzy subset of S. Then f is an $(\in, \in \vee q)$-fuzzy bi-ideal of S if and only if
(i) $f(x y) \geq \min \{f(x), f(y), 0.5\}$ for all $x, y \in S$ and $k \in[0,1)$,
(ii) $f((x y) z) \geq \min \{f(x), f(z), 0.5\}$ for all $x, y, z \in S$ and $k \in[0,1)$.

Example 260 Let $S=\{a, b, c\}$ be an AG-groupoid with the following Cayley table:

\cdot	a	b	c
a	a	a	a
b	a	a	a
c	a	c	c

One can easily check that $\{a\},\{b\},\{c\},\{a, c\}$ and $\{a, b, c\}$ are all bi-ideals of S. Let f be fuzzy subsets of S such that $f(a)=0.9, f(b)=0.2$ and $f(c)=0.6$. Then f is an $(\in, \in \vee q)$-fuzzy ideal of S.

Definition 261 An element a of an AG-groupoid S is called intra-regular if there exist x, y in S such that $a=\left(x a^{2}\right) y$. An AG-groupoid S is called intra-regular if every element of S is intra-regular.

Theorem 262 Let S be an AG-groupoid with left identity. Then S is intraregular if and only if $R \cap L=R L$ and R is semiprime, for every left ideal L and every right ideal R of S.

Proof. Let R, L be right and left ideals of an intra-regular AG-groupoid S with left identity. Then R and L become ideals of S and so $R L \subseteq R \cap L$. Now we have $R \cap L$ is an ideal of S. We can also deduce that $R \cap L=$ $(R \cap L)^{2} \subseteq R L$. Hence we obtain $R \cap L=R L$.

Next, we show that R is semiprime. So let $r^{2} \in R$. Since S is intra-regular, there exist $x, y \in S$ such that $r=\left(x r^{2}\right) y$. Thus we have

$$
r=\left(x r^{2}\right) y \in(S R) S \subseteq R
$$

Therefore, R is semiprime.
Conversely, assume that $R \cap L=R L$ and R is semiprime, for any left ideal L and right ideal R of S. We need to show that S is intra-regular. To see this, note that for any $a \in S, S a^{2}$ is a right ideal and $S a$ is a left ideal of S. Clearly, $a \in S a$. Since $S a^{2}$ is semiprime and $a^{2} \in S a^{2}$, we also have $a \in S a^{2}$. Hence it follows that

$$
a \in S a^{2} \cap S a=\left(S a^{2}\right)(S a) \subseteq\left(S a^{2}\right) S
$$

which shows that a is intra-regular. Therefore, S is intra-regular as required.

Example 263 Let $S=\{1,2,3,4,5\}$ be an $A G$-groupoid with the following Cayley table:

$*$	1	2	3	4	5
1	4	5	1	2	3
2	3	4	5	1	2
3	2	3	4	5	1
4	1	2	3	4	5
5	5	1	2	3	4

It is clear that S is intra-regular since $1=\left(3 * 1^{2}\right) * 2,2=\left(1 * 2^{2}\right) * 5$, $3=\left(5 * 3^{2}\right) * 2,4=\left(2 * 4^{2}\right) * 1,5=\left(3 * 5^{2}\right) * 1$. Let us define a fuzzy subset f on S such that $f(1)=0.8, f(2)=0.7, f(3)=0.5, f(4)=0.9$ and $f(5)=0.6$. Then f is an $(\in, \in \vee q)$-fuzzy bi-ideal of S.

Theorem 264 For an $A G$-groupoid S with left identity, the following conditions are equivalent:
(i) S is intra-regular.
(ii) $B=B^{2}$ for every bi-ideal B of S.

Proof. Let B be a bi-ideal of an intra-regular AG-groupoid S with left identity. Thus B is an ideal of S. Then it follows that $B=B^{2}$.

Conversely, assume that $B=B^{2}$ for every bi-ideal B of S. For any $a \in S$, $S a$ is a bi-ideal contains a. Thus we have

$$
a \in S a=(S a)^{2}=S a^{2}=\left(S a^{2}\right) S,
$$

which shows that a is intra-regular. Therefore, S is intra-regular as required.
The following results can be proved by similar techniques as used in [56].

Lemma 265 Let L be a non-empty subset of an $A G$-groupoid S and C_{L} be the characteristic function of L. Then L is a left ideal of S if and only if the lower part C_{L}^{-}is an $(\in, \in \vee q)$-fuzzy left ideal of S.

Lemma 266 Let R be a non-empty subset of an $A G$-groupoid S and C_{R} be the characteristic function of R. Then R is a right ideal of S if and only if the lower part C_{R}^{-}is an $(\in, \in \vee q)$-fuzzy right ideal of S.

Lemma 267 Let A and B be non-empty subsets of an $A G$-groupoid S. Then we have the following:
(1) $\left(C_{A} \wedge C_{B}\right)^{-}=C_{(A \cap B)}^{-}$.
(2) $\left(C_{A} \vee C_{B}\right)^{-}=C_{(A \cup B)}^{-}$.
(3) $\left(C_{A} \circ C_{B}\right)^{-}=C_{(A B)}^{-}$.

Theorem 268 A fuzzy subset f of an $A G$-groupoid S is $(\in, \in \vee q)$-fuzzy semiprime if and only if $f(x) \geq f\left(x^{2}\right) \wedge 0.5$ for all $x \in S$.

Proof. Let f be a fuzzy subset of an AG-groupoid S which is $(\epsilon, \in \vee q)$ fuzzy semiprime. If there exists some $x_{0} \in S$ such that $f\left(x_{0}\right)<t_{0}=$ $f\left(x_{0}^{2}\right) \wedge 0.5$. Then $\left(x_{0}^{2}\right)_{t_{0}} \in f$, but $\left(x_{0}\right)_{t_{0}} \bar{\in} f$. In addition, we have $\left(x_{0}\right)_{t_{0}} \in$ $\vee q f$ since f is $(\in, \in \vee q)$-fuzzy semiprime. On the other hand, we have $f\left(x_{0}\right)+t_{0} \leq t_{0}+t_{0} \leq 1$. Thus $\left(x_{0}\right)_{t_{0}} \bar{q} f$, and so $\left(x_{0}\right)_{t_{0}} \overline{\in \vee} f$. This is a contradiction. Hence $f(x) \geq f\left(x^{2}\right) \wedge 0.5$ for all $x \in S$.

Conversely, assume that f is a fuzzy subset of an AG-groupoid S such that $f(x) \geq f\left(x^{2}\right) \wedge 0.5$ for all $x \in S$. Let $x_{t}^{2} \in f$. Then $f\left(x^{2}\right) \geq t$, and so $f(x) \geq f\left(x^{2}\right) \wedge 0.5 \geq t \wedge 0.5$. Now, we consider the following two cases:
(i) If $t \leq 0.5$, then $f(x) \geq t$. That is, $x_{t} \in f$. Thus we have $x_{t} \in \vee q f$.
(ii) If $t>0.5$, then $f(x) \geq 0.5$. It follows that $f(x)+t \geq 0.5+t>1$. That is, $x_{t} q f$, and so $x_{t} \in \vee q f$ also holds. Therefore, we conclude that f is $(\epsilon, \in \vee q)$-fuzzy semiprime as required.

Theorem 269 Let A be a non-empty subset of an AG-groupoid S with left identity. Then A is semiprime if and only if C_{A}^{-}is fuzzy semiprime.

Proof. Suppose that A is a non-empty subset of an AG-groupoid S with left identity and A is semiprime. For any $a \in S$, if $a^{2} \in A$, then we have $a \in A$ since A is semiprime. It follows that $C_{A}^{-}(a)=C_{A}^{-}\left(a^{2}\right)=0.5$. If $a^{2} \bar{\in} A$, then we have $C_{A}^{-}(a) \geq 0=C_{A}^{-}\left(a^{2}\right)$. This shows that C_{A}^{-}is fuzzy semiprime.

Conversely, assume that C_{A}^{-}is fuzzy semiprime. Thus we have $C_{A}^{-}(x) \geq$ $C_{A}^{-}\left(x^{2}\right)$ for all x in S. If $x^{2} \in A$, then $C_{A}^{-}\left(x^{2}\right)=0.5$. Hence $C_{A}^{-}(x) \geq$ $C_{A}^{-}\left(x^{2}\right) \geq 0.5$, which implies $x \in A$. Therefore, A is semiprime as required.

Definition 270 An $(\in, \in \vee q)$-fuzzy $A G$-subgroupoid of an $A G$-groupoid S is called an $(\in, \in \vee q)$-fuzzy interior ideal of S if

$$
a_{t} \in f \Rightarrow((x a) y)_{t} \in \vee q f
$$

for all $x, a, y \in S$ and $t \in(0,1]$.

Theorem 271 Let f be a fuzzy subset of an AG-groupoid S. Then f is an $(\in, \in \vee q)$-fuzzy interior ideal of S if and only if it satisfies:
(i) $f(x y) \geq \min \{f(x), f(y), 0.5\}$, for all $x, y \in S$.
(ii) $f((x a) y) \geq \min \{f(a), 0.5\}$, for all $x, a, y \in S$.

Proof. It is easy.

7.1 Characterizations of Intra-regular AG-groupoids

In this section, we give some characterizations of intra-regular AG-groupoids based on the properties of their $(\epsilon, \in \vee q)$-fuzzy ideals.

Theorem 272 For an AG-groupoid S with left identity e, the following conditions are equivalent:
(i) S is intra-regular.
(ii) $(f \wedge g)^{-}=(f \circ g)^{-}$and f is fuzzy semiprime, where f is an $(\in, \in \vee q)-$ fuzzy right ideal and g is an $(\in, \in \vee q)$-fuzzy left ideal of S.

Proof. Assume that S is an intra-regular AG-groupoid with left identity e. Let f be an $(\epsilon, \in \vee q)$-fuzzy right ideal of S and g be $(\epsilon, \in \vee q)$-left ideal of S. For $a \in S$, we have

$$
\begin{aligned}
(f \circ g)^{-}(a) & =(f \wedge g)(a) \wedge 0.5=\left(\bigvee_{a=y z}\{f(y) \wedge g(z)\}\right) \wedge 0.5 \\
& =\left(\bigvee_{a=y z}(\{f(y) \wedge g(z)\} \wedge 0.5)\right. \\
& =\left(\bigvee_{a=y z}(\{f(y) \wedge 0.5\} \wedge\{g(z) \wedge 0.5\} \wedge 0.5)\right. \\
& \leq \bigvee_{a=y z}\{f(y z) \wedge g(y z) \wedge 0.5\} \\
& =f(a) \wedge g(a) \wedge 0.5=(f \wedge g)^{-}(a)
\end{aligned}
$$

Thus $(f \circ g)^{-} \leq(f \wedge g)^{-}$. Since S is intra-regular, for $a \in S$, there exist $x, y \in S$ such that $a=\left(x a^{2}\right) y$. Now we get

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(x(a . a) y=(a(x a)) y=(y(x a)) a \\
& =((e y)(x a)) a=((a x)(y e))=((a y)(x e)) a \\
& =((a x)(y e)) a=((a x)(y e))\left(\left(x a^{2}\right) y\right)=((a x)(y e))((x(a a)) y) \\
& =((a x)(y e))((a(x a)) y)=((a x)(y e))((y(x a)) a) .
\end{aligned}
$$

Hence we deduce that

$$
\begin{aligned}
(f \circ g)^{-}(a) & =(f \circ g)(a) \wedge 0.5 \\
& =\bigvee_{a=p q}\{f(p) \wedge g(q)\} \wedge 0.5 \\
& =\left[\bigvee_{a=p q}\{f(p) \wedge g(q)\}\right] \wedge 0.5 \\
& =\quad \bigvee_{p q=((a x)(y e))((y(x a)) a)} \quad\{f(p) \wedge g(q)\} \wedge 0.5 \\
& \geq f((a x)(y e)) \wedge g((y(x a)) a) \wedge 0.5 \\
\geq & f(a x) \wedge g(a) \wedge 0.5 \geq f(a) \wedge g(a) \wedge 0.5 \\
& =(f \wedge g)(a) \wedge 0.5=(f \wedge g)(a) .
\end{aligned}
$$

This shows that $(f \circ g)^{-} \geq(f \wedge g)^{-}$. Thus we obtain $(f \circ g)^{-}=(f \wedge g)^{-}$.
Next we shall show that f is fuzzy semiprime. Since $S=S^{2}$, thus for $x \in S$ there exist u, v in S such that $x=u v$. Then we get

$$
f(a)=f\left(\left(x a^{2}\right) y\right) \geq f\left(x a^{2}\right)=f((u v)(a a))=f((a a)(v u)) \geq f\left(a^{2}\right) .
$$

Therefore, f is fuzzy semiprime as required.
Conversely, suppose that S is an AG-groupoid with left identity e, such that $(f \wedge g)^{-}=(f \circ g)^{-}$and f is fuzzy semiprime for every $(\in, \in \vee q)$-fuzzy right ideal f and every $(\in, \in \vee q)$-fuzzy left ideal g of S. Let R and L be right and left ideals of S respectively. Then, C_{L}^{-}and C_{R}^{-}are $(\in, \in \vee q)$-fuzzy left ideal and $(\epsilon, \in \vee q)$-fuzzy right ideal of S, respectively. By assumption, C_{R}^{-}is also fuzzy semiprime. Then we deduce that R is semiprime. Then we have

$$
C_{(R L)}^{-}=\left(C_{R} \circ C_{L}\right)^{-}=\left(C_{R} \wedge C_{L}\right)^{-}=C_{(R \cap L)}^{-}
$$

Thus $R L=R \cap L$. Hence S is intra-regular as required.
Note that $R L \subseteq R \cap L$ for every right ideal R and left ideal L of an AG-groupoid S. We immediately obtain the following.

Theorem 273 For an $A G$-groupoid S with left identity e, the following conditions are equivalent:
(i) S is intra-regular.
(ii) $(f \wedge g)^{-} \leq(f \circ g)^{-}$and f is fuzzy semiprime, where f is an $(\in, \in \vee q)$ fuzzy right ideal and g is an $(\in, \in \vee q)$-fuzzy left ideal of S.

Theorem 274 For an $A G$-groupoid S with left identity e, the following conditions are equivalent:
(i) S is intra-regular.
(ii) $((h \wedge f) \wedge g)^{-} \leq((h \circ f) \circ g)^{-}$and h is fuzzy semiprime, for every $(\in, \in \vee q)$-fuzzy right ideal $h,(\in, \in \vee q)$-fuzzy bi-ideal f and $(\in, \in \vee q)$-fuzzy left ideal g of S.
(iii) $((h \wedge f) \wedge g)^{-} \leq((h \circ f) \circ g)^{-}$and h is fuzzy semiprime, for every $(\in, \in \vee q)$-fuzzy right ideal $h,(\in, \in \vee q)$-fuzzy generalized bi-ideal f and $(\in, \in \vee q)$-fuzzy left ideal g of S.
Proof. $(i) \Rightarrow$ (iii): Let S be an intra-regular AG-groupoid with left identity e. For any $a \in S$, there exist x and y in S such that $a=\left(x a^{2}\right) y$. Now we get

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a \\
& =((e y)(x a)) a=((y e)(x a)) a=\left((y e)\left(x\left(\left(x a^{2}\right) y\right)\right)\right) a \\
& =\left((y e)\left(x\left(\left(x a^{2}\right)(e y)\right)\right) a=\left((y e) \left(x\left((y e)\left(a^{2} x\right)\right) a\right.\right.\right. \\
& =\left((y e) \left(x\left(a^{2}((y e) x)\right) a=\left(\left((y e)\left(a^{2}(x((y e) x))\right)\right) a\right.\right.\right. \\
& =\left((y e)\left(a^{2}\left((y e) x^{2}\right)\right)\right) a=\left(a^{2}\left((y e)\left((y e) x^{2}\right)\right)\right) a \\
& =((b a) a) a, \text { where } b=(y e)\left((y e) x^{2}\right) .
\end{aligned}
$$

Now, we have

$$
\begin{aligned}
b a & =b\left(\left(x a^{2}\right) y\right)=\left(x a^{2}\right)(b y)=(y b)\left(x a^{2}\right) \\
& =(y x)\left(a^{2} b\right)=a^{2}(y x) b=(((y x) b) a) a \\
& =\left(((y x) b)\left(\left(x a^{2}\right) y\right)\right) a=\left(t\left(\left(x a^{2}\right) y\right)\right) a, \text { where } t=(y x) b . \\
\left(t\left(\left(x a^{2}\right) y\right)\right) a & =\left(\left(\left(x a^{2}\right)(t y)\right)\right) a=\left(\left((y t)\left(a^{2} x\right)\right)\right) a \\
& =\left(a^{2}((y t) x)\right) a=\left(a^{2} u\right) a, \text { where } u=(y t) x .
\end{aligned}
$$

Thus $a=\left(\left(\left(a^{2} u\right) a\right) a\right)$. Furthermore, we can deduce that

$$
\begin{aligned}
((h \circ f) \circ g) \overline{(a)} & =\left[\bigvee_{a=p q}((h \circ f)(p) \wedge g(q) \wedge 0.5]\right. \\
& =\bigvee_{p q=((b a) a) a}[(h \circ f)(p) \wedge g(q)] \wedge 0.5 \\
& =\bigvee_{p q=((b a) a) a}[(h \circ f)((b a) a) \wedge g(a)] \wedge 0.5 \\
& \geq(h \circ f)((b a) a) \wedge g(a) \wedge 0.5 \\
& =\bigvee_{(b a) a=\left(\left(a^{2} u\right) a\right) a}\left\{h\left(\left(a^{2} u\right) a\right) \wedge f(a) \wedge 0.5\right\} \wedge g(a) \wedge 0.5 \\
& \geq h\left(a^{2}\right) \wedge f(a) \wedge g(a) \wedge 0.5 \\
& \geq h(a) \wedge f(a) \wedge g(a) \wedge 0.5=((h \wedge f) \wedge g \overline{)}(a)
\end{aligned}
$$

This shows that $((h \wedge f) \wedge g) \leq((h \circ f) \circ g)$. In addition, for any $a \in S$, there exist $x, y \in S$ such that $a=\left(x a^{2}\right) y$ since S is intra-regular. Thus we get

$$
\begin{aligned}
h(a) & =h\left(x a^{2}\right) y=h\left(x a^{2}\right)=h(x(a a))=h(a(x a))=h((e a)(x a)) \\
& =h(a x)(a e)=h(a a)(x e)=h\left(a^{2}(x e)\right) \geq h\left(a^{2}\right)
\end{aligned}
$$

Therefore, h is fuzzy semiprime as required.
(iii) \Rightarrow (ii): Straightforward.
$($ ii $) \Rightarrow(i)$: Let h be an $(\in, \in \vee q)$-fuzzy semiprime right ideal and let g be an $(\in, \in \vee q)$-fuzzy left ideal of S. Then

$$
\begin{aligned}
\left(h \circ C_{s}\right)(a) & =\bigvee_{a=b c} h(b) \wedge C_{s}(c)=\bigvee_{a=b c} h(b) \wedge 1 \\
& \leq \bigvee_{a=b c} h(b c)=h(a)
\end{aligned}
$$

Since C_{s} is an $(\in, \in \vee q)$-fuzzy bi-ideal of S, for any $a \in S$ we have

$$
\left(h \wedge g \overline{)}(a)=\left(\left(h \wedge C_{s}\right) \wedge g \overline{)}(a) \leq\left(\left(h \circ C_{s}\right) \circ g \overline{)}(a) \leq(h \circ g) \overline{(} a\right)\right.\right.
$$

Therefore, $(h \wedge g \overline{)} \leq(h \circ g)$. Then by Theorem 273, we deduce that S is intra-regular as required.

Lemma 275 A non-empty subset B of an $A G$-groupoid S is a bi-ideal if and only if C_{B}^{-}is an $(\in, \in \vee q)$-fuzzy bi-ideal of S.

Proof. It is similar to the proof of Lemma 9 in [55].

Theorem 276 For an $A G$-groupoid S with left identity e, the following conditions are equivalent:
(i) S is intra-regular.
(ii) $f^{-}=\left(\left(f \circ C_{s}\right) \circ f\right)^{-}$for every $(\epsilon, \in \vee q)$-fuzzy generalized bi-ideal f of S and $f \circ f=f$.
(iii) $f^{-}=\left(\left(f \circ C_{s}\right) \circ f\right)^{-}$for every $(\in, \in \vee q)$-fuzzy bi-ideal f of S and $f \circ f=f$.

Proof. $(i) \Rightarrow(i i)$: Let S be an intra-regular AG-groupoid with left identity e. For any $a \in S$, there exist x and y in S such that $a=\left(x a^{2}\right) y$. We already
obtained $a=\left(\left(\left(a^{2} u\right) a\right) a\right) a$. Moreover, we have

$$
\begin{aligned}
\left(\left(f \circ C_{S}\right) \circ f\right)^{-}(a) & =\left(\left(f \circ C_{S}\right) \circ f\right)(a) \wedge 0.5 \\
& =\bigvee_{a=p q}\left\{\left(f \circ C_{S}\right)(p) \wedge f(q)\right\} \wedge 0.5 \\
& =\bigvee_{p q=\left(\left(\left(a^{2} u\right) a\right) a\right) a}\left\{\left(f \circ C_{S}\right)(p) \wedge f(q)\right\} \wedge 0.5 \\
& \geq\left(f \circ C_{S}\right)\left(\left(\left(a^{2} u\right) a\right) a\right) \wedge f(a) \wedge 0.5 \\
& =\bigvee_{b c=\left(\left(a^{2} u\right) a\right) a}\left\{f\left(\left(a^{2} u\right) a\right) \wedge C_{S}(a)\right\} \wedge f(a) \wedge 0.5 \\
& \geq f\left(\left(a^{2} u\right) a\right) \wedge 1 \wedge f(a) \wedge 0.5 \\
& \geq f\left(a^{2}\right) \wedge f(a) \wedge 0.5 \wedge f(a) \wedge 0.5 \\
& \geq f(a) \wedge f(a) \wedge 0.5 \geq f(a) \wedge 0.5=f^{-}(a)
\end{aligned}
$$

which shows that $\left(\left(f \circ C_{S}\right) \circ f\right)^{-} \geq f^{-}$.
On the other hand, since f is an $(\in, \in \vee q)$-fuzzy generalized bi-ideal of S, we can deduce that

$$
\begin{aligned}
\left(\left(f \circ C_{S}\right) \circ f\right)^{-}(a) & =\left(\left(f \circ C_{S}\right) \circ f\right)(a) \wedge 0.5 \\
& =\bigvee_{a=b c}\left\{\left(f \circ C_{S}\right)(b) \wedge f(c)\right\} \wedge 0.5 \\
& =\bigvee_{a=b c}\left\{\bigvee_{b=p q}\left\{f(p) \wedge C_{S}(q)\right\} \wedge f(c)\right\} \wedge 0.5 \\
& =\bigvee_{a=y z}\left\{\bigvee_{b=p q}\{f(p) \wedge 1\} \wedge f(c)\right\} \wedge 0.5 \\
& =\bigvee_{a=b c}\left\{\bigvee_{b=p q}\{f(p)\} \wedge f(c)\right\} \wedge 0.5 \\
& \leq \bigvee_{a=(p q) c}\{f((p q) c) \wedge 0.5\} \leq f(a) \wedge 0.5=f^{-}(a)
\end{aligned}
$$

Thus $\left(\left(f \circ C_{S}\right) \circ f\right)^{-} \leq f^{-}$, and so $\left(\left(f \circ C_{S}\right) \circ f\right)^{-}=f^{-}$as required.
Now $\left(C_{S} \circ f\right)(a)=\bigvee_{a=e a}\left\{C_{S}(e) \wedge f(a)\right\}=f(a)$. Therefore, $f \circ f \leq C_{S} \circ f=$
f. Since S is intra-regular, thus we get

$$
a=\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a
$$

In addition, we also have

$$
\begin{aligned}
y(x a) & \left.=y\left(x\left(x a^{2}\right) y\right)\right)=y\left(\left(x a^{2}\right)(x y)\right)=\left(x a^{2}\right)(y(x y)) \\
& =\left(x a^{2}\right)\left(x y^{2}\right)=(a(x a))\left(x y^{2}\right)=\left(\left(x y^{2}\right)(x a)\right) a .
\end{aligned}
$$

Let us denote $x y^{2}=t$. Then we deduce that

$$
\begin{aligned}
\left(\left(x y^{2}\right)(x a)\right. & =t(x a)=t\left(x\left(\left(x a^{2}\right) y\right)\right)=t\left(\left(x a^{2}\right)(x y)\right) \\
& =\left(x a^{2}\right)(t(x y))=((x y) t)\left(a^{2} x\right)=a^{2}(((x y) t) x) \\
& =(x(x y) t))(a a)=a((x((x y) t)) a)
\end{aligned}
$$

Thus we obtain $a=(y(x a)) a=(a((x((x y) t)) a) a) a$. Now, it follows that

$$
\begin{aligned}
f \circ f(a) & =\bigvee_{a=(y(x a)) a}\{f(y(x a)) \wedge f(a)\} \\
& =\bigvee_{y(x a)=a((x((x y) t)) a) a}\{f(a((x((x y) t)) a)) \wedge f(a)\} \\
& \geq f(a) \wedge f(a) \geq f(a),
\end{aligned}
$$

which shows that $f \circ f \geq f$. Therefore, $f \circ f=f$.
$(i i) \Rightarrow(i i i)$: Straightforward.
$($ iii $) \Rightarrow(i)$: Let B be any bi-ideal of an AG-groupoid S with left identity e. Then C_{B} is an $\left(\in, \in \vee q\right.$)-fuzzy bi-ideal of S. Thus we have $C_{B} \circ C_{B}=C_{B}$. Also it is clear that $C_{B} \circ C_{B}=C_{B^{2}}$. Hence $C_{B}=C_{B^{2}}$ and so $B=B^{2}$. Hence deduce that S is intra-regular as required.

Theorem 277 For an AG-groupoid S with left identity e, the following conditions are equivalent:
(i) S is intra-regular.
(ii) $(f \wedge g)^{-}=((f \circ g) \circ f)^{-}$for every $(\in, \in \vee q)$-fuzzy bi-ideal f and $(\in, \in \vee q)$-fuzzy interior ideal g of S.
Proof. $(i) \Rightarrow(i i)$: Let S be an intra-regular AG-groupoid with left identity e. Let f be an $(\in, \in \vee q)$-fuzzy bi-ideal and g be an $(\in, \in \vee q)$-fuzzy interior ideal of S. Since C_{s} itself is an $(\in, \in \vee q)$-fuzzy ideal of S, for any $a \in S$, we have

$$
\begin{aligned}
((f \circ g) \circ f)^{-}(a) & \leq\left(\left(f \circ C_{s}\right) \circ f\right)(a) \wedge 0.5 \\
& =\bigvee_{a=p q}\left\{\left(f \circ C_{s}\right)(p) \wedge f(q)\right\} \wedge 0.5 \\
& =\bigvee_{a=p q}\left\{\bigvee_{p=b c}\left\{f(b) \wedge C_{s}(c)\right\} \wedge f(q)\right\} \wedge 0.5 \\
& =\bigvee_{a=p q}\left\{\bigvee_{p=b c}\{f(b) \wedge 1\} \wedge f(q)\right\} \wedge 0.5 \\
& =\bigvee_{a=p q}\left\{\bigvee_{p=b c} f(b) \wedge f(q)\right\} \wedge 0.5 \\
& \leq \bigvee_{a=(b c) q}\left\{f((b c) q\} \wedge 0.5=f(a) \wedge 0.5=f^{-}(a)\right.
\end{aligned}
$$

Note also that

$$
\begin{aligned}
((f \circ g) \circ f)^{-}(a) & \leq\left(\left(C_{s} \circ g\right) \circ C_{s}\right)(a) \wedge 0.5 \\
& =\bigvee_{a=b c}\left\{\left(C_{s} \circ g\right)(b) \wedge C_{s}(c)\right\} \wedge 0.5 \\
& =\bigvee_{a=b c}\left\{\bigvee_{b=p q}\left\{C_{s}(p) \wedge g(q)\right\} \wedge 1\right\} \wedge 0.5 \\
& =\bigvee_{a=(p q) c)}\{1 \wedge g(q)\} \wedge 0.5=\bigvee_{a=(p q) c)}\{g(q)\} \wedge 0.5 \\
& \leq \bigvee_{a=(p q) c)}\{g((p q) c)\} \wedge 0.5=g(a) \wedge 0.5=g^{-}(a)
\end{aligned}
$$

Hence $((f \circ g) \circ f) \leq\left(f^{-} \wedge g^{-}\right)=(f \wedge g)^{-}$. Now, since S is intra-regular, for $a \in S$ there exist elements $x, y \in S$ such that $a=\left(x a^{2}\right) y$. We already obtained $a=\left(\left(\left(a^{2} u\right) a\right) a\right) a$. Thus we have

$$
\begin{aligned}
((f \circ g) \circ f)^{-}(a) & =\bigvee_{a=\left(\left(\left(a^{2} u\right) a\right) a\right) a}\{(f \circ g)(y(x a)) \wedge f(a)\} \wedge 0.5 \\
& \geq(f \circ g)\left(\left(\left(a^{2} u\right) a\right) a\right) \wedge f(a) \wedge 0.5 \\
& =\bigvee_{\left(\left(a^{2} u\right) a\right) a=b c}\left\{f\left(\left(\left(a^{2} u\right) a\right) \wedge g(a) \wedge 0.5\right\} \wedge f(a) \wedge 0.5\right. \\
& =\bigvee_{\left(\left(a^{2} u\right) a\right) a=b c} f\left(\left(\left(a^{2} u\right) a\right) \wedge g(a) \wedge f(a) \wedge 0.5\right. \\
& \geq f\left(a^{2}\right) \wedge f(a) \wedge 0.5 \wedge g(a) \wedge f(a) \wedge 0.5 \\
& \geq f(a) \wedge f(a) \wedge g(a) \wedge f(a) \wedge 0.5 \\
& \geq f(a) \wedge g(a) \wedge f(a) \wedge 0.5 \\
& \geq f(a) \wedge g(a) \wedge 0.5=(f \wedge g)^{-}(a)
\end{aligned}
$$

which gives $((f \circ g) \circ f)^{-} \geq(f \wedge g)^{-}$. Therefore, $((f \circ g) \circ f)^{-}=(f \wedge g)^{-}$ as required.
$(i i) \Rightarrow(i):$ Assume that S is an AG-groupoid with left identity such that $(f \wedge g)^{-}=((f \circ g) \circ f)^{-}$for every $(\in, \in \vee q)$-fuzzy bi-ideal f and $(\in, \in \vee q)$ fuzzy interior ideal g of S. Let f be any $(\in, \in \vee q)$-fuzzy bi-ideal of S. Since C_{S} itself is an $(\in, \in \vee q)$-fuzzy interior ideal of S, we have
$f^{-}(a)=f(a) \wedge 0.5=\left(f \wedge C_{S}\right)(a) \wedge 0.5=\left(f \wedge C_{S}\right)^{-}(a)=\left(\left(f \circ C_{S}\right) \circ f\right)^{-}(a)$, for all $a \in S$. That is, $\left(\left(f \circ C_{S}\right) \circ f\right)^{-}=f^{-}$. Hence S is intra-regular as required.

Theorem 278 For $A G$-groupoid S with left identity e, the following conditions are equivalent:
(i) S is intra-regular.
(ii) $A \cap B \subseteq A B$, for every bi-ideal B and left ideal A of S.
(iii) $(f \wedge g)^{-} \leq(f \circ g)^{-}$for every $(\in, \in \vee q)$-fuzzy bi-ideal f and $(\in, \in \vee q$)-fuzzy left ideal g of S.
(iv) $(f \wedge g)^{-} \leq(f \circ g)^{-}$for every $(\in, \in \vee q)$-fuzzy generalized bi-ideal f and every $(\in, \in \vee q)$-fuzzy left ideal g of S.

Proof. $(i) \Rightarrow(i v)$: Let S be an intra-regular AG-groupoid with left identity e. Let f and g be any $(\in, \in \vee q)$-fuzzy generalized bi-ideal and any $(\in$, $\in \vee q$)-fuzzy left ideal of S, respectively. For any $a \in S$, there exist x and y in S such that $a=\left(x a^{2}\right) y$. Thus

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a=((e y)(x a)) a \\
& =((a x)(y e)) a=(((y e) x) a) a=(t a) a, \text { where } t=(y e) x .
\end{aligned}
$$

Thus

$$
a=(t a) a=\left(t\left(x a^{2}\right) y\right) a=\left(\left(x a^{2}\right)(t y)\right) a=((x(a a))(t y)) a=((a(x a))(t y)) a .
$$

Furthermore, we have

$$
\begin{aligned}
(f \circ g)^{-}(a) & =(f \circ g)(a) \wedge 0.5 \\
& =\bigvee_{a=p q}\{f(p) \wedge g(q)\} \wedge 0.5 \\
& =\bigvee_{a=((a(x a))(t y)) a}\{f(p) \wedge g(q)\} \wedge 0.5 \\
& \geq f(a(x a)) \wedge g((t y) a) \wedge 0.5 \\
& \geq f(a) \wedge f(a) \wedge g(a) \wedge 0.5 \\
& =f(a) \wedge g(a) \wedge 0.5 \\
& =(f \wedge g) \wedge 0.5=(f \wedge g)^{-}(a)
\end{aligned}
$$

That is, $(f \wedge g)^{-} \leq(f \circ g)^{-}$.
$(i v) \Rightarrow(i i i)$: Straightforward.
$(i i i) \Rightarrow(i i)$: Assume that S is an AG-groupoid with left identity such that $(f \wedge g)^{-} \leq(f \circ g)^{-}$for every $(\in, \in \vee q)$-fuzzy bi-ideal f and $(\in, \in \vee q)$-fuzzy left ideal g of S. Let A and B be bi-ideal and left ideal of S, respectively. Then C_{A}^{-}and C_{B}^{-}are $(\in, \in \vee q)$-fuzzy bi-ideal and $(\in, \in \vee q)$-fuzzy left ideal of S. Thus by hypothesis we get

$$
C_{A \cap B}^{-}=\left(C_{A} \wedge C_{B}\right)^{-} \leq\left(C_{A} \circ C_{B}\right)^{-}=C_{A B}^{-}
$$

It follows that $A \cap B \subseteq A B$.
$(i i) \Rightarrow(i)$: Since $S a$ is both a bi-ideal and left ideal of an AG-groupoid S with left identity. Using the medial law, the left invertive law and the
paramedial law, we have

$$
\begin{aligned}
a & \in S a \cap S a=(S a)(S a)=(S S)(a a)=\left(a^{2} S\right) S \\
& =((a a)(S S)) S=((S S)(a a)) S=\left(S a^{2}\right) S
\end{aligned}
$$

for all $a \in S$. Hence S is intra-regular as required.
Theorem 279 For an $A G$-groupoid S with left identity e, the following conditions are equivalent:
(i) S is intra-regular.
(ii) $(f \circ f)^{-} \geq f^{-}$for every $(\in, \in \vee q)$-fuzzy bi-ideal f of S.
(iii) $(f \circ g)^{-} \geq f^{-} \wedge g^{-}$for every $(\in, \in \vee q)$-fuzzy bi-ideals f and g of S.

Proof. $(i) \Rightarrow(i i i)$: Let S be an intra-regular AG-groupoid with left identity e. Let f and g be $(\in, \in \vee q)$-fuzzy bi-ideals of S. For any $a \in S$, there exist x, y in S such that $a=\left(x a^{2}\right) y$. Thus we get

$$
a=\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a,
$$

and

$$
\begin{aligned}
y(x a) & =y\left(x\left(\left(x a^{2}\right) y\right)\right)=y\left(\left(x a^{2}\right)(x y)\right) \\
& =\left(x a^{2}\right)\left(x y^{2}\right)=(a(x a))\left(x y^{2}\right)=\left(\left(x y^{2}\right)(x a)\right) a \\
& =\left(\left(x y^{2}\right)\left(x\left(\left(x a^{2}\right) y\right)\right) a=\left(\left(x y^{2}\right)\left(\left(x a^{2}\right)(x y)\right)\right) a\right. \\
& =\left(\left(x a^{2}\right)\left(\left(x y^{2}\right)\right)\left(a^{2} x\right)\right) a=\left(\left((x y)\left(x y^{2}\right)\right)\left(a^{2} x\right)\right) a \\
& =\left(a^{2}\left(\left((x y)\left(x y^{2}\right)\right) x\right)\right) a=\left(\left(x\left((x y)\left(x y^{2}\right)\right)\right)(a a)\right) a \\
& =\left(a\left(x\left((x y)\left(x y^{2}\right)\right)\right) a\right) a .
\end{aligned}
$$

Thus $a=(y(x a)) a=\left(a\left(x\left((x y)\left(x y^{2}\right)\right)\right) a\right) a$. Now, we have

$$
\begin{aligned}
& (f \circ g)^{-}(a)=(f \circ g)(a) \wedge 0.5 \\
& =\left(\underset{a=\left(a\left(x\left((x y)\left(x y^{2}\right)\right)\right) a\right) a}{ } f\left(a\left(x\left((x y)\left(x y^{2}\right)\right)\right) a\right) \wedge g(a)\right) \wedge 0.5 \\
& =\left(\underset{a=\left(a\left(x\left((x y)\left(x y^{2}\right)\right)\right) a\right) a}{\bigvee} f\left(a\left(x\left((x y)\left(x y^{2}\right)\right)\right) a\right) \wedge g(a)\right) \wedge 0.5 \\
& \geq\left(f\left(a\left(x\left((x y)\left(x y^{2}\right)\right)\right) a\right) \wedge g(a)\right) \wedge 0.5 \\
& \geq(f(a) \wedge f(a) \wedge 0.5) \wedge(g(a) \wedge 0.5) \\
& \geq[f(a) \wedge g(a)] \wedge 0.5=(f \wedge g)(a) \wedge 0.5=(f \wedge g)^{-}(a) .
\end{aligned}
$$

This shows that $(f \circ g)^{-} \geq f^{-} \wedge g^{-}$as required.
$(i i i) \Rightarrow(i i)$: Straightforward.
(ii) $\Rightarrow(i)$: Assume that S is an AG-groupoid with left identity e such that $(f \circ f)^{-} \geq f^{-}$for every $(\in, \in \vee q)$-fuzzy bi-ideal f of S. Let B be a biideal of S. Then C_{B}^{-}is an $(\in, \in \vee q)$-fuzzy bi-ideal of S. By hypothesis, we have $\left(C_{B} \circ C_{B}\right)^{-}=C_{B^{2}}^{-} \geq C_{B}^{-}$, and so $B \subseteq B^{2}$. Clearly, we have $B^{2} \subseteq B$ since B is a bi-ideal of S. Therefore, $B^{2}=B$. Hence S is intra-regular.

$7.2\left(\epsilon, \in \vee q_{k}\right)$-fuzzy Ideals of Abel-Grassmann's

7.3 Main results

We begin with the following definition.
Definition 280 An element a of an AG-groupoid S is called intra-regular if there exists $x, y \in S$ such that $a=\left(x a^{2}\right) y$ and S is called intra-regular, if every element of S is intra-regular.

Let S be an intra-regular AG-groupoid with left identity. Then, for x in S there exist u and v in S such that $x=u v$. Now, using paramedial, medial, left invertive law, we get

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=[(u v)(a a)] y=[(a a)(v u)] y=[y(v u)] a^{2}=a[\{y(v u)\} a](2) \\
& =[y(v u)] a^{2}=(y a)[(v u) a]=[a(v u)](a y)=[(a y)(v u)] a .
\end{aligned}
$$

Note. It is obvious from (2) that the results for intra-regular AG-groupoid with left identity is significantly different from those of semigroups and monoids.

The characteristic function C_{A} for a subset A of an AG-groupoid S is defined by

$$
C_{A}(x)=\left\{\begin{array}{l}
1, \text { if } x \in A \\
0, \text { if } x \notin A
\end{array}\right.
$$

A fuzzy subset f of S is called an $\left(\in, \in \vee q_{k}\right)$-fuzzy subgroupoid of S if for all $x, y \in S$ and $t, r \in(0,1]$ the following condition holds.
$x_{t} \in f$ and $y_{r} \in f$ implies that $(x y)_{\min \{t, r\}} \in \vee q_{k} f$.
A fuzzy subset f of S is called an $\left(\in, \in \vee q_{k}\right)$-fuzzy left(right) ideal of S if for all $x, y \in S$ and $t, r \in(0,1]$ the following condition holds.
$y_{t} \in f$ implies that $(x y)_{t} \in \vee q_{k} f\left(y_{t} \in f\right.$ implies that $\left.(y x)_{t} \in \vee q_{k} f\right)$.
A fuzzy subset f of S is called an $\left(\in, \in \vee q_{k}\right)$-fuzzy two sided ideal of S if it is both $\left(\in, \in \vee q_{k}\right)$-fuzzy left and $\left(\in, \in \vee q_{k}\right)$-fuzzy right ideal of S.

A fuzzy subset f of S is called an $\left(\in, \in \vee q_{k}\right)$-fuzzy bi-ideal of S if for all $x, y, z \in S$ and $t, r \in(0,1]$ the following condition holds.
$x_{t} \in f$ and $z_{r} \in f$ implies that $((x y) z)_{\min \{t, r\}} \in \vee q_{k} f$.

A fuzzy subset f of S is called an $\left(\epsilon, \in \vee q_{k}\right)$-fuzzy generalized bi-ideal of S if for all $x, y, z \in S$ and $t, r \in(0,1]$ the following condition holds.
$x_{t} \in f$ and $z_{r} \in f$ implies that $((x y) z)_{\min \{t, r\}} \in \vee q_{k} f$.
A fuzzy subset f of S is called an $\left(\epsilon, \in \vee q_{k}\right)$-fuzzy interior of S if for all $x, y, z \in S$ and $t, r \in(0,1]$ the following condition holds.
(a) $x_{t} \in f$ and $y_{r} \in f$ implies that $(x y)_{\min \{t, r\}} \in \vee q_{k} f$.
(b) $a_{t} \in f$ implies that $((x a) y)_{t} \in \vee q_{k} f$.

A fuzzy subset f of S is called an $\left(\in, \in \vee q_{k}\right)$-fuzzy generalized interior of S if for all $x, y, z \in S$ and $t \in(0,1]$ the following condition holds.
$a_{t} \in f$ implies that $((x a) y)_{t} \in \vee q_{k} f$.
A fuzzy subset f of an AG-groupoid S is called $\left(\in, \in \vee q_{k}\right)$-fuzzy semiprime if $f(a) \geq f\left(a^{2}\right) \wedge \frac{1-k}{2}$, for all a in S.

Definition 281 Let A be any subset of S. Then, the characteristic function $\left(C_{A}\right)_{k}$ is defined as,

$$
\left(C_{A}\right)_{k}(x)=\left\{\begin{array}{c}
\geq \frac{1-k}{2}, \text { if } x \in A \\
0, \text { if } x \notin A
\end{array}\right.
$$

The proof of the following two lemma's are same as in [55].
Lemma 282 For an $A G$-groupoid S, the following holds.
(i) A non empty subset J of $A G$-groupoid S is an ideal if and only if $\left(C_{J}\right)_{k}$ is an $\left(\epsilon, \in \vee q_{k}\right)$-fuzzy ideal.
(ii) A non empty subset L of $A G$-groupoid S is left ideal if and only if $\left(C_{L}\right)_{k}$ is an $\left(\in, \in \vee q_{k}\right)$-fuzzy left ideal.
(iii) A non empty subset R of $A G$-groupoid S is right ideal if and only if $\left(C_{R}\right)_{k}$ is an $\left(\in, \in \vee q_{k}\right)$-fuzzy right ideal.
(iv) A non empty subset B of $A G$-groupoid S is an bi-ideal if and only if $\left(C_{B}\right)_{k}$ is an $\left(\in, \in \vee q_{k}\right)$-fuzzy bi-ideal.
(v) A non empty subset I of $A G$-groupoid S is an interior ideal if and only if $\left(C_{I}\right)_{k}$ is an $\left(\in, \in \vee q_{k}\right)$-fuzzy interior ideal.
(vi) A non empty subset I of AG-groupoid S is semiprime if and only if $\left(C_{I}\right)_{k}$ is an $\left(\in, \in \vee q_{k}\right)$-fuzzy semiprime.
(vii) A right ideal R of an $A G$-groupoid S is semiprime if and only if $\left(C_{R}\right)_{k}$ is $\left(\in, \in \vee q_{k}\right)$-fuzzy semiprime.

Let f and g be any two fuzzy subsets of an AG-groupoid S. Then, for $k \in[0,1)$, the product $f \circ_{k} g$ is defined by,
$\left(f \circ_{k} g\right)(a)=\left\{\begin{array}{c}\bigvee_{a=b c}\left\{f(b) \wedge g(c) \wedge \frac{1-k}{2}\right\}, \text { if there exist } b, c \in S, \text { such that } a=b c . \\ 0, \text { otherwise. }\end{array}\right.$
Definition 283 Let f and g be fuzzy subsets of an $A G$-groupoid S. We define the fuzzy subsets $f_{k}, f \wedge_{k} g, f \vee_{k} g$ and $f \circ_{k} g$ of S as follows,
(i) $f_{k}(a)=f(a) \wedge \frac{1-k}{2}$.
(ii) $\left(f \wedge_{k} g\right)(a)=(f \wedge g)(a) \wedge \frac{1-k}{2}$.
(iii) $\left(f \vee_{k} g\right)(a)=(f \vee g)(a) \wedge \frac{1-k}{2}$.
(iv) $\left(f \circ_{k} g\right)(a)=(f \circ g)(a) \wedge \frac{1-k}{2}$, for all $a \in S$.

Lemma 284 Let A, B be non empty subsets of an $A G$-groupoid S. Then, the following holds.
(i) $\left(C_{A \cap B}\right)_{k}=\left(C_{A} \wedge_{k} C_{B}\right)$.
(ii) $\left(C_{A \cup B}\right)_{k}=\left(C_{A} \vee_{k} C_{B}\right)$.
(iii) $\left(C_{A B}\right)_{k}=\left(C_{A} \circ_{k} C_{B}\right)$.

Example 285 Let $S=\{1,2,3,4,5,6\}$, and the binary operation "." be defined on S as follows.

\cdot	1	2	3	4	5	6
1	1	1	1	1	1	1
2	1	2	1	1	1	1
3	1	1	5	6	3	4
4	1	1	4	5	6	3
5	1	1	3	4	5	6
6	1	1	6	3	4	5

Clearly $1=\left(1 \cdot 1^{2}\right) \cdot 1,2=\left(2 \cdot 2^{2}\right) \cdot 2,=3\left(3 \cdot 3^{2}\right) \cdot 5,4=\left(6 \cdot 4^{2}\right) \cdot 3,5=$ $\left(5 \cdot 5^{2}\right) \cdot 5,6=\left(4 \cdot 6^{2}\right) \cdot 3$. Clearly $\{1\},\{1,2\},\{1,2,3\},\{1,2,3,4\},\{1,2,3,4,5$, and $\{1,2,3,4,5,6\}$ are ideal of S. Define a fuzzy subset $f: S \longrightarrow[0,1]$ as follows:

$$
f(x)=\left\{\begin{array}{l}
0.9 \text { for } x=1 \\
0.8 \text { for } x=2 \\
0.5 \text { for } x=3 \\
0.5 \text { for } x=4 \\
0.5 \text { for } x=5 \\
0.5 \text { for } x=6
\end{array}\right.
$$

Then, clearly f is an $\left(\in, \in \vee q_{k}\right)$-fuzzy ideal of S.

Theorem 286 For an AG-groupoid S with left identity, the following are equivalent.
(i) S is intra-regular. (ii) For bi-ideals B_{1} and B_{2} of $S, B_{1} \cap B_{2}=$ $\left(B_{1} B_{2}\right) B_{1}$. (iii) For $\left(\in, \in \vee q_{k}\right)$-fuzzy bi-ideals f and g of $S, f \wedge_{k} g \leq$ $\left(f \circ_{k} g\right) \circ_{k} f$. (iv) For $\left(\in, \in \vee q_{k}\right)$-fuzzy generalized bi-ideals f and g of $S, f \wedge_{k} g \leq\left(f \circ_{k} g\right) \circ_{k} f$.

Proof. $(i) \Longrightarrow(i v)$: Let f and g be $\left(\in, \in \vee q_{k}\right)$-fuzzy generalized bi-ideals of an intra-regular AG-groupoid S. Since S is intra-regular therefore for $a \in S$ there exists $x, y \in S$ such that $a=\left(x a^{2}\right) y$. Now, by using left
invertive law, medial law and paramedial law we get,

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a=\left(y\left(x\left(\left(x a^{2}\right) y\right)\right)\right) a \\
& =\left(y\left(\left(x a^{2}\right)(x y)\right)\right) a=\left(\left(x a^{2}\right)(y(x y))\right) a=\left(\left(x a^{2}\right)(x(y y))\right) a \\
& =\left(\left(x a^{2}\right)\left(x y^{2}\right)\right) a=\left((x x)\left(a^{2} y^{2}\right)\right) a=\left(x^{2}\left(a^{2} y^{2}\right)\right) a \\
& =\left(a^{2}\left(x^{2} y^{2}\right)\right) a=\left((a a)\left(x^{2} y^{2}\right)\right) a=\left(\left(y^{2} a\right)\left(x^{2} a\right)\right) a \\
& =\left(\left(y^{2} x^{2}\right)(a a)\right) a=\left(a\left(\left(y^{2} x^{2}\right) a\right)\right) a=\left(a\left(\left(y^{2} x^{2}\right)\left(\left(x a^{2}\right) y\right)\right)\right) a \\
& =\left(a\left(\left(x a^{2}\right)\left(\left(y^{2} x^{2}\right) y\right)\right) a=\left(a\left(\left(x\left(y^{2} x^{2}\right)\right)\left(a^{2} y\right)\right)\right) a\right. \\
& =\left(a\left(a^{2}\left(\left(x\left(y^{2} x^{2}\right)\right) y\right)\right) a=\left(a^{2}\left(a\left(\left(x\left(y^{2} x^{2}\right)\right) y\right)\right)\right) a\right. \\
& =\left((a a)\left(a\left(\left(x\left(y^{2} x^{2}\right)\right) y\right)\right)\right) a=\left(\left(\left(a\left(\left(x\left(y^{2} x^{2}\right)\right) y\right)\right) a\right) a\right) a .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
&\left(\left(f \circ_{k} g\right) \circ_{k} f\right)(a) \\
&= \bigvee_{a=p q}\left(f \circ_{k} g\right)(p) \wedge f(q) \wedge \frac{1-k}{2} \\
&= \bigvee_{a=p q}\left(\left\{\bigvee_{p=u v} f(u) \wedge g(v) \wedge \frac{1-k}{2}\right\} \wedge f(q) \wedge \frac{1-k}{2}\right) \\
&=\bigvee_{a=(u v) q}\left(\{f(u) \wedge g(v)\} \wedge f(q) \wedge \frac{1-k}{2}\right) \\
&= a=\left(\left(\left(a\left(\left(x\left(y^{2} x^{2}\right)\right) y\right)\right) a\right) a\right) a=(u v) q \\
& \geq\left.\left.\left\{f\left(a\left(\left(x\left(y^{2} x^{2}\right)\right) y\right)\right)\right) a\right) \wedge g(a)\right\} \wedge f(a) \wedge \frac{1-k}{2} \\
& \geq\left\{\left(f(a) \wedge \frac{1-k}{2}\right) \wedge g(a)\right\} \wedge f(a) \wedge \frac{1-k}{2} \\
&=\{f(a) \wedge g(a)\} \wedge f(a) \wedge \frac{1-k}{2} \\
&= f(a) \wedge g(a) \wedge f(a) \wedge \frac{1-k}{2} \\
&=(f \wedge g)(a) \wedge \frac{1-k}{2}=\left(f \wedge_{k} g\right)(a) .
\end{aligned}
$$

So, $f \wedge_{k} g \leq\left(f \circ_{k} g\right) \circ_{k} f$.
$(i v) \Longrightarrow(i i i):$ is obvious.
$(i i i) \Longrightarrow(i i)$: Assume that B_{1} and B_{2} are bi-ideals of S. Then $\left(C_{B_{1}}\right)_{k}$ and $\left(C_{B_{2}}\right)_{k}$ are $\left(\in, \in \vee q_{k}\right)$-fuzzy bi-ideals. Thus we have, $\left(C_{B_{1} \cap B_{2}}\right)_{k}=$ $\left(C_{B_{1}} \wedge_{k} C_{B_{2}}\right) \leq\left(C_{B_{1}} \circ_{k} C_{B_{2}}\right) \circ_{k} C_{B_{1}}=\left(C_{\left(B_{1} B_{2}\right) B_{1}}\right)_{k}$. Hence, $B_{1} \cap B_{2} \subseteq$ $\left(B_{1} B_{2}\right) B_{1}$.
$(i i) \Longrightarrow(i)$: Since $S a$ is a bi-ideal of S contains a. Thus, using (ii), and medial law we have,

$$
a \in S a \cap S a \subseteq((S a)(S a)) S a=((S S)(a a))(S S)=\left(S a^{2}\right) S
$$

Hence, S is intra-regular.
Theorem 287 For an AG-groupoid S with left identity, the following are equivalent.
(i) S is intra-regular. (ii) For left ideals, L_{1}, L_{2} of $S, L_{1} \cap L_{2} \subseteq L_{1} L_{2} \cap$ $L_{2} L_{1}$. (iii) For $\left(\in, \in \vee q_{k}\right)$-fuzzy left ideals, f, g of $S, f \wedge_{k} g \leq f \circ_{k} g \wedge g \circ_{k} f$.

Proof. $(i) \Longrightarrow($ iii $)$: Let f and g be $\left(\in, \in \vee q_{k}\right)$-fuzzy left ideals of an intraregular AG-groupoid S respectively. Since S is intra-regular therefore for $a \in S$ there exists $x, y \in S$ such that $a=\left(x a^{2}\right) y$. Now, using left invertive law we get,
$a=\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a$. Therefore,

$$
\begin{aligned}
\left(f \circ_{k} g\right)(a) & =\bigvee_{a=p q} f(p) \wedge g(q) \wedge \frac{1-k}{2} \\
& =\bigvee_{a=(y(x a)) a=p q} f(p) \wedge g(q) \wedge \frac{1-k}{2} \\
& \geq f(y(x a)) \wedge g(a) \wedge \frac{1-k}{2} \\
& \geq\left(f(a) \wedge \frac{1-k}{2}\right) \wedge g(a) \wedge \frac{1-k}{2} \\
& =f(a) \wedge g(a) \wedge \frac{1-k}{2}=\left(f \wedge_{k} g\right)(a)
\end{aligned}
$$

Thus, $f \wedge_{k} g \leq f \circ_{k} g$. Similarly, we can show that $f \wedge_{k} g \leq g \circ_{k} f$. Thus, we have $f \wedge_{k} g \leq f \circ_{k} g \cap g \circ_{k} f$.
$($ iii $) \Longrightarrow(i i):$ Assume that L_{1} and L_{2} be any left ideals of S. Then, $\left(C_{L_{1}}\right)_{k}$ and $\left(C_{L_{2}}\right)_{k}$ are $\left(\in, \in \vee q_{k}\right)$-fuzzy left ideals of S therefore, we have,

$$
\left(C_{L_{1} \cap L_{2}}\right)_{k}=\left(C_{L_{1}} \wedge_{k} C_{L_{2}}\right) \leq\left(C_{L_{1}} \circ_{k} C_{L_{2}}\right)=\left(C_{L_{1} L_{2}}\right)_{k}
$$

This implies that $L_{1} \cap L_{2} \subseteq L_{1} L_{2}$. Similarly, we can show that $L_{1} \cap L_{2} \subseteq$ $L_{2} L_{1}$. Thus, $L_{1} \cap L_{2} \subseteq L_{1} L_{2} \cap L_{2} L_{1}$.
$(i i) \Longrightarrow(i)$: Since $S a$ is a left ideal of S contains a. Thus, using (ii), paramedial law, medial law, we get,

$$
\begin{aligned}
a & \in S a \cap S a \subseteq(S a)(S a) \cap(S a)(S a) \subseteq(S a)(S a)=(a a)(S S) \\
& =S((a a) S)=(S S)((a a) S)=\left(S a^{2}\right) S S=\left(S a^{2}\right) S
\end{aligned}
$$

Hence, S is intra-regular.

Theorem 288 For an AG-groupoid S with left identity, the following are equivalent.
(i) S is intra-regular. (ii) For bi-ideal B, right ideal R, and left ideal L of $S, B \cap R \cap L \subseteq(B R) L$ and R is semiprime. (iii) For $\left(\in, \in \vee q_{k}\right)$-fuzzy bi-ideal $f,\left(\in, \in \vee q_{k}\right)$-fuzzy right ideal g, and $\left(\in, \in \vee q_{k}\right)$-fuzzy left ideal h of $S,\left(f \wedge_{k} g\right) \wedge_{k} h \leq\left(f \circ_{k} g\right) \circ_{k} h$ and g is $\left(\in, \in \vee q_{k}\right)$-fuzzy semiprime. (iv) For $\left(\in, \in \vee q_{k}\right)$-fuzzy bi-ideal $f,\left(\in, \in \vee q_{k}\right)$-fuzzy interior ideal g, and $(\in, \in$ $\left.\vee q_{k}\right)$-fuzzy left ideal h of $S,\left(f \wedge_{k} g\right) \wedge_{k} h \leq\left(f \circ_{k} g\right) \circ_{k} h$ and g is $\left(\in, \in \vee q_{k}\right)$ fuzzy semiprime. (v) For $\left(\in, \in \vee q_{k}\right)$-fuzzy generalized bi-ideal $f,\left(\in, \in \vee q_{k}\right)$ fuzzy generalized interior ideal g, and $\left(\in, \in \vee q_{k}\right)$-fuzzy left ideal h of S, $\left(f \wedge_{k} g\right) \wedge_{k} h \leq\left(f \circ_{k} g\right) \circ_{k} h$ and g is $\left(\in, \in \vee q_{k}\right)$-fuzzy semiprime.

Proof. $(i) \Longrightarrow(v)$: Let f, g, h are $\left(\in, \in \vee q_{k}\right)$-fuzzy generalized bi, fuzzy generalized interior and fuzzy left ideals of an intra-regular AG-groupoid S respectively. Now, as S is an intra-regular AG-groupoid so for $a \in S$ there exists $x, y \in S$ such that using left invertive law we get,

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=\left(a\left(x\left(\left(x a^{2}\right) y\right)\right)\right) y \\
& =\left(a\left(\left(x a^{2}\right)(x y)\right)\right) y=\left(y\left(\left(x a^{2}\right)(x y)\right)\right) a=(y((x(a a))(x y))) a \\
& =(y((a(x a))(x y))) a=((a(x a))(y(x y))) a=(((y(x y))(x a)) a) a \\
& =(a a)((y(x y))(x a))
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \left(\left(f \circ_{k} g\right) \circ_{k} h\right)(a) \\
= & \bigvee_{a=p q}\left(f \circ_{k} g\right)(p) \wedge h(q) \wedge \frac{1-k}{2} \\
= & \bigvee_{a=p q}\left\{\left(\bigvee_{p=u v}(f(u) \wedge g(v)) \wedge \frac{1-k}{2}\right) \wedge h(q) \wedge \frac{1-k}{2}\right\} \\
= & \bigvee_{a=(u v) q}(f(u) \wedge g(v)) \wedge h(q) \wedge \frac{1-k}{2} \\
= & \bigvee_{a=(u v) q=(a a)((y(x y))(x a))}(f(u) \wedge g(v)) \wedge h(q) \wedge \frac{1-k}{2} \\
\geq & (f(a) \wedge g(a)) \wedge h((y(x y))(x a)) \wedge \frac{1-k}{2} \\
= & (f(a) \wedge g(a)) \wedge\left(h(a) \wedge \frac{1-k}{2}\right) \wedge \frac{1-k}{2} \\
\geq & (f(a) \wedge g(a)) \wedge h(a) \wedge \frac{1-k}{2} \\
= & \left(\left(f \wedge_{k} g\right) \wedge k h\right)(a)
\end{aligned}
$$

Thus, $\left(f \wedge_{k} g\right) \wedge_{k} h \leq\left(f \circ_{k} g\right) \circ_{k} h$. As given that S is intra-regular so for $a \in S$ there exists $x, y \in S$ such that $a=\left(x a^{2}\right) y$. This implies that
$g(a)=g\left(\left(x a^{2}\right) y\right) \geq g\left(a^{2}\right)$.
$(v) \Longrightarrow(i v) \Longrightarrow(i i i)$: are obvious.
$($ iii $) \Longrightarrow(i i):$ Assume that B be any bi, R be right and L be left ideal of S respectively. Now $\left(C_{B}\right)_{k},\left(C_{R}\right)_{k}$ and $\left(C_{L}\right)_{k}$ are $\left(\in, \in \vee q_{k}\right)$-fuzzy bi, right and left ideals of S respectively. Now, by $($ iiii $)\left(C_{R}\right)_{k}$ is fuzzy semiprime. Therefore R is semiprime. Thus we have

$$
\left(C_{(B \cap R) \cap L}\right)_{k}=\left(C_{B} \wedge_{k} C_{R}\right) \wedge_{k} C_{L} \leq\left(C_{B} \circ_{k} C_{R}\right) \circ_{k} C_{L}=\left(C_{(B R) L}\right)_{k}
$$

Hence, $(B \cap R) \cap L \subseteq(B R) L$.
$(i i) \Longrightarrow(i)$: We know that $S a$ is both bi and left ideal and $S a^{2}$ right ideal of S containing a and a^{2}, respectively. And by (ii) $S a^{2}$ is semiprime. So,, $a \in S a^{2}$. Thus, using (ii), medial law we have,

$$
\begin{aligned}
a & \in\left(S a \cap S a^{2}\right) \cap S a \subseteq\left((S a)\left(S a^{2}\right)\right) S a=((S a) S)\left(\left(S a^{2}\right) S\right) \\
& =((S S) S)\left(\left(S a^{2}\right) S\right)=(S S)\left(\left(S a^{2}\right) S\right)=S\left(\left(S a^{2}\right) S\right. \\
& =\left(S a^{2}\right)(S S)=\left(S a^{2}\right) S
\end{aligned}
$$

Hence, S is intra-regular.

7.4 Regular AG-groupoids

In this section we have characterized regular Abel-Grassmann's groupoid in terms of its $\left(\in, \in \vee q_{k}\right)$-fuzzy ideals.

Definition 289 An element a of an AG-groupoid S is called regular if there exist x in S such that $a=(a x) a$ and S is called regular, if every element of S is regular.

Lemma 290 Let S be an AG-groupoid. If $a=a(a x)$, for some x in S. Then $a=a^{2} y$, for some y in S.

Proof. Using medial law, we get

$$
a=a(a x)=[a(a x)](a x)=(a a)((a x) x)=a^{2} y, \text { where } y=(a x) x
$$

Lemma 291 Let S be an AG-groupoid with left identity. If $a=a^{2} x$, for some x in S. Then $a=(a y) a$, for some y in S.
Proof. Using medial law, left invertive law, paramedial law and medial law, we get

$$
\begin{aligned}
a & =a^{2} x=(a a) x=\left(\left(a^{2} x\right)\left(a^{2} x\right)\right) x=\left(\left(a^{2} a^{2}\right)(x x)\right) x=\left(x x^{2}\right)\left(a^{2} a^{2}\right) \\
& \left.\left.=a^{2}\left(\left(x x^{2}\right) a^{2}\right)\right)=\left(\left(x x^{2}\right) a^{2}\right) a\right) a=\left(\left(a a^{2}\right)\left(x x^{2}\right)\right) a=\left(\left(x^{2} x\right)\left(a^{2} a\right)\right) a \\
& =\left[a^{2}\left\{\left(x^{2} x\right) a\right\}\right] a=\left[\left\{a\left(x^{2} x\right)\right\}(a a)\right] a=\left[a\left(\left\{a\left(x^{2} x\right)\right\} a\right)\right] a \\
& =(a y) a, \text { where } y=\left\{a\left(x^{2} x\right)\right\} a .
\end{aligned}
$$

Lemma 292 In $A G$-groupoid S, with left identity, the following holds.
(i) $(a S) a^{2}=(a S) a$.
(ii) $(a S)((a S) a)=(a S) a$.
(iii) $S((a S) a)=(a S) a$.
(iv) $(S a)(a S)=a(a S)$.
(v) $(a S)(S a)=(a S) a$.
(vi) $[a(a S)] S=(a S) a$.
(vi) $[(S a) S](S a)=(a S)(S a)$.
(vii) $(S a) S=(a S)$.
(viii) $S(S a)=S a$.
(ix) $S a^{2}=a^{2} S$.

Proof. It is easy.
Example 293 Let us consider an $A G$-groupoid $S=\{1,2,3\}$ in the following multiplication table.

\circ	1	2	3
1	1	1	1
2	1	1	3
3	1	2	1

It is easy to check that $\{1,2\}$ is the quasi-ideal of S. Clearly S is regular because $1=1 \circ 1,2=(2 \circ 3) \circ 2$ and $3=(3 \circ 2) \circ 3$. Let us define a fuzzy subset f on S as follows:
$f(x)=\left\{\begin{array}{l}0.9 \text { for } x=1 \\ 0.8 \text { for } x=2 \\ 0.6 \text { for } x=3\end{array}\right.$
Then clearly f is an $\left(\in, \in \vee q_{k}\right)$-fuzzy ideal of S.
Theorem 294 For an $A G$-groupoid S, with left identity, the following are equivalent.
(i) S is regular.
(ii) For bi-ideal B, ideal I and left ideal L of $S, B \cap I \cap L \subseteq(B I) L$.
(iii) $B[a] \cap I[a] \cap L[a] \subseteq(B[a] I[a]) L[a]$, for some a in S.

Proof. $(i) \Rightarrow(i i)$
Assume that B, I and L are bi-ideal, ideal and left ideal of a regular AGgroupoid S respectively. Let $a \in B \cap I \cap L$. This implies that $a \in I, a \in B$ and $a \in L$. Since S is regular so for $a \in S$ there exist $x \in S$ such that using left invertive law and (1), we have, $a=(a x) a=(((a x) a) x) a=$ $((x a)(a x)) a=(a((x a) x)) a=(B((S I) S)) L=(B I) L$.

Thus $B \cap I \cap L \subseteq(B I) L$.
$(i i) \Rightarrow(i i i)$ is obvious.
(iii) $\Rightarrow(i)$
$B[a]=a \cup a^{2} \cup(a S) a, I[a]=a \cup S a \cup a S$ and $L[a]=a \cup S a$ are principle bi-ideal, principle ideal and principle left ideal of S generated by a respectively. Thus by left invertive law and paramedial law we have,

$$
\begin{array}{ll}
& \left(a \cup a^{2} \cup(a S) a\right) \cap(a \cup S a \cup a S) \cap(a \cup S a) \\
\subseteq & \left(\left(a \cup a^{2} \cup(a S) a\right)(a \cup S a \cup a S)\right) \\
& (a \cup S a) \\
\subseteq & \{S(a \cup S a \cup a S)\}(a \cup S a) \\
\subseteq & \{S a \cup S(S a) \cup S(a S)\}(a \cup S a) \\
= & (S a \cup a S)(a \cup S a) \\
= & (S a) a \cup(S a)(S a) \cup(a S) a \cup(a S)(S a) \\
= & a^{2} S \cup a^{2} S \cup(a S) a \cup(a S) a \\
= & a^{2} S \cup(a S) a .
\end{array}
$$

Hence S is regular.

Theorem 295 For an AG-groupoid S, with left identity, the following are equivalent.
(i) S is regular
(ii) For $\left(\in, \in \vee q_{k}\right)$-fuzzy bi-ideal $f,\left(\in, \in \vee q_{k}\right)$-fuzzy ideal g, and $(\in, \in$ $\left.\vee q_{k}\right)$-fuzzy left ideal h of $S,\left(f \wedge_{k} g\right) \wedge_{k} h \leq\left(f \circ_{k} g\right) \circ_{k} h$.
(iii) For $\left(\in, \in \vee q_{k}\right)$-fuzzy generalized bi-ideal $f,\left(\in, \in \vee q_{k}\right)$-fuzzy ideal g, and $\left(\in, \in \vee q_{k}\right)$-fuzzy left ideal h of $S,\left(f \wedge_{k} g\right) \wedge_{k} h \leq\left(f \circ_{k} g\right) \circ_{k} h$.

Proof. $(i) \Rightarrow(i i i)$
Assume that f, g and h are $\left(\in, \in \vee q_{k}\right)$-fuzzy generalized bi-ideal, $(\in, \in$ $\left.\vee q_{k}\right)$-fuzzy ideal and $\left(\in, \in \vee q_{k}\right)$-fuzzy left ideal of a regular AG-groupoid S, respectively. Now since S is regular so for $a \in S$ there exist $x \in S$ such that using left invertive law we have, $a=(a x) a=(((a x) a) x) a=$
$((x a)(a x)) a=(a((x a) x)) a$. Thus,

$$
\begin{aligned}
\left(\left(f \circ_{k} g\right) \circ_{k} h\right)(a) & =\bigvee_{a=p q}\left(f \circ_{k} g\right)(p) \wedge h(q) \wedge \frac{1-k}{2} \\
& =\bigvee_{a=p q}\left(\left\{\bigvee_{p=u v} f(u) \wedge g(v) \wedge \frac{1-k}{2}\right\} \wedge h(q) \wedge \frac{1-k}{2}\right) \\
& =\bigvee_{a=(u v) q}\left(\{f(u) \wedge g(v)\} \wedge h(q) \wedge \frac{1-k}{2}\right) \\
& =\bigvee_{a=(a((x a) x)) a=(u v) q}\left(\{f(u) \wedge g(v)\} \wedge h(q) \wedge \frac{1-k}{2}\right) \\
& \geq\{f(a) \wedge g((x a) x)\} \wedge h(a) \wedge \frac{1-k}{2} \\
& \geq\left\{f(a) \wedge\left(g(a) \wedge \frac{1-k}{2}\right)\right\} \wedge h(a) \wedge \frac{1-k}{2} \\
& =\left\{f(a) \wedge g(a) \wedge \frac{1-k}{2}\right\} \wedge h(a) \wedge \frac{1-k}{2} \\
& =\left(\left(f \wedge_{k} g\right) \wedge_{k} h\right)(a) .
\end{aligned}
$$

Therefore $\left(f \wedge_{k} g\right) \wedge_{k} h \leq\left(f \circ_{k} g\right) \circ_{k} h$.
(iii) $\Rightarrow(i i)$ is obvious.
(ii) $\Longrightarrow(i)$

Assume that B, I and L are bi-ideal, ideal and left ideal of S respectively. Then $\left(C_{B}\right)_{k},\left(C_{I}\right)_{k}$ and $\left(C_{L}\right)_{k}$ are $\left(\in, \in \vee q_{k}\right)$-fuzzy bi-ideal, $\left(\in, \in \vee q_{k}\right)$ fuzzy ideal and $\left(\in, \in \vee q_{k}\right)$-fuzzy left ideal of S respectively. Therefore we have, $\left(C_{B \cap I \cup L}\right)_{k}=\left(C_{B} \wedge_{k} C_{I}\right) \wedge_{k} C_{L} \leq\left(C_{B} \circ_{k} C_{I}\right) \circ_{k} C_{L}=\left(C_{(B I) L}\right)_{k}=$ $\left(C_{(B I) L}\right)_{k}$. Therefore $B \cap I \cap L \subseteq(B I) L$. Hence S is regular.

Theorem 296 For an $A G$-groupoid S, with left identity, the following are equivalent.
(i) S is regular.
(ii) For left ideal L, ideal I and quasi-ideal Q of $S, L \cap I \cap Q \subseteq(L I) Q$.
(ii) $L[a] \cap I[a] \cap Q[a] \subseteq(L[a] I[a]) Q[a]$, for some a in S.

Proof. $(i) \Rightarrow(i i)$
Assume that L, I and Q are left ideal, ideal and quasi-ideal of regular AG-groupoid S. Let $a \in L \cap I \cap Q$. This implies that $a \in L, a \in I$ and $a \in Q$. Now since S is regular so for $a \in S$ there exist $x \in S$ such that using left invertive law and (1), we have, $a=(a x) a=(((a x) a) x) a=((x a)(a x)) a=$ $(a((x a) x)) a \in(L((S I) S)) Q \subseteq(L I) Q$. Thus $L \cap I \cap Q \subseteq(L I) Q$.
(ii) $\Rightarrow(i i i)$ is obvious.
(iii) $\Rightarrow(i)$
$L[a]=a \cup S a, I[a]=a \cup S a \cup a S$ and $Q[a]=a \cup(S a \cap a S)$ are left ideal, ideal and quasi-ideal of S generated a respectively. Thus by medial
law we have,

$$
\begin{aligned}
& (a \cup S a) \cap(a \cup S a \cup a S) \cap(a \cup(S a \cap a S)) \\
\subseteq & ((a \cup S a)(a \cup S a \cup a S)) \\
& (a \cup(S a \cap a S)) \\
\subseteq & \{(a \cup S a) S\}(a \cup a S) \\
= & \{a S \cup(S a) S\}(a \cup a S) \\
= & (a S)(a \cup a S) \\
= & (a S) a \cup(a S)(a S) \\
= & (a S) a \cup a^{2} S
\end{aligned}
$$

Hence S is regular.
Theorem 297 For an AG-groupoid S, with left identity, the following are equivalent.
(i) S is regular.
(ii) For $\left(\in, \in \vee q_{k}\right)$-fuzzy left ideal $f,\left(\in, \in \vee q_{k}\right)$-fuzzy ideal g, and $(\in, \in$ $\left.\vee q_{k}\right)$-fuzzy quasi-ideal h of S, $\left(f \wedge_{k} g\right) \wedge_{k} h \leq\left(f \circ_{k} g\right) \circ_{k} h$.

Proof. $(i) \Rightarrow(i i)$
Assume that f, g and h are $\left(\in, \in \vee q_{k}\right)$-fuzzy left ideal, $\left(\in, \in \vee q_{k}\right)$-fuzzy ideal and $\left(\epsilon, \in \vee q_{k}\right)$-fuzzy quasi-ideal of a regular AG-groupoid S, respectively. Now since S is regular so for $a \in S$ there exist $x \in S$ such that using left invertive law, we have, $a=(a x) a=(((a x) a) x) a=((x a)(a x)) a=$ $(a((x a) x)) a$. Thus,

$$
\begin{aligned}
& \left(\left(f \circ_{k} g\right) \circ_{k} h\right)(a) \\
= & \bigvee_{a=p q}\left(f \circ_{k} g\right)(p) \wedge h(q) \wedge \frac{1-k}{2} \\
= & \bigvee_{a=p q}\left(\left\{\bigvee_{p=u v} f(u) \wedge g(v) \wedge \frac{1-k}{2}\right\} \wedge h(q) \wedge \frac{1-k}{2}\right) \\
= & \bigvee_{a=(u v) q}\left(\{f(u) \wedge g(v)\} \wedge h(q) \wedge \frac{1-k}{2}\right) \\
= & \bigvee_{a=(a((x a) x)) a=(u v) q}\left(\{f(u) \wedge g(v)\} \wedge h(q) \wedge \frac{1-k}{2}\right) \\
\geq & \{f(a) \wedge g((x a) x)\} \wedge h(a) \wedge \frac{1-k}{2} \\
\geq & \left\{f(a) \wedge\left(g(a) \wedge \frac{1-k}{2}\right)\right\} \wedge h(a) \wedge \frac{1-k}{2} \\
= & \left\{f(a) \wedge g(a) \wedge \frac{1-k}{2}\right\} \wedge h(a) \wedge \frac{1-k}{2} \\
= & \left(\left(f \wedge_{k} g\right) \wedge_{k} h\right)(a) .
\end{aligned}
$$

Therefore $\left(f \wedge_{k} g\right) \wedge_{k} h \leq\left(f \circ_{k} g\right) \circ_{k} h$.
(ii) $\Longrightarrow(i)$

Assume that L, I and Q are left ideal, ideal and quasi-ideal of S respectively. Thus $\left(C_{L}\right)_{k},\left(C_{I}\right)_{k}$ and $\left(C_{Q}\right)_{k}$ are $\left(\in, \in \vee q_{k}\right)$-fuzzy left ideal, ($\in, \in \vee q_{k}$)-fuzzy ideal and $\left(\in, \in \vee q_{k}\right)$-fuzzy quasi-ideal of S respectively. Therefore we have, $\left(C_{L \cap I \cup Q}\right)_{k}=\left(C_{L} \wedge_{k} C_{I}\right) \wedge_{k} C_{Q} \leq\left(C_{L} \circ_{k} C_{I}\right) \circ_{k} C_{Q}=$ $\left(C_{(L I) Q}\right)_{k}=\left(C_{(L I) Q}\right)_{k}$. Therefore $L \cap I \cap Q \subseteq(L I) Q$. Hence S is regular.

Theorem 298 For an $A G$-groupoid S, with left identity, the following are equivalent.
(i) S is regular.
(ii) For bi-ideal B, ideal I and quasi-ideal Q of $S, B \cap I \cap Q \subseteq(B I) Q$.
(iii) $B[a] \cap I[a] \cap Q[a] \subseteq(B[a] I[a]) Q[a]$, for some a in S.

Proof. $(i) \Rightarrow(i i)$
Assume that B, I and Q are bi-ideal, ideal and quasi-ideal of regular AGgroupoid S. Let $a \in B \cap I \cap Q$. This implies that $a \in B, a \in I$ and $a \in Q$. Now since S is regular so for $a \in S$ there exist $x \in S$ such that using left invertive law and (1), we have, $a=(a x) a=(((a x) a) x) a=((x a)(a x)) a=$ $(a((x a) x)) a \in(B((S I) S)) Q \subseteq(B I) Q$. Thus $B \cap I \cap Q \subseteq(B I) Q$.
(ii) $\Rightarrow(i i i)$ is obvious.
(iii) $\Rightarrow(i)$

Since $B[a]=a \cup a^{2} \cup(a S) a, I[a]=a \cup S a \cup a S$ and $Q[a]=a \cup$ ($S a \cap a S$) are principle bi-ideal, principle ideal and principle quasi-ideal of S generated by a respectively. Thus by (ii) and medial law and left invertive law we have,

$$
\begin{array}{ll}
& \left(a \cup a^{2} \cup(a S) a\right) \cap(a \cup S a \cup a S) \cap(a \cup(S a \cap a S)) \\
\subseteq & \left(\left(a \cup a^{2} \cup(a S) a\right)(a \cup S a\right. \\
& \cup a S))(a \cup(S a \cap a S)) \\
\subseteq & (S(a \cup S a \cup a S))(a \cup a S) \\
= & (S a \cup S(S a) \cup S(a S))(a \cup a S) \\
= & (S a \cup S(S a) \cup S(a S))(a \cup a S) \\
= & (a S \cup S a)(a \cup a S) \\
= & (a S) a \cup(a S)(a S) \cup(S a) a \cup(S a)(a S) \\
= & (a S) a \cup a^{2} S \cup a(a S) .
\end{array}
$$

Hence S is regular.
Theorem 299 For an $A G$-groupoid S, with left identity, the following are equivalent.
(i) S is regular.
(ii) For $\left(\in, \in \vee q_{k}\right)$-fuzzy bi-ideal $f,\left(\in, \in \vee q_{k}\right)$-fuzzy ideal g, and $(\in, \in$ $\left.\vee q_{k}\right)$-fuzzy quasi ideal h of $S,\left(f \wedge_{k} g\right) \wedge_{k} h \leq\left(f \circ_{k} g\right) \circ_{k} h$.
(iii) For $\left(\in, \in \vee q_{k}\right)$-fuzzy generalized bi-ideal $f,\left(\in, \in \vee q_{k}\right)$-fuzzy ideal g, and $\left(\in, \in \vee q_{k}\right)$-fuzzy quasi ideal h of $S,\left(f \wedge_{k} g\right) \wedge_{k} h \leq\left(f \circ_{k} g\right) \circ_{k} h$.

Proof. $(i) \Rightarrow(i i i)$
Assume that f, g and h are $\left(\in, \in \vee q_{k}\right)$-fuzzy generalized bi-ideal, $(\in, \in$ $\left.\vee q_{k}\right)$-fuzzy ideal and $\left(\in, \in \vee q_{k}\right)$-fuzzy quasi ideal of a regular AG-groupoid S, respectively. Now since S is regular so for $a \in S$ there exist $x \in S$ such that using left invertive law, we have, $a=(a x) a=(((a x) a) x) a=$ $((x a)(a x)) a=(a((x a) x)) a$. Thus,

$$
\begin{aligned}
& \left(\left(f \circ_{k} g\right) \circ_{k} h\right)(a) \\
= & \bigvee_{a=p q}\left(f \circ_{k} g\right)(p) \wedge h(q) \wedge \frac{1-k}{2} \\
= & \bigvee_{a=p q}\left(\left\{\bigvee_{p=u v} f(u) \wedge g(v) \wedge \frac{1-k}{2}\right\} \wedge h(q) \wedge \frac{1-k}{2}\right) \\
= & \bigvee_{a=(u v) q}\left(\{f(u) \wedge g(v)\} \wedge h(q) \wedge \frac{1-k}{2}\right) \\
= & \bigvee_{a=(a((x a) x)) a=(u v) q}\left(\{f(u) \wedge g(v)\} \wedge h(q) \wedge \frac{1-k}{2}\right) \\
\geq & \{f(a) \wedge g((x a) x)\} \wedge h(a) \wedge \frac{1-k}{2} \\
\geq & \left\{f(a) \wedge\left(g(a) \wedge \frac{1-k}{2}\right)\right\} \wedge h(a) \wedge \frac{1-k}{2} \\
= & \left\{f(a) \wedge g(a) \wedge \frac{1-k}{2}\right\} \wedge h(a) \wedge \frac{1-k}{2} \\
= & \left(\left(f \wedge_{k} g\right) \wedge k h\right)(a) .
\end{aligned}
$$

Therefore $\left(f \wedge_{k} g\right) \wedge_{k} h \leq\left(f \circ_{k} g\right) \circ_{k} h$.
(iii) $\Rightarrow(i i)$ is obvious.
$(i i) \Longrightarrow(i)$
Assume that B, I and Q be bi-ideal, ideal and quasi-ideal of S respectively. Then $\left(C_{B}\right)_{k},\left(C_{I}\right)_{k}$ and $\left(C_{Q}\right)_{k}$ are $\left(\epsilon, \in \vee q_{k}\right)$-fuzzy bi-ideal, ($\in, \in \vee q_{k}$)-fuzzy ideal and $\left(\in, \in \vee q_{k}\right)$-fuzzy quasi-ideal of S respectively. Therefore we have, $\left(C_{B \cap I \cup Q}\right)_{k}=\left(C_{B} \wedge_{k} C_{I}\right) \wedge_{k} C_{Q} \leq\left(C_{B} \circ_{k} C_{I}\right) \circ_{k} C_{Q}=$ $\left(C_{(B I) Q}\right)_{k}=\left(C_{(B I) Q}\right)_{k}$. Therefore $B \cap I \cap Q \subseteq(B I) Q$. Hence S is regular.

Theorem 300 For an AG-groupoid S, with left identity, the following are equivalent.
(i) S is regular.
(ii) For an ideals I_{1}, I_{2} and I_{3} of $S, I_{1} \cap I_{2} \cap I_{3} \subseteq\left(I_{1} I_{2}\right) I_{3}$.
(iii) $I[a] \cap I[a] \cap I[a] \subseteq(I[a] I[a]) I[a]$, for some a in S.

Proof. $(i) \Rightarrow(i i)$
Assume that I_{1}, I_{2}, and I_{3} are ideals of a regular AG-groupoid S. Let $a \in I_{1} \cap I_{2} \cap I_{3}$. This implies that $a \in I_{1}, a \in I_{2}$ and $a \in I_{3}$. Now since S is regular so for $a \in S$ there exist $x \in S$ such that using left invertive law and (1), we have, $a=(a x) a=(((a x) a) x) a=((x a)(a x)) a=(a((x a) x)) a \in$ $\left(I_{1}\left(\left(S I_{2}\right) S\right)\right) I_{3} \subseteq\left(I_{1} I_{2}\right) I_{3}$. Thus $I_{1} \cap I_{2} \cap I_{3} \subseteq\left(I_{1} I_{2}\right) I_{3}$.
(ii) \Rightarrow (iii) is obvious.
(iii) $\Rightarrow(i)$

Since $I[a]=a \cup S a \cup a S$ is a principle ideal of S generated by a. Thus by (iii), left invertive law, medial law and paramedial law we have,

$$
\begin{aligned}
& (a \cup S a \cup a S) \cap(a \cup S a \cup a S) \cap(a \cup S a \cup a S) \\
\subseteq & ((a \cup S a \cup a S)(a \cup S a \cup a S))(a \cup S a \cup a S) \\
\subseteq & \{(a \cup S a \cup a S) S\}(a \cup S a \cup a S) \\
= & \{a S \cup(S a) S \cup(a S) S\}(a \cup S a \cup a S) \\
= & \{a S \cup S a\}(a \cup S a \cup a S) \\
= & (a S) a \cup(a S)(S a) \cup(a S)(a S) \cup(S a) a \\
& \cup(S a)(S a) \cup(S a)(a S) \\
= & (a S) a \cup a^{2} S .
\end{aligned}
$$

Hence S is regular.

Theorem 301 For an AG-groupoid S, with left identity, the following are equivalent.
(i) S is regular.
(ii) For quasi-ideals Q_{1}, Q_{2} and ideal I of $S, Q_{1} \cap I \cap Q_{2} \subseteq\left(Q_{1} I\right) Q_{2}$.
(iii) $Q[a] \cap I[a] \cap Q[a] \subseteq(Q[a] I[a]) Q[a]$, for some a in S.

Proof. $(i) \Rightarrow(i i)$
Assume that Q_{1} and Q are quasi-ideal and I is an ideal of a regular AGgroupoid S. Let $a \in Q_{1} \cap I \cap Q_{2}$. This implies that $a \in Q_{1}, a \in I$ and $a \in Q_{2}$. Now since S is regular so for $a \in S$ there exist $x \in S$ such that using left invertive law and (1), we have, $a=(a x) a=(((a x) a) x) a=((x a)(a x)) a=$ $(a((x a) x)) a \in\left(Q_{1}((S I) S)\right) Q_{2} \subseteq\left(Q_{1} I\right) Q_{2}$. Thus $Q_{1} \cap I \cap Q_{2} \subseteq\left(Q_{1} I\right) Q_{2}$.
(ii) $\Rightarrow(i i i)$ is obvious.
$(i i i) \Rightarrow(i)$
$Q[a]=a \cup(S a \cap a S)$ and $I[a]=a \cup S a \cup a S$ are principle quasi-ideal and principle ideal of S generated by a respectively. Thus by (iii), left invertive
law, medial law, we have,

$$
\begin{aligned}
& (a \cup(S a \cap a S)) \cap(a \cup S a \cup a S) \cap(a \cup(S a \cap a S)) \\
\subseteq & ((a \cup(S a \cap a S))(a \cup S a \cup a S)) \\
& (a \cup(S a \cap a S)) \\
\subseteq & \{(a \cup a S) S\}(a \cap a S) \\
= & \{a S \cup(a S) S\}(a \cap a S) \\
= & (a S \cup S a)(a \cap a S) \\
= & \{(a S) a \cup(a S)(a S) \cup(S a) a \cup(S a) a S a \\
= & (a S) a \cup a^{2} S \cup a(a S) .
\end{aligned}
$$

Hence S is regular.
Theorem 302 For an AG-groupoid S, with left identity, the following are equivalent.
(i) S is regular.
(ii) For $\left(\in, \in \vee q_{k}\right)$-fuzzy quasi-ideals f, h, and $\left(\in, \in \vee q_{k}\right)$-fuzzy ideal g, of $S,\left(f \wedge_{k} g\right) \wedge_{k} h \leq\left(f \circ_{k} g\right) \circ_{k} h$.

Proof. $(i) \Rightarrow(i i)$
Assume that f, h are $\left(\in, \in \vee q_{k}\right)$-fuzzy quasi-ideal and g is $\left(\in, \in \vee q_{k}\right)$ fuzzy ideal of a regular AG-groupoid S, respectively. Now since S is regular so for $a \in S$ there exist $x \in S$ such that using left invertive law, we have, $a=(a x) a=(((a x) a) x) a=((x a)(a x)) a=(a((x a) x)) a$. Thus,

$$
\begin{aligned}
& \left(\left(f \circ_{k} g\right) \circ_{k} h\right)(a) \\
= & \bigvee_{a=p q}\left(f \circ_{k} g\right)(p) \wedge h(q) \wedge \frac{1-k}{2} \\
= & \bigvee_{a=p q}\left(\left\{\bigvee_{p=u v} f(u) \wedge g(v) \wedge \frac{1-k}{2}\right\} \wedge h(q) \wedge \frac{1-k}{2}\right) \\
= & \bigvee_{a=(u v) q}\left(\{f(u) \wedge g(v)\} \wedge h(q) \wedge \frac{1-k}{2}\right) \\
= & \bigvee_{a=(a((x a) x)) a=(u v) q}\left(\{f(u) \wedge g(v)\} \wedge h(q) \wedge \frac{1-k}{2}\right) \\
\geq & \{f(a) \wedge g((x a) x)\} \wedge h(a) \wedge \frac{1-k}{2} \\
\geq & \left\{f(a) \wedge\left(g(a) \wedge \frac{1-k}{2}\right)\right\} \wedge h(a) \wedge \frac{1-k}{2} \\
= & \left\{f(a) \wedge g(a) \wedge \frac{1-k}{2}\right\} \wedge h(a) \wedge \frac{1-k}{2} \\
= & \left(\left(f \wedge_{k} g\right) \wedge_{k} h\right)(a) .
\end{aligned}
$$

Therefore $\left(f \wedge_{k} g\right) \wedge_{k} h \leq\left(f \circ_{k} g\right) \circ_{k} h$.
(ii) $\Longrightarrow(i)$

Assume that Q_{1} and Q_{2} are quasi-ideals and I is an ideal of S respectively. Thus $\left(C_{Q_{1}}\right)_{k},\left(C_{I}\right)_{k}$ and $\left(C_{Q_{2}}\right)_{k}$ are $\left(\in, \in \vee q_{k}\right)$-fuzzy quasi-ideal, $\left(\in, \in \vee q_{k}\right)$-fuzzy ideal and $\left(\epsilon, \in \vee q_{k}\right)$-fuzzy quasi-ideal of S respectively. Therefore we have,

$$
\begin{aligned}
\left(C_{Q_{1} \cap I \cup Q_{2}}\right)_{k} & =\left(C_{Q_{1}} \wedge_{k} C_{I}\right) \wedge_{k} C_{Q_{2}} \leq\left(C_{Q_{1}} \circ_{k} C_{L}\right) \circ_{k} C_{Q_{2}} \\
& =\left(C_{\left(Q_{1} I\right) Q_{2}}\right)_{k}=\left(C_{\left(Q_{1} I\right) Q_{2}}\right)_{k} .
\end{aligned}
$$

Therefore $Q_{1} \cap I \cap Q_{2} \subseteq\left(Q_{1} I\right) Q_{2}$. Hence S is regular.
Theorem 303 For an AG-groupoid S with left identity, the following are equivalent.
(i) S is regular.
(ii) For bi-ideal $B, B=(B S) B$.
(iii) For generalized bi-ideal $B, B=(B S) B$.

Proof. $(i) \Rightarrow(i i i)$
Assume that B is generalized bi-ideal of a regular AG-groupoid S. Clearly $(B S) B \subseteq B$. Let $b \in B$. Since S is regular so for $b \in S$ there exist $x \in S$ such that $b=(b x) b \in(B S) B$. Thus $B=(B S) B$.
(iii) $\Rightarrow(i i)$ is obvious.
(ii) $\Rightarrow(i)$

Since $I[a]=a \cup a^{2} \cup(a S) a$ is a principle bi-ideal of S generated by a respectively. Thus by (ii), we have,

$$
\begin{aligned}
& a \cup a^{2} \cup(a S) a \\
= & \left(\left(a \cup a^{2} \cup(a S) a\right) S\right)\left(a \cup a^{2} \cup(a S) a\right) \\
= & \left\{\left(a S \cup a^{2} S \cup((a S) a) S\right)\left(a \cup a^{2} \cup(a S) a\right)\right. \\
= & \left(a S \cup a^{2} S \cup a(a S)\right)\left(a \cup a^{2} \cup(a S) a\right) \\
= & (a S) a \cup(a S) a^{2} \cup(a S)((a S) a) \\
& \cup\left(a^{2} S\right) a \cup\left(a^{2} S\right) a^{2} \cup\left(a^{2} S\right)((a S) a) \\
& \cup(a(a S)) a \cup(a(a S)) a^{2} \cup(a(a S))((a S) a) \\
= & (a S) a \cup a^{2} S \cup(a S) a \cup a^{2} S \cup a^{2} S \cup a^{2} S \\
& \cup(a S) a \cup(a S) a \cup(a S) a \\
= & a^{2} S \cup(a S) a .
\end{aligned}
$$

Hence S is regular.
Theorem 304 For an AG-groupoid S, with left identity, the following are equivalent.
(i) S is regular.
(ii) For $\left(\in, \in \vee q_{k}\right)$-fuzzy bi-ideal f, of $S, f_{k}=\left(f \circ_{k} S\right) \circ_{k} f$.
(iii) For $\left(\in, \in \vee q_{k}\right)$-fuzzy generalized bi-ideal f, of S, $f_{k}=\left(f \circ_{k} S\right) \circ_{k} f$.

Proof. $(i) \Rightarrow(i i i)$
Assume that f is $\left(\in, \in \vee q_{k}\right)$-fuzzy generalized bi-ideal of a regular AGgroupoid S. Since S is regular so for $b \in S$ there exist $x \in S$ such that $b=(b x) b$. Therefore we have,

$$
\begin{aligned}
& \left(\left(f \circ_{k} S\right) \circ_{k} f\right)(b) \\
= & \bigvee_{b=p q}\left(f \circ_{k} S\right)(p) \wedge f(q) \wedge \frac{1-k}{2} \\
= & \bigvee_{b=p q}\left(\left\{\bigvee_{p=u v} f(u) \wedge S(v) \wedge \frac{1-k}{2}\right\} \wedge f(q) \wedge \frac{1-k}{2}\right) \\
= & \bigvee_{b=(u v) q}\left(\{f(u) \wedge S(v)\} \wedge f(q) \wedge \frac{1-k}{2}\right) \\
= & \bigvee_{b=(b x) b=(u v) q}\left(\{f(u) \wedge S(v)\} \wedge f(q) \wedge \frac{1-k}{2}\right) \\
\geq & \{f(b) \wedge S(x)\} \wedge f(b) \wedge \frac{1-k}{2} \\
\geq & f(b) \wedge 1 \wedge f(b) \wedge \frac{1-k}{2} \\
= & f(b) \wedge \frac{1-k}{2}=f_{k}(b) .
\end{aligned}
$$

Thus $\left(f \circ_{k} S\right) \circ_{k} f \geq f_{k}$. Since f is $\left(\in, \in \vee q_{k}\right)$-fuzzy generalized bi-ideal of a regular AG-groupoid S. So we have,

$$
\begin{aligned}
& \left(\left(f \circ_{k} S\right) \circ_{k} f\right)(b) \\
= & \bigvee_{b=p q}\left(f \circ_{k} S\right)(p) \wedge f(q) \wedge \frac{1-k}{2} \\
= & \bigvee_{b=p q}\left(\left\{\bigvee_{p=u v} f(u) \wedge S(v) \wedge \frac{1-k}{2}\right\} \wedge f(q) \wedge \frac{1-k}{2}\right) \\
= & \bigvee_{b=p q}\left(\left\{\bigvee_{p=u v} f(u) \wedge 1\right\} \wedge f(q) \wedge \frac{1-k}{2}\right) \\
= & \bigvee_{b=p q}\left(\bigvee_{p=u v} f(u) \wedge f(q) \wedge \frac{1-k}{2}\right) \\
= & \bigvee_{b==p q}\left\{\bigvee_{p=u v}\left(f(u) \wedge f(q) \wedge \frac{1-k}{2}\right)\right\} \\
\leq & \bigvee^{2}\left(f((u v) q) \wedge \frac{1-k}{2}\right) \\
= & f(b) \wedge \frac{1-k}{2}=f_{k}(b) .
\end{aligned}
$$

This implies that $\left(f \circ_{k} S\right) \circ_{k} f \leq f_{k}$. Thus $\left(f \circ_{k} S\right) \circ_{k} f=f_{k}$.
(iii) $\Rightarrow(i i)$ is obvious.
(ii) $\Longrightarrow(i)$

Assume that B is a bi-ideal of S. Then $\left(C_{B}\right)_{k}$, is an $\left(\in, \in \vee q_{k}\right)$-fuzzy biideal of S. Therefore by by (ii) and, we have, $\left(C_{B}\right)_{k}=\left(C_{B} \circ_{k} C_{S}\right) \circ_{k} C_{B}=$ $\left(C_{(B S) B}\right)_{k}$. Therefore $B=(B S) B$. Hence S is regular.

8

Interval Valued Fuzzy Ideals of AG-groupoids

In this chapter we discuss interval valued fuzzy ideals of AG-groupoids.

8.1 Basics

Definition 305 An interval value fuzzy subset \widetilde{f} on $A G$-groupoid is called an interval value $\left(\in, \in, \vee q_{k)}\right.$ fuzzy $A G$-subgroupiod of S if $x_{\tilde{t}} \in \widetilde{f}$ and $y_{\widetilde{s}} \in \widetilde{f}$ this implies that $(x y)_{\min \{\tilde{t}, \tilde{s}\}} \in \vee q_{k} \tilde{f}$ for all $x, y \in S$ and $\tilde{t}, \tilde{s} \in D[0,1]$.

Definition 306 An interval valued fuzzy subset \tilde{f} on an $A G$-groupiod is called an interval $\left(\in, \in \vee_{q k}\right)$ fuzzy left(respt right) ideal of an $A G$-groupiod of S If $y_{\tilde{t}} \in \tilde{f}$ This implies that $(x y)_{\tilde{t}} \in \vee q_{k} \widetilde{f}$ (respt $x_{\tilde{t}} \in \widetilde{f}$ implies that $\left.(x y)_{\tilde{t}} \in \vee q_{k} \widetilde{f}\right)$.

Definition 307 A fuzzy subset \tilde{f} of an $A G$-groupiod S is called an interval valued $\left(\in, \in \vee q_{k}\right)$-fuzzy semi prime if $x_{\tilde{t}}^{2} \in \widetilde{f}$ implies that $x_{\tilde{t}} \in \widetilde{f}$ for all $x \in S$.

Theorem 308 An interval value fuzzy subset \widetilde{f} of an $A G$-groupoid S is an interval valued $\left(\in, \in, \vee q_{k}\right)$-fuzzy $A G$-sub groupoid if and only if $\widetilde{f}(x y) \geq$ $\min \left\{\widetilde{f}(x), \widetilde{f}(y), \frac{1-k}{2}\right\}$.
$\underset{\sim}{\text { Proof. Let }} x, y_{\tilde{f}} \in S$ and $\tilde{t}, \tilde{s} \in D[0,1]$. We assume that $x, y \in S$ such that $\widetilde{f}(x y)<\min \{\widetilde{f}(x), \widetilde{f}(y)\}$. we choose $\tilde{t} \in D[0,1]$ such that $\widetilde{f}(x y)<\tilde{t} \leq$ $\min \{\widetilde{f}(x), \widetilde{f}(y)\}$ this implies that $(x y)_{\tilde{t}} \overline{\in q_{k}} \tilde{f}$ and $\min \left\{\widetilde{f}(x), \widetilde{f}(y), \frac{1-k}{2}\right\} \geq$ \tilde{t} This implies that $\tilde{f}(x) \geq \tilde{t}$ and $\widetilde{f}(y) \geq \tilde{t}$ further $x_{\tilde{t}} \in \widetilde{f}$ and $y_{\tilde{t}} \in \widetilde{f}$ but $(x y)_{t \sim \bar{\epsilon} \vee q_{k}} \widetilde{f} \cdot$ which is contradiction due to our wrong supposition so $\widetilde{f}(x y) \geq \min \left\{\widetilde{f}(x), \widetilde{f}(y), \frac{1-k}{2}\right\}$

Conversely, suppose that $\widetilde{f}(x y) \geq \min \left\{\widetilde{f}(x), \widetilde{f}(y), \frac{1-k}{2}\right\} . x_{\tilde{t}} \in \widetilde{f}$ and $y_{\tilde{s}} \in$ \widetilde{f} for $\tilde{t}, \tilde{s} \in D[0,1]$ then by definition we write it as $\tilde{f}(x) \geq \tilde{t}$ and $\widetilde{f}(y) \geq \tilde{t}$ so $\widetilde{f}(x y) \geq\{\widetilde{f}(x), \widetilde{f}(y)\} \geq \min \left\{\tilde{t}, \frac{1-k}{2}\right\}$. Here arises two cases:

Case(i): If $\tilde{t} \leq \frac{1-k}{2}$. Then $\tilde{f}(x y) \geq \tilde{t}$ it mean that $(x y)_{t \sim} \sim \tilde{f}$.
Case(ii) If $\tilde{t}>\frac{1-k}{2}$. Then $\tilde{f}(x y)+\tilde{t}+\frac{1-k}{2}>[1,1]$ that as $(x y)_{\tilde{t}} \in q \widetilde{f}$
From both cases we get $(x y)_{\tilde{t}} \in \vee q_{k} \widetilde{f}$. Therefore \widetilde{f} is an $\left(\in, \in, \vee q_{k}\right)$ fuzzy $A G$-groupiod of S.

Lemma 309 If L is a left ideal if and only if $\left(C_{l}\right)_{k}$ is $\left(\in, \in \vee_{q_{k}}\right)$ fuzzy left ideal of S.

Proof. (i) Let $x \in L$ and $s \in S$ this implies that $x s \in L$ now by definition we have $\left(C_{L}\right)_{k}(x) \geq[1,1]$ and $\left(C_{L}\right)(x s) \geq[1,1]$ therefore

$$
\left(C_{L}\right)_{k}(x s) \geq \min \left\{\left(C_{L}\right)_{k}(x), \frac{1-k}{2}\right\}
$$

(ii)If $x \notin L$ and $s \in S$ This implies that $x s \notin L$. Then by definition we have $\left(C_{L}\right)_{k}(x) \geq[0,0]$ and $\left(C_{L}\right)_{k}(x s) \geq[0,0]$

$$
\left(C_{L}\right)_{k}(x s) \geq \min \left\{\left(C_{L}\right)_{k}(x), \frac{1-k}{2}\right\}
$$

Conversely let $x \in L, y \in S$ Now we have to prove that $x y \in L$ Then by definition we get $\left(C_{L}\right)_{k}(x) \geq[1,1]$ and now we get

$$
\left(C_{L}\right)_{k}(x y) \geq\left\{\left(C_{L}\right)_{k}(x), \frac{1-k}{2}\right\} \geq\left\{[1,1], \frac{1-k}{2}\right\} \geq \frac{1-k}{2}
$$

so we have

$$
\left(C_{L}\right)_{k}(x y) \geq \frac{1-k}{2}
$$

This implies that $x y \in L$.
Theorem 310 An interval valued fuzzy subset \widetilde{f} of an $A G$-groupiod S is an interval value $\left(\in, \in \vee q_{k}\right)$ fuzzy left ideal if and if

$$
\tilde{f}(x y) \geq \min \left\{\tilde{f}(y), \frac{1-k}{2}\right\}
$$

Proof. Let $x, y \in S$ and $\tilde{t}, \tilde{s} \in D[0,1]$. Let \widetilde{f} be an $\left(\in, \in \vee q_{k}\right)$ fuzzy AGgroupiod of S on contrary we assume that $x, y \in S$ Such that $\widetilde{f}(x y) \leq \widetilde{f}(y)$ we choose $\tilde{t} \in D[0,1]$ such that

$$
\widetilde{f}(x y)<\tilde{t} \leq \min \left\{\tilde{f}(y), \frac{1-k}{2}\right\}
$$

Then we have $\tilde{f}(y) \geq \tilde{t}$ This implies that $y_{\tilde{t}} \in \tilde{f}$ and $\tilde{f}(x y)<\tilde{t}$. This implies that $(x y)_{\tilde{t}} \in \vee q_{k} \tilde{f}$ but this is contradiction due to our wrong supposition Hence

$$
\widetilde{f}(x y) \geq \min \left\{\tilde{f}(y), \frac{1-k}{2}\right\}
$$

Conversely let $x, y \in S$ and $\tilde{t}, \tilde{s} \in D[0,1]$ and $y_{\tilde{t}} \in \widetilde{f}$. Now by definition we have

$$
\widetilde{f}(x y) \geq \min \left\{\tilde{t}, \frac{1-k}{2}\right\}
$$

Here we consider two cases:
(i) if $\tilde{t} \leq \frac{1-k}{2}$. Then we have $\tilde{f}(x y) \geq \tilde{t}$ This implies that $(x y)_{\tilde{t}} \in \widetilde{f}$
(ii) If $\tilde{t}>\frac{1-k}{2}$. Then we have

$$
\widetilde{f}(x y)+\tilde{t}+k>[1,1] .
$$

This implies that $(x y)_{\tilde{t}} \in q_{k} \tilde{f}$. From both cases we have to prove $(x y)_{\tilde{t}} \in$ $\vee q_{k} \widetilde{f}$

Theorem 311 An interval valued fuzzy subset \tilde{f} of an $A G$-groupiod S is called an interval valued $\left(\in, \in \vee q_{k}\right)$ fuzzy left ideal of S If and only if $U($ $\tilde{f}, \tilde{t})$ is left ideal of S for all $[0,0]<\tilde{t} \leq \frac{1-k}{2}$.

Proof. Assume that \widetilde{f} is an $\left(\epsilon, \in \vee q_{k}\right)$ fuzzy left ideal of S. Let us consider $y \in U(\widetilde{f}, \tilde{t})$ then $\widetilde{f}(y) \geq \tilde{t}$. Then we write $\widetilde{f}(x y) \geq \min \left\{\widetilde{f}(y), \frac{1-k}{2}\right\} \geq$ $\min \left\{\tilde{t}, \frac{1-k}{2}\right\} \geq \tilde{t}$ this implies that $\tilde{f}(x y) \geq \tilde{t}$, this implies that $x y \in U(\tilde{f}, \tilde{t})$. Hence $U(\tilde{f}, \tilde{t})$ is left ideal of S.

Conversely Let $x, y \in L$ and $\tilde{t} \in D[0,1]$. Assume that $\widetilde{f}(x y)<\tilde{t} \leq\{$ $\left.\tilde{f}(y), \frac{1-k}{2}\right\}$. Then $\tilde{f}(x y)<\tilde{t}$. This implies that $\widetilde{f}(x y)+\tilde{t}+k<[1,1]$ further implies that $(x y) \overline{\in \vee q}_{k} U(\tilde{f}, \tilde{t})$ and $\left\{\tilde{f}(y), \frac{1-k}{2}\right\} \geq \tilde{t}, \tilde{f}(y) \geq \tilde{t}$ this implies that $y \in U(\tilde{f}, \tilde{t})$ but $x y \overline{\mathcal{V q}}_{k} U(\tilde{f}, \tilde{t})$. This is contradiction due to our wrong supposition. Thus $\widetilde{f}(x y) \geq \min \left\{\widetilde{f}(y), \frac{1-k}{2}\right\}$.

8.2 Main Results using Interval-valued Generalized Fuzzy Ideals

Theorem 312 Let S be an AG-groupiod with left identity then the following condition are equivalent.
(i) S is intra regular.
(ii) For every left ideal L and for any subset $I, L \cap I \subseteq L I$.
(iii) For every interval-valued $\left(\in, \in \vee q_{k}\right)$ fuzzy left ideal \widetilde{f} and for every interval-valued $\left(\in, \in \vee q_{k}\right)$ be any fuzzy subset \tilde{g} then $\tilde{f} \wedge_{k} \tilde{g} \leq \tilde{f} \circ_{k} \tilde{g}$.

Proof. $(i) \Longrightarrow$ (iii) Assume that S is intra regular AG-groupiod and \widetilde{f} and \tilde{g} are interval-valued $\left(\epsilon, \in \vee q_{k}\right)$ fuzzy left and interval-valued $\left(\epsilon, \in \vee q_{k}\right)$ be any fuzzy subset of S. Since S is intra regular therefore for any a in S Then their exist $x, y \in S$ such that

$$
a=\left(x a^{2}\right) y=(x(a a) y)=(a(x a)) y=y(x a) a .
$$

For any a in S, their exist u and v in S Such that $a=u v$ then we have

$$
\begin{aligned}
\left(\widetilde{f} \circ_{k} \tilde{g}\right)(a) & =\vee_{a=u v}\left(\widetilde{f}(u) \wedge \tilde{g}(v) \wedge \frac{1-k}{2}\right) \\
& \geq\left\{\tilde{f}\left(y(x a) \wedge \tilde{g}(a) \wedge \frac{1-k}{2}\right\} \wedge \frac{1-k}{2}\right. \\
& \geq\left\{\tilde{f}(x a) \wedge \tilde{g}(a) \wedge \frac{1-k}{2}\right\} \wedge \frac{1-k}{2} \\
& \geq \tilde{f}(a) \wedge \tilde{g}(a) \wedge \frac{1-k}{2} \\
& =(\tilde{f} \wedge \tilde{g})(a) \wedge \frac{1-k}{2} \\
& =\left(\tilde{f} \wedge_{k} \tilde{g}\right)(a)
\end{aligned}
$$

This implies that $\widetilde{f} \wedge_{k} \tilde{g} \leq \tilde{f} \circ_{k} \tilde{g}$.
(iii) $\Longrightarrow($ ii $)$ Now let us assume that L be any left ideal and I be any subset of S. Now $\left(C_{L}\right)_{k}$ and $\left(C_{I}\right)_{k}$ are the interval-valued $\left(\in, \in \vee q_{k}\right)$ fuzzy left and interval-valued $\left(\in, \in \vee q_{k}\right)$ be fuzzy subset of S. Therefore

$$
\left(C_{L \cap I}\right)=\left(C_{L} \wedge_{k} C_{I}\right) \subseteq C_{L} \circ_{k} C_{I}=\left(C_{L I}\right)_{k} \subseteq\left(C_{L I}\right)_{k}
$$

this implies that $L \cap I \subseteq L I$.
Now $(i i) \Longrightarrow(i) L \cap I \subseteq L I$.
$a \in S a \cap S a \subseteq(S a)(S a)=(S S)(a a)=S a^{2}=\left(S a^{2}\right) S$. Hence S is intra-regular.

Theorem 313 Let S be an AG-groupiod with left identity then following condition are equivalent.
(i) S is intra regular.
(ii) For any subset I and for any left ideal L Then $I \cap L \subseteq I L$.
(iii) For every interval valued $\left(\in, \in \vee q_{k}\right)$ fuzzy subset \widetilde{f} and for every interval valued $\left(\in, \in \vee q_{k}\right)$ fuzzy left ideal \tilde{g} then $\widetilde{f} \wedge_{k} \tilde{g} \leq \widetilde{f} \circ_{k} \tilde{g}$.

Proof. $(i) \Longrightarrow(i i i)$ Let us assume that S is intra regular AG-groupiod and \tilde{f} are interval valued $\left(\in, \in \vee q_{k}\right)$ fuzzy subset and \tilde{g} are interval valued $\left(\in, \in \vee q_{k}\right)$ fuzzy left ideal of S. Since S is intra regular then for any $a \in S$ then their exist $x, y \in S$ such that

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=\left(x(a a) y=\left((a(x a)) y=y((x a)) a=y(x a)=y\left(x\left(x a^{2}\right) y\right)\right.\right. \\
& =y\left(\left(x a^{2}\right)\right)(x y)=\left(x a^{2}\right)\left(y(x y)=\left(x a^{2}\right)\left(x y^{2}\right)=\left(y^{2} x\right)\left(a^{2} x\right)\right. \\
& =\left(y^{2} a^{2}\right)\left(x^{2}\right)=\left(x^{2} a^{2}\right)\left(y^{2}\right)=a^{2}\left(\left(x^{2} y^{2}\right) a\right)
\end{aligned}
$$

For any a in S their exist u and v in S Such that $a=u v$ then

$$
\begin{aligned}
\left(\tilde{f} \circ_{k} \tilde{g}\right)(a) & =\vee_{a=u v}(\tilde{f}(u) \wedge \tilde{g}(v)) \wedge \frac{1-k}{2} \\
& \geq\left\{\tilde{f}(a) \wedge \tilde{g}\left(\left(x^{2} y^{2}\right) a\right) \wedge \frac{1-k}{2}\right\} \wedge \frac{1-k}{2} \\
& \geq\left\{\tilde{f}(a) \wedge \tilde{g}(a) \wedge \frac{1-k}{2}\right\} \wedge \frac{1-k}{2} \\
& =(\tilde{f} \wedge \tilde{g})(a) \wedge \frac{1-k}{2} \\
& =\tilde{f} \wedge_{k} \tilde{g}(a) \\
\tilde{f} \wedge_{k} \tilde{g} & \leq \tilde{f} \circ_{k} \tilde{g}
\end{aligned}
$$

(iii) $\Longrightarrow($ ii $)$ Now let us assume that I be any subset of S and L be any left ideal of S. Now $\left(C_{I}\right)_{k}$ and $\left(C_{L}\right)_{k}$ are the $\left(\in, \in \vee q_{k}\right)$ fuzzy subset and $\left(\in, \in \vee q_{k}\right)$ fuzzy left ideal of S. Therefore

$$
\left(C_{I \cap L}\right)=\left(C_{I} \wedge_{k} C_{L}\right) \leq C_{I} \circ_{k} C_{L}=\left(C_{I L}\right)_{k}
$$

This implies that $I \cap L \subseteq I L$.
$(i i) \Longrightarrow(i)$

$$
a \in S a \cap S a \subseteq(S a)(S a) \subseteq(a a)(S S)=S a^{2}=\left(S a^{2}\right) S
$$

Hence S is intra regular .
Theorem 314 A fuzzy subset \tilde{f} of an $A G$-groupoid S is an interval valued $\left(\in, \in \vee q_{k}\right)$-fuzzy semi prime if and only if $\widetilde{f}(x) \geq \min \left\{\widetilde{f}\left(x^{2}\right), \frac{1-k}{2}\right\}$,for all $x \in S$.

Proof. Assume that \tilde{f} is an interval valued $\left(\in, \in \vee q_{k}\right)$-fuzzy semi prime so let $x_{\tilde{t}}^{2} \in \tilde{f}$. This implies that $\widetilde{f}\left(x^{2}\right) \geq \tilde{t}$ Therefore we have $\tilde{f}(x) \geq\{$ $\left.\tilde{f}\left(x^{2}\right), \frac{1-k}{2}\right\}=\tilde{t}$ so $\tilde{f}(x) \geq \tilde{t}$ This implies that $x_{\tilde{t}} \in \tilde{f}$.

Conversely let us assume that $\widetilde{f}(x)<\min \left\{\widetilde{f}\left(x^{2}\right), \frac{1-k}{2}\right\}$, for all $x \in S$. Then we choose $\tilde{t} \in(0,1]$. Now let us assume that $\widetilde{f}(x)<\tilde{t} \leq \min \{$ $\left.\tilde{f}(x), \frac{1-k}{2}\right\}$ then we have $\tilde{f}(x)<\tilde{t}$. This implies that $\widetilde{f}(x)+\tilde{t}+k<[1,1]$. Further implies that $x_{\tilde{t}} \overline{\in q_{k}} \widetilde{f}$ and then $\min \left\{\tilde{f}\left(x^{2}\right), \frac{1-k}{2}\right\} \geq \tilde{t}$ here we consider $\tilde{f}\left(x^{2}\right) \geq \tilde{t}$. This implies that $x_{\tilde{t}}^{2} \in \tilde{f}$ or $x_{\tilde{t}}^{2} \in \vee q_{k} \tilde{f}$. But this implies that $x_{\tilde{t}} \overline{\vee \vee q_{k}} \tilde{f}$. This contradiction arises due to our wrong supposition thus we have final result $\widetilde{f}(x) \geq \min \left\{\widetilde{f}\left(x^{2}\right), \frac{1-k}{2}\right\}$.

Example 315 Let $S=\{1,2,3\}$, and the binary operation " "be define on S as follows:

\circ	1	2	3
1	1	1	1
2	1	1	1
3	1	2	1

Then (S, \circ) is an $A G$-groupoid. Define a fuzzy subset $f: S \rightarrow[0,1]$ as follows.

$$
f(x)= \begin{cases}0.77 & \text { if } x=1 \\ 0.66 & \text { if } x=2 \\ 0.55 & \text { if } x=3\end{cases}
$$

Then clearly f is $\left(\in, \in \vee q_{k}\right)$-fuzzy left ideal.
Example 316 Let $S=\{1,2,3\}$ and binary operation "o" be defined on S as fallows:

\circ	1	2	3
1	2	2	2
2	2	2	2
3	1	2	2

Then (S, \circ) is an $A G$-groupoid. Define a fuzzy subset $f: S \longrightarrow[0,1]$ as fallows

Theorem 317 Let S be an $A G$-groupiod with left identity then the following conditions are equivalent.
(i) S is intra regular.
(ii) For any left ideal L and for any subset A of S so $A \cap L \subseteq(A L) A$.
(iii) For every interval valued $\left(\in, \in \vee q_{k}\right)$-fuzzy subset \widetilde{f} and every interval valued $\left(\in, \in \vee q_{k}\right)$-fuzzy left ideal g of S then $\widetilde{f} \wedge_{k} \widetilde{g} \subseteq\left(\widetilde{f} \circ_{k} \widetilde{g}\right) \circ_{k}$ \tilde{f}.

Proof. $(i) \Longrightarrow$ (iii) Let \widetilde{f} be the interval valued $\left(\in, \in \vee q_{k}\right)$-fuzzy subset and \widetilde{g} be the interval valued $\left(\epsilon, \in \vee q_{k}\right)$-fuzzy left ideal of an intra regular AG-groupoid S with left identity then for any a in S their exist $x, y \in S$ such that so we use medial law and paramedial law and $(a b) c=b(a c)$

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(x(a a) y)=(a(x a) y)=(y(x a)) a \\
y(x a) & =y\left(x\left(x a^{2}\right) y\right)=y\left(\left(x a^{2}\right)(x y)\right)=\left(x a^{2}\right)(y(x y)) \\
& =\left(x a^{2}\right)\left(x y^{2}\right)=(x x)\left(a^{2} y^{2}\right)=\left(x^{2}\right)\left(a^{2} y^{2}\right)=a^{2}\left(x^{2} y^{2}\right) \\
& =\left(\left(y^{2} x^{2}\right) a^{2}\right)=\left(\left(y^{2} x^{2}\right) a a\right) a=a\left(\left(y^{2} x^{2}\right) a\right) a .
\end{aligned}
$$

For any a in S their exist u and v in S such that $a=u v$

$$
\begin{aligned}
& \left(\tilde{f} \circ_{k} \widetilde{g}\right) \circ_{k} \tilde{f}(a) \\
= & \left.\bigvee_{a=u v}((\widetilde{f} \circ \widetilde{g})(u)) \wedge \widetilde{f}(v) \wedge \frac{1-k}{2}\right) \wedge \frac{1-k}{2} \\
\geq & \left((\widetilde{f} \circ \widetilde{g})\left(a\left(y^{2} x^{2}\right) a\right) \wedge \widetilde{f}(a) \wedge \frac{1-k}{2}\right) \wedge \frac{1-k}{2} \\
= & \left(\vee_{a\left(\left(y^{2} x^{2}\right) a\right)=p q}(\widetilde{f}(p) \wedge \widetilde{g}(q)) \wedge \widetilde{f}(a) \wedge \frac{1-k}{2}\right) \wedge \frac{1-k}{2} \\
\geq & \left(\left(\widetilde{f}(a) \wedge \widetilde{g}\left(y^{2} x^{2}\right) a\right) \wedge \widetilde{f}(a) \wedge \frac{1-k}{2}\right) \wedge \frac{1-k}{2} \\
\geq & \left.(\widetilde{f}(a) \wedge \widetilde{g}(a)) \wedge \widetilde{f}(a) \wedge \frac{1-k}{2}\right) \wedge \frac{1-k}{2} \\
= & \left(\widetilde{f} \wedge_{k} \widetilde{g}\right)(a) \text { so we have } \\
\leq & \left(\widetilde{f} \circ_{k} \widetilde{g}\right) \circ_{k} \widetilde{f} .
\end{aligned}
$$

(iii) $\Longrightarrow($ ii $)$ Let A be any subset and L be the left ideal of S then we get $\left(C_{A}\right)_{k}$ are interval valued $\left(\in, \in \vee q_{k}\right)$-fuzzy subset and $\left(C_{L}\right)_{k}$ are interval valued $\left(\in, \in \vee q_{k}\right)$-fuzzy left ideal of S then we get

$$
\begin{aligned}
\left(C_{(A \cap L) \cap A}\right)_{k} & =\left(C_{A \cap L}\right)_{k} \cap\left(C_{A}\right)_{k} \subseteq\left(C_{A} \circ_{k} C_{L}\right) \circ_{k} C_{A} \\
& =C_{(A L)} \circ_{k} C_{(A)}=C_{(A L) A} .
\end{aligned}
$$

Hence $(A \cap L) \subseteq(A L) A$.
$(i i) \Longrightarrow(i)$ Since a is any subset and $S a$ be the left ideal containing a so we get the result

$$
a \in S a \cap S a \subseteq(S a)(S a)=S a^{2}=\left(S a^{2}\right) S
$$

Hence S is intra regular.

Theorem 318 Let S be an AG-groupiod with left identity then the following condition are equivalent.
(i) S is intra regular.
(ii) $A \cap B \subseteq A B$, for every two sided A and for every bi-ideal B of S.
(iii) For every interval valued $\left(\in, \in \vee q_{k}\right)$-fuzzy two sided \widetilde{f} and for every interval value $\left(\in, \in \vee q_{k}\right)$-fuzzy bi-ideal \widetilde{g} then $\widetilde{f} \wedge_{k} \widetilde{g} \leq \widetilde{f} \circ_{k} \widetilde{g}$.

Proof. $(i) \Longrightarrow$ (iii) Let us assume that S is intra regular AG-groupoid and \widetilde{f} be interval valued $\left(\in, \in \vee q_{k}\right)$-fuzzy two sided and \widetilde{g} be interval valued $(\in$,$\in \vee q_{k}$)-fuzzy bi-ideal of S. Since S is intra regular AG-groupoid therefore
for any a in S. Then their exist $x, y \in S$ such that

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(x(a a) y)=(a(x a)) y=(y(x a)) a \\
y(x a) a & =y\left(x\left(\left(x a^{2}\right) y\right)\right) a=y\left(\left(x a^{2}\right)(x y)=\left(x a^{2}\right)\left(y(x y)=a^{2}\left(x^{2} y^{2}\right)\right.\right. \\
& =\left(\left(x^{2} y^{2}\right) a\right) a=\left(y^{2} x^{2}\right)(a a)=a\left(\left(y^{2} x^{2}\right) a\right)=a(t a) \\
& \left.=a\left(t\left(x a^{2}\right) y\right)\right)=a\left(\left(x a^{2}\right)(t y)\right)=a\left((y t)\left(a^{2} x\right)\right) \\
& \left.\left.\left.=a\left(a^{2}((y t) x)\right)\right)=a((y t) x) a\right) a\right)=a((i a) a) \\
& \left.\left.=a\left(\left(i\left(x a^{2}\right) y\right)\right) a=a\left(\left(x a^{2}\right)(i y)\right) a\right)=a\left((y i)\left(a^{2} x\right)\right) a\right) \\
& \left.\left.=a\left(a^{2}((y i) x)\right) a\right)=a((x(y i))(a a)) a\right) \\
& =a(a((x(y i) i) a) a)=a((a t)) a),
\end{aligned}
$$

so for any a in S their exist u and v in S so $a=u v$ then we get

$$
\begin{aligned}
\left(\tilde{f} \circ_{k} \widetilde{g}\right)(a) & =\bigvee_{a=u v}(\tilde{f}(u) \wedge \widetilde{g}(v)) \wedge \frac{1-k}{2} \\
& \geq(\widetilde{f}(a(a t)) \wedge \widetilde{g}(a)) \wedge \frac{1-k}{2} \\
& \geq(\widetilde{f}(a) \wedge \widetilde{g}(a)) \wedge \frac{1-k}{2} \\
& \geq\left(\widetilde{f} \wedge_{k} \widetilde{g}\right)(a) \\
\left(\tilde{f} \wedge_{k} \widetilde{g}\right) & \leq\left(\tilde{f} \circ_{k} \widetilde{g}\right)
\end{aligned}
$$

$($ iii $) \Longrightarrow($ ii) Let A be any two sided and B be any bi-ideal of S so we get $\left(C_{A}\right)_{k}$ is interval valued $\left(\in, \in \vee q_{k}\right)$-fuzzy two sided ideal and $\left(C_{B}\right)_{k}$ is interval valued $\left(\in, \in \vee q_{k}\right)$-fuzzy bi-ideal of S then we get

$$
\left(C_{A \cap B}\right)_{k}=C_{A} \circ_{k} C_{B} \leq C_{A} \circ_{k} C_{B} \leq\left(C_{A B}\right)_{k}
$$

Hence $A \cap B \subseteq A B$.
(ii) $\Longrightarrow \quad(i) S a$ is bi-ideal of an AG-groupoid S containing a and $\{a\} \cup\left\{a^{2}\right\} \cup(a S) a$ is an ideal of S then we get

$$
\begin{aligned}
a & \in(S a) \cap\left(a \cup a^{2} \cup(a S) a\right) \subseteq(S a)\left(a \cup a^{2} \cup(a S) a\right) \\
& =(S a) a \cup(S a) a^{2} \cup(S a)(a S) a \subseteq S a^{2}
\end{aligned}
$$

Hence S is intra regular.
Theorem 319 Let S be an AG-groupoid with left identity then the following condition are equivalent
(i) S is intra regular.
(ii) $\left(Q_{1} \cap Q_{2}\right) \cap L \subseteq\left(Q_{1} Q_{2}\right) L$,for all quasi ideal Q_{1} and Q_{2} and left ideal L of S.
(iii) $\left(\widetilde{f} \wedge_{k} \widetilde{g}\right) \wedge_{k} \widetilde{h} \leq\left(\widetilde{f} \circ_{k} \widetilde{g}\right) \circ_{k} \widetilde{h}$, for all interval valued $\left(\in, \in \vee q_{k}\right)$-fuzzy quasi ideals \widetilde{f} and \widetilde{g} and left ideal \widetilde{h} of S.

Proof. $(i) \Longrightarrow$ (iii) Let us assume that S is intra regular AG-groupoid with left identity \widetilde{f} and \widetilde{g} are the interval valued $\left(\in, \in \vee q_{k}\right)$ fuzzy quasi ideals and \widetilde{h} be the interval valued $\left(\in, \in \vee q_{k}\right)$ fuzzy left ideal of S. For each a in S then their exist $x, y \in S$ such that

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(x(a a) y)=(a(x a) y)=(y(x a)) a=\left(y\left(x\left(x a^{2}\right) y\right)\right) a \\
& =\left(y\left(\left(x a^{2}\right)(x y)\right)\right) a=\left(\left(x a^{2}\right)(y(x y))\right) a=\left(\left(x a^{2}\right)\left(x y^{2}\right)\right) a \\
& \left.\left.=\left(\left(y^{2} x\right)\left(a^{2} x\right)\right) a=\left(a^{2}\left(y^{2} x\right) x\right)\right) a=\left((a a)\left(y^{2} x\right) x\right)\right) a \\
& =\left(\left(a\left(y^{2} x\right)\right)(a x)\right) a .
\end{aligned}
$$

Now for any a in S their exist u and v in S such that $a=u v$ then

$$
\begin{aligned}
& \left(\left(\tilde{f} \circ_{k} \widetilde{g}\right) \circ_{k} \widetilde{h}\right)(a) \\
= & \bigvee_{a=u v}\left(\widetilde{f} \circ_{k} \widetilde{g}\right)(u) \wedge \widetilde{h}(v) \wedge \frac{1-k}{2} \\
= & \bigvee_{a=u v}\left(\bigvee_{u=p q} \widetilde{f}(p) \wedge \widetilde{g}(p) \wedge \frac{1-k}{2}\right) \wedge \widetilde{h}(v) \wedge \frac{1-k}{2} \\
= & \bigvee_{a=(p q) v}\left(\widetilde{f}(p) \wedge \widetilde{g}(q) \wedge \frac{1-k}{2}\right) \wedge \widetilde{h}(v) \wedge \frac{1-k}{2} \\
= & \bigvee^{\left(\left(a\left(y^{2} x\right)\right)(a x) a\right.}\left(\widetilde{f}(p) \wedge \widetilde{g}(q) \wedge \frac{1-k}{2}\right) \wedge \widetilde{h}(v) \wedge \frac{1-k}{2} \\
\geq & \left(\widetilde{f}(a) \wedge \widetilde{f}(a) \wedge \widetilde{g}(a) \wedge \frac{1-k}{2}\right) \wedge \widetilde{h}(a) \wedge \frac{1-k}{2} \\
\geq & \left(\left(\widetilde{f}(a) \wedge \frac{1-k}{2}\right) \wedge \widetilde{g}(a)\right) \wedge \widetilde{h}(a) \wedge \frac{1-k}{2} \\
= & \left(\widetilde{f}(a) \wedge \widetilde{g}(a) \wedge \frac{1-k}{2}\right) \wedge \widetilde{h}(a) \wedge \frac{1-k}{2} \\
= & \left(\widetilde{f} \wedge_{k} \widetilde{g}\right)(a) \wedge \widetilde{h}(a) \wedge \frac{1-k}{2} \\
= & \left(\left(\widetilde{f} \wedge_{k} \widetilde{g}\right)(a) \wedge_{k} \widetilde{h}(a) \wedge \frac{1-k}{2}\right. \\
= & \left(\left(\tilde{f} \wedge_{k} \widetilde{g}\right)(a) \wedge_{k} \widetilde{h}(a) \wedge \frac{1-k}{2} .\right.
\end{aligned}
$$

Hence $\left(\widetilde{f} \wedge_{k} \widetilde{g}\right) \wedge_{k} \widetilde{h} \leq\left(\tilde{f} \circ_{k} \widetilde{g}\right) \circ_{k} \widetilde{h}$
(iii) $\Longrightarrow($ ii $)$ Let Q_{1}, Q_{2} and L are the fuzzy quasi ideals and fuzzy left ideal of S. Then $C_{Q_{1}}$ and $C_{Q_{2}}$ and C_{L} are interval valued $\left(\epsilon, \in \vee q_{k}\right)$ fuzzy quasi ideals and interval valued fuzzy left ideal of S

$$
\begin{aligned}
\left(C_{\left(Q_{1} Q_{2}\right)_{L}}\right)_{k}(a) & =\left(C_{Q_{1}}\right)_{k}(a) \circ\left(C_{Q_{2}}\right)_{k}(a) \circ\left(C_{L}\right)_{k}(a) \\
& \geq\left(\left(C_{Q_{1}} \wedge_{k} C_{Q_{2}}\right) \wedge_{k} C_{L}\right)(a) \\
& =\left(C_{\left.\left(Q_{1} \cap Q_{2}\right) \cap L\right)_{k}}(a)\right.
\end{aligned}
$$

Hence $\left(Q_{1} \cap Q_{2}\right) \cap L \quad \subseteq \quad\left(Q_{1} Q_{2}\right) L$.
$(i i) \Longrightarrow(i)$ Let Q and L are the quasi and left ideal of S. Now

$$
a \in(S a \cap S a) \cap S a \subseteq[(S a)(S a)](S a) \subseteq S a^{2}=\left(S a^{2}\right) S
$$

Hence S is intra regular.

Theorem 320 Let S be an AG-groupoid with left identity then the following condition are equivalent.
(i) S is intra regular.
(ii) $\left(L_{1} \cap L_{2}\right) \cap Q \subseteq\left(L_{1} L_{2}\right) Q$, L are the fuzzy left ideal and Q are the fuzzy quasi ideal of S.
(iii) $\left(\widetilde{f} \wedge_{k} \widetilde{g}\right) \wedge_{k} \widetilde{h} \leq\left(\widetilde{f} \circ_{k} \widetilde{g}\right) \circ_{k} \widetilde{h}$, for all interval valued $\left(\in, \in \vee q_{k}\right)$-fuzzy left ideals \widetilde{f} and \widetilde{g} and quasi ideal \widetilde{h} of S.

Proof. $(i) \Longrightarrow($ iii $)$ Let us assume that S is intra regular AG-groupoid with left identity \widetilde{f} and \widetilde{g} are the interval valued $\left(\in, \in \vee q_{k}\right)$-fuzzy left ideals and \widetilde{h} be the interval valued $\left(\in, \in \vee q_{k}\right)$-fuzzy quasi ideal of S For each a in S then their exist $x, y \in S$ such that

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(x(a a) y)=(a(x a) y)=(y(x a)) a=\left(y\left(x\left(x a^{2}\right) y\right)\right) a \\
& =\left(y\left(\left(x a^{2}\right)(x y)\right)\right) a=\left(\left(x a^{2}\right)(y(x y))\right) a=\left(\left(x a^{2}\right)\left(x y^{2}\right)\right) a \\
& =\left(\left(y^{2} x\right)\left(a^{2} x\right)\right) a=\left(a^{2}\left(\left(y^{2} x\right) x\right)\right) a=\left((a a)\left(y^{2} x\right)\right) a \\
& =\left(\left(a\left(y^{2} x\right)\right)(a x)\right) a .
\end{aligned}
$$

Now for any a in S their exist u and v in S such that $a=u v$ then

$$
\begin{aligned}
& \left(\left(\tilde{f} \circ_{k} \widetilde{g}\right) \circ_{k} \widetilde{h}\right)(a) \\
= & \bigvee_{a=u v}\left(\widetilde{f} \circ_{k} \widetilde{g}\right)(u) \wedge \widetilde{h}(v) \wedge \frac{1-k}{2} \\
= & \bigvee_{a=u v}\left(\bigvee_{u=p q} \widetilde{f}(p) \wedge \widetilde{g}(q) \wedge \frac{1-k}{2}\right) \wedge \widetilde{h}(v) \wedge \frac{1-k}{2} \\
= & \bigvee_{a=(p q) v}\left(\widetilde{f}(p) \wedge \widetilde{g}(q) \wedge \frac{1-k}{2}\right) \wedge \widetilde{h}(v) \wedge \frac{1-k}{2} \\
= & \left(\left(a\left(y^{2} x\right)\right)(a x) a\right. \\
\geq & \left(\widetilde{f}(a) \wedge \widetilde{f}(a) \wedge \widetilde{g}(a) \wedge \frac{1-k}{2}\right) \wedge \widetilde{h}(a) \wedge \frac{1-k}{2} \\
\geq & \left(\left(\widetilde{f}(a) \wedge \frac{1-k}{2}\right) \wedge \widetilde{g}(a)\right) \wedge \widetilde{h}(a) \wedge \frac{1-k}{2} \\
= & \left(\widetilde{f}(a) \wedge \widetilde{f}(a) \wedge \frac{1-k}{2}\right) \wedge \widetilde{h}(a) \wedge \frac{1-k}{2} \\
= & \left(\widetilde{f}(a) \wedge \widetilde{g}(a) \wedge \frac{1-k}{2}\right) \wedge \widetilde{h}(a) \wedge \frac{1-k}{2} \\
= & \left(\left(\widetilde{f} \wedge_{k} \widetilde{g}\right)(a) \wedge_{k} \widetilde{h}(a) \wedge \frac{1-k}{2}\right. \\
= & \left(\left(\tilde{f} \wedge_{k} \widetilde{g}\right)(a) \wedge_{k} \widetilde{h}(a) \wedge \frac{1-k}{2}\right. \\
= & \left(\left(\tilde{f} \wedge_{k} \widetilde{g}\right)(a) \wedge_{k} \widetilde{h}(a) \wedge \frac{1-k}{2} .\right.
\end{aligned}
$$

Hence $\left(\widetilde{f} \wedge_{k} \widetilde{g}\right) \wedge_{k} \widetilde{h} \leq\left(\widetilde{f} \circ_{k} \widetilde{g}\right) \circ_{k} \widetilde{h}$.
(iii) \Longrightarrow (ii) Let L_{1}, L_{2} and Q are the fuzzy left ideals and fuzzy quasi ideal of S. Then $C_{L_{1}}$ and $C_{L_{2}}$ and C_{Q} are interval valued ($\epsilon, \in \vee q_{k}$) fuzzy left ideals and interval valued fuzzy quasi ideal of S

$$
\begin{aligned}
\left(C_{\left(L_{1} L_{2}\right)_{Q}}\right)_{k}(a) & =\left(C_{L_{1}}\right)_{k}(a) \circ\left(C_{L_{2}}\right)_{k}(a) \circ\left(C_{Q}\right)_{k}(a) \\
& \geq\left(\left(C_{L_{1}} \wedge_{k} C_{L_{2}}\right) \wedge_{k} C_{Q}\right)(a)=\left(C_{\left.\left(L_{1} \cap L_{2}\right) \cap Q\right)_{k}}(a)\right.
\end{aligned}
$$

Hence $=\left(L_{1} \cap L_{2}\right) \cap Q \subseteq\left(L_{1} L_{2}\right) Q$.
$(i i) \Longrightarrow(i)$ Let L and Q are the left and quasi ideal of S. Now

$$
a \in(S a \cap S a) \cap S a \subseteq[(S a)(S a)](S a)=\left(S a^{2}\right) S
$$

Hence S is intra regular.

9

Generalized Fuzzy Ideals of Abel-Grassmann's Groupoids

In this chapter we characterize a Abel-Grassmann's groupoid in terms of its $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy ideals.

$9.1\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy Ideals of AG-groupoids

For the following definitions see [65].
Let $\gamma, \delta \in[0,1]$ be such that $\gamma<\delta$. For any $B \subseteq A$, we define $X_{\gamma B}^{\delta}$ be the fuzzy subset of X by $X_{\gamma B}^{\delta}(x) \geq \delta$ for all $x \in B$ and $X_{\gamma B}^{\delta}(x) \leq \gamma$ otherwise. Clearly, $X_{\gamma B}^{\delta}$ is the characteristic function of B if $\gamma=0$ and $\delta=1$.

For a fuzzy point x_{r} and a fuzzy subset f of X, we say that
(1) $x_{r} \in_{\gamma} f$ if $f(x) \geq r>\gamma$.
(2) $x_{r} q_{\delta} f$ if $f(x)+r>2 \delta$.
(3) $x_{r} \in_{\gamma} \vee q_{\delta} f$ if $x_{r} \in_{\gamma} f$ or $x_{r} q_{\delta} f$.

Now we introduce a new relation on $\mathcal{F}(X)$, denoted as " $\subseteq \vee q_{(\gamma, \delta)}$ ", as follows.

For any $f, g \in \mathcal{F}(X)$, by $f \subseteq \vee q_{(\gamma, \delta)} g$ we mean that $x_{r} \in_{\gamma} f$ implies $x_{r} \in_{\gamma} \vee q_{\delta} g$ for all $x \in X$ and $r \in(\gamma, 1]$. Moreover f and g are said to be (γ, δ)-equal, denoted by $f={ }_{(\gamma, \delta)} g$, if $f \subseteq \vee q_{(\gamma, \delta)} g$ and $g \subseteq \vee q_{(\gamma, \delta)} f$.

Lemma 321 Let f and g are fuzzy subsets of $\mathcal{F}(X)$. Then $f \subseteq \vee q_{(\gamma, \delta)} g$ if and only if $\max \{f(x), \gamma\} \geq \min \{g(x), \delta\}$ for all $x \in X$.

Proof. It is same as in [65].
Lemma 322 Let f, g and $h \in \mathcal{F}(X)$. If $f \subseteq \vee q_{(\gamma, \delta)} g$ and $g \subseteq \vee q_{(\gamma, \delta)} h$, then $f \subseteq \vee q_{(\gamma, \delta)} h$.

Proof. It is same as in [65].
It is shown in [65] that ${ }^{=}=(\gamma, \delta) "$ is equivalence relation on $\mathcal{F}(X)$. It is also notified that $f={ }_{(\gamma, \delta)} g$ if and only if $\max \{\min \{f(x), \delta\}, \gamma\}=$ $\max \{\min \{g(x), \delta\}, \gamma\}$ for all $x \in X$.

Lemma 323 For an $A G$-groupoid S, the following holds.
(i) A non empty subset I of AG-groupoid S is an ideal if and only if $X_{\gamma I}^{\delta}$ is $\left(\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)\right.$-fuzzy ideal.
(ii) A non empty subset L of AG-groupoid S is left ideal if and only if $X_{\gamma L}^{\delta}$ is $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy left ideal.
(iii) A non empty subset R of AG-groupoid S is right ideal if and only if $X_{\gamma R}^{\delta}$ is $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy right ideal.
(iv) A non empty subset B of AG-groupoid S is bi-ideal if and only if $X_{\gamma B}^{\delta}$ is $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy bi-ideal.
(v) A non empty subset Q of AG-groupoid S is quasi-ideal if and only if $X_{\gamma Q}^{\delta}$ is $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy quasi-ideal.

Lemma 324 Let A, B be any non empty subsets of an $A G$-groupoid S with left identity. Then we have
(1) $A \subseteq B$ if and only if $X_{\gamma A}^{\delta} \subseteq \vee q_{(\gamma, \delta)} X_{\gamma B}^{\delta}$, where $r \in(\gamma, 1]$ and $\gamma, \delta \in[0,1]$.
(2) $X_{\gamma A}^{\delta} \cap X_{\gamma B}^{\delta}=(\gamma, \delta) X_{\gamma(A \cap B)}^{\delta}$.
(3) $X_{\gamma A}^{\delta} \circ X_{\gamma B}^{\delta}={ }_{(\gamma, \delta)} X_{\gamma(A B)}^{\delta}$.

Proof. It is same in [65].
Lemma 325 If S is an $A G$-groupoid with left identity then $(a b)^{2}=a^{2} b^{2}=$ $b^{2} a^{2}$ for all a and b in S.

Proof. It follows by medial and paramedial laws.
Definition 326 A fuzzy subset f of an AG-groupoid S is called an $\left(\epsilon_{\gamma}\right.$, $\left.\in_{\gamma} \vee q_{\delta}\right)$-fuzzy $A G$-subgroupoid of S if for all $x, y \in S$ and $t, s \in(\gamma, 1]$, it satisfies $x_{t} \in_{\gamma} f, y_{s} \in_{\gamma} f$ implies that $(x y)_{\min \{t, s\}} \in_{\gamma} \vee q_{\delta} f$.

Theorem 327 Let f be a fuzzy subset of an $A G$ groupoid S with left identity. Then f is an $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy $A G$ subgroupoid of S if and only if

$$
\max \{f(x y), \gamma\} \geq \min \{f(x), f(y), \delta\} \text { where } \gamma, \delta \in[0,1] .
$$

Proof. Let f be a fuzzy subset of an AG-groupoid S which is $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$ fuzzy subgroupoid of S. Assume that there exists $x, y \in S$ and $t \in(\gamma, 1]$, such that

$$
\max \{f(x y), \gamma\}<t \leq \min \{f(x), f(y), \delta\} .
$$

Then $\max \{f(x y), \gamma\}<t$. This implies that $f(x y)<t$, which further implies that $(x y)_{\min t} \overline{\epsilon_{\gamma} \vee q_{\delta}} f$ and $\min \{f(x), f(y), \delta\} \geq t$. Therefore $\min \{f(x), f(y)\} \geq$ t which implies that $f(x) \geq t>\gamma, f(y) \geq t>\gamma$, implies that $x_{t} \in_{\gamma} f$, $y_{s} \in_{\gamma} f$. But $(x y)_{\min \{t, s\}} \overline{\epsilon_{\gamma} \vee q_{\delta}} f$ a contradiction to the definition. Hence

$$
\max \{f(x y), \gamma\} \geq \min \{f(x), f(y), \delta\} \text { for all } x, y \in S
$$

Conversely, assume that there exist $x, y \in S$ and $t, s \in(\gamma, 1]$ such that $x_{t} \in_{\gamma} f, y_{s} \in_{\gamma} f$ but $(x y)_{\min \{t, s\}} \overline{\epsilon_{\gamma} \vee q_{\delta}} f$, then $f(x) \geq t>\gamma, f(y) \geq s>\gamma$, $f(x y)<\min \{f(x), f(y), \delta\}$ and $f(x y)+\min \{t, s\} \leq 2 \delta$. It follows that $f(x y)<\delta$ and so $\max \{f(x y), \gamma\}<\min \{f(x), f(y), \delta\}$, this is a contradiction. Hence $x_{t} \in_{\gamma} f, y_{s} \in_{\gamma} f$ implies that $(x y)_{\min \{t, s\}} \in_{\gamma} \vee q_{\delta} f$ for all x, y in S.

Definition 328 A fuzzy subset f of an AG-groupoid S with left identity is called $\left(\in_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy left (respt-right) ideal of S if for all $x, y \in S$ and $t, s(\gamma, 1]$ it satisfies $y_{t} \in_{\gamma} f$ implies that $(x y)_{t} \in_{\gamma} \vee q_{\delta} f$ (respt $x_{t} \in_{\gamma} f$ implies $\left.(x y)_{t} \in_{\gamma} \vee q_{\delta} f\right)$.

Theorem 329 A fuzzy subset f of an $A G$-groupoid S with left identity is called $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy left (respt right) ideal of S. if and only if

$$
\max \{f(x y), \gamma\} \geq \min \{f(y), \delta\} \quad(\text { respt } \max \{f(x y), \gamma\} \geq \min \{f(x), \delta\})
$$

Proof. Let f be an $\left(\in_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy left ideal of S. Let there exists $x, y \in S$ and $t \in(\gamma, 1]$ such that

$$
\max \{f(x y), \gamma\}<t \leq \min \{f(y), \delta\}
$$

Then $\max \{f(x y), \gamma\}<t \leq \gamma$ this implies that $(x y)_{t} \bar{\epsilon}_{\gamma} f$ which further implies that $(x y)_{t} \overline{\epsilon_{\gamma} \vee q_{\delta}} f$. As $\min \{f(y), \delta\} \geq t>\gamma$ which implies that $f(y) \geq t>\gamma$, this implies that $y_{t} \in_{\gamma} f$. But $(x y)_{t} \overline{\epsilon_{\gamma} \vee q_{\delta}} f$ a contradiction to the definition. Thus

$$
\max \{f(x y), \gamma\} \geq \min \{f(y), \delta\}
$$

Conversely, assume that there exist $x, y \in S$ and $t, s \in(\gamma, 1]$ such that $y_{s} \in_{\gamma} f$ but $(x y)_{t} \overline{\epsilon_{\gamma} \vee q_{\delta}} f$, then $f(y) \geq t>\gamma, f(x y)<\min \{f(y), \delta\}$ and $f(x y)+t \leq 2 \delta$. It follows that $f(x y)<\delta$ and so $\max \{f(x y), \gamma\}<$ $\min \{f(y), \delta\}$ which is a contradiction. Hence $y_{t} \in_{\gamma} f$ this implies that $(x y)_{\min \{t, s\}} \in_{\gamma} \vee q_{\delta} f$ (respt $x_{t} \in_{\gamma} f$ implies $(x y)_{\min \{t, s\}} \in_{\gamma} \vee q_{\delta} f$) for all x, y in S.

Definition 330 A fuzzy subset f of an AG-groupoid S is called $\left(\epsilon_{\gamma}, \in_{\gamma}\right.$ $\left.\vee q_{\delta}\right)$-fuzzy bi-ideal of S if for all x, y and $z \in S$ and $t, s \in(\gamma, 1]$, the following conditions hold.
(1) if $x_{t} \in_{\gamma} f$ and $y_{s} \in_{\gamma} f$ implies that $(x y)_{\min \{t, s\}} \in_{\gamma} \vee q_{\delta} f$.
(2) if $x_{t} \in_{\gamma} f$ and $z_{s} \in_{\gamma} f$ implies that $((x y) z)_{\min \{t, s\}} \in_{\gamma} \vee q_{\delta} f$.

Theorem 331 A fuzzy subset f of an $A G$-groupoid S with left identity is called $\left(\in_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy bi-ideal of S if and only if
$(I) \max \{f(x y), \gamma\} \geq \min \{f(x), f(y), \delta\}$.
$(I I) \max \{f((x y) z), \gamma\} \geq \min \{f(x), f(z), \delta\}$.
Proof. (1) $\Leftrightarrow(I)$ is the same as theorem 327.
$(2) \Rightarrow(I I)$ Assume that $x, y \in S$ and $t, s \in(\gamma, 1]$ such that

$$
\max \{f((x y) z), \gamma\}<t \leq \min \{f(x), f(z), \delta\} .
$$

Then $\max \{f((x y) z), \gamma\}<t$ which implies that $f((x y) z)<t$ this implies that $((x y) z)_{t} \bar{\epsilon}_{\gamma} f$ which further implies that $((x y) z)_{t} \bar{\epsilon}_{\gamma} \vee q_{\delta} f$. Also
$\min \{f(x), f(z), \delta\} \geq t>\gamma$, this implies that $f(x) \geq t>\gamma, f(z) \geq t>\gamma$ implies that $x_{t} \in_{\gamma} f, z_{t} \in_{\gamma} f$. But $((x y) z)_{t} \overline{\epsilon_{\gamma} \vee q_{\delta}} f$, a contradiction. Hence

$$
\max \{f((x y) z), \gamma\} \geq \min \{f(x), f(z), \delta\}
$$

$(I I) \Rightarrow(2)$ Assume that x, y in S and $t, s \in(\gamma, 1]$, such that $x_{t} \in_{\gamma}$ $f, z_{s} \in_{\gamma} f$ but $((x y) z)_{\min \{t, s\}} \overline{\epsilon_{\gamma} \vee q_{\delta}} f$, then $f(x) \geq t>\gamma, f(z) \geq s>\gamma$, $f((x y) z)<\min \{f(x), f(y), \delta\}$ and $f((x y) z)+\min \{t, s\} \leq 2 \delta$. It follows that $f((x y) z)<\delta$ and so $\max \{f((x y) z), \gamma\}<\min \{f(x), f(y), \delta\}$ a contradiction. Hence $x_{t} \in_{\gamma} f, z_{s} \in_{\gamma} f$ implies that $((x y) z)_{\min \{t, s\}} \in_{\gamma} \vee q_{\delta} f$ for all x, y in S.

Example 332 Consider an $A G$-groupoid $S=\{1,2,3\}$ in the following multiplication table.

\circ	1	2	3
1	1	1	1
2	1	1	3
3	1	2	1

Define a fuzzy subset f on S as follows:
$f(x)=\left\{\begin{array}{l}0.41 \text { if } x=1, \\ 0.44 \text { if } x=2, \\ 0.42 \text { if } x=3 .\end{array}\right.$
Then, we have

- f is an $\left(\epsilon_{0.1}, \in_{0.1} \vee q_{0.11}\right)$-fuzzy left ideal,
- f is not an $\left(\in, \in \vee q_{0.11}\right)$-fuzzy left ideal,
- f is not a fuzzy left ideal.

Example 333 Let $S=\{1,2,3\}$ and the binary operation \circ be defined on S as follows:

\circ	1	2	3
1	2	2	2
2	2	2	2
3	1	2	2

Then clearly (S, \circ) is an $A G$-groupoid. Defined a fuzzy subset f on S as follows:

$$
f(x)=\left\{\begin{array}{c}
0.44 \text { if } x=1 \\
0.6 \text { if } x=2 \\
0.7 \text { if } x=3
\end{array}\right.
$$

Then, we have

- f is an $\left(\in_{0.4}, \in_{0.4} \vee q_{0.45}\right)$-fuzzy left ideal of S.
- f is not an $\left(\in_{0.4}, \in_{0.4} \vee q_{0.45}\right)$-fuzzy right ideal of S.

Theorem 334 For an AG-groupoid S, with left identity, the following are equivalent.
(i) S is regular.
(ii) $B[a] \cap I[a] \cap L[a] \subseteq(B[a] I[a]) L[a]$, for some a in S.
(iii) For bi-ideal B, ideal I and left ideal L of $S, B \cap I \cap L \subseteq(B I) L$.
(iv) $f \cap g \cap h \subseteq \vee q_{(\gamma, \delta)}(f \circ g) \circ h$. for $\left(\in_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy bi-ideal $f,\left(\in_{\gamma}\right.$, $\left.\in_{\gamma} \vee q_{\delta}\right)$-fuzzy ideal g, and $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy left ideal h of S.
(v) $f \cap g \cap h \subseteq \vee q_{(\gamma, \delta)}(f \circ g) \circ h . \quad$ for $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy generalized bi-ideal $f,\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy ideal g, and $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy left ideal h of S.
(vi) $f \cap g \cap h \subseteq \vee q_{(\gamma, \delta)}(f \circ g) \circ h . \quad$ for $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy generalized bi-ideal f, $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy right ideal g, and $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy left ideal h of S.

Proof. $(i) \Rightarrow(v i)$
Assume that f, g and h are $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy generalized bi-ideal, $\left(\epsilon_{\gamma}\right.$, $\left.\epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy right ideal and $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy left ideal of a regular AGgroupoid S, respectively. Now since S is regular so for $a \in S$ there exist $x \in S$ such that using left invertive law and also using law $a(b c)=b(a c)$, we have,

$$
\begin{aligned}
a & =(a x) a=[\{(a x) a\} x] a=(a x)\{(a x) a\}=[\{(a x) a\} x]\{(a x) a\} \\
& =\{(x a)(a x)\}\{(a x) a\}=[\{(a x) a\}(a x)](x a)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \max \{((f \circ g) \circ h)(a), \gamma\} \\
= & \max \left\{\bigvee_{a=x y}\{(f \circ g)(x) \wedge h(y)\}, \gamma\right\} \\
\geq & \max \{(f \circ g)[\{(a x) a\}(a x)] \wedge h(x a), \gamma\} \\
= & \max \{\bigvee \quad(f(u) \wedge g(v)) \wedge h(x a), \gamma\} \\
& \quad \max \{f((a x) a\}(x a)=u v \\
\geq & \min \{\max \{f((a x) a), \gamma\}, \max \{g(a x), \gamma\}, \max \{h(x a), \gamma\}\} \\
= & \min \{\min \{f(a), \delta\}, \min \{g(a), \delta\}, \min \{h(a), \delta\}\} \\
\geq & \min \{\min \{f(a) \wedge g(a) \wedge h(a), \delta\} \\
= & \min \{[f \cap g \cap h](a), \delta\}
\end{aligned}
$$

Thus $f \cap g \cap h \subseteq \vee q_{(\gamma, \delta)}(f \circ g) \circ h$.
$(v i) \Longrightarrow(v)$ is obvious.
$(v) \Longrightarrow(i v)$ is obvious.
$(i v) \Longrightarrow(i i i)$

Assume that B, I and L are bi-ideal, ideal and left ideal of S respectively. Then $\chi_{\gamma B}^{\delta}, \chi_{\gamma I}^{\delta}$ and $\chi_{\gamma L}^{\delta}$ are ($\left.\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy bi-ideal, $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy ideal and $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy left ideal of S respectively. Therefore we have,

$$
\begin{aligned}
\chi_{\gamma(B \cap I \cap L)}^{\delta} & ={ }_{(\gamma, \delta)} \chi_{\gamma B}^{\delta} \cap \chi_{\gamma I}^{\delta} \cap \chi_{\gamma L}^{\delta} \subseteq \vee q_{(\gamma, \delta)}\left(\chi_{\gamma B}^{\delta} \odot \chi_{\gamma I}^{\delta}\right) \odot \chi_{\gamma L}^{\delta} \\
& ={ }_{(\gamma, \delta)}\left(\chi_{\gamma B I}^{\delta}\right) \odot \chi_{\gamma L}^{\delta}=(\gamma, \delta) \chi_{\gamma(B I) L}^{\delta} .
\end{aligned}
$$

Therefore $B \cap I \cap L \subseteq(B I) L$.
$(i i i) \Rightarrow(i i)$ is obvious.
$(i i) \Rightarrow(i)$
$B[a]=a \cup a^{2} \cup(a S) a, I[a]=a \cup S a \cup a S$ and $L[a]=a \cup S a$ are principle bi-ideal, principle ideal and principle left ideal of S generated by a respectively. Thus by (ii), left invertive law, paramedial law and using law $a(b c)=b(a c)$. we have,

$$
\begin{aligned}
& \left(a \cup a^{2} \cup(a S) a\right) \cap(a \cup S a \cup a S) \cap(a \cup S a) \\
\subseteq & \left(\left(a \cup a^{2} \cup(a S) a\right)(a \cup S a \cup a S)\right)(a \cup S a) \\
\subseteq & \{S(a \cup S a \cup a S)\}(a \cup S a) \\
\subseteq & \{S a \cup S(S a) \cup S(a S)\}(a \cup S a) \\
= & (S a \cup a S)(a \cup S a) \\
= & (S a) a \cup(S a)(S a) \cup(a S) a \cup(a S)(S a) \\
= & a^{2} S \cup a^{2} S \cup(a S) a \cup(a S) a \\
= & a^{2} S \cup(a S) a .
\end{aligned}
$$

Hence S is regular.
Theorem 335 For an $A G$-groupoid S, with left identity, the following are equivalent.
(i) S is regular.
(ii) $L[a] \cap I[a] \cap Q[a] \subseteq(L[a] I[a]) Q[a]$, for some a in S..
(iii) For left ideal L, ideal I and quasi-ideal Q of $S, L \cap I \cap Q \subseteq(L I) Q$
(iv) $f \cap g \cap h \subseteq \vee q_{(\gamma, \delta)}(f \circ g) \circ h$. for $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy left ideal f, $\left(\epsilon_{\gamma}\right.$,$\left.\in_{\gamma} \vee q_{\delta}\right)$-fuzzy ideal g, and $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy quasi- ideal h of S.
(v) $f \cap g \cap h \subseteq \vee q_{(\gamma, \delta)}(f \circ g) \circ h$. for $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy left ideal f, $\left(\epsilon_{\gamma}\right.$,$\left.\in_{\gamma} \vee q_{\delta}\right)$-fuzzy right ideal g, and $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy quasi- ideal h of S.

Proof. $(i) \Rightarrow(i i)$
Assume that f, g and h are $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy left ideal, $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$ fuzzy right ideal and ($\left.\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy quasi-ideal of a regular AG-groupoid S, respectively. Now since S is regular so for $a \in S$ there exist $x \in S$ such that using left invertive law and also using law $a(b c)=b(a c)$, we have,

$$
a=(a x) a=[\{(a x) a\} x] a=\{(x a)(a x)\} a .
$$

Thus

$$
\begin{aligned}
& \max \{((f \circ g) \circ h)(a), \gamma\} \\
= & \max \left\{\bigvee_{a=x y}\{(f \circ g)(x) \wedge h(y)\}, \gamma\right\} \\
\geq & \max \{(f \circ g)\{(x a)(a x)\} \wedge h(a), \gamma\} \\
= & \max \left\{\bigvee_{\{(x a)(a x)\}=p q}(f(p) \wedge g(q)) \wedge h(a), \gamma\right\} \\
\geq & \max \{f(x a) \wedge g(a x) \wedge h(a), \gamma\} \\
= & \min \{\max \{f(x a), \gamma\}, \max \{g(a x), \gamma\}, \max \{h(a), \gamma\}\} \\
\geq & \min \{\min \{f(a), \delta\}, \min \{g(a), \delta\}, \min \{h(a), \delta\}\} \\
= & \min \{\min \{f(a) \wedge g(a) \wedge h(a), \delta\} \\
= & \min \{[f \cap g \cap h](a), \delta\}
\end{aligned}
$$

Hence $f \cap g \cap h \subseteq \vee q_{(\gamma, \delta)}(f \circ g) \circ h$.
$(v) \Rightarrow(i v)$ is obvious.
$(i v) \Rightarrow(i i i)$
Assume that L, I and Q are left ideal, ideal and quasi-ideal of S respectively. Then $\chi_{\gamma B}^{\delta}, \chi_{\gamma I}^{\delta}$ and $\chi_{\gamma L}^{\delta}$ are $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy left ideal, $\left(\epsilon_{\gamma}\right.$, $\epsilon_{\gamma} \vee q_{\delta}$)-fuzzy ideal and ($\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}$)-fuzzy quasi-ideal of S respectively. Therefore we have,

$$
\begin{aligned}
\chi_{\gamma(L \cap I \cap Q)}^{\delta} & ={ }_{(\gamma, \delta)} \chi_{\gamma L}^{\delta} \cap \chi_{\gamma I}^{\delta} \cap \chi_{\gamma Q}^{\delta} \subseteq \vee q_{(\gamma, \delta)}\left(\chi_{\gamma L}^{\delta} \odot \chi_{\gamma I}^{\delta}\right) \odot \chi_{\gamma Q}^{\delta} \\
& =(\gamma, \delta)\left(\chi_{\gamma L I}^{\delta}\right) \odot \chi_{\gamma Q}^{\delta}=(\gamma, \delta) \chi_{\gamma(L I) Q}^{\delta} .
\end{aligned}
$$

Therefore $L \cap I \cap Q \subseteq(L I) Q$.
(iii) $\Rightarrow(i i)$ is obvious.
(ii) $\Rightarrow(i)$
$L[a]=a \cup S a, I[a]=a \cup S a \cup a S$ and $Q[a]=a \cup(S a \cap a S)$ are left ideal, ideal and quasi-ideal of S generated a respectively. Thus by (iii) and medial law we have,

$$
\begin{aligned}
(a \cup S a) \cap(a \cup S a \cup a S) \cap(a \cup(S a \cap a S)) \subseteq & ((a \cup S a)(a \cup S a \cup a S)) \\
& (a \cup(S a \cap a S)) \\
\subseteq & \{(a \cup S a) S\}(a \cup a S) \\
= & \{a S \cup(S a) S\}(a \cup a S) \\
= & (a S)(a \cup a S) \\
= & (a S) a \cup(a S)(a S) \\
= & (a S) a \cup a^{2} S
\end{aligned}
$$

Hence S is regular.

Theorem 336 For an $A G$-groupoid S, with left identity, the following are equivalent.
(i) S is regular.
(ii) $B[a] \cap I[a] \cap Q[a] \subseteq(B[a] I[a]) Q[a]$, for some a in S.
(iii) For bi-ideal B, ideal I and quasi-ideal Q of $S, B \cap I \cap Q \subseteq(B I) Q$.
(iv) $f \cap g \cap h \subseteq \vee q_{(\gamma, \delta)}(f \circ g) \circ h$. for $\left(\in_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy bi-ideal $f,\left(\epsilon_{\gamma}\right.$, $\left.\in_{\gamma} \vee q_{\delta}\right)$-fuzzy ideal g, and $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy quasi-ideal h of S.
(v) $f \cap g \cap h \subseteq \vee q_{(\gamma, \delta)}(f \circ g) \circ h . \quad$ for $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy generalized bi-ideal f, $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy ideal g, and $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy quasi-ideal h of S.

Proof. $(i) \Rightarrow(v)$
Assume that f, g and h are $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy generalized bi-ideal, $\left(\epsilon_{\gamma}\right.$, $\epsilon_{\gamma} \vee q_{\delta}$)-fuzzy ideal and ($\left.\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy quasi-ideal of a regular AGgroupoid S, respectively. Now since S is regular so for $a \in S$ there exist $x \in S$ such that using left invertive law and also using law $a(b c)=b(a c)$, we have,

$$
a=(a x) a=(((a x) a) x) a=((x a)(a x)) a=[a\{(x a) x\}] a
$$

Thus,

$$
\begin{aligned}
& \max \{((f \circ g) \circ h)(a), \gamma\} \\
= & \max \left\{\bigvee_{a=b c}\{(f \circ g)(b) \wedge h(c)\}, \gamma\right\} \\
\geq & \max \{(f \circ g)[a\{(x a) x\}] \wedge h(a), \gamma\} \\
= & \max \left\{\bigvee_{a\{(x a) x\}=p q}(f(p) \wedge g(q)) \wedge h(a), \gamma\right\} \\
\geq & \max \{f(a) \wedge g\{(x a) x\} \wedge h(a), \gamma\} \\
= & \min \{\max \{f(a), \gamma\}, \max \{g\{x a) x\}, \gamma\}, \max \{h(a), \gamma\}\} \\
\geq & \min \{\min \{f(a), \delta\}, \min \{g(a), \delta\}, \min \{h(a), \delta\}\} \\
= & \min \{\min \{f(a) \wedge g(a) \wedge h(a), \delta\} \\
= & \min \{[f \cap g \cap h](a), \delta\}
\end{aligned}
$$

Thus $f \cap g \cap h \subseteq \vee q_{(\gamma, \delta)}(f \circ g) \circ h$.
$(v) \Rightarrow(i v)$ is obvious.
$(i v) \Rightarrow(i i i)$
Assume that B, I and Q are bi-ideal, ideal and quasi-ideal of regular AG-groupioud of S respectively. Then $\chi_{\gamma B}^{\delta}, \chi_{\gamma I}^{\delta}$ and $\chi_{\gamma Q}^{\delta}$ are $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$ fuzzy bi-ideal, $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy ideal and $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy quasi-ideal of S respectively. Therefore we have,

$$
\begin{aligned}
\chi_{\gamma(B \cap I \cap Q)}^{\delta} & =(\gamma, \delta) \chi_{\gamma L}^{\delta} \cap \chi_{\gamma I}^{\delta} \cap \chi_{\gamma Q}^{\delta} \subseteq \vee q_{(\gamma, \delta)}\left(\chi_{\gamma B}^{\delta} \odot \chi_{\gamma I}^{\delta}\right) \odot \chi_{\gamma Q}^{\delta} \\
& =(\gamma, \delta)\left(\chi_{\gamma B I}^{\delta}\right) \odot \chi_{\gamma Q}^{\delta}=(\gamma, \delta) \chi_{\gamma(B I) Q}^{\delta}
\end{aligned}
$$

Therefore $B \cap I \cap Q \subseteq(B I) Q$.
(iii) $\Rightarrow(i i)$ is obvious.
$(i i) \Rightarrow(i)$
Since $B[a]=a \cup a^{2} \cup(a S) a, I[a]=a \cup S a \cup a S$ and $Q[a]=a \cup$ ($S a \cap a S$) are principle bi-ideal, principle ideal and principle quasi-ideal of S generated by a respectively. Thus by (ii) and using law $a(b c)=b(a c)$ medial law and left invertive law we have,

$$
\begin{aligned}
& \left(a \cup a^{2} \cup(a S) a\right) \cap(a \cup S a \cup a S) \cap(a \cup(S a \cap a S)) \\
\subseteq & \left(\left(a \cup a^{2} \cup(a S) a\right)(a \cup S a \cup a S)\right)(a \cup(S a \cap a S)) \\
\subseteq & (S(a \cup S a \cup a S))(a \cup a S) \\
= & (S a \cup S(S a) \cup S(a S))(a \cup a S) \\
= & (S a \cup S(S a) \cup S(a S))(a \cup a S) \\
= & (a S \cup S a)(a \cup a S) \\
= & (a S) a \cup(a S)(a S) \cup(S a) a \cup(S a)(a S) \\
= & (a S) a \cup a^{2} S \cup a(a S) .
\end{aligned}
$$

Hence S is regular.

Theorem 337 For an AG-groupoid S, with left identity, the following are equivalent.
(i) S is regular.
(ii) $I[a] \cap I[a] \cap I[a] \subseteq(I[a] I[a]) I[a]$, for some a in S.
(iii) For an ideals I_{1}, I_{2} and I_{3} of $S, I_{1} \cap I_{2} \cap I_{3} \subseteq\left(I_{1} I_{2}\right) I_{3}$.
(iv) $f \cap g \cap h \subseteq \vee q_{(\gamma, \delta)}(f \circ g) \circ h$. for any $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy ideals f, g and h of S.

Proof. $(i) \Rightarrow(i v)$
Assume that f, g and h are any $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy ideals of a regular AG-groupoid S, respectively. Now since S is regular so for $a \in S$ there exist $x \in S$ such that using left invertive law and also using law $a(b c)=b(a c)$, we have,

$$
a=(a x) a=[\{(a x) a\} x] a=((x a)(a x)) a .
$$

Thus,

$$
\begin{aligned}
& \max \{((f \circ g) \circ h)(a), \gamma\} \\
= & \max \left\{\bigvee_{a=b c}\{(f \circ g)(b) \wedge h(c)\}, \gamma\right\} \\
\geq & \max \{(f \circ g)\{(x a)(a x)\} \wedge h(a), \gamma\} \\
= & \max \left\{\bigvee_{(x a)(a x)=p q}\{f(p) \wedge g(q)\} \wedge h(a), \gamma\right\} \\
\geq & \max \{f(x a) \wedge g(a x) \wedge h(a), \gamma\} \\
= & \min \{\max \{f(x a), \gamma\}, \max \{g(a x), \gamma\}, \max \{h(a), \gamma\}\} \\
\geq & \min \{\min \{f(a), \delta\}, \min \{g(a), \delta\}, \min \{h(a), \delta\}\} \\
= & \min \{\min \{f(a) \wedge g(a) \wedge h(a), \delta\} \\
= & \min \{[f \cap g \cap h](a), \delta\}
\end{aligned}
$$

Thus $f \cap g \cap h \subseteq \vee q_{(\gamma, \delta)}(f \circ g) \circ h$. (iv) \Rightarrow (iii)

Assume that I_{1}, I_{2} and I_{3} are any ideals of regular AG-groupioud of S respectively. Then $\chi_{\gamma I_{1}}^{\delta}, \chi_{\gamma I_{2}}^{\delta}$ and $\chi_{\gamma I_{3}}^{\delta}$ are any $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy ideals of S respectively. Therefore we have,

$$
\begin{aligned}
\chi_{\gamma\left(I_{1} \cap I_{2} \cap I_{3}\right)}^{\delta} & =(\gamma, \delta) \chi_{\gamma I_{1}}^{\delta} \cap \chi_{\gamma I_{2}}^{\delta} \cap \chi_{\gamma I_{3}}^{\delta} \subseteq \vee q_{(\gamma, \delta)}\left(\chi_{\gamma I_{1}}^{\delta} \odot \chi_{\gamma I_{2}}^{\delta}\right) \odot \chi_{\gamma I_{3}}^{\delta} \\
& =(\gamma, \delta)\left(\chi_{\gamma I_{1} I_{2}}^{\delta}\right) \odot \chi_{\gamma I_{3}}^{\delta}={ }_{(\gamma, \delta)} \chi_{\gamma\left(I_{1} I_{2}\right) I_{3}}^{\delta} .
\end{aligned}
$$

Therefore $I_{1} \cap I_{2} \cap I_{3} \subseteq\left(I_{1} I_{2}\right) I_{3}$.
(ii) $\Rightarrow(i i i)$ is obvious.
$(i i) \Rightarrow(i)$
Since $I[a]=a \cup S a \cup a S$ is a principle ideal of S generated by a. Thus by (ii), left invertive law, medial law and paramedial law we have,

$$
\begin{aligned}
& (a \cup S a \cup a S) \cap(a \cup S a \cup a S) \cap(a \cup S a \cup a S) \\
\subseteq & ((a \cup S a \cup a S)(a \cup S a \cup a S)) \\
& (a \cup S a \cup a S) \\
\subseteq & \{(a \cup S a \cup a S) S\}(a \cup S a \cup a S) \\
= & \{a S \cup(S a) S \cup(a S) S\}(a \cup S a \cup a S) \\
= & \{a S \cup S a\}(a \cup S a \cup a S) \\
= & (a S) a \cup(a S)(S a) \cup(a S)(a S) \cup(S a) a \\
& \cup(S a)(S a) \cup(S a)(a S) \\
= & (a S) a \cup a^{2} S .
\end{aligned}
$$

Hence S is regular.

Theorem 338 For an $A G$-groupoid S, with left identity, the following are equivalent.
(i) S is regular.
(ii) $Q[a] \cap I[a] \cap Q[a] \subseteq(Q[a] I[a]) Q[a]$, for some a in S.
(iii) For quasi-ideals Q_{1}, Q_{2} and ideal I of $S, Q_{1} \cap I \cap Q_{2} \subseteq\left(Q_{1} I\right) Q_{2}$.
(iv) $f \cap g \cap h \subseteq \vee q_{(\gamma, \delta)}(f \circ g) \circ h$. for $\left(\in_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy quasi-ideals f and $h,\left(\in_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy ideal g of S.

Proof. $(i) \Rightarrow(i v)$
Assume that f, h are $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy quasi-ideals and g is $\left(\epsilon_{\gamma}, \in_{\gamma}\right.$ $\vee q_{\delta}$)-fuzzy ideal of a regular AG-groupoid S, respectively. Now since S is regular so for $a \in S$ there exist $x \in S$ such that using left invertive law and law is $a(b c)=b(a c)$, we have,

$$
a=(a x) a=[\{(a x) a\} x] a=((x a)(a x)) a=a\{(x a) x\} a .
$$

Thus,

$$
\begin{aligned}
& \max \{((f \circ g) \circ h)(a), \gamma\} \\
= & \max \left\{\bigvee_{a=p q}\{(f \circ g)(p) \wedge h(q)\}, \gamma\right\} \\
\geq & \max \{(f \circ g)[a\{(x a) x\}] \wedge h(a), \gamma\} \\
= & \max \left\{\bigvee_{a\{(x a) x\}=u v}(f(u) \wedge g(v)) \wedge h(a), \gamma\right\} \\
\geq & \max \{f(a) \wedge g\{(x a) x\} \wedge h(a), \gamma\} \\
= & \min \{\max \{f(a), \gamma\}, \max \{g\{x a) x\}, \gamma\}, \max \{h(a), \gamma\}\} \\
\geq & \min \{\min \{f(a), \delta\}, \min \{g(a), \delta\}, \min \{h(a), \delta\}\} \\
= & \min \{\min \{f(a) \wedge g(a) \wedge h(a), \delta\} \\
= & \min \{[f \cap g \cap h](a), \delta\}
\end{aligned}
$$

Thus $f \cap g \cap h \subseteq \vee q_{(\gamma, \delta)}(f \circ g) \circ h$.
(iv) $\Rightarrow(i i i)$

Assume that Q_{1} and Q_{2} are quasi-ideals and I is an ideal of a regular AG-groupoid S. Then $\chi_{\gamma Q_{1}}^{\delta}$ and $\chi_{\gamma Q_{2}}^{\delta}$ are $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy quasi-ideal, $\chi_{\gamma I}^{\delta}$ is $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy ideal of S. Therefore we have,

$$
\begin{aligned}
\chi_{\gamma\left(Q_{1} \cap I \cap Q_{2}\right)}^{\delta} & =(\gamma, \delta) \chi_{\gamma Q_{1}}^{\delta} \cap \chi_{\gamma I}^{\delta} \cap \chi_{\gamma Q_{2}}^{\delta} \subseteq \vee q_{(\gamma, \delta)}\left(\chi_{\gamma Q_{1}}^{\delta} \odot \chi_{\gamma I}^{\delta}\right) \odot \chi_{\gamma Q_{2}}^{\delta} \\
& =(\gamma, \delta)\left(\chi_{\gamma Q_{1} I}^{\delta}\right) \odot \chi_{\gamma Q_{2}}^{\delta}=(\gamma, \delta) \chi_{\gamma\left(Q_{1} I\right) Q_{2}}^{\delta} .
\end{aligned}
$$

Thus $Q_{1} \cap I \cap Q_{2} \subseteq\left(Q_{1} I\right) Q_{2}$.
(iii) $\Rightarrow(i i)$ is obvious.
(ii) $\Rightarrow(i)$
$Q[a]=a \cup(S a \cap a S)$ and $I[a]=a \cup S a \cup a S$ are principle quasi-ideal and principle ideal of S generated by a respectively. Thus by (i iii), left invertive law, medial law and we have,

$$
\begin{aligned}
& (a \cup(S a \cap a S)) \cap(a \cup S a \cup a S) \cap(a \cup(S a \cap a S)) \\
\subseteq & ((a \cup(S a \cap a S))(a \cup S a \cup a S)) \\
& (a \cup(S a \cap a S)) \\
\subseteq & \{(a \cup a S) S\}(a \cap a S) \\
= & \{a S \cup(a S) S\}(a \cap a S) \\
= & (a S \cup S a)(a \cap a S) \\
= & \{(a S) a \cup(a S)(a S) \cup(S a) a \cup(S a) a S a \\
= & (a S) a \cup a^{2} S \cup a(a S) .
\end{aligned}
$$

Hence S is regular.
Theorem 339 For an AG-groupoid S with left identity, the following are equivalent.
(i) S is regular
(ii)For principle bi-ideal $B[a], B[a]=(B[a] S) B[a]$.
(iii) For bi-ideal $B, B=(B S) B$.
(iv) For generalized bi-ideal $B, B=(B S) B$.
(v) For $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy bi-ideal f, of $S f={ }_{(\gamma, \delta)}(f \circ S) \circ f$.
(vi) For $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy generalized bi-ideal f, of $S, f={ }_{(\gamma, \delta)}(f \circ S) \circ f$.

Proof. $(i) \Rightarrow(v i)$
Assume that f is $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy generalized bi-ideal of a regular AG-groupoid S. Since S is regular so for $b \in S$ there exist $x \in S$ such that $b=(b x) b$. Therefore we have,

$$
\begin{aligned}
& \max \{((f \circ S) \circ f)(b), \gamma\} \\
= & \max \left\{\bigvee_{b=x y}\{(f \circ S)(x) \wedge f(y)\}, \gamma\right\} \\
\geq & \max \{(f \circ s)(b x) \wedge f(b), \gamma\} \\
= & \max \left\{\bigvee_{b x=u v}(f(u) \wedge S(v)) \wedge f(b), \gamma\right\} \\
\geq & \max \{f(b) \wedge S(x) \wedge f(b), \gamma\} \\
= & \min \{\max \{f(b), \gamma\}, 1, \max \{f(b), \gamma\}\} \\
\geq & \min \{\min \{f(b), \delta\}, 1, \min \{f(b), \delta\}\} \\
= & \min \{\min \{f(b) \wedge 1 \wedge f(b), \delta\} \\
= & \min \{f(b), \delta\}
\end{aligned}
$$

Thus $f \subseteq \vee q_{(\gamma, \delta)}(f \circ S) \circ f$. Since f is $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy generalized bi-ideal of a regular AG-groupoid S. So we have $(f \circ S) \circ f \subseteq \vee q_{(\gamma, \delta)} f$.

Hence $f={ }_{(\gamma, \delta)}(f \circ S) \circ f$.
$(v i) \Rightarrow(v)$ is obvious.
$(v) \Rightarrow(i v)$
Assume that B is a bi-ideal of S. Then $\chi_{\gamma B}^{\delta}$, is an $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy bi-ideal of S. Therefore we have,

$$
\begin{aligned}
\chi_{\gamma B}^{\delta} & ={ }_{(\gamma, \delta)}\left(\chi_{\gamma B}^{\delta} \odot \chi_{\gamma S}^{\delta}\right) \odot \chi_{\gamma B}^{\delta} \\
& =(\gamma, \delta)\left(\chi_{\gamma B S}^{\delta}\right) \odot \chi_{\gamma B}^{\delta}={ }_{(\gamma, \delta)} \chi_{\gamma(B S) B}^{\delta}
\end{aligned}
$$

Therefore $B=(B S) B$.
$(i v) \Rightarrow(i i i)$ is obvious.
(iii) $\Rightarrow($ (ii) is obvious.
$(i i) \Rightarrow(i)$
Since $B[a]=a \cup a^{2} \cup(a S) a$ is a principle bi-ideal of S generated by a respectively. Thus by (ii), we have,

$$
\begin{aligned}
& a \cup a^{2} \cup(a S) a \\
= & {\left[\left\{a \cup a^{2} \cup(a S) a\right\} S\right]\left(a \cup a^{2} \cup(a S) a\right) } \\
= & {\left[a S \cup a^{2} S \cup\{(a S) a\} S\right]\left(a \cup a^{2} \cup(a S) a\right) } \\
= & \left(a S \cup a^{2} S \cup a(a S)\right)\left(a \cup a^{2} \cup(a S) a\right) \\
= & (a S) a \cup(a S) a^{2} \cup(a S)((a S) a) \\
& \cup\left(a^{2} S\right) a \cup\left(a^{2} S\right) a^{2} \cup\left(a^{2} S\right)((a S) a) \\
& \cup(a(a S)) a \cup(a(a S)) a^{2} \cup(a(a S))((a S) a) \\
= & (a S) a \cup a^{2} S \cup(a S) a \cup a^{2} S \cup a^{2} S \cup a^{2} S \\
& \cup(a S) a \cup(a S) a \cup(a S) a \\
= & a^{2} S \cup(a S) a .
\end{aligned}
$$

Hence S is regular
Theorem 340 For an $A G$-groupoid S, with left identity, the following are equivalent.
(i) S is regular.
(ii) $B[a] \cap Q[a] \subseteq(B[a] S) Q[a]$, for some a in S.
(iii) For bi-ideal B and quasi-ideal Q of $S, B \cap Q \subseteq(B S) Q$.
(iv) $f \cap g \subseteq \vee q_{(\gamma, \delta)}(f \circ S) \circ g$. for $\left(\in_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy bi-ideal f, and $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy quasi-ideal g of S.
(v) $f \cap g \subseteq \vee q_{(\gamma, \delta)}(f \circ S) \circ g$. for $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy generalized bi-ideal f and $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy quasi-ideal g of S.

Proof. $(i) \Rightarrow(v)$
Assume that f and g are $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy generalized bi-ideal and $\left(\epsilon_{\gamma}\right.$, $\epsilon_{\gamma} \vee q_{\delta}$)-fuzzy quasi-ideal of a regular AG-groupoid S, respectively. Now since S is regular so for $a \in S$ there exist $x \in S$ such that using left invertive law and also using law $a(b c)=b(a c)$, we have, $a=(a x) a=[\{(a x) a\} x] a$.

Thus,

$$
\begin{aligned}
& \max \{((f \circ S) \circ g)(a), \gamma\} \\
= & \max \left\{\bigvee_{a=b c}\{(f \circ S)(b) \wedge g(c)\}, \gamma\right\} \\
\geq & \max \{(f \circ S)[\{(a x) a\} x] \wedge g(a), \gamma\} \\
= & \max \left\{\bigvee_{\{(a x) a\} x=p q}(f(p) \wedge S(q)) \wedge g(a), \gamma\right\} \\
\geq & \max \{f((a x) a) \wedge S(x) \wedge g(a), \gamma\} \\
= & \min \{\max \{f((a x) a), \gamma\}, 1, \max \{g(a), \gamma\}\} \\
\geq & \min \{\min \{f(a), \delta\}, 1, \min \{g(a), \delta\}\} \\
= & \min \{\min \{f(a) \wedge 1 \wedge g(a), \delta\} \\
= & \min \{[f \cap g](a), \delta\}
\end{aligned}
$$

Thus $f \cap g \subseteq \vee q_{(\gamma, \delta)}(f \circ S) \circ g$
$(v) \Rightarrow(i v)$ is obvious.
$(i v) \Rightarrow(i i i)$
Assume that B and Q are bi-ideal and quasi-ideal of regular AG-groupioud of S respectively. Then $\chi_{\gamma B}^{\delta}$ and $\chi_{\gamma Q}^{\delta}$ are $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy bi-ideal and $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy quasi-ideal of S respectively. Therefore we have,

$$
\begin{aligned}
\chi_{\gamma(B \cap Q)}^{\delta} & ={ }_{(\gamma, \delta)} \chi_{\gamma B}^{\delta} \cap \chi_{\gamma S}^{\delta} \cap \chi_{\gamma Q}^{\delta} \subseteq \vee q_{(\gamma, \delta)}\left(\chi_{\gamma B}^{\delta} \odot \chi_{\gamma S}^{\delta}\right) \odot \chi_{\gamma Q}^{\delta} \\
& ={ }_{(\gamma, \delta)}\left(\chi_{\gamma B S}^{\delta}\right) \odot \chi_{\gamma Q}^{\delta}={ }_{(\gamma, \delta)} \chi_{\gamma(B S) Q}^{\delta}
\end{aligned}
$$

Therefore $B \cap Q \subseteq(B S) Q$.
(iii) $\Rightarrow(i i)$ is obvious.
(ii) $\Rightarrow(i)$

Since $B[a]=a \cup a^{2} \cup(a S) a$ and $Q[a]=a \cup(S a \cap a S)$ are principle bi-ideal and principle quasi-ideal of S generated by a respectively. Thus by (ii), law $a(b c)=b(a c)$, medial law and left invertive law we have,

$$
\begin{aligned}
& \left\{a \cup a^{2} \cup(a S) a\right\} \cap\{a \cup(S a \cap a S)\} \\
\subseteq & \left\{\left(a \cup a^{2} \cup(a S) a\right) S\right\}(a \cup(S a \cap a S)) \\
\subseteq & \left\{a S \cup a^{2} S \cup((a S) a) S\right\}(a \cup S a) \\
= & \left\{a S \cup a^{2} S \cup(S a)(a S)\right\}(a \cup S a) \\
= & \left\{(a S) a \cup\left(a^{2} S\right) a \cup\{(S a)(a S)\} a \cup(a S)(S a)\right. \\
& \left.\cup\left(a^{2} S\right)(S a) \cup(S a)(a S)(S a)\right\} \\
\subseteq & (a S) a \cup S a^{2} \cup(a S) a \cup(a S) a \cup S a^{2} \cup(a S) a \\
= & (a S) a \cup a^{2} S
\end{aligned}
$$

Hence S is regular.

$9.2 \quad\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy Quasi-ideals of AG-groupoids

The following is an example of generalized fuzzy quasi-ideal in an AGgroupoid.

Example 341 Consider an $A G$-groupoid $S=\{1,2,3\}$ in the following multiplication table.

\circ	1	2	3
1	3	3	2
2	2	2	2
3	2	2	2

Define a fuzzy subset f on S as follows:

$$
f(x)= \begin{cases}0.21 & \text { if } x=1 \\ 0.23 & \text { if } x=2 \\ 0.24 & \text { if } x=3\end{cases}
$$

Then, we have

- f is an $\left(\epsilon_{0.2}, \in_{0.2} \vee q_{0.23}\right)$-fuzzy left ideal,
- f is not an $\left(\in, \in \vee q_{0.23}\right)$-fuzzy left ideal.

Definition 342 A fuzzy subset f of an AG-groupoid S is called an $\left(\epsilon_{\gamma}\right.$, $\left.\in_{\gamma} \vee q_{\delta}\right)$-fuzzy left (right) ideal of S if it satisfies $y_{t} \in_{\gamma} f,(x y)_{t} \in_{\gamma} \vee q_{\delta} f$ $\left(x_{t} \in_{\gamma} f\right.$ implies that $\left.(x y)_{t} \in_{\gamma} \vee q_{\delta} f\right)$, for all $t, s \in(0,1]$, and $\gamma, \delta \in[0,1]$.

Theorem 343 A fuzzy subset f of an AG-groupoid S is called $\left(\epsilon_{\gamma}, \in_{\gamma}\right.$ $\left.\vee q_{\delta}\right)$-fuzzy left (respt. right) ideal if and only if $\max \{f(a b), \gamma\} \geq \min \{f(b), \delta\}$, (respt. $\max \{f(a b), \gamma\} \geq \min \{f(a), \delta\}$) for all $a, b \in S$.

Lemma 344 Every intra regular $A G$-groupoid S is regular.
Proof. It is easy.
Lemma 345 In an $A G$-groupoid with left identity S the following holds
(i) $(a S)(S a)=(a S) a$, for all a in S,
(ii) $\{(S a)(a S)\}(S a) \subseteq(a S) a$, for all a in S.

Proof. (i) Using left invertive law, paramedial law, medial law and 1 we get

$$
(a S)(S a)=\{(S a) S\} a=\{(S a)(S S)\} a=\{(S S)(a S)\} a=\{S(a S)\} a=(a S) a
$$

(ii) now using paramedial and medial laws, and using (i) of this lemma we get:

$$
\begin{aligned}
\{(S a)(a S)\}(S a) & =(a S)\{(a S)(S a)\}=(a S)[\{(S a) S\} a] \\
& \subseteq(a S)(S a) \subseteq(a S) a
\end{aligned}
$$

Lemma 346 In an AG-groupoid with left identity S the following holds
(i) $a^{2} S=\left(S a^{2}\right) S$, for all a in S,
(ii) $S a^{2}=\left(S a^{2}\right) S$, for all a in S.

Proof. (i) Using (1) we get

$$
a^{2} S=a^{2}(S S)=S\left(a^{2} S\right)
$$

(ii)

$$
S a^{2}=(S S) a^{2}=\left(a^{2} S\right) S=\left\{\left(a^{2}\right)(S S)\right\} S=\left\{(S S)\left(a^{2}\right)\right\} S=\left(S a^{2}\right) S
$$

Lemma 347 A subset I of an $A G$-groupoid is left (bi, quasi, two sided) ideal if and only if $\mathcal{X}_{\gamma I}^{\delta}$ is $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$ fuzzy left(bi, quasi, two sided) ideal.

Proof. It is easy.

Theorem 348 If S is an AG-groupoid with left identity then the following are equivalent
(i) S is regular,
(ii) $B[a] \cap L[a] \subseteq(B[a] S) L[a]$, for all a in S,
(iii) $B \cap L \subseteq(B S) L$, where B and L are bi and left ideals of S,
(iv) $f \cap g \subseteq \vee q_{(\gamma, \delta)}\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right) \circ g$, where f and g are $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy bi and left ideals of S.

Proof. $(i) \Longrightarrow(i v)$ Let $a \in S$, then since S is regular so there exists x in S such that $a=(a x) a$. Then using paramedial and medial laws, we get

$$
a=(a x) a=(a x)[(a x) a]=[a(a x)](x a) .
$$

$$
\begin{aligned}
& \max \left\{\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right) \circ g(a), \gamma\right\} \\
= & \max \left[\bigvee_{a=b c}\left\{\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right)(b) \wedge g(c)\right\}, \gamma\right] \\
\geq & \max \left[\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right)(a(a x)) \wedge g(x a), \gamma\right] \\
= & \max \left[\min \left\{\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right)(a(a x)), g(x a)\right\}, \gamma\right] \\
= & \max \left[\min \left\{\bigvee_{a(a x)=p q}\left\{\left(f(p) \wedge \mathcal{X}_{\gamma S}^{\delta}(q)\right\}, g(x a)\right\}, \gamma\right]\right. \\
\geq & \max \left[\min \left\{\left(f(a), \mathcal{X}_{\gamma S}^{\delta}(a x), g(x a)\right\}, \gamma\right]\right. \\
= & \max [\min \{(f(a), 1, g(x a)\}, \gamma] \\
= & \max [\min \{(f(a), g(x a)\}, \gamma] \\
= & \min [\max \{f(a), \gamma\}, \max \{g(x a), \gamma\}] \\
\geq & \min [\min \{f(a), \delta\}, \min \{g(a), \delta\}] \\
= & \min \{(f \cap g)(a), \delta\} .
\end{aligned}
$$

Thus $f \cap g \subseteq \vee q_{(\gamma, \delta)}\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right) \circ g$.
$(i v) \Longrightarrow(i i i)$ Let B and L are bi and left ideals of S. Then $\mathcal{X}_{\gamma B}^{\delta}$ and $\mathcal{X}_{\gamma L}^{\delta}$ are $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy bi and left ideals of S. Now by (iv)

$$
\begin{aligned}
\mathcal{X}_{\gamma B \cap L}^{\delta} & =\mathcal{X}_{\gamma B}^{\delta} \cap \mathcal{X}_{\gamma L}^{\delta} \subseteq \vee q_{(\gamma, \delta)}\left(\mathcal{X}_{\gamma B}^{\delta} \circ \mathcal{X}_{\gamma S}^{\delta}\right) \circ \mathcal{X}_{\gamma L}^{\delta} \\
& ={ }_{(\gamma, \delta)} \vee q_{(\gamma, \delta)}\left(\mathcal{X}_{\gamma B S}^{\delta}\right) \circ \mathcal{X}_{\gamma L}^{\delta}={ }_{(\gamma, \delta)} \vee q_{(\gamma, \delta)} \mathcal{X}_{\gamma(B S) L}^{\delta}
\end{aligned}
$$

Thus $B \cap L \subseteq(B S) L$.
$($ iii) $\Longrightarrow(i i)$ is obvious.
(ii) \Longrightarrow (i) Using left invertive law, paramedial law, medial law, we get
$a \in\left[a \cup a^{2} \cup(a S) a\right] \cap(a \cup S a) \subseteq\left[\left\{a \cup a^{2} \cup(a S) a\right\} S\right](a \cup S a)$
$=\left[a S \cup a^{2} S \cup\{(a S) a\} S\right](a \cup S a)$
$=(a S) a \cup(a S)(S a) \cup\left(a^{2} S\right) a \cup\left(a^{2} S\right)(S a)$ $\cup[\{(a S) a\} S] a \cup[\{(a S) a\} S](S a)$
$\subseteq \quad(a S) a \cup(a S)(S a) \cup S a^{2} \cup(a S)\{(a S) a\}$ $\cup\{(S a)(a S)\}(S a)$
$\subseteq \quad(a S) a \cup\left(S a^{2}\right) S$.
Hence S is regular.
Theorem 349 If S is an AG-groupoid with left identity then the following are equivalent
(i) S is regular,
(ii) $I[a] \cap L[a] \subseteq(I[a] S) L[a]$ for all a in S,
(iii) $I \cap L \subseteq(I S) L$ for ideal I and left ideal L,
(iv) $f \cap g \subseteq \vee q_{(\gamma, \delta)}\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right) \circ g$, where f and g are $\left(\in_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy ideal and left ideals of S.

Proof. $(i) \Longrightarrow(i v)$ Let $a \in S$, then since S is regular so there exists x in S such that $a=(a x) a$. Then using paramedial and medial laws, we get

$$
a=(a x) a=(a x)(e a)=(a e)(x a) .
$$

Then

$$
\begin{aligned}
& \max \left\{\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right) \circ g(a), \gamma\right\} \\
= & \max \left[\bigvee_{a=b c}\left\{\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right)(b) \wedge g(c)\right\}, \gamma\right] \\
= & \max \left[\bigvee_{a=b c}\left\{\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right)(a e) \wedge g(x a)\right\}, \gamma\right] \\
\geq & \max \left[\left\{\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right)(a e) \wedge g(x a)\right\}, \gamma\right] \\
= & \max \left[\min \left\{\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right)(a e), g(x a)\right\}, \gamma\right] \\
= & \max \left[\min \left\{\left(\bigvee_{a e=p q} f(p) \wedge \mathcal{X}_{\gamma S}^{\delta}(q), g(x a)\right\}, \gamma\right]\right. \\
\geq & \max \left[\min \left\{\left(f(a), \mathcal{X}_{\gamma S}^{\delta}(e), g(x a)\right\}, \gamma\right]\right. \\
= & \max [\min \{(f(a), 1, g(x a)\}, \gamma] \\
= & \max [\min \{(f(a), g(x a)\}, \gamma] \\
= & \min [\max \{f(a), \gamma\}, \max \{g(x a), \gamma\}] \\
\geq & \min [\min \{f(a), \delta\}, \min \{g(a), \delta\}] \\
= & \min \{(f \cap g)(a), \delta\} .
\end{aligned}
$$

Thus $f \cap g \subseteq \vee q_{(\gamma, \delta)}\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right) \circ g$.
$(i v) \Longrightarrow(i i i)$ Let I and L are ideal and left ideal of S respectively. Then $\mathcal{X}_{\gamma I}^{\delta}$ and $\mathcal{X}_{\gamma L}^{\delta}$ are $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy ideal and left ideal of S respectively. Now by (iv)

$$
\begin{aligned}
\mathcal{X}_{\gamma I \cap L}^{\delta} & =\mathcal{X}_{\gamma I}^{\delta} \cap \mathcal{X}_{\gamma L}^{\delta} \subseteq \vee q_{(\gamma, \delta)}\left(\mathcal{X}_{\gamma I}^{\delta} \circ \mathcal{X}_{\gamma S}^{\delta}\right) \circ \mathcal{X}_{\gamma L}^{\delta} \\
& ={ }_{(\gamma, \delta)} \vee q_{(\gamma, \delta)}\left(\mathcal{X}_{\gamma I S}^{\delta}\right) \circ \mathcal{X}_{\gamma L}^{\delta}={ }_{(\gamma, \delta)} \vee q_{(\gamma, \delta)} \mathcal{X}_{\gamma(I S) L}^{\delta}
\end{aligned}
$$

Thus $I \cap L \subseteq(I S) L$.
$($ iii $) \Longrightarrow(i i)$ is obvious.
$(i i) \Longrightarrow(i)$ Using left invertive law, paramedial law, medial law, we get

$$
\begin{aligned}
a= & (a \cup a S \cup S a) \cap(a \cup S a) \subseteq\{(a \cup a S \cup S a) S\}(a \cup S a) \\
= & \{a S \cup(a S) S \cup(S a) S\}(a \cup S a) \\
\subseteq & \{a S \cup S a \cup(S a) S\}(a \cup S a) \\
= & (a S) a \cup(S a) a \cup\{(S a) S\} a \cup(a S)(S a) \\
& \cup(S a)(S a) \cup\{(S a) S\}(S a) \\
\subseteq & (a S) a \cup\left(S a^{2}\right) S
\end{aligned}
$$

Hence S is regular.
Theorem 350 If S is an $A G$-groupoid with left identity then the following are equivalent
(i) S is regular,
(ii) $B[a] \subseteq(B[a] S)(S B[a])$ for all a in S,
(iii) $B \subseteq(B S)(S B)$, where B is bi-ideal,
(iv) $f \subseteq \vee q_{(\gamma, \delta)}\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right) \circ\left(\mathcal{X}_{\gamma S}^{\delta} \circ f\right)$, where f is fuzzy bi-ideal.

Proof. $(i) \Rightarrow(i v)$ Let $a \in S$, then since S is regular so there exists x in S such that $a=(a x) a$. then using medial law we get

$$
\begin{aligned}
a= & (a x) a=[\{(a x) a\} x] a=[\{(a x) a\} x](e a) \\
= & {[\{(a x) a\} e](x a)=[\{(a x) a\} e][x\{(a x) a\}] } \\
& \max \left[\left\{\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right) \circ\left(\mathcal{X}_{\gamma S}^{\delta} \circ f\right)\right\}(a), \gamma\right] \\
= & \max \left[\bigvee_{a=b c}\left\{\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right)(b) \wedge\left(\mathcal{X}_{\gamma S}^{\delta} \circ f\right)(c)\right\}, \gamma\right] \\
\geq & \max \left[\left\{\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right)[\{(a x) a\} e] \wedge\left(\mathcal{X}_{\gamma S}^{\delta} \circ f\right)[x\{(a x) a\}]\right\}, \gamma\right] \\
= & \max \left[\min \left\{\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right)[\{(a x) a\} e],\left(\mathcal{X}_{\gamma S}^{\delta} \circ f\right)[x\{(a x) a\}]\right\}, \gamma\right] \\
\geq & \max \left[\min \left\{\min \left\{f\{(a x) a\}, \mathcal{X}_{\gamma S}^{\delta}(e)\right\}, \min \left\{\mathcal{X}_{\gamma S}^{\delta}(x), f((a x) a)\right\}\right\}, \gamma\right] \\
= & \max [\min \{\min \{f\{(a x) a\}, 1\}, \min \{1, f\{(a x) a\}\}\}, \gamma] \\
= & \max [\min \{f((a x) a), f((a x) a)\}, \gamma] \\
= & \min [\max \{f((a x) a), \gamma\}, \max \{f((a x) a, \gamma)\}] \\
\geq & \min [\min \{f(a), \delta\}, \min \{f((a), \delta\} \\
= & \min \{f(a), \delta\} .
\end{aligned}
$$

Thus $f \subseteq \vee q_{(\gamma, \delta)}\left\{\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right) \circ\left(\mathcal{X}_{\gamma S}^{\delta} \circ f\right)\right\}$.
$(i v) \Longrightarrow($ iii $)$ Let B be bi-ideal of S. Then $\mathcal{X}_{\gamma B}^{\delta}\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy bi-ideal of S. Now by (iv)

$$
\mathcal{X}_{\gamma B}^{\delta} \subseteq \vee q_{(\gamma, \delta)}\left(\mathcal{X}_{\gamma B}^{\delta} \circ \mathcal{X}_{\gamma S}^{\delta}\right)\left(\mathcal{X}_{\gamma S}^{\delta} \circ \mathcal{X}_{\gamma B}^{\delta}\right)=\vee q_{(\gamma, \delta)} \mathcal{X}_{\gamma(B S)(S B)}^{\delta}
$$

Thus $B \subseteq(B S)(S B)$.
$($ iii $) \Longrightarrow($ ii) is obvious.
$($ ii $) \Longrightarrow(i)$ Using left invertive law, we get

$$
\begin{aligned}
{\left[a \cup a^{2} \cup(a S) a\right] } & \subseteq\left[\left\{a \cup a^{2} \cup(a S) a\right\} S\right]\left[S\left\{a \cup a^{2} \cup(a S) a\right\}\right] \\
& =\left[a S \cup a^{2} S \cup\{(a S) a\} S\right]\left[S a \cup S a^{2} \cup\{S((a S) a)\}\right] \\
& =\left[a S \cup a^{2} S \cup(S a)(a S)\right]\left[S a \cup S a^{2} \cup(a S)(S a)\right] \\
& \subseteq(a S) a
\end{aligned}
$$

Hence S is regular.
Theorem 351 If S is an $A G$-groupoid with left identity then the following are equivalent
(i) S is regular,
(ii) $L[a] \cap B[a] \subseteq(L[a] S) B[a]$ for all a in S,
(iii) $L \cap B \subseteq(L S) B$ for left ideal L and bi-ideal B,
(iv) $f \cap g \subseteq \vee q_{(\gamma, \delta)}\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right) \circ g$, where f and g are $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy left and bi-ideals of S respectively.
Proof. $(i) \Longrightarrow(i v)$ Let $a \in S$, then since S is regular so there exists x in S such that $a=(a x) a$.

$$
\begin{aligned}
a= & (a x) a=(a x)\{(a x) a\} \\
& \max \left\{\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right) \circ g(a), \gamma\right\} \\
= & \max \left[\bigvee_{a=b c}\left\{\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right)(b) \wedge g(c)\right\}, \gamma\right] \\
& \max \left\{\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right) \circ g(a), \gamma\right\} \\
\geq & \max \left[\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right)(a x) \wedge g((a x) a), \gamma\right] \\
= & \max \left[\min \left\{\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right)(a x), g((a x) a)\right\}, \gamma\right] \\
= & \max \left[\min \left\{\bigvee_{a(a x)=p q}\left\{\left(f(p) \wedge \mathcal{X}_{\gamma S}^{\delta}(q)\right\}, g((a x) a)\right\}, \gamma\right]\right. \\
\geq & \max \left[\min \left\{\min \left\{\left(f(a), \mathcal{X}_{\gamma S}^{\delta}(x)\right\}, g((a x) a)\right\}, \gamma\right]\right. \\
= & \max [\min \{\min \{(f(a), 1\}, g((a x) a)\}, \gamma] \\
= & \max [\min \{(f(a), g((a x) a)\}, \gamma] \\
= & \min [\max \{f(a), \gamma\}, \max \{g((a x) a), \gamma\}] \\
\geq & \min [\min \{f(a), \delta\}, \min \{g(a), \delta\}] \\
= & \min \{(f \cap g)(a), \delta\} .
\end{aligned}
$$

Thus $f \cap g \subseteq \vee q_{(\gamma, \delta)}\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right) \circ g$.
$(i v) \Longrightarrow($ iii $)$ Let L and B are ideal and left ideal of S respectively. Then $\mathcal{X}_{\gamma L}^{\delta}$ and $\mathcal{X}_{\gamma B}^{\delta}$ are $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy left ideal and bi-ideal of S respectively.

Now by (iv)

$$
\begin{aligned}
\mathcal{X}_{\gamma L \cap B}^{\delta} & =\mathcal{X}_{\gamma L}^{\delta} \cap \mathcal{X}_{\gamma B}^{\delta} \subseteq \vee q_{(\gamma, \delta)}\left(\mathcal{X}_{\gamma L}^{\delta} \circ \mathcal{X}_{\gamma S}^{\delta}\right) \circ \mathcal{X}_{\gamma B}^{\delta} \\
& ={ }_{(\gamma, \delta)} \vee q_{(\gamma, \delta)}\left(\mathcal{X}_{\gamma L S}^{\delta}\right) \circ \mathcal{X}_{\gamma B}^{\delta}={ }_{(\gamma, \delta)} \vee q_{(\gamma, \delta)} \mathcal{X}_{\gamma(L S) B}^{\delta} .
\end{aligned}
$$

Thus $L \cap B \subseteq(L S) B$.
(iii) $\Longrightarrow($ ii) is obvious.
$(i i) \Longrightarrow(i)$ Using left invertive law, paramedial law, medial law, we get

$$
\begin{aligned}
a \in & (a \cup S a) \cap\left\{a \cup a^{2} \cup(a S) a\right\} \subseteq\{(a \cup S a) S\}\left\{a \cup a^{2} \cup(a S) a\right\} \\
= & (a S) a \cup(a S) a^{2} \cup(a S)\{(a S) a\} \cup\{(S a) S\} a \\
& \cup\{(S a) S\} a^{2} \cup\{(S a) S\}\{(a S) a\} \\
\subseteq & (a S) a \cup(a S) a^{2} \cup(a S)\{(a S) S\} \cup(a S)(S a) \\
& \cup\{(S a)(S S)\}(a a) \cup[\{(a S) a\} S](S a) \\
\subseteq & (a S) a \cup(a S) a^{2} \cup(a S)\{(a S) S\} \cup(a S)(S a) \\
& \cup\{(S a)(S S)\}(a a) \cup\{(S a)(a S)\}(S a) \\
\subseteq & a(S a) \cup\left(S a^{2}\right) S
\end{aligned}
$$

Hence S is regular.

Theorem 352 If S is an $A G$-groupoid with left identity then the following are equivalent
(i) S is regular,
(ii) $L[a] \cap Q[a] \cap I[a] \subseteq(L[a] Q[a]) I[a]$ for all a in S,
(iii) $L \cap Q \cap I \subseteq(L Q) I$ for left ideal L, quasi-ideal Q and ideal I of S,
(iv) $f \cap g \cap h \subseteq \vee q_{(\gamma, \delta)}(f \circ g) \circ h$, where f, g and h are $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy left ideal, right ideal and ideal of S.

Proof. $(i) \Longrightarrow(i v)$ Let $a \in S$, then since S is regular so there exists x in S such that $a=(a x) a$. Now using left invertive law we get

$$
\begin{aligned}
a= & (a x) a=[\{(a x) a\} x] a=\{(x a)(a x)\} a . \\
& \max \{(f \circ g) \circ h(a), \gamma\} \\
= & \max \left[\bigvee_{a=b c}\{(f \circ g)(b) \wedge h(a)\}, \gamma\right] \\
= & \max \left[\bigvee_{a=b c}\{(f \circ g)((x a)(a x)) \wedge h(a)\}, \gamma\right] \\
\geq & \max [\min \{(f \circ g)((x a)(a x)), h(a)\}, \gamma] \\
= & \left.\max \left[\min \left\{\underset{\{(x a)(a x)\}=p q}{\bigvee^{f}} f(p) \wedge g(q)\right), h(a)\right\}, \gamma\right] \\
\geq & \max [\min \{\min \{f(x a), g(a x)\}, h(a)\}, \gamma] \\
& \max [\min \{f(x a), g(a x), h(a)\}, \gamma] \\
& \min [\max \{f(x a), \gamma\}, \max \{g(a x), \gamma\}, \max \{h(a), \gamma\}] \\
\geq & \min [\min \{f(a), \delta\}, \min \{g(a), \delta\}, \min \{h(a), \delta\}] \\
& \min \{(f \cap g \cap h)(a), \delta\} .
\end{aligned}
$$

Thus $f \cap g \cap h \subseteq \vee q_{(\gamma, \delta)}(f \circ g) \circ h$.
$(i v) \Longrightarrow(i i i)$ Let L, J and I are left ideal and right ideal and ideal of S respectively. Then $\mathcal{X}_{\gamma L}^{\delta}, \mathcal{X}_{\gamma J}^{\delta}$ and $\mathcal{X}_{\gamma I}^{\delta}$ are $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy left ideal, right ideal and ideal of S respectively. Now by (iv)

$$
\begin{aligned}
\mathcal{X}_{\gamma L \cap J \cap I}^{\delta} & =\mathcal{X}_{\gamma L}^{\delta} \cap \mathcal{X}_{\gamma J}^{\delta} \cap \mathcal{X}_{\gamma I}^{\delta} \subseteq \vee q_{(\gamma, \delta)}\left(\mathcal{X}_{\gamma L}^{\delta} \circ \mathcal{X}_{\gamma J}^{\delta}\right) \circ \mathcal{X}_{\gamma I}^{\delta} \\
& ={ }_{(\gamma, \delta)} \vee q_{(\gamma, \delta)}\left(\mathcal{X}_{\gamma L J}^{\delta}\right) \circ \mathcal{X}_{\gamma I}^{\delta}={ }_{(\gamma, \delta)} \vee q_{(\gamma, \delta)} \mathcal{X}_{\gamma(L J) I}^{\delta} .
\end{aligned}
$$

Thus $L \cap J \cap I \subseteq(L J) I$. Hence $L \cap Q \cap I \subseteq(L Q) I$, where Q is a quasi-ideal.
$(i i i) \Longrightarrow(i i)$ is obvious.
$(i i) \Longrightarrow$ (i) Using left invertive law, paramedial law, medial law, we get

$$
\begin{aligned}
a \in & (a \cup S a) \cap[a \cup\{(S a) \cap(a S)\}] \cap(a \cup S a \cup a S) \\
\subseteq & {[(a \cup S a)\{a \cup\{(S a) \cap(a S)\}\}](a \cup S a \cup a S) } \\
= & \{(a \cup S a)(a \cup S a)\}(a \cup S a \cup a S) \\
= & \left\{a^{2} \cup a(S a) \cup(S a) a \cup(S a)(S a)\right\}(a \cup S a \cup a S) \\
= & \left(a^{2}\right)(a) \cup\left(a^{2}\right)(S a) \cup\left(a^{2}\right)(a S) \cup\{a(S a)\} a \cup\{a(S a)\}(S a) \\
& \cup\{a(S a)\}(a S) \cup\{(S a) a\} a \cup\{(S a) a\}(S a) \cup\{S a) a\}(a S) \\
& \cup\{(S a)(S a)\} a \cup\{(S a)(S a)\}(S a) \cup\{(S a)(S a)\}(a S) \\
\subseteq & \left(S a^{2}\right) S \cup(S a) S .
\end{aligned}
$$

Hence S is regular.

Theorem 353 If S is an AG-groupoid with left identity then the following are equivalent
(i) S is regular,
(ii) $I[a] \cap B[a] \subseteq I[a](I[a] B[a])$ for all a in S,
(iii) $I \cap B \subseteq I(I B)$ for ideal I and bi-ideal B,
(iv) $f \cap g \subseteq \vee q_{(\gamma, \delta)} f \circ(f \circ g)$, where f and g are $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy ideal and bi-ideal of S.
Proof. $(i) \Longrightarrow(i v)$ Let $a \in S$, then since S is regular so there exists x in S such that $a=(a x) a$.

$$
\begin{aligned}
& a=(a x) a=(a x)\{(a x) a\}=(a x)[(a x)\{(a x) a\}] . \\
& \max \{f \circ(f \circ g)(a), \gamma\} \\
= & \max \left[\left\{\bigvee_{a=b c} f(b) \wedge f \circ g(c)\right\}, \gamma\right] \\
\geq & \max [\{f(a x) \wedge f \circ g(a)\}, \gamma] \\
= & \max [\min \{f(a x), f \circ g(a)\}, \gamma] \\
= & \max \left[\min \left\{f(a x),\left\{\bigvee_{a=p q} f(p) \wedge g(q)\right\}\right\}, \gamma\right] \\
\geq & \max [\min \{f(a x),\{f(p) \wedge g(q)\}\}, \gamma] \\
= & \max [\min \{f(a x), \min \{f(a x), g((a x) a)\}\}, \gamma] \\
= & \min [\max \{f(a x), \gamma\}, \max \{f(a x), \gamma\}, \max \{g((a x) a), \gamma\}] \\
\geq & \min [\min \{f(a), \delta\}, \min \{f(a), \delta\}, \min \{g(a), \delta\}] \\
= & \min \{f \cap g, \delta\} .
\end{aligned}
$$

Thus $f \cap g \subseteq \vee q_{(\gamma, \delta)} f \circ(f \circ g)$.
$(i v) \Longrightarrow(i i i)$ Let I and B are ideal and bi-ideal of S respectively. Then $\mathcal{X}_{\gamma I}^{\delta}$ and $\mathcal{X}_{\gamma B}^{\delta}$ are $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy ideal and bi-ideal of S respectively. Now by (iv)

$$
\begin{aligned}
\mathcal{X}_{\gamma I \cap B}^{\delta} & =\mathcal{X}_{\gamma I}^{\delta} \cap \mathcal{X}_{\gamma B}^{\delta} \subseteq \vee q_{(\gamma, \delta)}\left(\mathcal{X}_{\gamma I}^{\delta}\right) \circ\left(\mathcal{X}_{\gamma I}^{\delta} \circ \mathcal{X}_{\gamma B}^{\delta}\right) \\
& ={ }_{(\gamma, \delta)} \vee q_{(\gamma, \delta)}\left(\mathcal{X}_{\gamma I}^{\delta}\right) \circ \mathcal{X}_{\gamma I B}^{\delta}={ }_{(\gamma, \delta)} \vee q_{(\gamma, \delta)} \mathcal{X}_{\gamma I(I B)}^{\delta}
\end{aligned}
$$

Thus $I \cap B \subseteq I(I B)$.
$($ iii $) \Longrightarrow(i i)$ is obvious.
$(i i) \Longrightarrow(i)$ Using left invertive law, paramedial law, medial law, we get

$$
\begin{aligned}
& (a \cup S a \cup a S) \cap\left\{a \cup a^{2} \cup(a S) a\right\} \\
\subseteq & (a \cup S a \cup a S)\left[(a \cup S a \cup a S)\left\{a \cup a^{2} \cup(a S) a\right\}\right] \\
= & (a \cup S a \cup a S)\left[S\left\{a \cup a^{2} \cup(a S) a\right\}\right] \\
= & (a \cup S a \cup a S)\left\{S a \cup S a^{2} \cup S((a S) a)\right\} \\
= & a(S a) \cup a\left(S a^{2}\right) \cup a[S\{(a S) a\}] \cup(S a)(S a) \\
& \cup(S a)\left(S a^{2}\right) \cup(S a)[S\{(a S) a\}] \cup(a S)(S a) \\
& \cup(a S)\left(S a^{2}\right)(a S)[S\{(a S) a\}] \\
\subseteq & (a S) a \cup\left(S a^{2}\right) S
\end{aligned}
$$

Hence S is regular.

Theorem 354 If S is an $A G$-groupoid with left identity then the following are equivalent
(i) S is regular,
(ii) $L[a] \subseteq\{L[a](L[a] S)\} L[a]$ for all a in S,
(iii) $L \subseteq\{L(L S)\} L$ for left ideal L of S,
(iv) $f \subseteq \vee q_{(\gamma, \delta)}\left\{f \circ\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right)\right\} \circ f$ where f is $\left(\in_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy left ideal of S.

Proof. $(i) \Longrightarrow(i v)$ Let $a \in S$, then since S is regular so there exists x in S such that $a=(a x) a$. now using left invertive law, Paramedial law, medial
law and putting $x e=x^{\prime}, x^{\prime} x=x$ " we get:

$$
\begin{aligned}
& a=(a x) a=[\{(a x) a\} x] a=\{(x a)(a x)\} a \\
& =\{a(a x)\}(x a)=\{(e a)(a x)\}(x a) \\
& =\{(x a)(a e)\}(x a)=[\{(a e) a\} x](x a) \\
& =x[\{((a e) a) x\} a]=(e x)[\{((a e) a) x\} a] \\
& =[a\{((a e) a) x\}](x e)=[a\{((a e) a) x\}] x^{\prime} \\
& =[\{(a e) a\}(a x)] x^{\prime}=\left\{x^{\prime}(a x)\right\}\{(a e) a\} \\
& =\left\{a\left(x^{\prime} x\right)\right\}\{(a e) a\}=\{a(a e)\}\left\{\left(x^{\prime} x\right) a\right\} \\
& =\left(x^{\prime} x\right)[\{a(a e)\} a]=\left(x^{\prime} x\right)[\{a(a e)\}(e a)] \\
& =\left(x^{\prime} x\right)[(a e)\{(a e) a\}]=(a e)\left[\left(x^{\prime} x\right)\{(a e) a\}\right. \\
& =\left[\{(a e) a\}\left(x^{\prime} x\right)\right](e a)=\left[\{(a e) a\} x^{" \prime}\right] a \\
& =[\{(x " a)(a e)\} a]=[\{(e a)(a x ")\} a] \\
& =[\{a(a x ")\} a] \text {. } \\
& \max \left\{\mathcal{X}_{\gamma S}^{\delta} \circ(f \circ f), \gamma\right\} \\
& =\max \left[\bigvee_{a=b c}\left\{f \circ\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right)\right\}(b) \wedge f(c), \gamma\right] \\
& \geq \max \left[\left\{f \circ\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right)\right\}\{a(a x ")\} \wedge f(a), \gamma\right] \\
& \left.=\max \left[\min \left\{\left\{f \circ\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right)\right\}\{a(a x ")\}\right\}, f(a)\right\}, \gamma\right] \\
& =\max \left[\min \left[\left\{\bigvee_{\{a(a x ")\}\}=p q} f(p) \wedge\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right)(q)\right\}, f(a)\right], \gamma\right] \\
& \geq \max \left[\min \left[\min \left\{\left\{f(a),\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right)(a x ")\right\}, f(a)\right\}\right], \gamma\right] \\
& =\max \left[\min \left[\min \left\{\left\{f(a),\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right)(a x ")\right\}, f(a)\right\}\right], \gamma\right] \\
& =\max \left[\min \left[\min \left\{\left\{f(a),\left\{\bigvee_{a x "=s t}\left\{f(s) \wedge \mathcal{X}_{\gamma S}^{\delta}(t)\right\}\right\}, f(a)\right\}\right], \gamma\right]\right. \\
& \geq \max \left[\min \left[\min \left\{f(a),\left\{f(a) \wedge \mathcal{X}_{\gamma S}^{\delta}(x ")\right\}, f(a)\right\}\right], \gamma\right] \\
& =\max \left[\min \left[\min \left\{f(a), \min \left\{f(a), \mathcal{X}_{\gamma S}^{\delta}\left(x^{\prime \prime}\right)\right\}, f(a)\right\}\right], \gamma\right] \\
& =\max [\min [\min \{f(a), \min \{f(a), 1\}, f(a)\}], \gamma] \\
& =\max [\min [\min \{\{f(a), f(a), f(a)\}], \gamma] \\
& =\max [\min \{f(a), \gamma\}] \\
& =\min [\max \{f(a), \gamma\}] \\
& \geq \min [\min \{f(a), \delta\}] \text {. }
\end{aligned}
$$

Thus $f \subseteq \vee q_{(\gamma, \delta)}\left\{f \circ\left(f \circ \mathcal{X}_{\gamma S}^{\delta}\right)\right\} \circ f$.
$(i v) \Longrightarrow($ iii $)$ Let L be left ideal of S. Then $\mathcal{X}_{\gamma L}^{\delta}\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy left ideal of S. Now by (iv)

$$
\mathcal{X}_{\gamma L}^{\delta} \subseteq \vee q_{(\gamma, \delta)}\left[\left\{\mathcal{X}_{\gamma L}^{\delta} \circ\left(\mathcal{X}_{\gamma L}^{\delta} \circ \mathcal{X}_{\gamma S}^{\delta}\right)\right\} \circ \mathcal{X}_{\gamma L}^{\delta}\right]=\vee q_{(\gamma, \delta)} \mathcal{X}_{\gamma[\{L(L S)\} L]}^{\delta}
$$

Thus $L \subseteq[\{L(L S)\} L]$.
$(i i) \Longrightarrow(i)$ is obvious.

$$
\begin{aligned}
a & \in S a \subseteq[(S a)\{(S a) S\}](S a) \\
& =[\{S(S a)\}(a S)](S a) \\
& =a[\{S(S a)\} S](S a) \\
& =(a S)(S a) \\
& \subseteq(a S) a
\end{aligned}
$$

Hence S is regular.

Theorem 355 If S is an $A G$-groupoid with left identity then the following are equivalent
(i) S is regular,
(ii) $I[a] \cap B[a] \subseteq I[a](S B[a])$ for all a in S,
(iii) $I \cap B \subseteq I(S B)$ for left ideal I and bi-ideal B,
(iv) $f \cap g \subseteq \vee q_{(\gamma, \delta)} f \circ\left(\mathcal{X}_{\gamma S}^{\delta} \circ g\right)$, where f and g are $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy interior ideal and bi-ideal of S.

Proof. $(i) \Longrightarrow(i v)$ Let $a \in S$, then since S is regular so using left invertive law we get

$$
\begin{aligned}
a & =(a x) a=\{(e a) x\} a=\{(x a) e\}\{(a x) a\} \\
& =(a x)[\{(x a) e\} a]=(a x)\{(a e)(x a)\} \\
& =(a x)[x\{(a e) a\}] .
\end{aligned}
$$

$$
\begin{aligned}
& \max \left\{f \circ\left(\mathcal{X}_{\gamma S}^{\delta} \circ g\right), \gamma\right\} \\
= & \max \left[\left\{\bigvee_{a=p q} f(p) \wedge\left(\mathcal{X}_{\gamma S}^{\delta} \circ g\right)(q)\right\}, \gamma\right] \\
\geq & \max \left[f(a x) \wedge\left(\mathcal{X}_{\gamma S}^{\delta} \circ g\right)[x\{(a e) a\}], \gamma\right] \\
= & \max \left[\min \left\{f(a x),\left(\mathcal{X}_{\gamma S}^{\delta} \circ g\right)\{x((a e) a)\}\right\}, \gamma\right] \\
= & \max \left[\operatorname { m i n } \left\{f(a x),\left\{\bigvee_{x((a e) a)\}=s t}\left(\mathcal{X}_{\gamma S}^{\delta}(s) \wedge g(t), \gamma\right]\right.\right.\right. \\
\geq & \max \left[\operatorname { m i n } \left\{f(a x),\left\{\left(\mathcal{X}_{\gamma S}^{\delta}(x) \wedge g((a e) a)\right\}, \gamma\right]\right.\right. \\
= & \max \left[\left\{\min \left\{f(a x), \min \left\{\left(\mathcal{X}_{\gamma S}^{\delta}(x), g((a e) a)\right\}\right\}, \gamma\right]\right.\right. \\
= & \max [\{\min \{f(a x), \min \{1, g((a e) a)\}\}, \gamma] \\
= & \max [\{\min \{f(a x), g((a e) a)\}, \gamma] \\
= & \min [\max \{f(a x), \gamma\}, \max \{g((a e) a), \gamma\}] \\
\geq & \min [\min \{f(a), \delta\}, \min \{g(a), \delta\} \\
= & \min \{f \cap g(a), \delta\} .
\end{aligned}
$$

Thus $f \cap g \subseteq \vee q_{(\gamma, \delta)} f \circ\left(\mathcal{X}_{\gamma S}^{\delta} \circ g\right)$.
$(i v) \Longrightarrow(i i i)$ Let I and B are ideal and bi-ideal of S respectively. Then $\mathcal{X}_{\gamma I}^{\delta}$ and $\mathcal{X}_{\gamma B}^{\delta}$ are $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy ideal and bi-ideal of S respectively. Now by (iv)

$$
\begin{aligned}
\mathcal{X}_{\gamma I \cap B}^{\delta} & =\mathcal{X}_{\gamma I}^{\delta} \cap \mathcal{X}_{\gamma B}^{\delta} \subseteq \vee q_{(\gamma, \delta)} \mathcal{X}_{\gamma I}^{\delta} \circ\left(\mathcal{X}_{\gamma S} \circ \mathcal{X}_{\gamma B}^{\delta}\right) \\
& ={ }_{(\gamma, \delta)} \vee q_{(\gamma, \delta)} \mathcal{X}_{\gamma\{I(S B)\}}^{\delta}
\end{aligned}
$$

Thus $I \cap B \subseteq I(S B)$.
$(i i i) \Longrightarrow(i i)$ is obvious.
$(i i) \Longrightarrow(i)$ Using $\{S(S a)\} \subseteq(S a)$ and we get

$$
\begin{aligned}
a \quad & \in(a S \cup S a) \cap\left\{a \cup a^{2} \cup(a S) a\right\} \\
\subseteq & (a S \cup S a)\left[S\left\{a \cup a^{2} \cup(a S) a\right\}\right] \\
= & (a S \cup S a)\left[S a \cup S a^{2} \cup S\{(a S) a\}\right] \\
= & (a S \cup S a)\left\{S a \cup S a^{2} \cup(a S)(S a)\right\} \\
= & (a S)(S a) \cup(a S)\left(S a^{2}\right) \cup(a S)\{(a S)(S a)\} \\
& \cup(S a)(S a) \cup(S a)\left(S a^{2}\right) \cup(S a)\{(a S)(S a)\} \\
\subseteq & (a S) a .
\end{aligned}
$$

Hence S is regular.

10

On Fuzzy Soft Intra-regular Abel-Grassmann's Groupoids

In this chapter we characterize intra-regular AG-groupoids in terms of $\left(\epsilon_{\gamma}\right.$, $\left.\in_{\gamma} \vee q_{\delta}\right)$-fuzzy soft ideals.

Definition 356 Let S be an $A G$-groupoid and U be an initial universe and let E be a set of parameters. A pair (F, E) is called a soft set over U if and only if F is a mapping of E into the set of all subsets of U.

Generally, the soft set, i.e, a pair (F, A) with $A \subseteq B$ and $F: A \rightarrow P(S)$.
Definition 357 Let (F, A) and (G, B) be soft sets over S, then (G, B) is called a soft subset of (F, A) if $B \subseteq A$ and $G(b) \subseteq F(b)$ for all $b \in B$.

Generally we write it as $(G, B) \widetilde{\subseteq}(F, A) .(F, A)$ is the soft supperset of (G, B), if (G, B) is a soft subset of (F, A).

Definition 358 A soft set (F, A) over an $A G$-groupoid S is called a soft $A G$-groupoid over S if $(F, A) \odot(F, A) \subseteq(F, A)$.

Definition 359 A soft set (F, A) over an AG-groupoid S is called a soft left (right)ideal over $S, \Sigma(S, E) \odot(F, A) \subseteq(F, A)((F, A) \odot \Sigma(S, E) \subseteq$ (F, A)).

A soft set over S is a soft ideal if it is both a soft left and a soft right ideal over S.

Definition 360 Let $V \subseteq U$. A fuzzy soft set $\langle F, A\rangle$ over V is said to be a relative whole (γ, δ) - fuzzy soft set (with respect to universe set V and parameter set A), denoted by $\Sigma(V, A)$, if $F(\varepsilon)=f_{\gamma V}^{\delta}$ for all $\varepsilon \in A$.

Definition 361 A new ordering relation is defined on $\mathcal{F}(X)$ denoted as $" \subseteq \vee q_{(\gamma, \delta)}$ ", as follows.

For any $\mu, \nu \in \mathcal{F}(X)$, by $\mu \subseteq \vee q_{(\gamma, \delta)} \nu$, we mean that $x_{r} \in_{\gamma} \mu$ implies $x_{r} \in_{\gamma} \vee q_{\delta} \nu$ for all $x \in X$ and $r \in(\gamma, 1]$.

Definition 362 Let $\langle F, A\rangle$ and $\langle G, B\rangle$ be two fuzzy soft sets over U. We say that $\langle F, A\rangle$ is an (γ, δ)-fuzzy soft subset of $\langle G, B\rangle$ and write $\langle F, A\rangle \subseteq_{(\gamma, \delta)}$ $\langle G, B\rangle$ if
(i) $A \subseteq B$;
(ii) For any $\varepsilon \in A, F(\varepsilon) \subseteq \vee q_{(\gamma, \delta)} G(\varepsilon)$.

Definition 363 For any fuzzy soft set $\langle F, A\rangle$ over an $A G$-groupiod $S, \epsilon \in A$
and $r \in(\gamma, 1]$, denote $F(\epsilon)_{r}=\left\{x \in S \mid x_{r} \in_{\gamma} F(\epsilon)\right\},\langle F(\epsilon)\rangle_{r}=\left\{x \in S \mid x_{r} \in_{\gamma} q_{\delta} F(\epsilon)\right\}$, $[F(\epsilon)]_{r}=\left\{x \in S \mid x_{r} \in_{\gamma} \vee q_{\delta} F(\epsilon)\right\}$.

Definition 364 Suppose f be a fuzzy subset of an $A G$-groupoid $S, A \in$ $[0,1]$. Define the map $F: A \longrightarrow P(S)$ as
$F(\alpha)=\{x \in S: f(x) \geq \alpha\}$ for all $\alpha \in A$.
Indeed $F(\alpha)$ is parameterized family of α-level subsets, corresponding to f. Therefore (F, A) is a soft set over S.

We also define another map, $F_{q}: A \longrightarrow P(S)$ as follows
$F_{q}(\alpha)=\{x \in S: f(x)+\alpha>1\}$ for all $\alpha \in A$. Then $\left(F_{q}, A\right)$ is a soft set over S.

Define a map $F^{*}: A \longrightarrow P(S)$ as follows
$F^{*}(\alpha)=\{x \in S: f(x)>\alpha\}$ for all $\alpha \in A$. Therefore $\left(F^{*}, A\right)$ is a soft set over S.

Example 365 Let $S=\{a, b, c, d\}$ and the binary operation "." defines on S as follows:

\cdot	a	b	c	d
a	a	a	a	a
b	a	d	d	c
c	a	d	d	d
d	a	d	d	d

Then (S, \cdot) is an $A G$-groupoid. Let $E=\{0.3,0.4\}$ and define a fuzzy soft set $\langle G, A\rangle$ over S as follows:

$$
G(\epsilon)(x)=\left\{\begin{array}{c}
2 \epsilon \text { if } x \in\{a, b\} \\
\frac{1}{2} \text { otherwise }
\end{array}\right.
$$

Then $\langle G, A\rangle$ is an $\left(\in_{0.2}, \in_{0.2} \vee q_{0.4}\right)$ - fuzzy soft left ideal of S.
Let $E=\{0.6,0.7\}$ and define a fuzzy soft set $\langle F, A\rangle$ over S as follows:

$$
F(\epsilon)(x)=\left\{\begin{array}{c}
\epsilon \text { if } x \in\{a, b\} \\
\frac{1}{2} \text { otherwise }
\end{array}\right.
$$

Then $\langle F, A\rangle$ is an $\left(\epsilon_{0.3}, \epsilon_{0.3} \vee q_{0.4}\right)$ - fuzzy soft bi-ideal of S.
Theorem 366 A fuzzy subset f of an $A G$-groupoid S is fuzzy interior ideal if and only if (F, A) is a soft interior ideal of S where $A=[0,1]$.

Proof. Let f be a fuzzy interior ideal of S then for all $x, a, y \in S, f((x a) y) \geq$ $f(a)$. Now let $a \in F(\alpha)$ this implies that $\{a \in S: f(a) \geq \alpha\}$ for all $\alpha \in A$. This implies that $f(a) \geq \alpha$ implies that $f((x a) y) \geq f(a) \geq \alpha$ implies that $((x a) y) \in F(\alpha)$ implies that $F(\alpha)$ is an interior ideal implies that (F, A) is soft interior ideal.

Conversely, let (F, A) is soft interior ideal of S we show that f is fuzzy interior ideal of S. Let $f((x a) y)<f(a)$ for some $x, y, a \in S$ and choose
$\alpha \in A$ such that $f((x a) y)<\alpha \leq f(a)$ this implies that $a \in F(\alpha)$ but $(x a) y \notin F(\alpha)$ which is a contradiction. Hence f is fuzzy interior ideal of S.

Theorem 367 A fuzzy subset f of a $A G$-groupoid S is fuzzy bi-ideal if and only if (F, A) is a soft bi-ideal of S where $A=[0,1]$.

Proof. Let f be a fuzzy bi-ideal of S then for all $x, y, z \in S, f((x y) z) \geq$ $f(x) \wedge f(z)$. Now let $x, z \in F(\alpha)$ this implies that

$$
\{x, y \in S: f(x) \geq \alpha, f(z) \geq \alpha\} \text { for all } \alpha \in A
$$

This implies that $f(x) \geq \alpha, f(z) \geq \alpha$ implies that $f(x) \wedge f(z) \geq \alpha$ implies that $f((x y) z) \geq \alpha$ implies that $((x y) z) \in F(\alpha)$ implies that $F(\alpha)$ is an bi-ideal implies that (F, A) is soft bi-ideal over S .

Conversely, let (F, A) is soft bi-ideal of S. we show that f is fuzzy biideal of S. Let $f((x y) z)<f(x) \wedge f(z)$ for some $x, y, z \in S$ and choose $\alpha \in A$ such that $f((x y) z)<\alpha \leq f(x) \wedge f(z)$ this implies that $x, z \in F(\alpha)$ but $(x y) z \notin F(\alpha)$ which is a contradiction. Hence f is fuzzy bi-ideal of S.

Theorem 368 A fuzzy subset f of an $A G$-groupoid S is fuzzy interior ideal if and only if $\left(F_{q}, A\right)$ is a soft interior ideal of S where $A=[0,1]$.

Proof. Let f be a fuzzy interior ideal of S then for all $x, a, y \in S, f((x a) y) \geq$ $f(a)$. Now let $a \in F(\alpha)$ this implies that $\{a \in S: f(a)+\alpha>1\}$ for all $\alpha \in A$. This implies that $f(a)+\alpha>1$ implies that $f((x a) y)+\alpha>1$ implies that $((x a) y) \in F_{q}(\alpha)$ implies that $F_{q}(\alpha)$ is an interior ideal implies that $\left(F_{q}, A\right)$ is soft interior ideal.

Conversely, let $\left(F_{q}, A\right)$ is soft interior ideal of S we show that f is fuzzy interior ideal of S. Let $f((x a) y)<f(a)$ for some $x, a, y \in S$ and choose $\alpha \in A$ such that $f((x a) y)<\alpha \leq f(a)$ this implies that $a \in F(\alpha)$ but $(x a) y \notin F(\alpha)$ which is a contradiction. Hence f is fuzzy interior ideal of S.

Theorem 369 A fuzzy subset f of an AG-groupoid S is fuzzy bi-ideal if and only if $\left(F_{q}, A\right)$ is a soft bi-ideal of S where $A=[0,1]$.

Proof. Let f be a fuzzy bi-ideal of S then for all $x, y, z \in S, f((x y) z) \geq$ $f(x) \wedge f(z)$. Now let $x, z \in F_{q}(\alpha)$ this implies that

$$
\{x, z \in S: f(x)+\alpha \geq 1, f(z)+\alpha \geq 1\} \text { for all } \alpha \in A \text {. }
$$

This implies that $f(x)+\alpha \geq 1, f(z)+\alpha \geq 1$ implies that $f(x) \wedge f(z)+\alpha \geq$ 1 implies that $f((x y) z)+\alpha \geq 1$ implies that $((x y) z) \in F_{q}(\alpha)$ implies that $F_{q}(\alpha)$ is an bi-ideal implies that $\left(F_{q}, A\right)$ is soft bi-ideal over S .

Conversely, let $\left(F_{q}, A\right)$ is soft bi-ideal of S we show that f is fuzzy biideal of S. Let $f((x y) z)<f(x) \wedge f(z)$ for some $x, y, z \in S$ and choose
$\alpha \in A$ such that $f((x y) z)+\alpha<1 \leq f(x) \wedge f(z)+\alpha$ this implies that $x, z \in F(\alpha)$ but $(x y) z \notin F(\alpha)$ which is a contradiction. Hence f is fuzzy bi-ideal of S.

Theorem 370 Let f be a fuzzy subset of an $A G$-groupoid S, then $(F,(0.5,1])$ is a soft interior ideal if and only if $\max \{f((x a) y), 0.5\} \geq f(a)$.

Proof. Let $(F,(0.5,1])$ be a soft interior ideal over S, then $F(\alpha)$ is an interior ideal of S for each $\alpha \in(0.5,1]$ such that $\max \{f((x a) y), 0.5\}<$ $f(a)$. Choose an $\alpha \in(0.5,1]$ such that $\max \{f((x a) y), 0.5\}<\alpha<f(a)$. Then $a \in F(\alpha)$ but $((x a) y) \notin F(\alpha)$ which is a contradiction,therefore $\max \{f((x a) y), 0.5\} \geq f(a)$.

Conversely, let $\max \{f((x a) y), 0.5\} \geq f(a)$ and $(F,(0.5,1])$ be a soft set over S. Let $a \in F(\alpha)$, where $\alpha \in(0.5,1]$. Then $\max \{f((x a) y), 0.5\} \geq$ $f(a) \geq \alpha>0.5$. So $((x a) y) \in F(\alpha)$. Therefore $F(\alpha)$ is an interior ideal of S. Hence $(F,(0.5,1])$ is a soft interior ideal over S.

Theorem 371 Let f be a fuzzy subset of an AG-groupoid S, then $(F,(0.5,1])$ is a soft bi-ideal if and only if $\max \{f((x y) z), 0.5\} \geq f(x) \wedge f(z)$.

Proof. Let $(F,(0.5,1])$ be a soft bi-ideal over S, then $F(\alpha)$ is an bi-ideal of S for each $\alpha \in(0.5,1]$ such that $\max \{f((x y) z), 0.5\}<f(x) \wedge f(z)$. Choose an $\alpha \in(0.5,1]$ such that $\max \{f((x y) z), 0.5\}<\alpha<f(x) \wedge f(z)$. Then $x, z \in F(\alpha)$ but $((x y) z) \notin F(\alpha)$ which is a contradiction, therefore $\max \{f((x y) z), 0.5\} \geq f(x) \wedge f(z)$.

Conversely, let $\max \{f((x y) z), 0.5\} \geq f(x) \wedge f(z)$ and $(F,(0.5,1])$ be a soft set over S. Let $x, z \in F(\alpha)$, where $\alpha \in(0.5,1]$. Then max $\{f((x y) z), 0.5\} \geq$ $f(x) \wedge f(z) \geq \alpha>0.5$. So $((x y) z) \in F(\alpha)$. Therefore $F(\alpha)$ is an bi-ideal of S. Hence $(F,(0.5,1])$ is a soft bi-ideal over S.

Theorem 372 A fuzzy subset f of an $A G$-groupoid S is $(\in, \in \vee q)$-fuzzy interior ideal of S if and only if $(F,(0,0.5])$ is a soft interior ideal over S.

Proof. Let f be an $(\in, \in \vee q)$-fuzzy interior ideal of S, for $x, a, y \in S$, $f((x a) y) \geq f(a) \wedge 0.5$.Now let $a \in F(\alpha)$, then $f(a) \geq \alpha$ so $a_{\alpha} \in f$ this implies that $((x a) y)_{\alpha} \in \vee q f$ that is $f((x a) y) \geq \alpha$ or $f((x a) y)+\alpha>1$. If $f((x a) y) \geq \alpha$ then $((x a) y) \in F(\alpha)$. If $f((x a) y)+\alpha>1$ then $f((x a) y)>$ $1-\alpha \geq \alpha$ because $\alpha \in(0,0.5]$. So $((x a) y) \in F(\alpha)$.Thus $F(\alpha)$ is an interior ideal of S for all $\alpha \in(0,0.5]$. Consequently $(F,(0,0.5])$ is a soft interior ideal over S.

Conversely, Suppose that $(F,(0,0.5])$ is a soft interior ideal over S. Then $F(\alpha)$ is an interior ideal of S for all $\alpha \in(0,0.5]$. We have to show that f is an $(\in, \in \vee q)$-fuzzy interior ideal of S. If possible let there exists some $x, a, y \in S$ such that $f((x a) y)<f(a) \wedge 0.5$. Choose an $\alpha \in(0,0.5]$ such that $f((x a) y)<\alpha<f(a) \wedge 0.5$, this shows that $a \in F(\alpha)$ but $((x a) y) \notin F$. Which is a contradiction, Thus $f((x a) y) \geq f(a) \wedge 0.5$. Thus f is $(\in, \in \vee q)$ fuzzy interior ideal of S.

Theorem 373 A fuzzy subset f of an $A G$-groupoid S is $(\in, \in \vee q)$-fuzzy bi-ideal of S if and only if $(F,(0,0.5])$ is a soft bi-ideal over S.

Proof. Let f be an $(\in, \in \vee q)$-fuzzy bi-ideal of S, for $x, y, z \in S, f((x y) z) \geq$ $f(x) \wedge f(z) \wedge 0.5$. Now let $x, z \in F(\alpha)$, then $f(x) \geq \alpha$ and $f(z) \geq \alpha$ so $x_{\alpha}, z_{\alpha} \in f$ this implies that $((x y) z)_{\alpha} \in \vee q f$ that is $f((x y) z) \geq \alpha$ or $f((x y) z)+\alpha>1$. If $f((x y) z) \geq \alpha$ then $(x y) z \in F(\alpha)$. If $f((x y) z)+\alpha>1$ then $f((x y) z)>1-\alpha \geq \alpha$ because $\alpha \in(0,0.5]$. So $(x y) z \in F(\alpha)$. Thus $F(\alpha)$ is bi-ideal of S for all $\alpha \in(0,0.5]$. Consequently $(F,(0,0.5])$ is a soft bi-ideal over S.

Conversely, assume that $(F,(0,0.5])$ is a soft bi-ideal over S. Then $F(\alpha)$ is an bi-ideal of S for all $\alpha \in(0,0.5]$. We have to show that f is an $(\in$ $, \in \vee q)$-fuzzy bi-ideal of S. If possible let there exists some $x, y, z \in S$ such that $f((x y) z)<f(x) \wedge f(z) \wedge 0.5$. Choose an $\alpha \in(0,0.5]$ such that $f((x y) z)<\alpha<f(x) \wedge f(z) \wedge 0.5$, this shows that $x, z \in F(\alpha)$ but $((x y) z) \notin F$. Which is a contradiction, thus $f((x y) z) \geq f(x) \wedge f(z) \wedge 0.5$. Thus f is $(\in, \in \vee q)$-fuzzy bi-ideal of S.

Theorem 374 Let f be a fuzzy subset of an AG-groupoid S. Then f is a (q, q)-fuzzy interior ideal if and only if $\left(F_{q},(0.5,1]\right)$ is a soft interior ideal over S.

Proof. Let f be an (q, q)-fuzzy interior ideal of S and suppose that $a \in$ $F_{q}(\alpha)$ where $\alpha \in(0.5,1]$, then $f(a)+\alpha \geq 1$, that is $a_{\alpha} q f$. Then for each $x, y \in S,((x a) y)_{\alpha} q f$ That is $f((x a) y)+\alpha \geq 1$. Hence $((x a) y) \in F_{q}(\alpha)$. Thus $F_{q}(\alpha)$ is an interior ideal of S. Consequently $\left(F_{q},(0.5,1]\right)$ is a soft interior ideal over S.

Conversely suppose that $\left(F_{q},(0.5,1]\right)$ is a soft interior ideal over S. Assume that there exists some $a \in S$ and $\alpha \in(0.5,1]$, such that $a_{\alpha} q f$ but $((x a) y)_{\alpha} q^{-} f$ that is $f((x a) y)+\alpha<1 \leq f(a)+\alpha$ for some $x, a, y \in S$. Then $a \in F_{q}(\alpha)$ but $((x a) y) \notin F_{q}(\alpha)$, which is a contradiction therefore $f((x a) y)+\alpha \geq 1$. Hence $((x a) y)_{\alpha} q f$. Which shows that f is a (q, q)-fuzzy interior ideal of S.

Theorem 375 Let f be a fuzzy subset of an AG-groupoid S. Then f is a (q, q)-fuzzy bi-ideal if and only if $\left(F_{q},(0.5,1]\right)$ is a soft bi-ideal over S.

Proof. Let f be an (q, q)-fuzzy bi-ideal of S and suppose that $x, z \in$ $F_{q}(\alpha)$ where $\alpha \in(0.5,1]$, then $f(x)+\alpha \geq 1$ and $f(z)+\alpha \geq 1$, that is $x_{\alpha} q f$,and. $z_{\alpha} q f$. Then for each $x, z \in S,((x y) z)_{\alpha} q f$ That is $f((x y) z)+\alpha \geq$ 1. Hence $((x y) z) \in F_{q}(\alpha)$. Thus $F_{q}(\alpha)$ is an bi-ideal of S. Consequently $\left(F_{q},(0.5,1]\right)$ is a soft bi-ideal over S.

Conversely suppose $\left(F_{q},(0.5,1]\right)$ is a soft bi-ideal over S. Assume that there exists some $x, z \in S$ and $\alpha \in(0.5,1]$, such that $x_{\alpha} q f$ and. $z_{\alpha} q f$ but $((x y) z)_{\alpha} q f$ that is $f((x y) z)+\alpha<1 \leq f(x) \wedge f(z)+\alpha$ for some $x, y, z \in S$. Then $x, z \in F_{q}(\alpha)$ but $((x y) z) \notin F_{q}(\alpha)$, which is a contradiction therefore
$f((x y) z)+\alpha \geq 1$. Hence $((x y) z)_{\alpha} q f$. Which shows that f is a (q, q)-fuzzy bi-ideal of S.

Definition 376 The restricted product (H, C) of two soft sets (F, A) and (G, B) over a semigroup S is defined as the soft set $(H, C)=(F, A) \odot(G, B)$ where $C=A \cap B$ and H is a set valued function from C to $P(S)$ defined as $H(c)=F(c) \circ G(c)$ for all $c \in C$.

Definition 377 Let X be a non empty set. A fuzzy subset f of X is defined as a mapping from X into $[0,1]$, where $[0,1]$ is the usual interval of real numbers. The set of all fuzzy subsets of X is denoted by $\mathcal{F}(X)$.

Definition 378 A fuzzy subset f of X of the form

$$
f(y)=\left\{\begin{array}{c}
r(\neq 0 \text { if } y=x \\
0 \text { otherwise }
\end{array}\right.
$$

is said to be a fuzzy point with support x and value r and is denoted by x_{r}, where $r \in(0,1]$.

Let $\gamma, \delta \in[0,1]$ be such that $\gamma<\delta$. For any $Y \subseteq X$, we define $\chi_{\gamma Y}^{\delta}$ be the fuzzy subset of X by $\chi_{\gamma Y}^{\delta}(x) \geq \delta$ for all $x \in Y$ and $\chi_{\gamma Y}^{\delta}(x) \leq \gamma$ otherwise. Clearly, $\chi_{\gamma Y}^{\delta}$ is the characteristic function of Y if $\gamma=0$ and $\delta=1$.

For a fuzzy point x_{r} and a fuzzy subset f of X, we say that
(i) $x_{r} \in_{\gamma} f$ if $f(x) \geq r>\gamma$.
(ii) $x_{r} q_{\delta} f$ if $f(x)+r>2 \delta$.
(iii) $x_{r} \in_{\gamma} \vee q_{\delta} f$ if $x_{r} \in_{\gamma}$ or $x_{r} q_{\delta} f$.
(iiii) $x_{r} \in_{\gamma} \wedge q_{\delta} f$ if $x_{r} \in_{\gamma}$ and $x_{r} q_{\delta} f$.
Definition 379 Let S be an $A G$-groupoid and $\mu, \nu \in \mathcal{F}(S)$. Define the product of μ and ν, denoted by $\mu \circ \nu$, by
$(\mu \circ \nu)(x)= \begin{cases}\sup _{x=y z} \min \{\mu(y), \nu(z)\} & \text { if there exist } y, z \in S \text { such that } x=y z, \\ & 0, \text { otherwise } .\end{cases}$
for all $x \in S$.
The following definitions are basics are available in [16].
Definition 380 A pair $\langle F, A\rangle$ is called fuzzy soft set over U, where $A \subseteq E$ and F is a mapping given by $F: A \rightarrow \mathcal{F}(U)$.

In general, for every $\varepsilon \in A, F(\varepsilon)$ is a fuzzy set of U and it is called fuzzy value set of parameter ε. The set of all fuzzy soft sets over U with parameters from E is called a fuzzy soft class, and it is denoted by $\mathcal{F} \rho(U, E)$.

Definition 381 Let $\langle F, A\rangle$ and $\langle G, B\rangle$ be two soft sets over U. We say that $\langle F, A\rangle$ is a fuzzy soft subset of $\langle G, B\rangle$ and write $\langle F, A\rangle \Subset\langle G, B\rangle$ if
(i) $A \subseteq B$;
(ii) For any $\varepsilon \in A, F(\varepsilon) \subseteq G(\varepsilon)$.
$\langle F, A\rangle$ and $\langle G, B\rangle$ are said to be fuzzy soft equal and write $\langle F, A\rangle=$ $\langle G, B\rangle$ if $\langle F, A\rangle \Subset\langle G, B\rangle$ and $\langle G, B\rangle \Subset\langle F, A\rangle$.

Definition 382 The extended intersection of two fuzzy soft sets $\langle F, A\rangle$ and $\langle G, B\rangle$ over U is called fuzzy soft set denoted by $\langle H, C\rangle$, where $C=A \cup B$ and

$$
H(\varepsilon)=\left\{\begin{array}{c}
F(\varepsilon) \text { if } \varepsilon \in A-B \\
G(\varepsilon) \text { if } \varepsilon \in B-A \\
F(\varepsilon) \cap G(\varepsilon) \text { if } \varepsilon \in A \cap B
\end{array}\right.
$$

for all $\varepsilon \in C$. This is denoted by $\langle H, C\rangle=\langle F, A\rangle \tilde{\cap}\langle G, B\rangle$.
Definition 383 The extended union of two fuzzy soft sets $\langle F, A\rangle$ and $\langle G, B\rangle$ over U is a fuzzy soft set denoted by $\langle H, C\rangle$, where $C=A \cup B$ and

$$
H(\varepsilon)=\left\{\begin{array}{c}
F(\varepsilon) \text { if } \varepsilon \in A-B \\
G(\varepsilon) \text { if } \varepsilon \in B-A \\
F(\varepsilon) \cup G(\varepsilon) \text { if } \varepsilon \in A \cap B
\end{array}\right.
$$

for all $\varepsilon \in C$. This is denoted by $\langle H, C\rangle=\langle F, A\rangle \tilde{\cup}\langle G, B\rangle$.
Definition 384 Let $\langle F, A\rangle$ and $\langle G, B\rangle$ be two fuzzy soft sets over U such that $A \cap B \neq \phi$. The restricted intersection of $\langle F, A\rangle$ and $\langle G, B\rangle$ is defined to be fuzzy soft set $\langle H, C\rangle$, where $C=A \cap B$ and $H(\varepsilon)=F(\varepsilon) \cap G(\varepsilon)$ for all $\varepsilon \in C$. This is denoted by $\langle H, C\rangle=\langle F, A\rangle \cap\langle G, B\rangle$.

Definition 385 Let $\langle F, A\rangle$ and $\langle G, B\rangle$ be two fuzzy soft sets over U such that $A \cap B \neq \phi$. The restricted union of $\langle F, A\rangle$ and $\langle G, B\rangle$ is defined to be fuzzy soft set $\langle H, C\rangle$, where $C=A \cap B$ and $H(\varepsilon)=F(\varepsilon) \cup G(\varepsilon)$ for all $\varepsilon \in C$. This is denoted by $\langle H, C\rangle=\langle F, A\rangle \cup\langle G, B\rangle$.

Definition 386 The product of two fuzzy soft sets $\langle F, A\rangle$ and $\langle G, B\rangle$ over an semigroup S is a fuzzy soft set over S, denoted by $\langle F \circ G, C\rangle$, where $C=A \cup B$ and

$$
(F \circ G)(\varepsilon)=\left\{\begin{array}{c}
F(\varepsilon) \text { if } \varepsilon \in A-B, \\
G(\varepsilon) \text { if } \varepsilon \in B-A, \\
F(\varepsilon) \circ G(\varepsilon) \text { if } \varepsilon \in A \cap B,
\end{array}\right.
$$

for all $\varepsilon \in C$. This is denoted by $\langle F \circ G, C\rangle=\langle F, A\rangle \odot\langle G, B\rangle$.
Definition 387 A fuzzy soft set $\langle F, A\rangle$ over an $A G$-groupoid is called an ($\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}$)-fuzzy soft left (resp., right) ideal over S if it satisfies

$$
\Sigma(S, A) \odot\langle F, A\rangle \Subset_{(\gamma, \delta)}\langle F, A\rangle\left(\text { resp. },\langle F, A\rangle \odot \Sigma(S, A) \Subset_{(\gamma, \delta)}\langle F, A\rangle\right)
$$

A fuzzy soft set over S is called $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q \delta\right)$-fuzzy soft ideal over S if it is both an $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy soft left ideal and an $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy soft right ideal over S.

Definition 388 A fuzzy soft set $\langle F, A\rangle$ over an $A G$-groupoid S is called an $\left.\left(\epsilon_{\gamma}, \in_{\gamma} \vee q\right)_{\delta}\right)$-fuzzy soft bi-ideal over S if it satisfies
(i) $\langle F, A\rangle \odot\langle F, A\rangle \Subset_{(\gamma, \delta)}\langle F, A\rangle$;
(ii) $\langle F, A\rangle \odot \Sigma(S, A) \odot\langle F, A\rangle \Subset_{(\gamma, \delta)}\langle F, A\rangle$.

Definition 389 A fuzzy soft set $\langle F, A\rangle$ over an $A G$-groupoid S is called $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy soft quasi-ideal over S if it satisfies

$$
\langle F, A\rangle \odot \Sigma(S, A) \tilde{\cap} \Sigma(S, A) \odot\langle F, A\rangle \Subset_{(\gamma, \delta)}\langle F, A\rangle
$$

Theorem 390 A fuzzy set f over an $A G$-groupoid S is called $\left(\epsilon_{\gamma}, \epsilon_{\gamma}\right.$ $\vee q \delta)-$ fuzzy left (resp. right) ideal over S if it satisfies
$($ for all $x, y \in S)(\max \{f(x y), \gamma\} \geq \min \{f(y), \delta\}($ resp. $\min \{f(x), \delta\}))$.
Proof. It is same as in .
Definition 391 A fuzzy set f over an $A G$-groupoid S is called $\left(\epsilon_{\gamma}, \in_{\gamma}\right.$ $\vee q_{\delta}$)-fuzzy left ideal over S if
$(f$ or all $x, y \in S)($ for all $t, \delta \in(\gamma, 1))\left(y_{t} \in_{\gamma} f \Longrightarrow(x y)_{\min \{t, s\}} \in_{\gamma}\right.$ $\left.\vee q_{\delta} f\right)$.

Definition 392 A fuzzy set f over an AG-groupoid S is called $\left(\epsilon_{\gamma}, \in_{\gamma}\right.$ $\left.\vee q_{\delta}\right)$-fuzzy right ideal over S if
(for all $x, y \in S)($ for all $t, \delta \in(\gamma, 1))\left(x_{t} \in_{\gamma} f \Longrightarrow(x y)_{\min \{t, s\}} \in_{\gamma}\right.$ $\left.\vee q_{\delta} f\right)$.

Definition 393 A fuzzy set f over an AG-groupoid S is called $\left(\epsilon_{\gamma}, \in_{\gamma}\right.$ $\left.\vee q_{\delta}\right)$-fuzzy ideal over S if it is both $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q \delta\right)$-fuzzy left ideal and $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q \delta\right)-$ fuzzy right ideal.

Theorem 394 A fuzzy set f over an AG-groupoid S is called $\left(\epsilon_{\gamma}, \in_{\gamma}\right.$ $\left.\vee q_{\delta}\right)$-fuzzy bi-ideal over S if it satisfies
(i) $($ for all $x, y \in S)(\max \{f(x y), \gamma\} \geq \min \{f(x), f(y), \delta\})$;
(ii) $($ for all $x, y, z \in S)(\max \{f(x y z), \gamma\} \geq \min \{f(x), f(z), \delta\})$.

Proof. It is easy.
Theorem 395 A fuzzy set f over an AG-groupoid S is called $\left(\in_{\gamma}, \in_{\gamma}\right.$ $\left.\vee q_{\delta}\right)-$ fuzzy interior ideal over S if it satisfies
(i) (for all $x, y \in S)(\max \{f(x y), \gamma\} \geq \min \{f(x), f(y), \delta\})$;
(ii) $($ for all $x, a, z \in S)(\max \{f(x a z), \gamma\} \geq \min \{f(a), \delta\})$.

Proof. It is easy.
Theorem 396 Let S be an $A G$-groupoid and $\langle F, A\rangle$ a fuzzy soft set over S. Then
(i) $\langle F, A\rangle$ is an $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy soft left ideal (resp., right, bi-ideal, quasi-ideal) over S if and only if non-empty subset $F(\varepsilon)_{r}$ is a left ideal (resp. right, bi-ideal, quasi-ideal) of S for all $\varepsilon \in A$ and $r \in(\gamma, \delta]$.
(ii) If $2 \delta=1+\gamma$, then $\langle F, A\rangle$ is an $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy soft left ideal (resp., right, bi-ideal, quasi-ideal) over S if and only if non-empty subset $\langle F(\varepsilon)\rangle_{r}$ is a left ideal (resp. right, bi-ideal, quasi-ideal) of S for all $\varepsilon \in A$ and $r \in(\delta, 1]$.
(iii) $\langle F, A\rangle$ is an $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy soft left ideal (resp., right, bi-ideal, quasi-ideal) over S if and only if non-empty subset $[F(\varepsilon)]_{r}$ is a left ideal (resp. right, bi-ideal, quasi-ideal) of S for all $\varepsilon \in A$ and $r \in(\gamma, \min \{2 \delta-$ $\gamma, 1\}]$.
Proof. It is straightforward.

Corollary 397 Let S be an $A G$-groupoid and $P \subseteq S$. Then P is a left ideal (resp. right ideal, bi-ideal, quasi-ideal) of S if and only if $\Sigma(P, A)$ is an $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy soft left ideal (resp., right ideal, bi-ideal, quasi-ideal) over S for any $A \subseteq E$.

10.1 Some Characterizations Using Generalized Fuzzy Soft Bi-ideals

Theorem 398 For an AG-groupoid with left identity e, the following are equivalent.
(i) S is intra-regular.
(ii) $B=B^{2}$, for any bi-ideal B.

Proof. It is easy.

Theorem 399 Let S be an $A G$-groupoid with left identity e. Then S is intra-regular if and only if $\langle F, A\rangle \tilde{\cap}\langle G, B\rangle \Subset_{(\gamma, \delta)}\langle F, A\rangle \odot\langle G, B\rangle$ for any $\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy soft bi- ideal $\langle F, A\rangle$ and $\langle G, B\rangle$ over S.

Proof. Let S be an intra-regular and $\langle F, A\rangle$ and $\langle G, B\rangle$ are any two $\left(\epsilon_{\gamma}\right.$,$\left.\in_{\gamma} \vee q_{\delta}\right)$-fuzzy soft bi-ideal of S. Now let x be an element of $S, \varepsilon \in A \cup B$ and $\langle F, A\rangle \tilde{\cap}\langle G, B\rangle=\langle H, A \cup B\rangle$. We consider the following cases.

Case 1: $\varepsilon \in A-B$. Then $H(\varepsilon)=F(\varepsilon)=(F \circ G)(\varepsilon)$.
Case 2: $\varepsilon \in B-A$. Then $H(\varepsilon)=G(\varepsilon)=(F \circ G)(\varepsilon)$.
Case 3: $\varepsilon \in A \cap B$. Then $H(\varepsilon)=F(\varepsilon) \cap G(\varepsilon)$ and $(F \circ G)(\varepsilon)=F(\varepsilon) \circ G(\varepsilon)$. Now we show that $F(\varepsilon) \cap G(\varepsilon) \Subset \vee q_{(\gamma, \delta)} F(\varepsilon) \circ G(\varepsilon)$. Since S is intra-regular,
therefore for any a in S there exist x and y in S such that $a=\left(x a^{2}\right) y$.

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a . \\
& =\left(y\left(x\left(\left(x a^{2}\right) y\right)\right) a=\left(y\left(\left(x a^{2}\right)(x y)\right)\right) a=\left(\left(x a^{2}\right)(y(x y))\right) a\right. \\
& =\left((a(x a))\left(x y^{2}\right)\right) a=\left(\left(\left(x y^{2}\right)(x a)\right) a\right) a \\
& \left.=\left(\left(\left(x y^{2}\right)\left(x\left(\left(x a^{2}\right) y\right)\right)\right) a\right) a=\left(\left(\left(x y^{2}\right)\left(x a^{2}\right)(x y)\right)\right) a\right) a \\
& \left.=\left(\left(x a^{2}\right)\left(\left(x y^{2}\right)(x y)\right)\right) a\right) a=\left(\left((x y)\left(x y^{2}\right)\left(a^{2} x\right)\right) a\right) a \\
& =\left(\left(a^{2}\left(\left((x y)\left(x y^{2}\right)\right) x\right)\right) a\right) a \\
& =\left(\left(a^{2} u\right) a\right) a, \text { where } u=\left((x y)\left(x y^{2}\right)\right) x \\
& =\left[\left\{a^{2}(e u)\right\} a\right] a=\left[\left\{(u e) a^{2}\right\} a\right] a=[\{a((u e) a)\} a] a \\
& =[(a v) a] a, \text { where } v=(u e) a) .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \max \{(F(\varepsilon) \circ G(\varepsilon))(a), \gamma\} \\
= & \max \left\{\sup _{a=p q} \min \{F(\varepsilon)(p), G(\varepsilon)(q)\}, \gamma\right\} \\
\geq & \max \{\min \{F(\varepsilon)((a v) a), G(\varepsilon)(a)\}, \gamma\} \\
= & \min \{\max \{F(\varepsilon)((a v) a), \gamma\}, \max \{G(\varepsilon)(a), \gamma\}\} \\
\geq & \min \{\min \{F(\varepsilon)(a), F(\varepsilon)(a), \delta\}, \min \{G(\varepsilon)(a), \delta\}\} \\
= & \min \{\min \{F(\varepsilon)(a), \delta\}, \min \{G(\varepsilon)(a), \delta\}\} \\
= & \min \{(F(\varepsilon) \cap G(\varepsilon))(a), \delta\} .
\end{aligned}
$$

It follows that $F(\varepsilon) \cap G(\varepsilon) \subseteq \vee q_{(\gamma, \delta)} F(\varepsilon) \circ G(\varepsilon)$. That is $H(\varepsilon) \subseteq \vee q_{(\gamma, \delta)}(F \circ$ $G)(\varepsilon)$. Thus in any case, we have

$$
H(\varepsilon) \subseteq \vee q_{(\gamma, \delta)}(F \circ G)(\varepsilon)
$$

Therefore

$$
\langle F, A\rangle \tilde{\cap}\langle G, B\rangle \Subset_{(\gamma, \delta)}\langle F, A\rangle \odot\langle G, B\rangle
$$

Conversely assume that the given condition hold. Let B be any bi-ideal of S then $\Sigma(B, E)$ is an $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy soft bi-ideal of S. Now by the assumption, we have $\Sigma(B, E) \tilde{\cap} \Sigma(B, E) \Subset_{(\gamma, \delta)} \Sigma(B, E) \odot \Sigma(B, E)$. Hence we have

$$
\begin{aligned}
\chi_{\gamma B}^{\delta} & =(\gamma, \delta) \chi_{\gamma(B \cap B)}^{\delta}={ }_{(\gamma, \delta)} \chi_{\gamma B}^{\delta} \cap \chi_{\gamma B}^{\delta} \subseteq q_{(\gamma, \delta)} \chi_{\gamma B}^{\delta} \odot \chi_{\gamma B}^{\delta} \\
& =(\gamma, \delta) \chi_{\gamma B B}^{\delta}={ }_{(\gamma, \delta)} \chi_{\gamma B^{2}}^{\delta} .
\end{aligned}
$$

It follows that $B \subseteq B^{2}$. Also $B^{2} \subseteq B$. This implies that $B=B^{2}$. Therefore S is intra-regular.

Theorem 400 In intra-regular AG-groupoid S with left identity the following are equivalent.
(i) A fuzzy subset f of S is an $\left(\in, \in \vee q_{k}\right)$-fuzzy right ideal.
(ii) A fuzzy subset f of S is an $\left(\in, \in \vee q_{k}\right)$-fuzzy left ideal.
(iii) A fuzzy subset f of S is an $\left(\epsilon, \in \vee q_{k}\right)$-fuzzy bi-ideal.
(iv) A fuzzy subset f of S is an $\left(\in, \in \vee q_{k}\right)$-fuzzy interior ideal.
(v) A fuzzy subset f of S is an $\left(\epsilon, \in \vee q_{k}\right)$-fuzzy quasi-ideal.

Proof. It is easy.

Theorem 401 Let S be an $A G$-groupoid with left identity then the following conditions are equivalent.
(i) S is intra-regular.
(ii) For all left ideals $A, B, A \cap B \subseteq B A$.
(iii) For all $\left(\epsilon, \in \vee q_{k}\right)$-fuzzy left ideals f and g, $f \wedge_{k} g \leq g \circ_{k} f$.
(iv) For all $\left(\in, \in \vee q_{k}\right)$-fuzzy bi-ideals f and $g, f \wedge_{k} g \leq g \circ_{k} f$.
(v) For all $\left(\in, \in \vee q_{k}\right)$ - generalized fuzzy bi-ideals f and $g, f \wedge_{k} g \leq g \circ_{k} f$.

Proof. It is easy.

Theorem 402 Let S be an $A G$-groupoid with left identity e. Then S is intra-regular if and only if $\langle G, R\rangle \tilde{\cap}\langle F, Q\rangle \Subset_{(\gamma, \delta)}\langle F, Q\rangle \odot\langle G, R\rangle$ for any $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy soft left ideal $\langle F, Q\rangle$ and for any $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy soft ideal $\langle G, R\rangle$ over S.

Proof. Let S be an intra-regular and $\langle F, Q\rangle$ and $\langle G, R\rangle$ are any $\left(\epsilon_{\gamma}, \epsilon_{\gamma}\right.$ $\left.\vee q_{\delta}\right)$-fuzzy soft left ideal and $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-fuzzy soft ideal of S. Now let x be an element of $S, \varepsilon \in Q \cup R$ and $\langle F, Q\rangle \tilde{\cap}\langle G, R\rangle=\langle H, Q \cup R\rangle$. We consider the following cases.

Case 1: $\varepsilon \in Q-R$. Then $H(\varepsilon)=F(\varepsilon)=(F \circ G)(\varepsilon)$.
Case 2: $\varepsilon \in R-Q$. Then $H(\varepsilon)=G(\varepsilon)=(F \circ G)(\varepsilon)$.
Case 3: $\varepsilon \in Q \cap R$.Then $H(\varepsilon)=F(\varepsilon)=F(\varepsilon) \cap G(\varepsilon)$ and $(F \circ G)(\varepsilon)=$ $F(\varepsilon) \circ G(\varepsilon)$. Now we show that $F(\varepsilon) \cap G(\varepsilon) \Subset_{(\gamma, \delta)} G(\varepsilon) \circ F(\varepsilon)$. Since S is intra-regular, therefore for any a in S there exist x and y in S such that $a=\left(x a^{2}\right) y$.

$$
\begin{aligned}
a & =\left(x a^{2}\right) y=(x(a a)) y=(a(x a)) y=(y(x a)) a=(y(x a))(e a) \\
& =(y e)((x a) a)=(x a)((y e) a)=(x a)(t a), \text { where } t=(y e) .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \max \{(G(\varepsilon) \circ F(\varepsilon))(a), \gamma\} \\
= & \max \left\{\sup _{a=u v} \min \{G(\varepsilon)(u), F(\varepsilon)(v)\}, \gamma\right\} \\
\geq & \max \{\min \{G(\varepsilon)(x a), F(\varepsilon)(t a)\}, \gamma\} \\
= & \min \{\max \{G(\varepsilon)(x a)), \gamma\}, \max \{F(\varepsilon)(t a), \gamma\}\} \\
\geq & \min \{\min \{G(\varepsilon)(a), \delta\}, \min \{F(\varepsilon)(a), \delta\}\} \\
= & \min \{\min \{G(\varepsilon)(a), F(\varepsilon)(a), \delta\}\} \\
= & \min \{(G(\varepsilon) \cap F(\varepsilon))(a), \delta\} \\
= & \min \{(F(\varepsilon) \cap G(\varepsilon))(a), \delta\} .
\end{aligned}
$$

It follows that $F(\varepsilon) \cap G(\varepsilon) \subseteq \vee q_{(\gamma, \delta)} G(\varepsilon) \circ F(\varepsilon)$. That is $H(\varepsilon) \subseteq \vee q_{(\gamma, \delta)}(G \circ$ $F)(\varepsilon)$. Thus in any case, we have

$$
H(\varepsilon) \subseteq \vee q_{(\gamma, \delta)}(G \circ F)(\varepsilon)
$$

Therefore,

$$
\langle F, Q\rangle \tilde{\cap}\langle G, R\rangle \Subset_{(\gamma, \delta)}\langle G, R\rangle \odot\langle F, Q\rangle .
$$

Conversely assume that the given condition hold. Let L_{1} and L_{2} are any two left ideal of S then, $\Sigma\left(L_{1}, E\right)$ and $\Sigma\left(L_{2}, E\right)$ are
$\left(\epsilon_{\gamma}, \in_{\gamma} \vee q_{\delta}\right)$-fuzzy soft left ideal of S. Now by the assumption, we have $\Sigma\left(L_{1}, E\right) \tilde{\cap} \Sigma\left(L_{2}, E\right) \Subset_{(\gamma, \delta)} \Sigma\left(L_{2}, E\right) \odot \Sigma\left(L_{1}, E\right)$.Hence we have

$$
\begin{aligned}
\chi_{\gamma\left(L_{1} \cap L_{2}\right)}^{\delta} & =(\gamma, \delta) \chi_{\gamma L_{1}}^{\delta} \cap \chi_{\gamma L_{2}}^{\delta} \\
& \subseteq q_{(\gamma, \delta)} \chi_{\gamma L_{2}}^{\delta} \odot \chi_{\gamma L_{1}}^{\delta}={ }_{(\gamma, \delta)} \chi_{\gamma L_{2} L_{1}}^{\delta}
\end{aligned}
$$

It follows that $L_{1} \cap L_{2} \subseteq L_{2} L_{1}$. Therefore by theorem S is intra-regular.

10.2 REFERENCES

[1] S.K. Bhakat and P. Das, On the definition of a fuzzy subgroup, Fuzzy Sets and Systems, 51(1992), 235-241.
[2] S.K. Bhakat and P. Das, $(\in, \in \vee q)$-fuzzy subgroups, Fuzzy Sets and Systems, 80(1996), 359-368.
[3] A.H. Clifford and G.B. Preston, The algebraic theory of semigroups, Volume II, Amer. Math. Soci., 1967.
[4] K. A. Dib and N. Galham, Fuzzy ideals and fuzzy bi-ideals in fuzzy semigroups, Fuzzy Sets and systems 92(1992), 103 - 111, 1992.
[5] B. Davvaz, $(\in, \in \vee q$)-fuzzy subnearrings and ideals, Soft Comput., 10(2006), 206-211.
[6] B. Davvaz and O. Kazanci, A new kind of $(\in, \in \vee q)$-fuzzy sublattice (ideal, filter) of a lattice, International Journal of Fuzzy Systems, 13(1) (2011), 55-63.
[7] F. Feng, C.X. Li, B. Davvaz, M.I. Ali, Soft sets combined with fuzzy sets and rough sets: a tenta approach, Soft Computing 14 (2010), 899911.
[8] F. Feng, X.Y. Liu, V. Leoreanu-Fotea, Y.B. Jun, Soft sets and soft rough sets, Inform. Sci., 181 (2011), 1125-1137.
[9] F. Feng, Y. B. Jun, X. Zhao, Soft semirings, Comput. Math. Appl. 56(2008), 2621 - 2628.
[10] Florentin Smarandache, (t,i,f)-Neutrosophic Structures and INeutrosophic Structures, Neutrosophic Sets and Systems, 3-10, Vol. 8, 2015.
[11] Florentin Smarandache, n-Valued Refined Neutrosophic Logic and Its Applications in Physics, Progress in Physics, 143-146, Vol. 4, 2013.
[12] I.R. Goodman, Fuzzy sets as equivalence classes of random sets, in: Recent Developments in Fuzzy Sets and Possibility Theory (R. Yager, Ed.), Pergamon, New York (1982).
[13] P. Holgate, Groupoids satisfying a simple invertive law, The Math. Stud., $1-4,61$, $101-106(1992)$.
[14] J. M. Howie, An Introduction to semigroup theory, Academic Press London, 1976.
[15] J. M. Howie, The maximum idempotent separating congruence on an inverse semigroup, Proceedings of the Edinburgh Mathematical Society, 06 (1964), 71-79.
[16] M. Irfan Ali, F. Feng, X. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl.57(2009)1547 1553.
[17] K. Iseki, A characterization of regular semigroups, Proc. Japan Acad., 32 (1965), $676-677$.
[18] Y. B. Jun, Soft BCK/BCI-algebras, Comput. Math Appl. $56(2008) 1408-1413$.
[19] Y.B. Jun and S.Z. Song, Generalized fuzzy interior ideals in semigroups, Inform. Sci., 176(2006), 3079-3093.
[20] J. Ježek and T. Kepka, A note on medial division groupoids, Proc. Amer. Math. Soc., 2, 119(1993), $423-426$.
[21] J. Ježek and T. Kepka, The equational theory of paramedial cancellation groupoids, Czech. Math. J., 50, 125(2000), $25-34$.
[22] Y. B. Jun, Generalizations of $(\in, \in \vee q)$-fuzzy subalgebras in BCK/BCI-algebra, Comput. Math. Appl., 58 (2009), 1383-1390.
[23] Faiz Muhammad Khan, Asghar Khan, and Nor Haniza Sarmin, Characterizations of Ordered Semigroups by $\left(\epsilon_{\gamma}, \epsilon_{\gamma} \vee q_{\delta}\right)$-Fuzzy Interior Ideals,.ISSN1995-0802, Lobachevskii Journal of Mathematics, 2011, Vol. 32, No. 4, pp. $278-288$.
[24] M. A. Kazim and M. Naseeruddin, On almost semigroups, The Alig. Bull. Math., 2, 1-7(1972).
[25] O. Kazancı and S. Yamak, Generalized fuzzy bi-ideals of semigroups, Soft Comput., 12(2008), 1119 - 1124.
[26] N. Kehayopulu and M. Tsingelis, Regular ordered semigroups in terms of fuzzy subsets, Inform. Sci. 176 (2006) 3675-3693.
[27] N. Kuroki, Fuzzy bi-ideals in semigroups, Comment. Math. Univ. St. Pauli, 27 (1979), 17-21.
[28] N. Kuroki, Fuzzy semiprime quasi ideals in semigroups, Inform. Sci., $75(3)(1993) 201-211$.
[29] Madad Khan and Nouman A. Khan, On fuzzy Abel-Grassmann's groupoids, Advances in Fuzzy Mathematics, Vol 5, No 3(2010), 349 360.
[30] Madad Khan, Florentin Smarandache, Tariq Aziz, Fuzzy Abel Grassmann Groupoids [first version], by Educational Publisher, Columbus, 82 p., 2015; [second updated and enlarged version], 110 p., 2015.
[31] S. Lajos, A note on semilattice of groups, Acta Sci. Math. Szeged, 31 (1982), $179-180$.
[32] D. Molodtsov, Soft set theory-First results, Comput. Math. Appl. 37 (1999) 19-31.
[33] Molodstov, Soft set theory-First results, Comput. Math . Appl.37(4 5) $(1999) 19-31$.
[34] Madad Khan and Tauseef Asif, Characterizations of regular left almost semigroups by their fuzzy ideals, Journal of Advanced Research in Dynamical and Control Systems, Vol 2, No 2 (2010), 59-75
[35] P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, J. Fuzzy Math.9(3)(2001)589 - 602.
[36] Madad Khan, Faisal and Venus Amjid, On some classes of AbelGrassmann's groupoids, Journal of Advanced Research in Pure Mathematics, 3, 4 (2011), 109-119.
[37] J. N. Mordeson, D. S. Malik and N. Kuroki, Fuzzy semigroups. Springer-Verlag, Berlin, Germany (2003).
[38] Madad Khan and N. Ahmad, 2010, Characterizations of left almost semigroups by their ideals, Journal of Advanced Research in Pure Mathematics, 2, $61-73$.
[39] Q. Mushtaq and S. M. Yusuf, 1988, On LA-semigroup defined by a commutative inverse semigroups, Math. Bech., 40, pp. $59-62$.
[40] Q. Mushtaq and Q. Iqbal, Decomposition of a locally associative LAsemigroup, Semigroup Forum, 41(1990), 155 - 164.
[41] Q. Mushtaq and Madad Khan, Semilattice decomposition of locally associative $\mathrm{AG}^{* *}$-groupoids, Algeb. Colloq., 16, 1(2009), 17 - 22.
[42] V. Murali, Fuzzy points of equivalent fuzzy subsets, Inform. Sci., 158(2004), 277-288.
[43] Q. Mushtaq and S. M. Yusuf, On LA-semigroupss, The Alig. Bull. Math., 8 (1978), $65-70$.
[44] J. Maiers and Y. S. Sherif, Applications of fuzzy set theory, IEEE Transactions on Systems, Man and Cybernetics, 15(1) (1985), 175189.
[45] M. Petrich, Introduction to Semigroups, Charles.E. Merrill, Columbus, 1973.
[46] P. V. Protić and N. Stevanović, On Abel-Grassmann's groupoids, Proc. Math. Conf. Priština, (1994), $31-38$.
[47] P. V. Protić and M. Božinović, Some congruences on an AG**-groupoid, Algebra Logic and Discrete Mathematics, Niš, 3, 9(1995), $879-886$.
[48] P. V. Protić and N. Stevanović, AG-test and some general properties of Abel-Grassmann's groupoids, PU. M. A., 4(6)(1995), $371-383$.
[49] P.M Pu and Y.M. Liu, Fuzzy topology I, neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl., 76(1980), 571-599.
[50] G. Pilz, Near rings, The theory and its applications, North Holland Publishing Company Amsterdam, Revised edition, 1983.
[51] P.V. Protić and Stevanović, AG-test and some general properties of Abel-Grassmann's groupoids, PU. M. A., 4, 6, 371-383(1995).
[52] Z. Pawlak, Rough sets, Int. J. of Inform. Comput. Sci. 11 (1982) 341356.
[53] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517.
[54] A.R. Roy, P.K. Maji, A fuzzy soft set theoretic approach to decision making problems, Journal of Computational and Applied Mathematics 203 (2007) 412-418.
[55] M. Shabir, Y.B. Jun and Y. Nawaz, Semigroups characterized by (\in , $\in \vee q_{k}$)-fuzzy ideals, Comput. Math. Appl., 60 (2010), 1473-1493.
[56] M. Shabir, Y.B. Jun and Y. Nawaz, Characterizations of regular semigroups by (α, β)-fuzzy ideals, Comput. Math. Appl., 59 (2010), 161175.
[57] O. Steinfeld, Uber die Quasi-ideal von Halbgruppen, Publ. Math. Debrece., 4 (1956) , $262-275$.
[58] W. B. Vasantha Kandasamy, Florentin Smarandache, Ilanthenral K., Distance in Matrices and Their Applications to Fuzzy Models and Neutrosophic Models, 169 p., EuropaNova, Brussels, Belgium, 2014.
[59] W. B. Vasantha Kandasamy, Florentin Smarandache, Ilanthenral K, New Techniques to Analyse the Prediction of Fuzzy Models, EuropaNova, Brussels, Belgium, 242 p., 2014.
[60] W. B. Vasantha Kandasamy, Florentin Smarandache, Ilanthenral K, Pseudo Lattice Graphs and their Applications to Fuzzy and Neutrosophic Models, EuropaNova, Brussels, Belgium, 275 p., 2014.
[61] W. B. Vasantha Kandasamy and F. Smarandache, Algebraic Structures on the Fuzzy Interval [0, 1), 250 p., Educational Publisher, 2014.
[62] W. B. Vasantha Kandasamy, Florentin Smarandache, Fuzzy Neutrosophic Models for Social Scientists, Education Publisher, Columbus, OH, 167 pp., 2013.
[63] W. B. Vasantha Kandasamy, Smarandache Fuzzy Algebra, Bookman Publishing, 2003.
[64] W. B. Vasantha Kandasamy, Florentin Smarandache, Fuzzy Cognitive Maps and Neutrosophic Cognitive Maps, Xiquan, Phoenix, 211 p., 2003
[65] Y. Yin and J. Zhan, Characterization of ordered semigroups in terms of fuzzy soft ideals, Bull. Malays. Math. Sci. Soc., (2) 35(4) (2012), 997-1015.
[66] J. Zhan and Y.B. Jun, Generalized fuzzy interior ideals of semigroups, Neural Comput. Applic., 19(2010), 515 - 519.
[67] L. A. Zadeh, Fuzzy sets. Inform. Control, 8 (1965), $338-353$.

An AG-groupoid is an algebraic structure that lies in between a groupoid and a commutative semigroup. It has many characteristics similar to that of a commutative semigroup. If we consider $x^{2} y^{2}=y^{2} x^{2}$, which holds for all x, y in a commutative semigroup, on the other hand one can easily see that it holds in an AG-groupoid with left identity e and in $\mathrm{AG}^{* *}$-groupoids. This simply gives that how an AG-groupoid has closed connections with commutative agebras.

We extend now for the first time the AG-groupoid to the Neutrosophic AG-groupoid. A neutrosophic AG-groupoid is a neutrosophic algebraic structure that lies between a neutrosophic groupoid and a neutrosophic commutative semigroup.

