
University of New Mexico University of New Mexico 

UNM Digital Repository UNM Digital Repository 

Mathematics and Statistics Faculty and Staff 
Publications Scholarly Communication - Departments 

1997 

Collected Papers, Vol. 2 Collected Papers, Vol. 2 

Florentin Smarandache 

Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp 

 Part of the Dynamic Systems Commons, Mathematics Commons, Other Applied Mathematics 

Commons, and the Special Functions Commons 

https://digitalrepository.unm.edu/
https://digitalrepository.unm.edu/math_fsp
https://digitalrepository.unm.edu/math_fsp
https://digitalrepository.unm.edu/departments
https://digitalrepository.unm.edu/math_fsp?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/117?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/122?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/122?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1368?utm_source=digitalrepository.unm.edu%2Fmath_fsp%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages


FLORENTINS~ACHE 

COLLECTED PAPERS 
(Vol. IT) 

Chi§iniW 1997 



l:"'IVERSITATEA DE STAT DIN MOLDOVA 

CATEDRA DE ALGEBRA 

FLORE:\"TI:\" S:vIARANDACHE 

. COLLECTED PAPERS 
(Vol. II) 

Chi§iniiu 1997 



FLORE~TI~ SMARA~DACHE 

Lniversity of New ~iexico 

Department of C\<fathemetics 

Galiup, N:\187301, USA 

COLLECTED PAPERS 
(Vol. II), Chi§inau: U.S.M., 1997. - 200p. 

©"C.S.M., 1997 



CONTENS 

PHILOSOPHICAL MATHEMATICS: 

Paradoxist Mathematics [Anti-Mathematics, Multi-Structure and Multi-Space, Space 

of Non-Integer or Negative Dimention, Inconsistent Sysytem ofAxiomas or Contradic

tory Theory, Non-Euclidean Geometries: Paradoxist Geometry, Non-Geometry, Counter

Projective Geometry and Counter-Axioms, Anti-Geometry and Anti-Axioms, Model of 

an Anti-Geometry, Discontinuous Geometries] ............................................. 5 

Logica sau iogica Matematica? .......................................................... 29 

Mathematics and Alcohol and God ...................................................... 30 

MATHEMATICAL EDUCATION: 

Subjective Questions and Answers for a MathInstructor of Higher Education ............. 32 

GEOMETRY: 

o Geometrie Paradoxista ............................................................... .49 

Geometric Conjecture ................................................................... 50 

NUMBER THEORY: 

A Function in the ~umber Theory ....................................................... 51 

An Infinity of Unsolved Problems Concerning a Function in the :'-lumber Theory .......... 57 

Solving Problems by Using a Function in the Number Theory ............................ 79 
Some Linear Equations Involving a Function in the Number Theory ...................... 82 

Contributii la Studiul unor Functii §i Conjecturi in Teoria Numerelor ..................... 85 

"The Function that You Bear its Name" ................................................ 112 

Smarandache Type Functions Obtained by Duality ..................................... 113 

Func!;ii Analitice ....................................................................... 129 

Funct;ii Prime §i Coprime ............................................................... 137 

Asupra unor Conjecturi §i Probleme Nerezolvate Referitoare la 0 Funct;ie in Teoria 

l'\umerelor ............................................................................. 138 

K-Divisibility and K-Strong Divisibility ................................................. 152 

Conjecture (Generalized Fermat :'-lumbers) .............................................. 154 

Asupra unei Metode a lui W.Sierpinski de Rezolvare in Numere Intregi a Ecuatiilor 

Liniare ................................................................................ 155 

in Legatura ell 0 Problema de la Coneursul de MatematidL Faza Locala, Ramnicu 

Valcea ................................................................................. 157 

:>iumeralogy (I) or Properties of the Numbers ........................................... 158 

3 



~umeralogy (II) or Properties of the :-lumbers .......................................... 169 

Xumeralogy (III) or Properties of the Kumbers ......................................... 181 

Some Periodical Sequence., ............................................................. 192 

Sequences of Sub-sequences ............................................................ 195 

RECREATIONAL MATHEMATICS: 

Aritmogrif (I) .......................................................................... 198 

Aritmogrif (II) ......................................................................... 199 

The Lucky Mathematics [Lucky :\:Iethod, Lucky Algorithm, Lucky Integration, Lucky 

Differentation, etc.] .................................................................... 200 

4 



PARADOXIST MATHEMATICS 

Abstract. The goal of this paper is to experiment new math concepts and theo

ries, especially if they run counter to the classical ones. To prove that contradiction 

is not a catastrophe, and to learn to handle it in an (un)usual way. To transform the 

apparently unscientific ideas into scientific ones, and to develop their study (The 

Theory of Imperfections). And finally, to interconnect opposite (and not only) 

human fields of knowledge into a.s-heterogeneous-as-possible another fields. 

The author welcomes any co=ents, notes, articles on this paper and/or the 120 

open questions bothering him, which will be published in a collective monograph 

about the paradoxist mathematics. 

Key words: non-mathematics, anti-mathematics, dadaist algebra, surrealist pro

bability, cubist geometry, impressionist analysis, theory of non-choice, wild alg<r 

rithms, infinite computability theory, symbolist mechanics, abstract physics, for

malist chemistry, expressionist statistics, hermetic combinatorics, Sturm-und-Drang 

computer science, romanistics topology, letterist number theory, illuminist set the

ory, aesthetic differential/integral/functional equations, paradoxist logics, anti-let&

rature, experimental drama, non<rpoems, MULTI-STRUCTURE, MULTI-SPACE, 

Euclidean spaces of non-integer or n~ative dimensione, non-system, anti-system, 

system with infinetely many independent axioms, unlimited theory, system ofaxi

oms based on a set with a single element, INCONSISTENT SYSTEMS OF AXI

OMS, CONTRADICTORY THEORY, (unscientific, wrong, amalgam) geometry, 

(CHAOS or YIESS) GEO~IETRIES (PARADOXIST GEOMETRY, NON-GEO

METRY, COUNTER-PROJECTIVE GEOMETRY, ANTI-GEOMETRY), para

doxist model, critical area of a model, paradoxist axoims, counter-axioms, counter

model, counter-projective space, anti-axioms, anti-model, theory of distorted buil

dings of Tits, paradoxist trigonometry, DISCONTINUOUS MODELS, DISCONTI

NUOUS GEOMETRIES. 

INTRODUCTION. 

The "Paradoxist Mathematics" may be understood as Experimental Mathematics, Non

Mathematics, or even Anti-Mathematics: not in a nihilistic way, but in positive one. The truly 

innovative researchers will banish the old concepts in oder of check, by heuristic processes, some 
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new ones: their opposites. Don't simply follow the crowd, and don't accept to be manipulated 

by any (political, economical, social, even scientific, or artistic, cultural, etc.) media! Learn 

to conradict everuthing and everybody!! "Duibito, ergo cogito; cogito, ergo sum", said Rene 

Descartes, "I doubt, therefore I think; I think, therefore I exist" (metaphysical doubt). See 

what happens if you deny the classics' theory? 

Since my childhood I didn't Eke the term of 'exact' sciences ... I hated it! I didn't like the 

'truth' displayed and given to me on a plate - as food to be swallowed although not to my taste. 

I considered ~he axioms as dogmas (not to think with your brain, but with others' !), and 

I refused to follow them. I wanted to be free in life - because at that time I was experiencing 

a poutical totalitarian system, without civil rights - hence I got the same feelings in science. 

That's why I didn't trust anybody, especially the 'official' peoples. (This is REVOLT against 

all petrified knowledge). 

A system of axioms means to me a dictatorship model in science. It's not possible to per

fectly formalize, i.e. without any intuition, but sometimes researchers like to trick themselves' 

Even Hilbert recognized that just in his 1898 book of <Foundations of Geometry> saying about 

the groups ofaxiomes that: "Each of these groups expresses, by itself, certain related funda

me::J.tal facts of our intuition". And Kant in <Kritik der reinen Vernunft, Elementarlehre>, 

Part 2, Sec. 2: "All human knowledge begins with intuition, thence passes to concepts and ends 

with ideas". Therefore, axiomatization begins with intuition - is it a paradox? The "traditional 

concept of recognizing the axioms as obvious truths was replaced by the understanding that 

they are hypotheses for a theory" [<Encyclopedic Dictionary of Mathematics>, second edition, 

by the Mathematical Society of Japan, edited by Kiyosi Ito, translated in English, MIT Press, 

Cambridge, Massa{;husetts, London, 1993, 35A, p. 155]. 

The really avant-garde mi::J.d will entirely deny everything from the past. "No army can 

withstand the strenghth of an idea whose time has come" (Victor Hugo). 

Questions 1-17 (one for each defined bellow section): 

While, in a usual way, people apply mathematics to other human fields - what about inserting 

literary and art theory in mathematics? 

How would we define the 'dadaist algebra', referring to the 1916-22 nihilistic mouvment 

in literature, painting, sculpture that rejected all accepted conve::J.tions and produced 

non-sens and un-readable creations? How can we introduce this style and similar 

<laws> in algebra?? 

But the 'surrealist probability'? (this syntagme makes a little sense, doesn't it?). 
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Or the 'cubist geometry', referring to the cubist paintings? (this may be exciting!) .. 

The 'impressionist analysis'? 

The 'theory of ... non-choice': 

- from two possibilities, pick the third one! (Buridan's ass!) 

- the best and unregrettable choice occurs when it's one and only possibility 

to choose from! 

The 'wild algorithms', meaning algorithms with an infinite number of (non-linear) steps; 

And the 'infinite computability theory' = how much of mathematics can be decribed in 

such wild algorithms. 

Same directions of study towards: 

'symbolist mechanics', 

'absract physics' (suppose, for example, as an axiom, that the speed of light is 

surpassed - [see Homer B. Tilton, "Light beyond belief", Echo Electronic 

Press, Tucson, 1995], but if the speed of a material body can be unbounded, 

even, towards infinite: and see what you get by this anti-relativity theory: 

inventing new physics), 

'formalist chemisttry', 

'expressionist statistics', 

'hermetic combinatorics', 

'Sturm-und-Drang computer science' (!) 

'romanticist topology' (wow, love is involving!) 

'letterist number theory' (!) 

'illuminist set theory', 

'esthetic differential/integral/functional equations', etc. 

Question 18: 

The 'paradoxist logics', referring to the F.Smarandache's 1980 Paradoxist Literary Moy

ment of avant-gardes, which may lead you to the anti-logic (which is logical!). 

Features of the 'paradoxist logics': 

# The Basic Thesis of paradoxism: 

everything has a meaning and a non-meaning in a harmony each other. 

# The Essence of the paradoxism: 

a) the sense has a non-sense, and reciprocally 

b) the non-sense has a sens. 
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Question 19: 

# The Motto of the paradoxism: 

"All is possible, the impossible too!" 

# The Symbol of paradoxism: 

(a spiral - optic illusion, or vicious circle) 

# The Delimitation from other avant-gardes: 

- the paradoxism has a significance (in literature, art, science), while the 

dadaism, the lettrism, the absurd mouvment do not; 

- the paradoxism especially reveals the contradictions, the anti-nornies, the 

anti-theses, the anti-phrases, the antagonism, the non-conformism, the 

paradoxes in other words of anything (in literature, art, science), while 

the futurism, cubism, surrealism, abstractism and all other avant-gardes 

do not focus on them. 

# The Directions of the paradoxism: 

- to use scientific methods (especially algorithms) for generating (and also 

studing) contradictory literary and artistic works; 

- to use artistic and literary methods for generating (and also studying) 

contradictory scientific works; 

- to create contradictory literary and artistic works in scientific spaces 

(using scientific: symbols, meta-language, matrices, theorems, lemmas, 

definitions, etc.). 

From Anti-Mathematics to Anti-Literature: 

- I wrote a drama trilogy, called " MetaHistory" , against the totalitarism of any kind: 

political, economical, social, cultural, artistic, even scientific (tendency of someones 

to monopolize the informational system, and to build not only political, economical, 

social dictatorships, but even distatorships in culture, art, and science ... promoting 

only their people and friends, a..'1d boycotting the others); 

one of them, called" A Upside-Down \Vorld", with the property that by combinations 

of its scenes (which are independrent modules) one gets 1, ODD, 000, 000 of bilions of 

different dralnas! 

another drama, called "The Country od the Animals", has no ... dialogue! (the 

characters' speech is showing on written placards). 

- I wrote "Non-poems": 
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• poems with no words! 

• universal poems: poem-grafitti, poem-drowing, etc. 

• poems in 3-dimensional spaces; 

• poems in BeltramijPoincarejHausdorffjetc. spaces: 

• poems poetical models of ... mathematics: poem-theorem, poem-lemma. 

Try the reverse way: to apply math (and generally speaking science) in arts and literature. 

(There are famous people; as Lewis Carroll, Raymond Queneax, Ion Barbu, etc. mathemati

cians and writers simultaneously.) 

Learn to deny (in a positive way) the masters and their work. Thus will progress our society. 

Thus will make revolutionary steps towards infinite ... Look at some famous examples: 

-Lobacevsky contradicted Euclid in 1826: "In geometry I find certain imperfections", he said 

in his <Theory of Parallels>. 

-Riemann came to contradict both his predecessors in 1854. 

-Einstein contradicted Newton in early years of the XX-th century, saying that if an object 

moves at velocity close to the speed of light, then time slows down, mass increases, and length 

in the direction of motion decreases, and so on ... 

Sometimes. people give new interpretations to old things... (and old interpretation to new 

things)! 

[Don't talk about the humanistic field (art, literature, philosophy, sociology, etc.), where to 

reject other people's creation was and is being very co=on! And much easier, comparing 

with the scientific field.] 

What would be happened if everybody had obeyed the predecessors? (a stagnation). 

MULTI-STRUCTURE and MULTI-SPACE. 

I consider that life and practice do not deal with 'pure' spaces, but with a group of many 

spaces, with a mixture of structures, a 'mongrel', a heterogeneity - the ardently preoccupation 

is to reunite them! to constitute a multi-structure. 

I thought to a multi-space also: fragments (potsherds) of spaces put together, say as an 

example: Banach. Hausdorff, Tikhonov, compact, paracompact, Fock symmetric, Fock anti

sy=etric, path-connected, simply connected, dsecrete metric, indescrete pseodo-metric, etc. 
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spaces that work together as a whole mechanism. The difficulty is to be the passage over 'fron

tiers' (borders between two dosjoint spaces); i.e. how can we organically tie a point PI from 

a space 5, with a point P2 from a structurally opposite space 52? Does the problem become 

more complicated when the spaces' sets are not disjoint? 

Question 20: 

Can you definej construct Euclidean spaces of non-integer or negative dimension? [If so, are 

they connected in some way to Hausdorff's, or Kodaira's, Lebesgue's (of a normal space) alge

braicjcohomological (of a topological space, a scheme, or an associative algebra)jhomologicalj 

(of a topological space, or a module) etc. dimensjon(s)?] 

Question 21: 

Let's have the case of Euclid T Lobachevsky + Reiman geometric spaces (with corresponding 

structures) into single space. What is the angles sum of a triangle with a vertex in each of these 

spaces equal to? and is it the same any times? 

Especialy to find a model of the below geometry would be interesting, or properties and aplli

cations of it. 

Paradoxically, the multi-, non-, or even anti- notions become after a while common notions. 

Their mystery, shock, novelty enter in the room of obvious things. This is the route of any 

invention and discovery. 

Time is not uniform, but in a zigzag; 

a today's truth will be the toomorrow's falsehood - and reciprocally, the opposite phenomena 

are complementary and may not survive independently. 

The every-day reality is a sumum or multitude of rules, some of them opposite each other, 

accepted by ones and refused by others, on different surfaces of positive, negative, and null 

Gauss's curvatures in the same time (especially on non-constant curvature surfaces). 

Question 22: 

After all, what mathematical apparatus to use for subsequent improvement of this theory? 

[my defenition is elementary]. 

Logics without logics? 

System without system? (will be a non-system or anti-system?) 

Mathematics without mathematics! 

World is an ordered disorder and disordered order! Homogeneity exists only in pure sciences 

without our imagination, but practice is quite different from theory. 
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There are systems with one axiom only [see Dr. Paul Welsh, "Primiti,,;ty in Mereology" 

(I and II), in <Notre Dame Journal of Formal Logic>, Vol. XIX, No. 1 and 3, January and 

July 1978, pp.25-62 and 355-85; or B.Sobocinski, "A note on an axiom system of atomis:tic 

meTeology", in <Notre Dame Journal of Formal Logic>, Vol. XII, 1971, pp. 249-51.]. 

If one defines another system with a sole axiom, which is the negation of the previous axiom, 

one gets an opposite theory. 

Question 23: 

Try to construct a consistent system of axioms, with infinitely many independent axioms, 

in oder to define a Unlimited Theory. A theory to whom you may add at any time a new axiom 

to develop it in all directions you like. 

Question 24; 

Try to construct a c"nsistent system of axioms based on a set with a single object (element). 

(But if the set is ... empty?) 

INCONSISTENT SYSTEMS OF AXIOMS and CONTRADICTORY 

THEORY. 

5 Let (a,), (a2), ... , (an), (b) be n + 1 independent axioms, with n :::: 1; and let b') be another 

axiom contradictory to (b). We construct the system of n + 2 axioms: 

[I] (a,), (a2), ... , (an), (b), (b') 

which is inconsistent. But this system may be shared into two consistent systems of independent 

axioms 

and 

\Ve also consider the partial system of independent axioms 

[P] (a,), (a2).··., (an)· 

Developing [P], we find many propositions (the<Jfems.lemmas) (PI), (P2), ... , (pm), by com-

binations of its axioms. 

Developing [ej, we find all propositions of [P] (PI), (1'2), ... , (Pm), resulted by combinations 

of (a,),(a2), ... ,(an), plus other propositions (r,),(r2), ... ,(r,), results by combination of (0) 

with any of (a,),(a2), ... ,(a"). 
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Sir!lliarly for [C1, we find the propositions of [PJ (PI), (p,), ... , (Pm), plus other propositions 

(rD, (r~), ... , (r;), resulted by combinations of (b') with any of (a,), (a2), ... , (a,.), where (r;) is 

an axiom contradictory to (r,), and so on. 

Now, developing [I], we'll findall the previous resulted propositions: 

Therefore, [Il is equivalent to [C] reunited to [C'}. From one pair of contradictory propositions 

{(b)and(b')} in its begining, [Il adds t more such pairs, where t 2 1, {(r,)and (ri), ... , (r,),and 

(r;)}, after a complete step. The further we go, the more pairs of contradictory propositions 

are accumulating in [I]. 

Question 25: 

Develop the study of an inconsistent system of axioms. 

Question 26: 

It is interesting to study the case when n = O. 

Why do people avoid thinking about the CONTRADICTORY THEORY? As you know, 

nature is not perfect: 

and opposite phenomena occur together, 

and opposite ideas are simultaneously asserted and, irouically, proved that both' of 

them are true! How is that possible? ... 

A statement may be true in a referential system, but false in another one. The truth is 

subjective. The proof is relative. (In philosophy there is a theory: that "knowledge is relative 

to the mind. or things can be known only through their effects on the mind, and consequently 

there can be no knowlwdgw of reality as it is in itself", called "the Relativity of Knowledge": 

<Webster's New World Dictionary of American English>, Third College Edition, Cleveland 

& l\ew York, Simon & Schuster Inc., Editors: Victoria Neufeldt, David B. Guraluik, 1988, p. 

1133.) You know? ... sometimes is good to be wrong! 

Question 27: 

Try to develop a particular contradictory theory. 

I was attracted by Chaos Theory, deterministic behaviour which seems to be randomly: 

when initial conditions are verying little. the differential equation solutions are varying tremen-
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dously much. Originated by Poincare, and studied by Lorenz, a metereologist, in 1963, by 

computer help. These instabilities o<:curing in the numerical solutions of differential equations 

are thus connected to the phenomena of chaos. Look, I said, chaos in mathematics, like in life 

and world! 

Somehow consequently are the following four concepts in the paradoxist mathematics, that 

may be altogether called, CHAOS (or MESS) GEOMETRIES! 

PARADOXIST GEOMETRY 

In 1969, intrigued by geometry, I simultaneously constracted a partially euclidean and par

tially noncreuclidean space by a strange replacement of the Euclid's fifth postulate (axiom.of 

parallels) with the following five-statement proposition: 

a) there are at least a strainght line and a point exterior to it in this space for which 

only one line passed through the point and does not intersect the initial line; 

[1 parallel] 

b) there are at least a strainght line and point exterior to it in this space for which 

only a finite number of lines It, ... , L. (k ::::: 2) passe throught the point and do not 

intersect the initial line; [2 or more (in a finite number) parallels] 

c) there are at least a strainghi line and point exterior to it in this space for which 

any line that passes throught the point intersects the initial line; [0 parallels] 

d) there are at least a strainght line and point exterior to it in this space for which 

an infinite number of lines that passes throught the point (but not all of them) 

do not intersect the initial line; [ an infinite number of parallels, but not all lines 

passing throught j 

e) there are at least a strainght line and a point exterior to it in this space for which 

any line that passes throught the point does not intersect the initial line; [ an 

infinite number of parallels, all lines passing throught the point] 

I have called it the PARADOXIST GEOMETRY. This geometry unites all together: Euclid, 

Lobachevsky /Bolyai, and Riemann geometries. And separates them as well! 

Question 28: 

Now, the problem is to find a nice model (on manifolds) for this Pararloxost Geometry, and 

study some of its characteristics. 
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NON-GEOMETRY 

It's a lot easier to deny the Euclid's five postulates than Hilbert's twenty thorough axioms. 

1. It is not always possible to draw a line from an arbitrary point to another arbitrary 

point. 

For example: this axiom can be denied only if the model's space has at least a 

discontinuity point; (in our bellow model ~D, one takes an isolated point I in between 

f, and 12, the only one which will not verify the axiom). 

2. It is not always possible to extend by continuity a finite line to an infinite line. 

For example: consider the bellow ~odel, and the segment AB, the both A and B 

lie on f" A in between P and N, while B on the left side of N; one can not at 

a2l extend AB either beyond A or beyond B, because the resulted curve, noted say 

.4' - A - B - B', would not be a geodesic (i.e. line in our :\fodel) anymore. 

If A and B lie in 01 - flo both of them closer to ft, A in the left side of P, while 

B in the right side of P, then the segment AB, which is in fact A - P - B, can "be 

extended beyond A and also beyond B only up to j, (therefore one gets a finite line 

too, A~ - P - B - B'), where A', B' are the intersections of P A, P B respectively with 

h). 

If A, B lie in .51 - ft, far enough from fl and P, such that AB is parallel to fl, then 

AB verifies this postulate. 

3. It is not always possible to draw a circle from an arbitrary point and of an arbitrary 

interval. 

For example: same as for the first axiom; the isolated point I, and a very small interval 

not reaching ft neither 12, will deny this axiom. 

4. Not all the right angles are congruent. (See example of the Anti-Geometry, explained 

bellow.) 

5. If a line, cutting two other lines, forms the interior angles of the same side of it strictly 

less than two right angles, then not always the two lines extended towards infinite cut 

each other in the side where the angles are strictly less than two right angles. 

For example: let hI, hz, I be three lines in 01 - oz, where hI intersects fl in A, and 

hz intersects j, in B, with A, B, P different each other, such that hI and h2 do not 

intersect, but I cuts hI and h2 and forms the interior angles of one of its side (towards 

fl) strictly less than two right angles: 
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the assumption of the fifth postulate is ful:filled, but the consequence does not hold, 

because h, and hz do not cut each other (they may not be extended beyond A and B 

respectively, because the lines would not be geodesics anymore). 

Question 29 

Find a more convincing midel for tbis non-geometry. 

COUNTER-PROJECTIVE GEOMETRY 

Let P, L be two sets, and r a relation included in P x 1. The elements of P are called 

points, and those of L lines. When (p, I) belongs to r, we say that the line l contains the point 

p. For these, one imposes the following COl:NTER-AXIOMS: 

(I) There exist: either at least two lines, or no line, that contains two given distinct 

points. 

(II) Let p"P"P3 be three non-collinear points, and qJ,qz two distinct points. Supoose 

that {PI, q,;P3} and {P2, q"P3} are collinear triples. Then the line containing P}'Pz, 

and the Dne containing ql, q2 do not intersect. 

(III) Every line contains at most two distinct points. 

Questions 30-31: 

Find a model for the Counter-(General Projective) Geometry (the previous I and II counter

axioms hold), and a model for the Counter-Projective Geometry (the previous I, II, and III 

counter-axioms hold). [They are called COl:NTER-MODELS for the general projective, and 

projective geometry, respectively.] 

Questions 32-33: 

Find geometric modis for each of the following two cases: 

- There are points/lines that verify all the previous counter-axioms, and other 

points/lines in the same COUNTER-PROJECTIVE SPACE that do not verify any 

of them; 

- Some of the counter-axioms I, II, III are verified, while the others are not (there are 

particular cases already known). 

Question 34: 

The study of these counter-models may be extended to Infinite-Dimensional Real (or Com

plex) Projective Spaces, denying the IV-th axioms, i.e.: 
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(IV) There exists no set of finite number of points for which any subspace that 

contains all of them contains P. 

Question 35: 

Does the Duality Principle hold in a counter-projective space? 

What about Desargues's Theorem, Fundamental Theorem of Projective Geometry /Theorem 

of Pappus, and Staudt Algebra? 

Or Pascal's Theorem, Brianchon's Theorem? (1 think none of them will hold!) 

Question 36: 

The theory of Buildings of Tits, which contains the Projective Geometry as a particular 

case, can be 'distorted' in the same <paracioxist> way by deforming its axiom of a BN-pair (or 

Tits system) for the triple (G, B, N), where G is a group, and B, ri its subgroups; [see J.Tits, 

"Buildings of spnerical type and finite B .... -pairs", Lecture notes in math. 386, Springer, 1974}. 

riot ions as: simplex, complex, chamber, codimension, apartment, building will get contorted 

either ... 

Develop a Theory of Distorted Buldings of Tits! 

ANTI-GEOMETRY 

It is possible to de-formalize entirely Hilbert's groups of axioms of the Euclidean Geometry, 

and to construct a model such that none of his fixed axiom holds. 

Let's consider the following things: 

and 

- a set of <points>: A, B, C, ... 

- a set of <lines>: h, k, I, .. . 

-a set of <planes>; 0.,13", .. . 

- a set of relationship among these elements: "are situated", "between", "parallel", 

"congruent", "continous", etc. 

Then, we can deny all Hilbert's twenty axioms [see David Hilbert, "Foundation of Ge

ometry", translated by E.J.Towsend, 1950; and Roberto Bonola, "Non-Euclidean Geometry", 

1938]. There exist casses, whithin a geometric model, when the same axiom is verifyed by 

certain points/lines/planes and denied by others. 
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GROUP I. ANTI-AXIOMS OF COl'l"NECTION 

1.1. Two distinct points A and B do not always completely determine a line. 

Let's consider the following model M D: get an ordinary plane 6, but with an iIrlinite 

hole in of the following shape: 

p 

P 
L 
A semi-plane 01 curve !I (frontier) 
N 
E N • I 

.J 

D ·K 
E 
L 

V T semi-pla.ne c5, curve h (frontier) 
A 

Q 
Plane delta is a reunion of two disjoint planar semi-planes; !I lies in M D, but h 
does not; P,Q are two extr~epoints on f that belong to MD. 

One defines a LINE I as a geodesic curve: if two points A, B that belong to M D lie 

in t, then the shortest curve lied in M D between A and B lies in I also. If a line 

passes two times throught the same point, then it is called double point (KNOT). 

One defines a PLANE a as a surface such that for any two points A, B that lie in a 

and belong to M D there is a geodesic which passes trought A, B and lies in a also. 

Now, let's have two strings of the same length: one ties P and Q with the first string 

81 such that the curve 81 is folded in two or more different planes and 81 is under 

the plane 0; next, do the same with string 82, tie Q with P, but over the plane 0 

and such that S2 has a different form from Sl; and a third string S3, from P to Q, 

much longer than 81. Sl, S2,83 belongs to MD. 

Let I, J, K be three isolated points - as some islands, i.e. not joined with any other 

poits of M D, exterior to the plane o. 
This model has measure, because the (pseudo-) line is the shortesr way (length) to 

go from a point to another (when possible). 
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Question 37: 

Of course, the model is not perfect, and is far from the best. Readers are asked to improve 

it, or to make up a new one that is better. 

(Let A, B be two distinct points in 8, - fl. P and Q are two points on 8" but they do riot 

completely determine a line, referring to the first axiom of Hilbert, because A - P - 8, - Q are 

different from B - P - 5, - Q.) 

I.2. There is at least a line I and at least two different points A and B of I, such that A 

and B do not completely determine the line I. 

(Line A - P - 8, - Q are not completely determine by P and Q in the previous 

construction, because B - P - 5, - Q is another line passing through P and Q too.) 

1.3. Three points A, B, C not situated in the same line do not always completely deter

mine a plane a. 

(Let A, B be two distinct points in 8, - f" such that A, B, P are not co-linear. 

There are many planes containing these three points: 8, extended with any surface 

8 containing 8" but not cutting 52 in between P and Q, for example.) 

1.4. There is at least a plane, a, and at least three points A, B, C in it not lying in the 

same line, such that A, B, C do not completely determine the plane a. 

(See the previous example.) 

1.5. If two points A, B of line 1 lie in a plane a, it doesn't mean that every point of I lies 

ina. 

(Let A be a point in 8, - f" and B another point on 51 in between P and Q. Let a 

be the following plane: 81 extended with a surface 8 containing 81> but not cutting 

82 in between P and Q, and tangent to.s, on a line QC, where C is a point in <12 - h. 
Let D be point in.s, - h, not lying on the line QC. Now, A, B, D are lying on the 

same line A - P - 8, - Q - D, A, B are in the plane a, but D does not.) 

I.6. If two planes a, (3 have a point A in common, it doesn't mean they have at least a 

second point in common. 

(Construct the following plane a): a closed surface containing 51 and 52, and inter

secting 81 in one point only, P. Then a and <II have a single point in common.) 

I. 7. There exist lines where only one point lies, or planes where only two points lie, or 
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space where only three points lie. 

(Hilbert's 1.7 axiom may be contradicted if the model has discontinuities. Let's 

consider the isolated points area. 

The point I may be regarded as a line, because it's not possible to add any new 

point to I to form a line. 

One constructs a surface that intersects the model only in the points I and J.) 

GROUP II. ANTI-AXIOMS OF ORDER 

11.1. If A, B, C are points of line and B lies between A and C, it doesn't mean that 

always B lies also between C and A. 

[Let T lie in 8" and V lie in 82, both of them closer to Q, but different from it. Then: 

P, T, V are points on the line P - 8, - Q - 82 - P (i.e. the closed curve that starts 

from the poi11.t P) and lies in 8, and passes through the point Q and lies back to 82 

and ends in P), and T lies between P and V 

- because PT and TV are both geodesics, but T doesn't lie between V and P 

- because from V the line g""l' to P and then to T, therefore P lies between V 

and T.] 

[By defenition: a segment AB is a system of points lying upon a line between A and B 

(the extremes are included.) 

Warning: AB may be different from BA; for example:] 

the segment PQ formed by the system of points starting with P, ending 

with Q, and lying in 8" is different from the segment PQ formed by the 

system of points starting with P, ending with Q, but belong to 82.J 

I1.2. If A and C are two points of a line, then: tbere does not always exist a point B 

lying between A and C, or there does not always exist a point D such that C lies 

between A and D. 

[For example: 

let F be a point on J" F different from P, and G a point in {,,, G doesn't belong 

to J,; draw the line I which passes through G and F; then: there exists a point B 
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lying between G and F - because G F is an obvious segment, but there is no point 

D such that F lies between G and D - because GF is right bounded in F (GF may 

not be extended to the other side of F, because otherwise the line will not remain 

a geodesic anymore).] 

11.3. There exist at least three points situated on a line such that: 

one point lies between the other two, and another point lies also between the other 

two. 

[For example: 

let R, T be two distinct points, different from P and Q, situated on the line P - 51 -

Q - $2 - P, such that the lenghts P R, R:I', T P are all equal; then: 

R lies between P and T, and T lies between R and P; also P lies between 

T and RJ. 

11.4. Four points A, B, C, D of a line can not always be arranged: Such that B lies 

between A and C and also bdween A and D, and such that C lies between A and 

D and also between B and D. 

[For example: 

let R, T be two distinct points, different from P and Q, situated on the line P -

$1 - Q - $2 - P such that the lenghts P R, RQ, QT, T P are all equal, therefore 

R belongs to $1, and T belongs to $2; then P,Q,R,T are situated on the same 

line: such that R lies between P and Q, but not between P and T - because the 

geodesic PT does not pass through R, and such that Q does not lie between P and 

T, because the geodesic PT does not pass through Q, but lies between R and T; 

let A, B be two points in el2 - /2 such that A, Q, B are colinear, and C, D tWo 

points on $b $2 respectively, all of the four points being different from P and Q; 

then A, B, C, D are points situated on the same line A - Q - 51 - P - 52 - Q - B, 

which qis the same with line A-Q-52- P-s1 -Q-B, therefore we may have two 

different orders of these four points in the same time: A, C, D, B and A, D, C, B.] 

II.5. Let A, B, C be three points not lying in the same line, and I a line lying in the 

same plane ABC and not passsing through any of the points A, B, C. Then, if the 

line I passes through a point of the segment AB, it doesn't mean that always the 
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line I will pass through either a point of the segment BG or a point of the segment 

AG. 

[For example: 

let AB be a segment passing through P in the semi-plane 51, and G point lying in 

01 too on the left side of the line AB; thus A, B, G do not lie on the same line; now, 

consider the line Q-52- P-51 -Q-D, where D is a point lying in the semi-plane 

"2 not on 12: therefore this line passes through the point P of the segment AB, 

but does not pass through any point od the segment BG, nor through any point 

of the segment AG.] 

GROUP III. ANTI-AXIOMS OF PARALLELS 

In a plane a there can be drawn through a point A, lying outside of a line I, either no line, 

or only one line, or a finite number of lines which do not intersect the line l. (At least two of 

these situations should-occur.) The line(s) is (are) called the puallel(s) to I through the giv.en 

point A. 

[For examples: 

- let 10 be the line N - P - 51 - Q - R, where N is a point lying in 51 not on II, 
and R is a similar point lying in 02 not on 12, and let A be a point lying on S2, then: 

no parallel to 10 can be drawn through A (because any line passing through A, hence 

through S2, will intersect SI, hence 10 , in P and Q); 

-if the line It lies in 0, such that 11 does not intersect the frontier It, then: through 

any point lying on the left side of 11 one and only one parellel will pass; 

-let B be a point lying in f., different from P, and another point G lying in 51, not on 

f,; let A be a point lying in 01 outside of BG; then: an infinite number of parallels to 

the line BG can be drawn through the point A.] 

Theorem. There are at least two lines I" h of a plane, which do not meet a third line 13 

of the same plane, but they meet each other, (i.e. if" is parallel to Is, and 12 is parallel to J3, 

and all of them are in the same plane, it's not necessary that 11 is parallel to 12)' 

[For example: 

consider three points A, B, G lying in It, and different from P, and D a point in "1 not 

on 11; draw the lines AD. BE and G E such that E is a point in 51 not on 11 and both 
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BE and CE do not intersect AD; then: BE is parallel to AD,CE is also parallel to 

AD, but BE is not parallel to C E because the point E belong to both of them.] 

GROUP IV. ANTI-AXIOMS OF CONGRUENCE 

IV.l. If A, B are two points on a line [, and A' is a point upon the same or another line'l', 

then: upon a given side of A' on the line I', we can not always find only one point B' 

so that the segment AB is congruent to the segment A' U. 

[For exemples: 

- let AB be segment lying in 01 and having no point in co=on with ib and construct 

the line C-P-S1-Q-S2-P (noted by [I) which is the same with C-P-S2-Q-S1-P, 

where C is a point lying in 0, not on il nor on AB; ta.ke the point A' on [I, in between 

C and P, such that A' P is smaller than AB; now, there exist two distinct points B; 

on 8, and B~ on 82, such that A'B; is congruent to AB and A' B~ is congruent to AB, 

with A'B; different from A' B~; 

- but if we consider a line [' lying in 01 and limited by the frontier J, on the right side (the 

limit point being noted by M), and ta.ke a point A' on I', close to M, such that A'M is 

less than A'B', then: there is no point B'on the right side of I' so that A'B' is congruent 

to AB.] 

A segment may not be congruent to itself! 

[For example: 

- let A be a point on s" closer to P, and B a point on 82, closer to P also; A and Bare 

lying on the same line A-Q-B-P-A which is the same with line A-P-B-Q-A, but 

AB meseared on the first repersentation of the line is strictly greater than AB meseared 

on the second representation of their line.] 

IV.2. If a segment AB is congruent to the segment A' B' and also to the segment A" B", 

then not always the segment A' B' is congruent to the segment A" B". 

[For example: 

-let AB be a segment lying in 01 - 1" and consider the line C-P-S1-Q-S2-P-D, 

where C, D are two distinct points in 0, - 11 such that C, P, D are colinear. Suppose 

tat the segment AB is congruent to the segment CD (i.e. C - P - 81 - Q - 82 - P - D). 

Get also an obvious segment A' B' in "1 - Jl' different from the preceding ones, but 
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congruent to AB. 

Then the segment A' B' is not congruent to the segment G D (considered as G - P - D, 

i.e. not passing through Q.) 

IV.3. If AB, BG are two segments of the same line I which have no points in common aside 

from the point B, and A' B', B' G' are two segments of the same line or of another line 

/' having no point other than B' in common, such that AB is congruent to A' B' and 

BG is congruent to B'G', then not always the segment AG is congruent to A'G'. 

[For example: 

let I be a line lying in "" not on I" and A, B, G three distinct points on t, such that 

AG is greater than s,; let /' be the following line: A' - P - s, - Q - S2 - P where 

A'lies in "" not on j" and get B' on s, such that A' B' is congruent to AB, get G' 

on S2 such that BG is congruent to B'G' (the points A, B, G are thus chosen); then: 

the segment A'G' which is first seen as A' - P - B' - Q - G' is not congruent to AG, 

because A'G' is the geodesic A' - P - C' (the shortest way from A' to G' does not 

pass through E') which is strictly less than AG.] 

Definitions.Let h,k be two lines having a point 0 in common. Then the system (h,O,k) 

is called the angle of the lines hand k in the point O. 

(Because some of our lines are curves, we take the angle of the tangents to the curves in 

their common point.) 

The angle formed by the lines h and k situated in the same plane, noted by < h, k >, is 

equal to the arithmetic mean of the angles formed by h and k in all their common points. 

IVA. Let an angle (h,k) be given in the plane ct, and let a line h be given in the plane·/3. 

Suppose that in the plane /3 a definite side of the line h' is assigned, and a point 0'. 

Then in the plane!3 there are one, or more, or even no ha.lf-line(s) k' emanating from 

the point 0' such that the angle (h,k) is congruent to the angle (h',k'), and at the 

same time the interior points of the angle (h',k') lie upon one or both sides of h'. 

[Examples: 

- Let A be a point in ", - ft, and B, G two distinct points in "2 - 12; let h be the line 

A- P-s,-Q-B,and k be thelineA-P-s2 -Q-G; because h and k intersect 

in an infinite number of points (the segment AP), where they normally coincide - i.e. 

in each such point their angle is congruent to zero, the angle (h, k) is congruent to 

zero. 
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f'ow, let A' be a point in 0, - I" different from A, and B' a point in ~ - 12, different 

from B, and draw the line h' as A' - P - 5, - Q - B'; there exist an infinite number 

of lines k', of the form A' - P - 52 - Q - C' (where C' is any point in ~ - 12, not 

on the line QB'), such that the angle (h,k) is congruent to (h', k/), because (h', k') is 

al- so congruent to zero, and the line A' - P - S2 - Q - C' is different from the line 

A' - P - 5, - Q - D' id D' is not on the line QC' 

- li h, k and h' are three lines in 0, - P, which intersect the frontier It in at most 

one point, then there exists only one line k' on a given part of h' such that the angle 

(h,k) is congruent to the angle (h',k'). 

- *Is there any case when, with these hypotheses, no k' exists? 

- Not every angle is congruent to itself; for example: « s" 8, » is not congruent 

to « 5" 52 » [because one can construct two distinct lines: P - 5, - Q - A and 

P - 5, - Q - A, where A is point in 02 - 12, for the first angle, which becomes equal to 

zero; and P - 5, - Q - A and P - S2 - Q - B, where B is another point in 0, - h;B 

different from A, for the second angle, which becomes strictly greater than zero!]. 

IV.5. lithe angle (h,k) is congruent to the angle (h',k') and to the angle (h",k"), then the 

angle (h', k') is not always congruent to the angle (h", k"). 

(A similar construction to the previous one.) 

IV.6. Let ABC and A'B'C' be two triangles such that AB is congruent to A'B', AC is 

congruent to A'C', < BAC is congruent to < B'A'C'. Then not always < ABC is 

congruent to < A' B'C' and < AC B is congruent to < A'C' B'. 

[For example: 

Let M, N be two distinct points in 02 - I" thus obtaining the triangle PM N; now 

take three points R. M', N' in 0, - I" such that RM' is congruent to PM, RN' is 

congruent to RN, and the angle (RM',RN') is congruent to the angle (PM,PN). 

RM' N' is an obvious triangle. Of course, the two triangle are not congruent, beca~se 

for example PM and P N cut each other twice - in p and Q - while RM' and RN' 

only once - in R. (These are geodesical triangles.)] 

Definitions. Two angles are called supplementary if they have the same vertex, one side in 

common, and the other sides not common form a line. 

A right angle is an angle congruent to its supplementary angle. 

Two triangles are congruent if their angles are congruent two by two, and its sides are 
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congruent two by two. 

Propositions: 

A right angle is not always congruent to another right angle. 

For example: 

Let A - P - 5, - Q be a line, with A lying in <5, - 1" and B - P - 8, - Q another line, 

with B lying in <5, - h and B not lying in the line AP; we consider the tangent t at 5, in P, 

and B chosen in a way that < (AP, t) is not congruent to < (BP, t); let A', B' be other points 

lyng in 8, - I, such that < AP A' is congruent to < A'P - 5, - Q, and < B P B' is congruent 

to < B'P - s, - Q. Then: 

- the angle AP A' is right, because it is congruent to its supplementary (by construction); 

- the BPB' is also right, because it is congruent to its supplementary (by construction); 

- but < AP A' is not congruent to < B P B', because the first one is half of the angle 

A - P - 5, - Q, i.e. half of < (AP, t), while the second one is half of the B - P - s, - Q, i.e. 

half of < (BP, t). 

The theOrems of C<?ngruence for triangles [side, side, and angle in between; angle, angle, 

and common side; side, side, side) may not hold either in the Critical Zone (SI, S2,j" h) of the 

Model. 

Property: 

The sum of the angles of a triangle can be: 

- 180 degrees, if all its vertexes A; B, C are lying, for example, in <5, - I,; 
-strictly less than 180 degrees [any value in the interval (0,180)], for example: 

let R, T be two points in <52 - h such that Q does not lie in lIT, and S another point on 52; 

then the triangle SlIT has < (S R, ST) congruent to 0 because S R and ST have an infinite 

number of common points (the segment SQ), and < QT R+ < T RQ congruent to 180- < TQR 

[by construction we may very < TQR in the interval (0,180)]; 

-even 0 degree! 

let A be a point in 81 - I" B a point in <5, - h, and C a point on S3, very close to 

P; then ABC is a non-degenerated triangle ( because its vertexes are non-colinear ), but 

< (A - P- 5,- Q - B,A- P-53-C) =< (B- Q-5,- P-A,B-Q -8,- P-s3-C) = 

< (C-53-P-A, C-83-P-5,-Q-B) = 0 (one considers thelenght C-53-P-S,-Q-B 

strictly less than C - 53 - B); the area of this triangle is also O! 

- more than 180 degrees, for example: 

let .4, B be two points in 8, - I" such that < P AB+ < P B A + < (SI, 52; in Q) is strictly 
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greater than 180 degrees; then triangle ABQ, formed by the intersection of the lines A - P

S2 - Q, Q - SI - P - B,AB will have the sum of its angles strictly greater than 180 degrees. 

Defenition. A circle of center M is a totality of all points A for which the segments M A 

are congruent to one another. 

For example, if the center is Q, and the length of the segments M A is chosen greater than 

the length of SI, then the circle is formed by the arc of circle centered in Q, of radius M A, and 

lying in 82 , plus another ar<: of circle centered in P, of radi~s MA -length of SI, lying in 81 . 

GROUP V. ANTI-AXIOMS OF CONTINUITY 

(ANTI-ARCHIMEDEAN AXIOM) 

Let .4, B be two points. Take the point A.!, .42 , Aa, A., ... so that Al lies between A and 

Az, Az lies between Al and A3, A3 lies between Az and ~, etc. and the segments AAJ, A 1A z, 

AZA3, A3A., ... are congruent to one another. 

Then, among this series of points, not always there exists a certain point An such that B 

lies between A and An· 

For example: 

let A be a point in 61 - h, and B a point on f1, B different from P; on the line AB 

consider the points AI,A2,A3,~, ... in between A and B, such that AA"AIAz,AzA3,Aa~, 

etc. are congruent to one another; then we finde that there is no point behind B (considering 

the direction from A to B), because B is a limit point (the line AB ends in B). 

The Bolzano's (intermediate value) theorem may not hold in the Critical Zone of the Model. 

Question 38: 

It's very intresting to find out if this system of axiom is complete and consistent (!) The ap

parent unsientific or wrong geometry, which looks more like an amalgam, is somehow supported 

by its attached model. 

Question 39: 

How will the differential equations look like in this field? 

Question 40: 

How will the (so called by us:) "PARADOXIST" TRIGONOMETRY look like in this field? 
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Question 41: 

First, one can generalize this using more bridges (conections/strings between ", and "2) of 

many lengths, and many gates (points like P and Q on 1, and /Z, respectively) - from a finite 

to an infinite number of such bridges and gates. 

If one put all bridges in the" plane, one gates a dimension-2 model; otherwise, the dimension 

is ~ 3. 

Some bridges may be repla.ced with (round or not necessaryly) bodies, tangent (or not 

necessaryly) to the frontiers 1, and fz. 

Question 42: 

Should it be indicated to remove the discontinuities? 

But what about DISCONTIKUOUS MODELS (on spaces not everywhere continouus - like 

OUT MD)? generating in this way DlSCOXTIXtJOUS GEOMETRIES. 

Question 43: 

The model M D can also be generalized to n-dimensional space as a hypersurfece, considering 

the group of all projective transformations of an (n + 1 )-dimensional real projective space that 

leave M D invariant. 

Questions 44-47: 

Find geometric models for each of the following four cases: 

- ~o point/line/plane in the model space verifies any of Hilbert's twenty axioms; (in OUT 

MD, some points/linse/planes did verify, and some others did not); 

- The Hilbert's groups oi axioms I, II, IV, V are denied for any point/line/plane in the model 

space, but the III-th one (axiom of parallels) is verified; this is an Opposite-(Lobachevski.L 

Reimann) Geomatry: 

neither hyperbolic, nor eliptic ... and yet Non-Euclidean! 

- The groups og anti-axioms I, II, IV, V are all verified, but the III-th one (anti-axiom of 

parallels) is denied; 

- Some of the groups of anti-axioms I, II, III, IV, V are verified, while the others atre not -

except the previous case; (there are particular cases already known). 

Question 48: 

What connections may be found among this Paradoxist Model, and the Cayley, Klein, 

Poincare, Beltrami (differential geometric) models? 
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Questions 49-120: (combining by twos, each new geometry - out of 4 - with an old 

geometry - out of 18 - all mentionned below): 

What connections among these Paradoxist Geometry, Non-Geometry, Counter-Projective 

Geometry, Anti-Geometry and the other ones: Conformal (Mobius) Geometry, Pseudo-Confor

mal Geometry, Laguerre Geometry, Spectral Geometry, Spherical Geometry, Hiper-Sphere Ge

ometry, wave Geometry (Y. Mimura) , Non-Holonomic Geometry (G. Vranceanu), Cartan's 

Geometry of Connection, Integral Geometry CW. Blaschke), Continuous Geometry (von ~eu

mann), Affine Geometry, Generalized Geometries (of H. Weyl, O. Veblen, J.A. Schoutten), 

etc. 

CONCLUSION 

The above 120 OPE~ QUESTIONS are not impossible at all. "The world is moving so fast 

nowadays that the person, who says <it can't be done>, is often interrupted by someone doing 

itr.! [<Leadirship> journal, Editor Arthur F. Lenehan, Odober 24, 1995, p. 16, Fairfield, NJ]. 

The author encourages readers to send not only comments, but also new (solved or unsolved) 

questions arising from them. 

Specials thanks to professors JoAnne Growney, Zahir .. S. Khan, and Paul Hartung of 

Bloomshurg "C'niversity, Pennsylvania, for giving me the opportunity to write this article and 

to lecture it on Kovember 13th, 1995, in their Department of Mathematics and Computer 

Sciences. 
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LOGICA SAU LOGICA MATEMATICA 

Cate propozi~ii sant adevarate §i care anume dintre urmatoarele: 

1. Exista 0 propozi1ie falsa printre cele n propozi1ii. 

2. Exista dona propozitii false printre cele n propozitii. 

-. Exista i propozitii false printre cele n propozitii. 

n. Exista n propozitii false printre cele n propozitii. 

(0 generalizare a unei proble propuse de prof. Francisco Bellot, revista r\l:MEROS, nr. 

9/1984, p. 69, Insulele Canare, Spania). 

Comentarii. ;\otam en P; propozitia i,l :'S i :'S n. Dad n este par atunci propozitiile 

1,2, ... , (n/2) sant adevarate iar celelalte false. Se incepe rationamentnl de la sfar§it; P" nn 

poate sa fie advarata, deci PI este adevarata; apoi P,,-I nn peate fi adevarata, deci P2 este 

adevarata, etc.) 

Remarca. Daca n este impar se obtine un paradox, deoarece urmand aceea.§i metoda de 

rezolvare gasim Pn falsa, implica Pl adevarata; P,,-I falsa implica p. adevaratil., ...... P,,¥ 

falsa implica Pn+1-",¥- adevarata, adica P,,¥ faIsa. implica P,,¥ adevarata, absurd. 

Daca n = 1, se obtine 0 varianta a Paradoxului minciunosului ("Nn mint" este a.devarat 

san fals?) 

11. Exista 0 propozitie falsa in acest dreptnnghi. I 

Care este desigur un paradox. 

["Gamma", BrG§Ov, Annl IX, "r. 1, noiembrie 1986.J 
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MATHEMATICS AND ALCOHOL AND GOD 

Imaginary 

God 

Transcendentality 

What's the probability 

for God to be 

in Number Theory? 

Artifica Mathematica -

in oder to kill the zero, the nothing 

I don't like poeple who are happy, who had a great career (because it pushed on others and 

depersonalized them) - but those living unhappily, poorly, sickly and dying young. 

IT there exist irrational elements in man, then God exists. When we know what God is, we 

shall be gods ourselves (G.B.Show). 

If there exist wars, genocides, then God does not exist. 

If there exist sentences wlllch cannot be proved or disproved within the system (K.Godel), 

then God exists. 

"What's your religious beliefs?", and Lagrange answered: "1 don't know"! 

Mathematics and alcohol for God's sake, and instead of Him and to replace Him. Mystic 

:Mathematics. Are science researchers guilty in front of God because of stealing Nature's sec

rets? 

God's Revolt 

Mathematics' Revolt 

Alcohol's Revolt 

My revolt: 1 desire to create my own mathematics, new (and maybe strange, paradoxist) 

axioms - and put everything in it ! Develop an entire theory on this system of 

anti-axioms. I'm "Titing the PARADOXIST MATHEMATICS 

the PARADOXIST PHILOSOPHY 

"Sommetimes great new ideas are born outside, not inside, the schools" (Dirk J. Struik). 

God 

Holy Mathematics with its fascinating infinite 

Holy Alcohol with its degrees 

Holy Philosophy 
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Music is sick in front of God 

Picture is sick in front 

Mathematics is sick 

Creation is a drug I can't do without (Cecil B. Demille). Therefore: pray to God and drink 

because in this way you get clOf>er to Him. Drink alcohol and solve diophantine equations ! 

CALCuLATE - DRINK -PRAY 

(This is not a paradox !) 
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SUB.JECTIVE QUESTIONS A..JIID ANWERS 

FOR A MATH INSTRUCTOR OF HIGHER EDUCATION 

1) What are the instructor's general responsabilities ? 

- participation in committee work and planning 

- research and inovation 

- in service training 

- meetings 

- to order necessary textbooks, audio-visual, and other instructional equipment for 

assigned courses 

- to submit requests for supplies, equipment, and budgetary items in good order and 

on time 

- to keep abreast of developments in subject field content and methods of instruction 

- to assess and evaluate individual student progress; to maintain student records, 

and refer students to other appropriate college staff as necessary 

- to participate on college-wide registration and advising 

- effective and full use of the designated class meeting time 

- adeqvated preparation for course instruction, course and curriculum planning 

- teaching, advising students 

- to be able to make decisions 

- knowledge and use of material 

- positive relationship 

- knowlwdge of content 

- to plan and implement these plans (or abandon them if they don't work) - short 

and long - term plannings 

- to be a facilitator, motivator, model, assesor and evaluator of learning, counselor, 

classroom manager (i.e. to manage the behaviour of students, the environemen!, 

the curriculum) 

- knowledge of teenage growth and development 

- to continously develop instructional skills. 

The most import and personal and academic characteristics of a teacher of higher education 

are: to be very good professionally in his jher field, to improve permanently his/her skills, to 

be dedicated to his/her work, to understand the stuidents' psychology, to be a good educator, 
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to do attractive and intresting lessons, to make students learn to think (to solve not only 

mathematica.J problems, but also life ones), to try approching mathematics with what students 

are good at (telling'em, for example, that mathematics are applied anywhere in the nature), 

to conduct students in their scientific research, to advise them, to be involved in all schoiar 

activeties and committee servicesl; to enjoy teaching. 

The first day of school can be more mathematically recreative. Ask the students: What do 

you like in mathematics, and what don't you like? 

Tell them math jokes, games, proofs with mistakes (to be found!), stories about mathemati

cians lifes, connections between math and... opposite fields, such as: arts, music, literature, 

poetry, foreing languages, etc. 

2) What is the students evaluation of you as an instructor (negative opinions)? 

- don't be too nice in the classroom (because some students take advantage of that 

matter and waste their and class time) 

- to be more ~trict and respond firmly 

- don't say: "this is easy, you should know this" beacouse one discourags students 

to ask questions 

- attendence policy to be clear 

- grammer skills, and listening skills 

- patience with the students 

- allow students to help each other when they don't understande me 

- clear English 

- sometimes there isn't enough time to cover all material 

- to self-study the material and solve a lot of unassigned problems 

- to talk louder to the class; to be more oriented towards the students and not the 

board/self 

- to understand what the students ask me 

- to take off points if the home work problems are wrong, instead of just giving 

points for trying 

- to challenge students in learning 

- to give examples of harder problems on the board 

- to enjoy teaching (smile, joke ?) 

- your methods should help students learning 
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3) What is the college's a.nd university's mission a.nd role in the society? 

- to assure that ail stndents served by the College learn the skills, knowledge, be

haviors, and attitudes necessary for productive living in a changing, democratic, 

multicultmal society. 

4) How do you see the future math teaching (new thechiques) ? 

- teaching online 

- telecourses (with videotapes and tapes) 

- teaching using internet 

- teaching by regular mail 

- more electronic device tools in teaching (especially computers) 

- interdisciplinarity tea.ch.ing 

-self-teaching (helping students to teach themselves) 

- more mathimatics tought in connections with the social life (mathematical mod-

eling) 

- video conference style of teaching 

- laboratory experiments 

5) What about <Creative Solutions> ? 

- the focus of the program is on developing student understanding of concepts and 

skills rather than <apparent understanding> 

- students should be actively involved in problem - solving in new situations (creative 

solvers) 

- non-routine problems should occur regularly in the student homework 

- textbooks shall facilitate active involvement of students in the dicovery of mathe-

matical ideas 

- students should make conjectures and guesses, experiment and formulate hypothese 

and seek meaning 

- the instructor should not let teaching of mathematics degenerate into mechanical 

manipulation without thought 

- to teach students how to think, how to investigate a problem, how to do research 

in their own, how to solve a problem for which no method of solution has been 

provided 
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- homework assignments should draw the students' attention to underlying concepts 

- to cio a cognitive guided instruction 

- to solve non-routine problems, multi-step problems 

- to use a step-by-step procedure for problem solving 

- to integrate ttradition with modern style teaching 

- to emplasize the universality of mathematics 

- to express mathematical ideas in a variety of ways 

- to show students how to write mathematics, and how to reads mathematics 

- interpretations of solutions 

- using MIN IT AB graphics to teach statistics (on the computer) 

- tutorial programs on the computer 

- developing manageable assessment procedures 

- experemental teaching methods 

- to mativate students to work and learn 

- to stimulate. mathematical reasoning 

- to incorporate "real life" scenarios in teacher training programs 

- homo faber + homo sapiens are inseparable (Antonio Gramsci, italian philosopher) 

- to improve the critical thinking and reasoning skills of the students 

- to teach students how to extend a concept 

- to move from easy to medium and hard problems (gradually) 

- math is learned by doing, not by watching 

- the students should dedicate to the school 

- to become familiar with symbols, rules, algorithms, key words and definitions 

- to visualize math notions 

- to use computer - generated patterns 

- to use various problem-solving strategies such as: 

· perseverence 

· achievement motivation 

· role I:lodel 

· confidence 

· fiexi ble thinking 

· fresh ideas 

· different approaches 
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· different data 

- to use experimental tea.ching methods 

- function ploters or computer algebra systems 

- computer-ba.sed learning 

- software development 

- grant proposal writing 

- inovative pedagogy 

- to use multi-represantional strategies 

- to try experimental tools 

- to develop descussion groups 

- symbol manipulation rules 

- to solve template problems 

- to do laboratory - based courses 

- to think analytically 

- to picture ourselves as teacher, or as students 

- to use computer - generated patterns and new software tools 

- to give the students educational and psychological tests to determine if any of them 

need special education (for handicaped or gifted students). - American Association 

on Mental Deficiency measures it. 

6) How to diminish the computer anxiety? 

In oder to diminish the computer anxiety, a teacher needs to develop to the students: 

- positive attitudes towards appropriate computer usege 

- feeling of con.iidence in use of computers 

- feeling of comfort with computers 

- acceptance of computers as a problem-solving tool 

- willingness to use a computer for tasks 

- attitude of responsability for ethical use of computer 

- attitude that computers are not respon.sible for" errors" 

- free of fear and intimidation of computers (the students anxienty towards computer 

is diminished as their knowledge aboui computers increased) 

- only after an algorithm is completely understood it is appropriate to rely on the 

computer to perform it 
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- computers help to remove the tedium of time - consuming calculations; 

- enable the students to consolidate the learning of the concepts and algorithms in 

math; the computer session is held at the end of the course when all the lectures 

and tutorials have been completed 

- to simulate real world phenomena 

- all students should learn to use calculater. 

- math is easier if a calculator is used to solve problems 

- calculator use is permissible on homework 

- using calculators makes students better problem solvers 

- calculators make mathematics fun 

- using calculator will make students try harder 

- the students should be able to 

· assemble and start a computer 

· understand the major parts of a computer 

· use avariety of educational software 

· distinguish the major instructional methodologies , 
· use word processor, datebase and spreadsheet programs 

· attach and use a printer, peripherals, and lab probes 

· use telecommunications networking 

· use hypermedia tehnology 

- an instructor helps students to help themselves (it's interesting to study the epis

temology of experience) 

In the future the technology's role will increase due to the new kind of teaching: distance 

learning (internet, audio-visuals, etc.). 

The technology is benefical becuase the students do not waste time graphing function any

more, but focusing on their interpretations. 

7) Describe your experience teaching developmental mathematics including course names, 

semester taught and methods and techniques used. 

In my teaching career of more than ten years experience I taught a variety of developmental 

mathematics COIlT''''''', such as: 
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- Introductory Mathematics: Falls'88, '89, Springs'89, '90. Methods: problem solving 

participation in the class, small group work, guest speakers, discussion, student planning 

of assignments (to compose themselves problems of different styles and solve them by 

many methods), editing math problem solutions (there are students who know how to 

solve a problem, but they are not able to write correctly and completely their proof 

mathematically), math applied to real world problems (project), research work (how 

math is used in a job), recreational math approaches (logical games, jokes), etc. 

- Prealgebra: Spring'82; - Algebra, Elem. Geomtry: '81, '89. 

8) Briefly describe your philosophy of theaching mathematics. Decribe the aplication·of 

this philosophy to a particular concept in a developmental mathematics course you have taught. 

- My teaching philosophy is "concept centered" as well as "problem solving directed". 

Makarenko: Everything can be taught to enybody if it's done at his/her level of knowledge. 

This focuses on promoting a student friendly environment where I not only lecture to provide 

the student a knowledge base by centering on concepts, but I also encourage peer mentoring 

with groups work to facilitate problem solving. It is my firm convinction that a student's 

perception, reasoning, and cognition caD. be strengthed with the application of both traditional 

and Alternative Learning Techniques and Student Interactive Activities. 

- In my Introductory Mathematics course I taught about linear equations: 

- first I had to introduce the concept of variable, and then define the concept of equation; 

afterwards, tell the students why the equation is called linear; how the linear equation 

is used in the real world, its importance in the every day's life; 

- seconde I gave students an example of solving a linear equation on the board, showing 

them differnt methods; I classified them into consistent and inconsistent. 

9) Describe how you keep current with trends in mathematics instruction and give 

one example of how you have integrated such a trend into the classroom. 

- I keep current with trends in math instruction reading journals such as: "Journal 

for Reaserch in Mathematical Education", "Mathematics Teacher" (published be the 

!\ ational Council of Teachers of Mathematics, Reston, VA), "Journal of Computers in 

Mathematics and Science Teaching", "For the learning of mathematics", "Mathematics 

Teaching" (U.K.), "International Journal of Mathematical Education in Science and 

Techonology"; and participating with papers to the educational congresses, as: The 
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Fifth Conference on Teaching of Mathematics (Cambridge, June 21-22, 1996), etc. 

Exemple: Intersubjectivity in Math: teaching to everybody at his/her level of under

standing. 

10) Describe your experience intergrating technology into teaching mathematics. Provide spe

cific exemples of ways you have used technology in the mathematics classroom. 

- I use graphic calculators (TI -85) in teaching Intermediate Algebra; for example: 

programming it to solve a quadratic equation (in all 3 cases, when D is >, =, or < 0). 

- I used various software pachages of mathematics on IBM-PC or compatibles, such 

as: MPP, MAPLE, UA, etc. to give the students different approaches; for example in 

teaching Differential Equations I used MPP for solving a differential equation by Euler's 

method, changing many times the initial conditions, and graphing the solutions. 

11) Describe your knowledge and/or experience as related to your ability to prepare clasrOQm 

materials. 

Classroom materials that I use: handouts, different color markers, geometric instru

ments, take-home projects, COllIS notes, group projects, teaching outline, calculators, 

graphic calcultors, PC, projectors, books, journals, etc. 

12) Describe the essential characteristics of an effective mathematics curriculum. 

- To develop courses and programs that support the Coolege's vision of an educated 

person and a commitment to education as a lifelong process; 

- To provide educational experiences designed to facilitate the individual's progress 

towards personal, academic, and work-based goals; 

- To encourage the development of individual ideas and insights and aquisition of knowl

edge and skills that together result in an appreciation of cultural diversity and a quest 

for futher discovery; 

- To respond to the changing educational, social, and technological needs of current aild 

prospective students and co=unity employers; 

13) Provide specific examples of how you have and/or how you would develop and evaluate 

matematics curriculum. 

In oder to develop a mathematics curriculum: 

I identify unmet student need, faculty interest in a new area, request from employers, 
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reco=endation of advisory committee, result of program review, university curriculum 

development. 

Criteria for evaluation of a mathematics curriculum: 

- course/program is educationally sound and positively affects course/program offerings 

within district; course does not unnecessarily duplicate existing course or course content 

in other disciplines offered throughout the districr; 

- development or modification of course/program does not adversely impact existing 

courses/programs offered throughout the district by competing for students and re-

sources; 

- course/program is compatible with the mission of the college. 

14) Decribe your experience, education and training that has provided you with the knowledge 

of and ability to assess student achivement in methematics. 

Courses I studed: History of Education, Introduction to Education, Philisophy, Child 

and Adolescent Psihology, Educational Psihology, General Psyhology, Methods of Teach

ing Mathematics, Analysis of Teaching and Research, Instructional Design and Evalu

ation, Learning Skills Theory, Historical / Philosophical / Social Education, Teaching 

Practice. 

I taught mathematics in many countries; for many years, using various student assess-

rnents. 

15) Provide specific examples of ways you have and/or ways you would assess student achive

ment in mathematics. 

I assess students by: tests in the Testing Center, quizes in the classroom, homeworks, 

class participation (either solving problems on the board, or giving good answers for 

my questions), extra-work (voluntarily), take-home exams, research projects, frequency. 

);ormally a test contains 10 problems, total being 100 points. For each homework I 

give 5 points, same for each extra-work, for each class participation. For more than 

3 absences I sucstract points (one point for each absence), and later I withdraw the 

student. 

Take-home exams, quizis, and research project have the worth of a test. 

Finally I compute the average (my students know to assess themselves according to 

these rules, explained in the class and written in the syllabus). 
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16) This question is about motivating a typical community college class of students, which is 

very diverse. 

a) What kinds of students are you likely tc have in such a class? 

Students of different races, genders, religions, ages, cultures, national origins, levels of 

preparendness, with or without phisical or mental handicaps. 

b) How would you teach them ? 

Catching their common interest, tutoing on a one-to-one basis students after class (ac

cording to each individual level of preparendness, knowledge), working differentially with 

categories of students on groups, being a resource to all students, using multirepresen

tational strategies, motivating and making them dedicate to the study, finding common 

factors of the class. Varying teaching stiels to respond to various student learning styles. 

17) Given the fact that the community college philosophy encourages faculty members to con

tribute to the campus, the college, and the community, provide examples of how you have and 

lor would contribute to the campus, the college, and the community. 

1 have contributed to the college by: 

- being an Associate Editor of the college (East Campus) "Math Power" journal; 

- donating books, journals to the college (East Campus) Library; 

- volunteering to help organizing the AMATYC math competitions (I have such expe-

rience from Romania and Morocco); 

- representing the college at National/International Conferences on Mathematical and 

Educational Topics (as, for example, at Bloomsburg University, PA, Nov. 14, 1995); 

- publishing papers, and therefore making free publicity for the college; 

1 would contribute to the college by: 

- organizing a Math Club for interested students; 

- cooperating with my fellow colleagues on educational projects sponsored by various 

foundations: National Science Foundation, Fullbright ... Guggemteim? 

- socializing with my fellow coleagues to diverse activities needed to the college. 

- being a liaison between the College and University in oder to frequenly update the 

University math software and documentation (public property, reach done will a grant 

from ~SF). 

18) Describe your experience within the last three years in teaching calculus for science and 
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engineering majors and/or survey calculus at a post secondary level. 

I have taught Calculus I, II, III in many countries. I have insisted on solving most 

creatively problems in calculus, because most of them are open-ended (they have more 

than one correct answer or approach); sometimes, solving a problem relies on common 

sense ideas that are not stated in the problem. The fundamental basis od the Calculus 

class is what grphs symbolize, not how to draw them. 

Using calclators or computers the students got reasonable approximation of a solution, 

which was usually just useful as an exact one. 

19) Reform calculus a significant issue in math education today. Describe your thoughts on 

the strenghs and weaknesses of reform versus traditional calculus and indicate which form of 

calculculus you would prefer to teach. 

Of course, I prefer to teach the Harvard Calculus, because it gives the students the skills 

to read graphs and think grphically, to read tables and think numerically, and to apply 

these skills along with their algebraic skills to modeling the real world (The Rule of 

Three); and Harvard Calculus also states that formal mathematical theory evolves from 

investigations of practical problems (The Way of Archimedes). 

Wealnesses: the students mighn rely too much on calculators or computers ("the ma

chines will think for us !"), forgetting to graph, solve, compute. 

20) Describe your experience in curriculum development including course development, text

book or lab manual development, and development of alternative or innovative instructional 

methods. 

I have developed a course of Calculus I, wrote and published a textbook of Calculus I 

for students, associated with various problems and solutions on the topic. 

Concerning the alternative instructional methods, I'm studyng and developing The In

tersujectivety :\fethod of Teaching in Mathematics (inspired by some articles from" Jour

nal for Research in Mathematical Education" and "International Journal of Mathamat

ical Education in Science and Technology"). 

21) Describe your education and/or experiences that would demonstrate your ability to proac

tively interact with and effectively teach students from each of the following: different races, 

cultures, ages, genders, and levels of preparednees. Provide examples of your interaction w~th 

and teaching of students from each of these groups. 
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I have taught mathematics in many countries: Romania (Europe), Morocco (Africa), 

TUrkey (Asia), and USA. Therefore, I am accustomed to work with a diverse student 

population. More, each country had its educational rules, methods, styles, curriculum 

missions - including courses, programs, textbooks, math student competitions, etc. that 

I have acquired a very large experience. I like to work in a multi-cultural environement 

teaching in many languages, styles (according to the students' characteristics), being in 

touch with various professors arround the world, knowing many cultural habits. 

Describe your professional development activities that help you stay in the field of mathematics. 

Give your best example of haw you have integrated one thing into the classroom that came Qut 

of your professional development activities. 

23) 

I subscribe to math journals, such as: "College Mathematics Journal", as a memeber 

of the Mathematical Association of America, and often go to the University Libreries, 

Science Section, to consult various publications. 

I keep in touch with mathematicians and educators from all over, exchanging math 

papers and idea'S, or meeting them at Conferences or Congresses of math or education. 

Studying about "intersurjectivity" in teaching, I got the idea of working differentially 

with my students, distributing them in groups of low level, medium level, high level 

according to their knowledge, ~d therefore assigning them appropriate special projects. 

a) What are the most important personal and academic characteristics of a teacher? 

b) At the end of your first year of district employment how will you determine whether or 

not you have been successful! ? 

c) What are the greatest challenges in public education today? 

d)What do you want your students to learn ? 

a) To be very good professional in his/her field, improving his/her skills permanently. 

To be dedicated to his/her work. To love the students and understand their psihology. 

To be a very good educator. To prepare every day the lesson (its objectives). To do 

attractive and interesting lessons. 

b) Regarding the level of the class (the knowledge in math), the students grades, even 

their hobby for math (or at least their iterest). 
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c) To give the students a necessary luggage of knowledge and enough education such 

that they are able to fend for themselves in our society (they are prepared very well for 

the future). 

d) To think. Brainstorm. 

To solve not only mathematical problems, but also life problems. 

24) What do you want to accomplish as a teacher? 

To get well prepared students with good behaviours. 

25) How will (dO) you go about finding out students' attitudes and feelings about your class? 

I'll try to talk with every student to find out their opinions, dificulties, attitudes to

wards the teacher. Then, I'll try to adapt myself to the class level of knowledge and 

to be agreeable to the students. Besides that , I'll try to approach them in exracur

riculum activities: soccer, tenis, chess, creative art and literature using mathematical 

algorithms/methods, improving my Spanish language. 

26) An experienced teacher offers you following advice: "When you are teaching, be sure to 

command the respect of your students immediately and all will go well". How do you feel about 

this? 

I agree that in a good lesson the students should respect their teacher, and reciprocally. 

But the respect should not be "commanded", but earned. The teacher should not hurt 

the students by his/her words. 

27) How do you go about deciding what it is that should be taught in your class ? 

I follow the school plan, the mathematics text book, the school governing board direc

tions. I talk with other mathematics teacher asking their opinions. 

28) A parent comes to you and complains that what you are teaching his child is irrelevant·to 

the child needs. How will you respond? I try to find out what he wants, what his needs are 

like. Then, maybe I have to change my teaching style. I respond that irrelevant subjects of 

today will be relevant subjects of tomorrow. 

29) What do you think will (does) provide you the greatest pleasure in teaching? 

When students understand what I'm teaching about and they know how to use that in their 

44 



life. 

30) When you have some free time, what do you enjoy doing the most ? 

Improving my mathematical skills (subscription to mathematical and education journa.l.s). 

Teaching mathematics beacame a hobby for me! 

31) How do you go about finding what satudents are good at ? 

I try to approach mathematics with what students are good at. For example: I tell'em : 

that mathematics are applied anywhere in the nuture and society, therefore in arts, in music, in 

literature, etc. Therfore, we can find a tangentialjoini between two apperent distinct (opposite) 

interests. 

32) Would you rather try a lot of way-out teaching strategies or would you rather try to perfect 

the approaches which work best for you ? Expla.in your position. 

Both: the way-out -teaching strategies combined with approaches to students. 

In each case the teacher should use the method/strategy that works better. 

33) Do you like to teach with an overall plan in mind for the year, or would you rather just 

teach some interesting things and let the process determine the results? Expla.in your position. 

Normally I like to teach with an overall plan in mind, but some times - according with the 

class level and feelings - I may use the second strategy. 

34) A student is doing poorly in your class. You talk to him/her, and he/she teills you that 

he/she considers you to be the poorest teacher he/she has every met. What would you do ? 

I try to find out the opinions of other students about my teaching and to get a general 

opinion of the entire class. I give students a test with questions about my character, skills, 

style, teaching methods etc. in oder to find out my negative features and to correct/improve'em 

by working hard. 

35) If there were absolutly no restrictions placed upon you, what would you most want to!fo 

in life? 

To set up a school (of mathematics espacially) for gifted and talented students with a math 
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club for preparing students for school competitions. 

36) How do you test what you teach ? 

By written test, final exams, homeworks, class participation, special projects, extra home

works, quizes, take-home exams. 

37) Do you have and follow a course outline? When would a variation from the outline be 

appropriate ? 

- Yes, I follow a course outline. 

- Wnen I find out the students have gaphs in their knowledge and, therefore they are not 

able to understand the next topic to be taught. Or new topics are needed (due to scientific 

research or related to other disciplines). 

38) Is student attendance important for your course? Wnyor why not? What are the student 

responsibilities necessary for success in your class? 

- Yes. 

- If they miss many courses they will have difficulties to understand the others, because 

mathematics i" like a chain. 

- To work in the clasroom, to pay attention and ask questions, to do independent study at 

home too. 

39) Describe your turnaround time for returning graded test and assignments. 

I normally grade the tests over the weekends. Same for all other assignments. 

40) Are you satisfied with the present textbooks? Why or why not? 

- Yes. 

- Because they gives the students the main ideas necessary in the technical world. 

41) Describe some of the supplemental materials you minght use for this course. 

- Personal computer with DERNE sogtware pachage. 

- T!-92 and an overhead projector. 

- Tables of Laplace Transforms. 
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- Various handouts. 

42) Describe your method of student recordkeeping. 

- I keep track of: absences, homeworks, tests'grades, final exam's grade, class participations. 

43) Describe how you assist or refer students who need remediation. 

- I advise them to go to the College Tutoring Center. 

- I encourage them to ask questions in the classroom, to work in groups with better students, 

to contact me before or after class. 

44) \\'hat is your procedure for giving students feedback on their learning progress? 

- By the tests grades. 

- By the work they are doing in the classroom. 

45) How do you monitor your evaluation methods so that they are both fair and constructive? 

- My students are motivated to work and improve their grades by doing extra- (home )work. 

- I compare my evaluation methods withe other instructors'. 

- I also feel when a student masters or not a subject. 

46) Describe your relationship with your colleagues. 

- I share information, journals, books, samples of tests etc. with them. 

- Good communication. 

47) 'What procedures do you use to motivate students? 

- Giving'em a chance to improve their grades. 

- Telling'em that if they don't learn a subject in mathematics, they would not understand 

the others (because mathematics is cyclic and linear). 

48) Are you acquainted with district and campus policies and procedures? Do you have any 

problems with any of the policies and procedures ? 

I allways try to ajust myse!fto each campus's policy. 
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49) What mathematical education topic are you working in ? 

- I'm studying the radical constructivism (jean liaget) and social constructivism (Vygotsky: 

to place co=unication and social life at the center of meaning - making), the intersubjectivity 

in mathematics, the meta-knowledge, the assessment standards. 

Learning and teaching are procesSes of acculturation. 
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o GEOMETRIE PARADOXISTA1 

in 1969, fascinat de geometrie, am construit un spatin pilr\ial eueliadian §i pilr\ial neeielidian 

in acela§i timp, inlocuind postulatul V al lui Euclid (axioma paralelelor) prin urmatoa.rea 

propozi~ie stranie con~inand cinci a.ser\iuni: 

a) exista eel putin 0 dreapta. §i un punet exterior ei in acest spatiu astfel ineat prin 

acel punet treee 0 singura dreapta care nu intersecteaza dreapta initiala; 

[1 paralela] 

b) exista eel pupn 0 dreapta §i un punet exterior ei in acest spatiu astfel ineat un 

numar finit de drepte I" ... ,lk (k ~ 2) care tree prin ace! punet nu intersecteaza 

dreapta ini tjala; 

[2 sau mai multe (dar in numar finit) paralele] 

e) exista eel pU9n 0 dreapta §i un punet exterior ei in acest spapu, astfel ineat oriee 

dreapta trecind .prin ace! punet intersectea.za dreapta ini~iaIa; 

[0 (zero) paralele] 

d) exista eel putin 0 dreapta §i un punet exterior ei in acest spa1iu astfel ineat un 

numar infinit de drepte care tree prin acest punet (dar nu toate) nu intersectea.za 

dreapta initiala; 

[un numar infinit de paralele,dar. nn toate dreptele care tree prin acel punet} 

e) exista eel pu1in 0 dreapta §i un punet exterior ei in acest spatiu astfel ineat oriee 

deapta care trece prin acel punet nu intersectea.za dreapta initiala; 

[un numar infinit de paralele, toate dreptele trecand prin acel punet] 

pe care am numit-o geometrie paradoxista. 

Aeeasta reune§te geometriile lui Euclid, LobacrvskifBolyai §i Riemann. 

Important este gasirea unni model pentrn aceasta geometrie, §i 

studierea earacteristicilor ei. 

Iprezentati la Bloomsburg, Pensylvania, pe 13 noiembrei 1995. Publicata in <Abracadabra>, Salinu, CA, 

ianuarie 1996, #39, p.22. 
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GEOMETRIC CONJECTURE 

a) Let M be an interior point in an A1A2 ••• An convex polygon and P; the projection of M on 

AiAi+1 i=l, 2, 3, ... , n. 

Then, 
n n 

2: MAi ~ c2: MP, 
i::=l i=l 

where c is a constant to be found. 

For n = 3, ii was conjectured by Erdos in 1935 and solved by Mordell in 1937 and Kazarinoff 

in 1945. In this case c = 2 an d the result is called the ErdOs-Mordell Theorem. 

Question: "''hat happens in 3-space when the poiygon is replaced by a polyhedron? 

b) More generally: If the projections Pi are considered under a given oriented angle Q #-.90 
degrees, what happens with the ErdOs-Mordell Theorem and the various generalizations? 

c) In 3-space, we make the same generalization for a convex polyhedron 

n m 

2: MAi ~ Cl 2: MP; 
j=l 

where P;, 1::; j ::; m, are projections of M on all the faces of the polyhedron. 

Futhermore, 
n r 

2: MAi ~ C2 2: MT. 

where T., 1 ::; k ::; r, are projections of M on all sides of the polyhedron and Cl and C2 are 

constants to be determined. 

[Kazarinoff conjectured that ror the tetrahedron 

4 4 

2:MA; ~ 2v22: MPi 
i=l i=l 

and this is the best possible. 

References 

[1] P.Erdiis, Letter to T.Yau, August, 1995. 

[2] Alain Bouvier et Michel George, <Dictionnaire des Mathematiques>, Press Universitaires 

de Ftance, Paris, p. 484. 

50 



A FUNCTION IN THE NUMBER THEORY 

Summary 

In this paper I shall construct a function TJ having the following properties: 

(1) 

TJ(n) is the smallest natural number with the property(I). (2) 
We consider: N = {O, 1,2,3, ... } and N* = {I, 2, 3, ... }. 

Lema 1. Vk,p E N*,p f l,k is uniquely written under the shape: k = t1a!::)+ ... +t/a!::) where pTl.,,-l _ 
_ __ a!::)=--I' i=l,l, nl>n2>· .. >nl>Oand1~tj~p-l, J=I,/-I, l~t/~p, p-

nj, tj E N, i = 1,1 I E N*. 

Proof. The string (a!:,) )nEN' consists of strictly increasing infinite natural numbers and 
(P) 1 - (P). 'v' E N- . fixed a1'1+1 - -p·a,.., ,? ,pIS , 

a\,,) = 1,4") = 1 + p,Jt) = 1 + p+ p2, ... =? N* = U ([a!."),a!."ll) n N*) 
nEN-

where [a!:'),a!."ll) n [a!."11,a!."12) = 0 beca.1lSe a!:') < a!."ll < a!."12' 

Let k E N*, N* = U (fair), a;al) n N*) =? 3!nl E N* : k E (fa!::), a~)+1) =? k) is neN-

uniquely written under the shape k = [;;) a!::) + r, (integer division theorem). We note 

k = [ ~)] =tl =? k =tla~) +r" r, < a~). an, 

If rl = 0, as a!:,! ~ k ~ a!."!+1 - 1 =? 1 ~ t, ~ P and Lemma 1 is proved. 
If rl f 0 =? 3!n2 E N* : r, E [air},a!."}+1); a!::) > r, =? nl > n2, r, f 0 and a!::) ~ k ~ 

~ a~)+1 -1 =? 1 ~ tl ~ P -1 because we have tl ~ (a~)+l -1- rtl : ali) < PI. 
The procedure continues similarly. After a finite number of steps I, we achieve rl = 0, as 

k =finite, k E N* and k > r, > r2 ... > rl = 0 and between 0 and k there is only a finite 
number of distinct natural numbers. 

Thus: 

k is uniquely written: k = t,a!::) + rt, 1 ~ t, ~ P - 1, r is uniquely written: r, = t2a~ + r2, 
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rl_l is uniquely written: rl_l = tla~) + rl and rl = 0, 

=> k is uniquely written under the shape k = tl a)r,) + ... + tla~) with n, > nz· > ... > nz; nz > 0 

becuase nl E N", 1:::; tj :::; P - 1, j = 1, 1- 1, 1:::; tl :::; P, I :::: 1. 

p";-l -
Let kEN., k = t,a)r,) + ... + tla~), with ali? = ~' i = 1,1, I:::: 1, ni,ti EN", 

i = 1,1, n, > nz > ... > nl > 0, 1 :::; tj :::; P - 1, j = 1, 1- 1, 1 :::; tl :::; p. 

I construct the function 1/p, P = prime> 0, 1/p : N" -+ N" thus: 

Note 1. The function 1/p is well defined for each natural number. 

Proof. 

Lema 2. Vk E N" => k is uniquely written as k = t,alt + ... + tla~) with the conditions frqm 

Lemma 1 => 3! t,pn, + ... + tIP'" = 1/p(tl a!f,) + ... + tza}:;)) and t~~ + tl~ EN". 

Lema 3. Vk E N", Vp E N,p = prime => k = tla)r,)+ ... tla~) with the conditions from Lemma 

2 => 1/p(k) = tIP'" + _ .. + tlpn,. 

It is known that [
al + ... + an] [~] [an] b :::: b + ... + b Val, bEN' where through [0] we 

have written the integer side of number 0. I shall prove that p's powers sum from the natural 

numbers make up the result factors (t,P'" + ... + tiP"')! is :::: k; 

r
t '" + -J.. t n, ] [t n, ] [t '" 1 IP ....• zp >.2L, + -.!L

J 
=t ",-1, +t n,-l _ -r ... IP T··· IP 

• P P P 

[
tlpn, + ... + tlpn

, 1 [tlpn,] , ,[tiP"'] _ 0 [tlpn'] 

J 
> -r ... -r - t,P + ... + . 

p'" - pn, p'" p'" 

k. 
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Theorem 1. The function np , p =prime, defined previously, has the following properties: 
(1) Vk EN", (np(k))! = Mpl-.. 

(2) l1p(k) is the smallest number with the property (I). 

Proof. 

(1) results from Lemma 3. 

(2) Vk E N*, P ~ 2 =? k = t 1a!:;) + ... + t/a~) (by Lemma 2) is uniquely written, 
where: 

ni,ti EN", n, > n2 > ... > n/ > 0, 

j = 1, 1- 1, 1 < tl < p. 

(P) 1"" -1 
an; = --1- E N*, i = D, 1 :S tj :S p - 1, p-

=? l1p(k) = tl]l" + ... + tiP"'. I note: z = tIP'" + ... tiP"', 
Let us prove the z is the sma.llest natural number with the property (1). I suppose by the 

method of reduction ad absurdum that 3")' E N, ")' < Z : 

")' < Z =?")' :S z -1 ~ (z -I)! = Mpl-.. 

z - 1 = tIP'" + ... + tlPi' - 1; nl > n2 > ... > nl ~ 0 and nj E N, j = 1,7; 

l'Z-I'J' [-lJ -P- = irp",-I + ... + tl_IP",-·-1 + !/p",-I - 1 as p = -1 because P ~ 2, 

[z;.,l] = t,pn,-", + ... + tl_IP ... -,-n, + tlpO -1 as [~] = -1 as P ~ 2, nl ~ 1, 

[
Z-11_t ",-n,-I+ +t ..... _,-... -I+[t/P ... -1]_t p".-n'-'+ +t p",_,-n,-1 ]1',+1 J - IP . . . 1-11' ]1',+1 - I . . . 1-1 

because 0 < tiP'" - 1 :S P . P'" - 1 < p, .. +1 as tl < P; 

[
z - 1] " " 0 [tiP'" - 1] " _'" 0 -- = tIP' ,-. + ... + tl_IP + --- = tIP' -. + ... + tl_IP as nl_1 > nl, ]1"_' ]1"_' 

[
z - 1] 0 [t 2]1" + ... + tiP'" -1] 0 -- = tIP + = t,P· ]1" ]1" 
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because: 0 < t 1pn. + ... + tlpn, - 1 < pnJ +1 - 1 < pnJ +1 according to a reasoning similar to 

the previous one. 

Adding,* p's powers sum in the natural numbers which make up the product factors (z-l)! 

is: 

t 1(pn l -1+ ... + pO)+ ... +tl_1(pn,_,-1+ ... + pO)+tl(pn,-1+ ... + pO)-1.nl = k-n/ < k-l < k 

because nl > 1 '* (z - I)! '" Mpk, this contradicts the supposition made. 

'* '7p(k) is tha smallest natural number with the property (T/p(k))! = M~. 

I construct a new function '7 : Z \ {O} -+ N as follows: 

'In = cpr' ... p~. with E = ±l, p, = prime, 

1 
'7(±l) = 0, 

Pi'" pj for i '" j, a, :::: 1, i =!,S, 1)(n) = m~{'7p;(ai)}. 
'1;;;;1.3 

Note 2. '7 is well defined and defined overall. 

Proof. 

(a) 'In E Z, n # 0, n # ±l, n is uciquely written, independent of the order of the factors, 

under the shape of n = Ep~' ... p~. with E = ± 1 where Pi =prime, Pi # Pi, ai :::: 1 (decompose 

into prime factors in Z =factorial ring). 

'* 3!'7(n) = m~{'7?,(ai)} as s =ficite and '7.,(a;) E N' and 3m~{'7 • .(ai)} 
-~ ~~ 

(b) n = ±l '* 3!'7(n) = O. 

Theorem 2. The function '7 previously defined has the following properties: 

(1) ('7(n))! = Mn, 'In E Z \ {O}; 

(2) '7(n) is the smallest naturol numl>er with this property. 

Proof. 

(a) '7(n) = m~{'7.,(ai)}, n = E' prJ· . . p~', (n # ±l); ('1., (a,»)! = Mpr', ... (np.(a,))! = 
i=l,.r 

=Mp~·. 

Supposing m~{'7 • .(a1)} = '1P,<> (ai,) '* ("I." (aiO))! = Mp~'O, '7",,(a;,,) E N' and because 
1.=1,8 

(Pi,Pj) = 1, i # j, 
'* (,.,.,,(a'o))! = Mpj', j =!,S. 
'* ('1"0 (o:;o))! = Mp~' .. . p~'. 

(b) n=±l'*'7(n)=O; O!=l,l=Mc·l=Mn. 
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(2) (a) n # ±l:;. n = €pf' ... p~' ~ I](n) = ~I]p;. 
1=1,. 

1]"'0 (0io) is the smallest natura.! number with the property: 

(1),,'0 (°io))! = MP:'o ~ V, EN, ,< 1)~(Oio) ~ ,! # Mp:io ~ 

~ ,! # ME' pf' ... P:"' ... p:- = Mn. 

!)P,o (Oio) is the smallest natura.! number with the property. 

(b) n = ±1 ~ I)(n) = 0 and it is the smallest natura.! number ~ 0 is the smallest natura.! 

number with the property O! = M(±l). 

Note 3. The functions I)" are increasing, not injective, on N· -+ {Pklk = 1,2, ... } they are 
surjective. 

The function I) is increasing, not injective, it is surjective on Z \ {O} -+ .¥ \ {I}. 

CONSEQUENCE. Let n E N·, n > 4. Then n =prime ¢> I)(n) = n. 

Proof. 

" ~" n =prime and n ~ 5 ~ I)(n) = I)n(1) = n. 

" -$= " Let 1)( n) = n and suppose by absurd that n #prime ~ 

(a) or n = pf' ... p~. with s ~ 2, 0i EN·, i =!,S, 

contradicts the assumtion; or 

(b) n = pf' with 0, ~ 2 ~ I)(n) = 1/",(0,) ~ PI' a, < pf' = n 

because a, ~ 2 and n > 4 and it contradicts the hypothesis. 

Application 

1. Find the smallest natura.! number with the property: n! = M(±231 .321 .7'3). 

Solution 

1/(±~' .321 .7'3) = max{1/2(31), 7]3(27), 7J7(13)}. 

Let us ca.!culate 1/2(31); we make the string (a~2»)nEl\"* = 1,3,7,15,31,63, ... 
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31 = 1 ·31 =} 1/2(31) = 1)2(1· 31) = 1 .25 = 32. 

Let's calculate 1)3(27) making the string (a~3))nE-"" = 1,4,13,40, ... ; 27 = 2·13 + 1 =} 

1)127) = 1)3(2·13 + 1 . 1) = 2· 1)3(13) + 1 . 1)3(1) = 2.33 + 1 ·3' = 54 + 3 = 57. 

Let's calculate 1)7(13); making the string (a~7))nEN' = 1,8,57, ... ; 13 = 1·8+5·1 =} 1)7(13) = 
1 . 1)7(8) + 5 . 1)7(1) = 1 . 72 + 5 . 7' = 49 + 35 = 84 =} 1)(±il1 .327 . 7'3) = max{32, 57, 84}' = 
84 =} 84! = M(±231 .327 .713) and 84 is the smallest number with this property. 

2. \Vhich are the numbers with the factorial ending in 1000 zeros ? 

Solution 

n = 101000 , (I)(n))! = M101000 and it is the smallest number with this property. 

7)(101000) = 7)(21000 .51000) = max{1)2(1000),1)5(1000)} = 1)5(1·781+1·156+2·31+1) = 1.55+ 

1· 54 + 2.53 + 1· 57 = 4005,4005 is the smallest number with this property. 4006,4007,4008,4009 

verify the property but 4010 does not because 401O! = 400914010 has 1001 zeros. 

Florentin Smarandache 

University of Craiova 

Nature Science Faculty 

17.11.1979 

[Published on "An. t:niv. Timi§oara", seria ~t. Matematice, vol.XVIII, fasc. 1, pp. 79-88, 

1980; See Ylathematical Reviews: 83c: l0008.J 
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AN INFINITY OF UNSOLVED PROBLEMS CONCERNING 

A FUNCTION IN THE NUMBER THEORY 

§L Abstract. 

W.Sierpinski has asserted to an international conference that if mankind lasted for ever 

and numbered the unsolved problems, then in the long run all these unsolved problems 

would be solved. 

The purpose of our paper is that making an infinite number of unsolved problems to 

prove his sup~tion is not true. Moreover, the author considers the unsolved problems 

proposed in this paper can never be all solved! 

Every period of time has its unsolved problems which were not previously recom

mended until recent progress. Number of new unsolved problems are exponentially in

cresing in comparison with ancie.nt unsolved ones which are solved at present. Research 

into one unsolved problem may produce many new interesting problems. The reader is 

invited to exhibit his works about them. 

§2. Introduction 

We have constructed (*) a function '7. which associates to each non-null integer n the 

smallest positive integer m such that Tn! is multiple of n. Thus, if n has the standerd form: 

n = tpt' ... p~'. with all Pi distinct primes, all ai EN", and € = ±l, then 'l(n) = milJ'{1J,.;(a;)}, 
1'$.1$.r 

and 'l(±l) = o. 
:-.row, we define the T]p functions: let P be a prime and a EN"; then 'lp(a) is a smallest 

positive integer b such tha.t b! is a. multiple of p". Constructing the sequence: 

(pl ]I - 1 
ak = --, k = 1,2, ... 

p-1 

we have 'lp(a1"» = ]I, for all prime p, an all k = 1,2, .... Because any a E N* is uniquely 

written in the form: 

and 1 ~ tj ~ P - 1 for j = 0,1, ... , e - 1 and 1 ~ t. ~ p, with all ni, ti from N, the author 

proved that . . 
T]p(a) = L'lp(al::» = Lt,p'". 

i=l i::::l 
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§3. Some Properties of the Function ry 

Clearly, the function ry is even: ry( -n) = ry( n), nEZ-. If n E N* we have: 

~<f/(n) <1 
(n -1)! - n - , (1) 

and: ry~n) is ma.Jcimum if and only if n is prime or n = 4j 

n = k! 

f/( n) is minimum if and only if 
n 

Clearly f/ is periodical function. For p prime, the functions fl. are increasing, not injective 

but on N" -+ {I'\k = 1,2, ... } they are surjective. From (1) we find that f/ = o(nH', f> 0, 

and ry = O(n). 

The function 'I is generally increasing on N', that is : (V)n E N", (3)mo E N-, 

mo = moen), such that for all m 2:: mo we have ry(rn) 2:: TJ(n) (and generally descreasing 

on Z:j it is not injective, but it is surjective on Z \ {O} -+ N \ {1}. 

The number n is called a barrier for a number-theoretic function f(rn) if, for all m < 

n, m + f(m) :5 n (P.Erdiis and J.Selfridge). Does fTJ(m) have infinitely many barriers, with 

0< f:5 1 ? [No, becuase there is a mo E N such that for all n - 1 2:: mo we have ry(n - 1) 2:: ~ 
f 

(ry is generally increasing), whence n -1 + fTJ(n -1~n + 1.] 

L l!TJ(n) is divergent, because l/TJ(n) 2:: lin. 
n~2 

2 n 

2 

=2+ 

2 

'I 2 2 

k times k times 

n 

2 

Proof: Let a};l 2m 
- 1, where m 

2 

k times 
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A-sequence: 

Average Order : 

§4. Glossary of Simbols and Notes 

an integer sequence 1 ~ Gl < a2 < ... so that no ai is the sum of 

distinct members of the sequence other than ai (R. K. Guy); 

if f( n) is an arithmetica.\ function and g( n) is any simple function 

of n such that fell + ... + fen) - gel) + ... + g(n) we say that fen) 

is of the average order of g(n); 

d(x): number of pozitive divisors of x; 

d x : difference between two consecutive primes: Px+1 - Prj 

Dirichlet Series: a series of the form F( 5) = f a:, 5 may be real or complex; 
n=l n 

Generating Function: any function F(s) = f a"u,,(5) is considered as a generating func-

Logx: 

Norma.! Order: 

Lipshitz-Condition: 

~ultiplica.tive 

Function: 

p(x): 

L"niformly 

Distributed: 

Incongruent Roots: 

n=l 
tion of an; the most usua.! form of u,,(s) is: U,,(5) = e->-n", where-An 

is a sequence of positive numbers which increases steadily to infinity; 

Napierian logarithm of x, to base e; 

fen) has the norma.! order F(n) if fen) is approximately F(n) for 

a.Imost a.ll values of n, i.e. (2), (1;1)£ > 0,(1 - £). F(n) < fen) < 

< (1 + ,).F(rl.) for a.Imost a.ll values of n; "a.Imost a.!l" n means that 

the numbers less than n which do not possess the property (2) is 

o(x); 

a function f verifies the Lipshitz-condition of order a E (0,1) if 

(3)k > 0 : If(x) - f(y)1 ~ klx - yl"; if a = 1,J is ca.lled a k 

Lipshitz-function; if k < 1, f is ca.lled a contract ant function; 

a function f : N· --t Cfor which fell = 2, and f(m·n) = f(m)·f(n) 

when (m,n) = 1; 

largest prime factor of x; 

a set of pionts in (a, b) is uniformly distributed if every sub-interval 

of (a, b) contains its proper quota. of points; 

two integers x,y which satisfy the congruence f(x) _ fey) == 0 

(mod m) and so that x =t y (mod m); 
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s-additive 

secuence: 

sen): 

sk(n): 

s'(n): 

rk(n): 

r.(x): 

rr(x; a,b): 

O"(n ): 

O"k(n ): 

O"k(n ): 

O""(n): 

<pen): 

~(n): 

!len): 

wen): 

laJ: 

(m,n): 

[m,nj: 

ifi: 

f(x) -+ g(x): 

a sequence of the form: a, = ... = a, = I and an+s+l = an.,.l + ... + 
+an+s, n E N" (R.Queneau); 

sum of aliquot parts (divisors of n other than n) of n; 0"( n) - n; . 

k'h iterate of sen); 

sum of unitary aliquot parts of n; 

least number of numbers not exceeding n, which must contain a 

k-term arithmetic progression; 

number of primes not exceeding x; 

number of primes not excedding x and congruent to a modulo b; 

sum of divisors of n; O"l(n); 

sum of k-th powers of divisors of n; 

k-th iterate of 0"( n); 

sum of unitary divisors of n; 

Euler's totient f1lllction: number of numbers not exceeding n and 

prime to n; 

k-th iterate of 'P(n); 

= n D(l - p-l), where the product is taken over the distinct prime 

divisors of n; 

number of prime factors of n, counting repetitions; 

number of distinct prime factors of n, counting repetitions; 

floor of a; greatest integer not great than a; 

g.c.d. (greatest common divisor) of m and n; 

I.c.d. (least common multiple) of m and n; 

modulus or absolute value of f; 

f(x)/g(x) -+ 1 as x -+ 00; f is asymptotic to g; 
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f(x) = o(g(x»: 

f(x) = O(g(x» }: 

f(x)« g(x) 

f(x): 

j3(x): 

p.(x ): 

O(x): 

W(x): 

f(x)/g(x) -t 0 as x -t x; 

there is a constant c such that fI(x)1 < c' g(x) to any Xi 

Euler's function of first case (-y function); f : R" -t R, r(x) 

= f e-'t:-1dt. We have f(x) = (x -I)! 
o 

Euler's function of second degree (beta function); /3 : R+ X R+ -t R, 
1 

,B(u,v) = f(u)f(v)/f(u +v) = jtu
-

1
• (1- t)"-'dt; 

o 

MObius' function; I' : N -t N, 1'(1) = 1; p.(n) = (_I)k if n is the 

product of k > Idistind primes; p.(n) = 0 in all others cases; 

T chebycheff O-function; 0 : ~ -t R, O( x) = L log p, where the 

summation is taken over all primes p not exceeding Xi 

Tchebycheff's w-function; w(x) = L A(n), with 
n<: 

{

log p, if n is an integer po~er of the prime p 
A(n) = 

0, in all other cases. 

This glossary can be continued with OTHER (ARITHMETICAL) FUNCTIONS. 

§5. General Unsolved Problems Concerning the Function '7 

(1) Is there a closed expression for '7( n )? 

(2) Is there a good asymptotic expression for '7(n)? (If yes, find it.) 

(3) For a fixed non-null integer m, does '7(n) divide n - m? (Particularly when m = 1.) Of 

course, for m = 0 it is trivial: we find n = k!, or n is squarefree, etc. 

(4) Is '7 an algebraic finction: (If no, is there the max Card {n E Z"I(:i)p E R[x, y],p non

null polynomial, with p(n, '7(n» = 0 for all these n}?) More generally we introduce the notion: 

g is a f-function if f(x,g(x)) = 0 for all x, and I E R[x,y].f non-null. 15'7 a I-function? (If 

no, is there the max Card {n E Z"I(3)f E R[x,y],Jnon-null, f(n,'7(n» = 0 for all these n}?) 

(5) Let A be a set of consecutive integers from N°. Find max Card A for which 'I is 

monotonous. For example, Card A ?: 5, because for A = {1, 2, 3, 4, 5} 'I is 0,2,3,4,5, respec-

tively. 

(6) A nimber is called an '7-algebraic number of degree n E N" if it is a root of the 

polynomial 
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(p) P.(x) = Ij(n)xn + Ij(n _1)xn
-

1 + ... + 1j(I)x1 = O. 

An Ij-algebraic field M is the aggregate of all numbers 

A(v) 
14(£1) = B(v)' 

where v is a given rralgebraic number, and A(v), B(v) are polynomials in v of the form (p) 

with B(v) "# o. Study M. 

(7) Are the points Pn = lj(n)Jn uniformly distributed in the interval (0, I)? 

(8) Is 0.0234537465114 ... , where the sequence of digits is 1](n), n 2: 1, an irra.tional number? 

* 
Is it possible to repersent all integer n under the fonn: 

(9) n = ±Ij( ad·' ± Ij( a.)"' ± ... ± Ij( ak)"', where the integrs k, a" ... , ak, and the signs are 

conveniently chosen? 

(10) But as n = ±4"') ± ... ± at"·)? 

(11) But as n = ±ai(o,) ± ai(o,) ± ... ± at",)? 

Find the smallest k for which: (\I)n E N* at least one of the numbers 'lin), 'l(n + 1), ... , 

Ij(n+k-l) is: 

(12) A perfect square. 

(13) A divisor of kn. 

(14) A multiple of fixed nonzero integer p. 

(15) A factorial of a positive integer. 

* 
(16) Find a general from of the continued fraction expansion of lj(n)Jn, for all n 2: 2. 

(17) Are there integers m,n,p,q, with m"# n or p"# q, for which: Ij(m) + 'l(m + I) + ... + 

+Ij(m + p) = Ij(n) + Ij(n + 1) + ... + 'l(n + q)? 

(18) Are there integers m, np, k with m "# n and p > 0, such that: 

'7(m)2+Ij(m+l?+ ... +Ij(m+p)· =k? 
'l(n)2 + 'l(n + 1)2 + ... + 1](n + p)2 

(19) How many primes ha.ve the form: 

Ij(n) 1](n + 1) ... 'l(n + k), 
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for a fixed integer k? For example: '7(2) '7(3) = 23, '7(5) '7(6) = 53 are primes. 
(20) Prove that '7(x~) + '7(yn) = n(zn) has an infinity of integer solutions, for any n ~.l. 

Look, for example, at the solution (5,7,2048) when n = 3. (On Fermat's last theorem.) More 
k m generally: the diophantine equation I: '7( xi) = I: '7(yj) has an infinite number of solutions_ i'=l ,,=1 

(21) Are there m, n, k non-null positive integers, m # 1 # n, for which '7( m· n) = mk. rJ( n)? 
Clearly, '7 is not homogenous to degree k. 

(22) Is it possilble to find two distinct numbers k,n for which log"(kn) '7(nk) be an integer? 
(The base is '7(k").) 

(23) Let the congruens be: h"(x) = c"x"(n) + ... + CIX,,(l) == O(mod m). How many incon
gruent roots has h", for some given constant integers n, Cb ••• , c,,? 

(24) We know that eX = f x" In!. Calcilate f x"(n) In!, f x" 1'7(n)! and eventually some 11.=0 n=1 11.=1 of their properties. 

(25) Find the average order of rJ(n). 
(26) Find some un(s) for which F(s) is a generating function of '7(n) , and F(s) have at 

all a simple form. Par.ticularly, calculate Dirichlet series F(s) = f '7(n)ln" with 5 E R (or 
n=l 

5 E C). 

(27) Does '7(n) have a normal order? 

(28) We know that Euler's constant is 

Ii ;1 1 1 I ) v=" .... ~\ +"2+ ... +;- ogn. 

Is lillln .... oo[l + t l/'7(k) -log'7(n)] a constant? IT yes, find it. 
k=2 

(29) Is there an m for which '7-1(m) = {at,a2, ... ,apq} such that the numbers aJ, a2, ... ,apq 
can constitute a matrix of p rows and q columns with the sum of elements on each row and 
each column constant? Particularly when the matrix is square. 

* 
(30) Let {X~)}n~l be a s-additive sequence. Is it possible to have '7(xj:» = x~), n # m? 

But X~'(n) = '7( x~»)? 
(31) Does '7 verify a Lipschitz Condition? 
(32) Is '7 a k-Lipschitz Condition? 

(33) Is '7 a contractant function? 

(34) Is it possible to construct an A-sequence at, ... , an such that '7( aJ), ... , '7( a,,) is an 
A-sequence, too? Yes, for example 2,3,7,31, ... Find such an infinite sequence. 
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* 
Find the greatest n such that: if ab ... 'a" constitute ap-sequence then '1(al), ... ,'1(an ) 

constitute a p-sequence too; where a p-sequence means: 

(35) Arithmetica.l progression. 

(36) Geometrical progression. 

(37) A complete system of modulo n residues. 

Remark: let p be a prime, and p,p>, ... ,rI' a geometrica.l progression, then 1/(p') = ip, i E 

{1,2, ... ,p}, constitute an arithrnetica.l progression oflength p. In this case n --+ 00. 

(38) Let's use the sequence an = '1(n), n ::::-: 1. Is there a recurring relation of the form 

a" = !(a,,-han-2, ... ,) for any n? 

(39) Are there blocks of consecutive composite numbers m + 1, ... , m + n such that '1( m + 
1), ... , 1/(m + n) are composite numbers, too? Find the greatest n. 

(40) Find the number of partitions of n as sum od 'I(m), 2 < m ~ n. 

MORE UNSOLVED GENERAL PROBLEMS CONCERNING THE 

FUNCTION 'I 

§6. Unsolved Problems Concerning the Function 'I 

and Using the Number Sequences 

41-2065) Are there non-null and non-prime integers at,a2, ... ,a" in the relation P, so that 

'I(al), 1/( a2)'· .. ,'1( an) are in the relation R? Find the greatest n with this property. (Of course, 

all a, are distinct). Where each P, R can represent one of the following number sequences: 

(1) Abundant numbers; a E N is abundant id <T(a) > 2a. 

(2) Almost perfect numbers; a E N, a( a) = 2a - l. 

(3) Amicable numbers; in this case we take n = 2; a, b are called amicable if a # b and 

<T(a) = <T(b) = a+b. 

(4) Augmented amicable numbers; in this case n = 2; a,b are called augmented amicable if 

<T(a) = alb) = a + b -1 (Walter E. Beck and Rudolph M. Naja!:). 

(5) Bell numbers: b" = f: S(n,k), where Sen, k) are Stirling numbers of second case. 
1=1 

(6) Bemulli numbers (Jacques 1st): Bn, the coefficients of the development in integer ~ 

quence of 
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1 t Bl 2 B2 4 ()n-l Bn 2 .. et _ 1 = 1- 2 + 2ft - 4ft + ... + -1 (2n)!t + ... , 
ror 0 < It I < 27r; (here we always take ll/BnJ). 

(7) Catalan numbers; C1 = 1, Cn = .!:. ( 2n - 1 ) for n ~ 2. 
n n-1 

(8) Carmichael numbers; an odd composite number a, which is a pseudoprime to base b for 
every b relatively prime to a , is called a Charmicael number. 

(9) Congruent numbers; let n = 3, and the numbers a,b,c; we mist have a = b(modc). 
(10) Cullen numbers: en = n * 2n + l,n ~ O. 
(11) CI-sequence of integers; the author introduced a sequens al,a2,'" so that: 

(If)i E N*, (3)j,k E N*, j -# i -# k -# j,: a; == aj(mod ak). 

(12) C,-sequence of integers; the author defined other sequence a" a" ... so that: 

(V)i EN', (3)j,k E N-, i -# j -# k -# i,: aj == ak(mod aj). 

(13) Deficient numbers; a E N-,IY(a) < 2a. 
(14) Euler numbers: the coefficients En in the expansion of secx = I: Enxn/n!; here we 

n~O will take i En I· 
(15) Fermat numbers: Fn = 2" + 1 ~ n ~ O. 

(16) Fibonacci numbers: II = 121, In = In-l + In-2, n ~ 3. 
(17) Genocchi numbers: Gn = 2(22n -1)B ... , where Bn are Bernulli numbers; always G ... E Z. 
(18) Harmonic mean; in this case every member of the sequence is the harmonic mean of 

the preceding members. 

(19) Harmonic numbers; a number n is called harmonic if the harmonic mean of all divisors 
of n is an integer (C. Pomerance). 

(20) Heteromeous numbers: h n = n(n + l,n EN'). 
(21) K-hyperperfect numbers; a is k-hyperperfect if a = 1 ..j.. I: Ii;, where the numeration 

is taken over all proper divisors, 1 < di < a, or klY(a) = (k + l)a + k - 1 (Daniel Minoli and 
Robert Bear). 

(22) Kurepa numbers: !n = O! + I! + 2! + ... + (n - 1)1 
(23) Lucas numbers: L, = I,L2 = 3,L ... = L ... _l + Lr._2 ,n ~ 3. 
(24) Lucky numbers: from the natural numbers strike out all even numbers, leaving the 

odd numbers; apart from 1, the first remaining number is 3; strike out every third member in 
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the new sequence; the next member remaining is 7; strike out every seventh member in this 

sequence; next 9 remains; etc. (V.Gardiner, R.Laza.rus, N.Metropolis, S.Ulam). 

(25) Mersenne numbers: M, = 2' - 1. 

(26) m-perfect numbers; a is m-perfect if (Tm(a) = 2a (D.Bode). 

(27) Multiply perfect (or k-fold perfect) numbers; a is k-fold perfect if <T(a) = ka. 

(28) Perfect numbers; a is perfect if <T(a) = 2a. 

(29) Polygonal numbers (reperesented on the perimeter of a polygon): p! = ken -1). 

(3Q) Polygonal numbers (represented on the closed surface of a polygon): 
k (k-2)n'-(k-4)n 

Pn = 2 . 

(31) Primitive abundant numbers; a is a primitive abundant if it is abundant, but none of 

its proper divisors are. 

(32) Primitive pseudoperfect numbers; a is primitive pseudoperfect if it is pseudoperfect, 

but none of its proper divisors are. 

(33) Pseudoperfect numbers; a is pseudoperfect if it is equal to the sum of some of its proper 

divisors (W.Sierpinski). 

(34) Pseudoprime numbers to base b; a is pseudoprime to base b if a is an odd composite 

number for which ba
- 1 == 1 (mod a) (C.Pomerance, J.L. Selfridge, S.Wagstaff). 

(35) Pyramidal numbers: 1r" = ~n(n + l)(n + 2),n E N°. 

(36)Pythagorian numbers; let n = 3 and a, b, c be integers; then one must have the relation: 

a'=b'+c'. 

(37) Quadratic residues of a fixed prime p: the nomzero number r for whiclI the congruence 

r == x' (mod p) has solutions. 

(38) Quasi perfect numbers; a is quasi perfect if <T(a) = 2a + l. 
(39) Reduced amicable numbers; we take n = 2; two integers a,b for which <T(a) = <T(b) = 

a + b + 1 are called reduced amicable numbers (Walter E. Beck and Rudolph M. Najar). 

(40) Stirling numbers of first case: s(O,O) = 1, and s(n,k) is the coefficient of xk from the 

development x(x - 1) ... (x - n + 1). 

(41) Stirling numbers of second case: 5(0,0) = 1, and 5(n,k) is the coefficient of the 

polynom x(k) = x(x -1) ... (x - k + 1), 1 S k S n, from the development (which is uniquely 

writen): 
~ 

xn = L S(n,k)x(k). 
1=1 

(42) Superperfect numbers; a is superperfect if ,,-lea) = 2a (D.Surynarayana). 
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(43) Untouchable numbers; a is untouchable if sex) = 1 has no solution (Jack Alanen). 
(44) U-numbers: starting from arbitrary Ul and U2 continue with those numbers which 

can be expressed in just one way as the sum of two distinct earlier members of the sequence 
(S.M.Ulam). 

(45) Weird numbers: a is called weird ifit is abundant but not pseudoperfect (S.J.Benkoski). 

MORE NUMBER SEQUENCES 

The unsolved problem No. 41 is obtained by taking P = (1) and R = (1). 
The unsolved problem No. 42 is obtained by taking P = (1), R = (2). 

The unsolved problem No. 2065 is obtained by taking p = (45), R = (45). 

OTHER UNSOLVED PROBLEMS COMCERNING THE FUNCTION TJ 
AND USING NUMBER SEQUENCES 

§7. Unsolved Diophantine ~quations Concerning the Function TJ 

2066) Let 0 < k :S 1 be a rational number. Does the diophantine equation TJ(n)/n = k 
always have solutions? Find all k so that this equation has an infinite number of solutions. 
(For example, if k = l/r, r E N", then n = rp.+h, h = 1,2, ... , all Pa+h are primes, and a is a 
chosen index such that p.+! > r.) 

2067) Let {an}n~O be a sequence, ao = 1, al = 2, and an+! = a,(n) + '1( an). Are there 
infinitely many pairs (m, n), m # n, for which am = an? (For example: a9 = a13 = 16.) 

2068) Conjecture: the equation TJ(x) = TJ(x + 1) has no solution. 
Let m, n be fixed integers. Solve the diophantine equations: 
2069) TJ(mx + n) = x. 

2070) '1(mx + n) = m + nx. 

2071) TJ(mx + n) = x! 

2072) TJ(xm) = xn. 

2073) '7(x)m = TJ(xn). 

2074) TJ(mx + n) = TJ(x)'. 
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2075) 1)(x) + Y = x + 1)(Y), x and Y are not primes. 

2076) 1)( x) + 1)(Y) = 1)( x + y), x and y are not twin primes. (Generally, 1) is not additive.) 

2077) 1)(x + y) = 1)(x) ·1)(Y). (Generallly, 1) is not an exponential function.) 

2078) 1)(xy) = 1)(x)1)(Y). (Generally, 1) is not a multiplicative function.) 

2079) 1)(mx + n) = x'. 

2080) 1)(x)y = X1)(Y), x and Y are not primes. 

2081) 1)(x)jy = xj1)(Y),x and Y are not primes. (Particnlarly when Y = 2k,k E N, i.e., 

1)(x)/2k is a dyadic rational numbers.) 

2082) 1)( x)" = x"(Y), x and Y are not primes. 

2083) 1)(x)'1\.) = 1)(x'). 

2084) 1)(xY) -1)(z"') = 1, with Y # 1 # w. (On Catalan's problem.) 

2085) 1)(x') = m,y ~ 2. 

2086) Tf(x~) = yY. (A trivial solution: x = y = 2). 

2087) 1)(xY) =~. (A trivial solution: x = Y = 2). 

2088) 1)(x) = y! (An example: x = 9,y = 3.) 

2089) 1/(mx) = m1)(x),m ~ 2. 

2090) m*l + 1)(xt = mn. 

2091) 1)(x2)/m ± 1)(y2)jn = 1. 

2092) 1/(Xr' + ... + X~) = 1/(xd"' + ... + 1/(X,) .... 

2093) 1)(Xl! + ... + x,!) = 1)("'1)! + ... + 1)(X,)! 

2094) (x,y) = (1)(X),1)(Y)),x and Y are not primes. 

2095) [x,yj = [1/{X),1)(Y)],X and yare not primes. 

OTHER UNSOLVED DIOPHANTL'ffl EQUATIONS CONCERNING 

THE FUNCTION 1/ ONLY 

§8. Unsolved Diphantine Equations Concerning the 

Function 1/ in Correlation with Other Functions 

Let m, n be fixed integers. Solve the diophantine equations: 

2096-2102) 1)(x) = d(mx + n) 

1)(x)m = d(xn) 
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Y)(x) + Y = x+ dey) 

Y)(x)·y=x.d(y) 

Y)(x)/y = d(y)/x 
Y)( x)· = xd(Y) 

1)(x)' = d(y)", 

2103-2221) Same equations as befor, but we substitute the function d(x) with dz, p(x), 
sex), Sk(X), s'(x)'rk(x),7r(x),7r(x:m,n), Uk(X), uk(x), U'(x), ip(x),ipk(x),¢(x),O(x),w(x) res
pectively. 

2222) 1)(s(x,y» = s(1)(z),1)(y». 

2223) 1)(S(x,y» = S(1)(x),1)(y». 

2224) 1)axJ) = [r(x)j. 

2225) 1)([x - yj) = LB(x,y)J. 

2226) ,B(1)(lxJ),y) = ,B(x,1)(lyj»)· 
2227) 1)([,B(x,y)J) = l,B(1)(lxJ),1)([yj))J. 

2228) f.'(1)(x» = f.'(<f(x»). 

2229) 1)(x) = lS(x)J. 

2230) 1)(x) = lW(x)]. 

2231) 1)(mx+n) = A~ =x(x - 2) . .. (x -n + 1). 
2232) 1)(mx + n) = Axm. 

2233)1)(mx+n)=(x)= "xl )'. n n.(x-n. 

2234) 1)(mx+n) = (:) . 

2235) 1)(mx + n) = p.. =the x-th prime. 

2236) T/(mx+n) = ll/BzJ. 
2237) TJ(mx + n) = Gx • 

2238) 1)(mx Tn) = kr = ( x+: -1 ). 

2239) 1)(mx + n) = k;'. 

2240) 1)(mx+n) = s(m,x). 

2241) 1)(mx + n) = sex, n). 
2242) 1)(mx+n) = S(m,x). 
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2243) ,,(mx+n) = S(x,n). 

2244) ,,(mx + n) = "lrz. 

2245) ,,(mx + n) = bz . 

2246) ,,(mx + n) = IEzl. 
2247) ,,(mx + n) =!x. 

2248) ,,(x) == ,.,(y) (mod m). 

2249) ,,(xy) == x (mod y). 

2250) ,,(x)(x + m) + ,,(y)(y + m) = ,.,(z)(z + m). 

2251) ,,(mx + n) = fz. 

2252) ,,(mx + n) = Fz • 

2253) ,,(mx + n) = Mz • 

2254) ,,(mx + n) = Cr. 

2255) ,,(mx + n) = Cz. 

2256) ,,(mx + n) = hz . 

2257) ,.,(mx + n) = Lz. 

More unsolved diophantine equations concerning the function " in correlation with other 

functions. 

§9. Unsolved Diophantine Equations Concerning The Function ,., 

in Composition with Other Functions 

2258) ,,(d(x)) = d(,,(x)), x is not prime. 

2259-2275) Same equations as this, but we substitute the function d(x) with~, p(x), ... , 

w(x) respectively. 

More unsolved diophantine equations concerning the function 'I in composition with other 

functions. (For example: "'("Ir( 4( x))) = 'P(,.,( 11"( x))), etc.) 

* 

§10. Unsolved Diophantine Inequations Concerning the Function 'I 

Let m, n be fixed integers. Solve the following diophantine inequalities: 

2276) ,,(x) 2: ,.,(y). 
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2277) is 0 < {x/'1(x)} < {.,(x)/x} infinitely often? 
where {a} is the factorial part of a. 

2278) .,(mx + n) < d(x). 

2279-2300) Same (or similar) inequalities as this, but we substitute the function d(x) with 
d" p(x), ... , w(x), r(x), f3(x, x), /1(x), 9(x), 1J(x), respectively. 

More unsolved diophantine inequations concerning the function., in correlation (or comp<r 
sition, etc.) with other folnction. (For example: 9(.,([xJ» < .,(L9(x)J), etc.) 

* 

§1l. Arithmetic Functions Constructed by Means of the Function '7 

UNSOLVED PROBLEMS CONCER.c"lING THESE NEW FUNCTIONS 

I. The function S.: N' --t N,S"(x) = E .,(n). 
O<n<% 

2301) Is E S"(X)-' a convergent series; -
x>2 . 

2302) Find the smallest k for wich (S" 0 ... 0 S")(m) ~ n, for m, n fixed integers. 
k thnes 

230~602) Study S •. The same (or similar) questions for S" as for .,. 
II. The function C. : N' --t Q, C"(x) = .!.(.,(1)+.,(2)+ .. . +.,(x» (sum of Cesaro concerning x 

the function '7). 

4603) Is E C.(X)-' a convergent series? ,>1 
4604) Find the smallest k for which SC. 0 ... 0 C")Jm) :2: n, for m, n fixed integers. 

k times 
4605-6904) Study C". The same (or similar) questions for C" as for .,. 

ko III. The function E" : /Ii' -t N, E"( x) = E .,(k) ( x), where .,(1) = 1) and .,(k) = 1) 0 ... 0 ., of 
1=1 

k times, and k" is the smallest integer k for which .,(k+I)(x) = .,(kl(x). 
6905) Is E E"(xt' aconvergent series? 

:t~2 

6906) Find the smallest x for which E"(x) > m, where m is a fixed integer. 
6907-9206) Study E". The same (or similar) questions for S" as for .,. 
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IV. The function F, : N \ {O, 1} ---t N, F. = 

9207) Is L F.(X)-l a.convergent series? 
%~2 

L 
O<p$x 

p prime 

9208-11507) Study the function F •. The same (or similar) questions for F. as for TJ . 

V. The function a. : N- ---t N, a.(x) = L f3(n), where f3(n) = 
% { 0, ifTJ(n) is even; 

=, 1, ifTJ(n) is odd. 

11508) Let n E N°. Find the sma.llest k for which Sa. 0 .•. 0 a.)(n) = O. 

k times 

11509-13808) Study a,. The same (or similar) questions for a, as for TJ. 

VI. The function m. : N* ---t N, m,(j) = aj, 1 :$ j :$ n, fixed integers, and m,( n + 1) = 
= mini{TJ(ai + an_in, etc. 

13809) Is L m.(xt' a convergent series? 
x~l 

13810-16109) Study m •. The same (or similar) questions for m. as for TJ. 

VII. The function M. : N- ---t N. A given finite positive integer sequence al: ... , an is 

successively extended by: 

M.(n + 1) = maxj{TJ(ai + an-in, etc. 

M.U) = aj, 1 :$ j :$ n. 

16110) Is L M.(X)-' a convergent series? 
:z;2:1 

16111-18410) Study M •. The same (or similar) questions for M. as for TJ. 

VIII. The function TJ;j" : N \ {1} ---t N,TJ;j,,(z) = min{TJ-l(X)} where 1/-I(X) 

= {a E NI TJ(a) = x}. For example TJ-l(X) = {2"'~· 3,~· 32 ,32 .2,32
• ~,32. 2'3}, whence 

TJ;j,,(6) = 9. 

18411) Find the sma.llest k for which STJ;;J" 0.:. 0 TJ~)Jm) ;::: n. 

k times 

18412-20711) Study TJ;j". The same (or similar) questions for TJ;j" as for TJ. 

IX. The function TJ!..d : N ---t N, TJ;,.~Ax) = Card{TJ-l(x)}, where CardA means the nnmber 

of elements of the set A. 

20712) Find the sma.llest k for which .(TJ;';'~d 0 ••. 0 TJ;';'~d~(m);::: n, for m, n fixed integers. 

ktimes 

20713-23012) Study TJ;;;'~ •. The same (or similar) questions for 1/;;;'~d as for TJ. 
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X. The function d" : N* -+ N,d,(x) = 1'I(x + 1) - '7(x)!. Let <k+l) : N* -+ N,d,,(x)·= 
= 14k )(x + 1) - 4k)!, for all k E N*, where <l)(X) = d,(x). 

23013) Conjecture: <k)(l) = lor 0, for all k ?: 2. (This reminds us of Gillreath's conjecture 
on primes.) For example: 

'7(1) = 0 
2 

'7(2) = 2 

1)(3) = 3 0 
0 0 

1)(4) = 4 0 
0 

'7(5) = 5 0 0 
2 0 0 

'7(6) = 3 2 0 0 
4 

1)(7) = 7 0 2 0 
3 0 3 2 

1)(8) = 1 0 3 0 0 1 0 
2 0 4 3 2 0 

'7(9) =6 4 0 2 0 0 
4 4 2 0 2 0 '7(10) =5 5 0 0 0 2 0 

6 4 3 2 2 0 0 0 1)(11) = 11 3 0 .2 2 0 
7 3 3 0 0 0 1)(12) = 4 2 0 3 2 
9 0 0 

1)(13) = 13 3 0 2 0 0 
6 2 0 0 0 

1)(14) = 7 4 2 2 
2 3 4 

1)(15) = 5 6 0 0 
9 5 

'7(16) = 6 10 2 
11 10 7 2 

'7(17) = 17 0 8 0 
11 2 7 

'7(18) = 6 2 
13 

1)(19) = 19 
14 

1)(20) = 5 

23014-25313) Study d~k). The same (or similar) questions for 4k) as for '7. 
XI. The function w" : N* -+ N,w"(x) is the number of m, with 0 < m ~ x, so that '7(m) 

divides x. Hence, w"(x) ?: w(x), and we have equality if x = 1 or x is a prime. 
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25314) Find the smallest k for which Sw~ 0 ... 0 w.)(x) = 0, for a fixed integers x. 

k times 
25315-27614) Study w~. The same (or similar) questions for w~ as for '1. 

XII. The function M~ : N* -t N, M.(x) is the number of m, with 0 < m ~ x&, so that 

'1(m) is a multiple of x. For example M.(3) = Card(1,3,6,9,12,27) = 6. If p is a pnne 

M.(p) = Card{1,a2, ... ,ar }, then aU ai,2 ~ i ~ r, are multiples ofp. 

27615) Let m, n be integer numbers. Find the smallest k for which ,(M. 0.:.0 M.)(m) 2':n. 

k times 
27616-29915) Study M •. The same (or similar) questions for M~ as for '1. 

XIII.Thefunctionl7.:N*-tN,I7.(x)= :L '1Cd)· 
dix 

d>O 
For example 17,(18) = '1(l) + 1](2) + 1](3) + '1(6) + '1(9) + '1(18) = 20,17,(9) = 9. 

29916) Are there an infinity of nonprimes n so that 17.(n) = n? 

29917-32216) Study 17,. The same (or similar) questions for 17, as for 1]. 

XIV. The function 11", : N -t N,1I",(x) is the number of numbers n so that 1](n) ~ x. If 

PI < P2 < ... < P' ~ n < p'+! is the primes sequence, and for all i = 1,2, ... , k we have pi' 

divides n! but pitH does not divide n!, then: 

1I".(n) = (a, + 1) ... (a - k + 1). 

32217-34516) Study 11"~. The same (or similar) question for 11". as for '1. 

XV. The function 'P~ : N* -t N;",~(x) is the number of m, with 0 < m ~ x, having the 

property ('1(m),x) = 1. 

34517) Is always true that 'P.(x) < ",(x)? 

34518) Find x for which ",(x) 2': 'I'(x). 

34519) Find the smallest k so that !"', 0 ... 0 ",.),<x) = 1, for a fixed integers x. 

k times 
34520-36819) Study"". The same (or similar) questions for "', as for 1]. 

More unsolved problems concerning these 15 functions. 

More new (arithmetic) functions constructed by means of the function '1, and new unsolved 

problems concerning them. 
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36820-+ 00. We can continue these recurring sequences of unsolved problems in number 
theory to infinity. Thus, we construct an infinity of more new functions: Using the func
tions Sm C" . .. , 'P, construct the functions Ill, 112, . .. , lIn, (by varied combinations between 
S"C""','Pry; for example: S~i+l)(x) = L S~i) far all x E N.,S~i) : N' -+ N for all 

O<n~x 

i = 0,1,2, ... , where S~O) = S •. Or: SC,(x) = .!:. t S.(n), SC. : N' -+ Q, SC. being a com-, X n=l 
bination between So and C.; etc.); analogously by means of the functions 111,/12,"" !In, We 
construct the functions 121,122, ... ,12", etc. The method to obtain new functions continues to 
infinity. For each function we have at least 2300 unsolved problems, and we have an infinity. of 
thus functions. The method can be represented in the following way: 

* 

§12. Conclusion 

With this paper the author wants to prove that we can construct infinitely many unsolved 
problems, especially in number theory: you "rock and roll" the numbers until you create 
interesting scenarios! Some problems in this paper could effect the subsequent development of 
mathematics. 

The world is in a general crisis. Do the unsolved problems really constitute a mathematical 
crisis, or contrary to that, do their absence lead to an intellectual stagnation? Making will 
always have problems to solve, they even must again solve previously solved problems (!) For 
example, this paper shows that people will be more and more overwhelmed by (open) unsolved 
problems. [It is easier to ask than to answer. J 
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Here, there are proposed (un)solved problems whic.hare enough for ever!! Suppose you solve 

an infinite number of problems, there will always be an infinity of problems remaining. Do not 

assume those proposals are trivial and non-important, rather, they are very substantial. 
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SOLVING PROBLEMS BY USING A FUNCTION IN THE NUMBER 

THEORY 

Let n;::: 1, h ;::: 1,and a ;::: 2 be integers. For which values of a and n is (n + h)! a multiple 

of an ? (A generalization of the problem nO = 1270, Mathematics Magazine, Vol. 60, No.3, 

June 1987, p. 179, proposed by Roger B. Eggleton, The University of Newcastle, Australia.) 

Solution (For h = 1 the problem nO = 1270 is obtained.) 

§1. Introduction 

We have constructed a function 'I (see [1]) having the fallowing properties: 

(a) For each non-null integer n,'1( n)! is multiple of n; 

(b) 1)(n) is the smallest natural number with the property (a). 

It is easy to prove: 

Lemma 1. (V)k,p EN', P t-1,k is uniquely written in the form: 

where aif,) = (pn; -1)/(p -1),i = 1,2, ... ,I, nl > n2 > ... > n[ > 0 and 1 ~ tj ~ (p -1), 

j = 1, 2, ... ,1-1,1 ~ tl ~p, nj,tj E N,i = 1,2, ... ,1, 1 EN". 

We have constructed the function Tfp, p prime> 0, '1p:N* ~ N*, thus : 

(V)n EN', 1),(a;;») = pn, and '1p(t , alr,) + ... + tla);,» = t,'l,(ali,» + ... + tl'lp(a);,». 

Of course: 

Lemma 2. (a) (V)k EN', 1),(k)! = Mpk. 

(b) '1p(k) is the smallest number with the property (a). Now, we construct another function: 

'I : Z \ ° ~ N defined is follows: 

I '1(±1) = 0, 

(V)n = fpfl ... p~. with f = ±l, Pi prime and Pi t- Pj for i t- j, all 

ai E N",'1(n) = max{1),(a;)} 
1$J$$ 

It is not difficult to prove 'I has the demanded properties of §l. 

§2. Now, let a = p~' .. . p~', with all Cti E N* and all Pi distinct primes. By the previous 

theory we have: 

1)(a) = ~!:t.{nl'i(a;)} = '1,(a) (by notation). 

Hance 1)(a) = 1)(p<»,1)(p<»! = Mp"'. 
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We know: 
p"'-l p"'-l 

t 1--+···+tl--
(tIP'" + ... +tIP"')!=Mp p-1 p-1 

We put: 

tIP'" + ... + tiP'" = n + h and tL .~~1 + ... + tl~ = an. 

Whence 
1 p'" - 1 P'" - 1 -[-- + ... + t l--] ~ tIP'" + ... + tiP'" - h or 
o p-1 p-1 

(1) o(p -l)h ~ (op - 0 - l)[tlP'" + ... + tiP"'] + (tl + ... + tl)' 

{ 
ne,no > 0: 

On this condition we take ne = tIP'" + .. . +tlP"'-h (see Lemma 1), hence n = . 
. 1,ne:S; 0 

Consider giving a =J 2, we have a finite number of n. There is an infinite number of n if and 

only if op - 0 - 1 = 0 i.e., 0 = 1 and p = 2, i.e.,a = 2 

§3 Particular Case 

If h = 1 and a =J 2, bacause tIP'" + ... + tlp"l ~ p'" > 1 

and tl + ... + tl ~ L it follows from (1) thai: 

(I') (op - 0) > (op - 0 - 1) ·1 + 1 = ap - 0, 

which is impossible. If h = 1 and a =2 then a = l,p = 2, or 

(1") IS; tl + ... + ii, 
hance I = 1, tl = 1 whence n = tIP'" + ... + tiP'" - h = 2'" - 1, nl E N* (the solution to 

problem 1270). 

Example 1. Let h = 16 and a = 34 . 52. Find all n such that 

(n + 16)! = M2025". 

Solution 

'1(2025) = max{'1:!(4),'15(2)} = max{9,10} = 10 = '15(2) = '1(52). Whence 0 = 2,p = 5. 

From (1) we have: 

128 ~ 7[t I 5'" + ... tI5"'] + tl + ... + tl. 

Because 54 > 128 and 7[t I 5'" + .. . t/5"'] < 128 we find 1 = 1, 

whence nl :s; 1, i.e. nl = 1, and tl = 1,2,3. Then ne = t 15 - 16 < 0, hence we take n = 1. 
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Example 2. (n + 7)! = M3" when n = 1,2,3,4,5. 

(n+7)! = M5" when n = l. 
(n + 7)! = M~ when n = l. 
But (n + 7)! #- Mp" for p prime> 7, (V)n E N*. 

(n + 7)! #- M2n when 

tI, ... , tl-l = 1, 

{

no, no> 0: 
and n = ' etc. 

1, no S O. 

Exercise for Readers 

If n E N*,a E N* \ {I}, find all values of a and n such that: 

(n + 7)! is a multiple of an. 

Some Unsolved Problems (see [2]) 

Solve the diophantine equations: 

(1) T}(x), 'I(y) = T}(x + y). 

(2) 'I(x) = y! (A solution: x = 9,y = 3). 

(3) Conjecture: the equation 'I(i) = 'I(x + 1) has no solution. 
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SOME LINEAR EQUATIONS INVOLVING A FUNCTION IN THE NUMBER 

THEORY 

liVe have constructed a function '7 which associates to each non-null integer m the smallest 

positive n such that n! is a multiple of m. 

(a) Solve the equation ,,(xl = n, where n E N. 

*(b) Solve the equation 1)(mx) = x, where m E Z. 

Discussion. 

(c) Let 7)(i) denote 1) a T) 0 ..• 01) of i times. Prove that there is a k for which 

""Find nm and the smallest k with this property. 

Solution 

(a) The cases n = 0,1 are trivial. 

We note the increasing sequence of primes less or equal than n by P;, P2 , ••• , p., and 

(3, = 2:[n/p~], t = 1,2, ... , k; 
h~' 

where [y] is greatest integer less or equal than y. 

Let n = p~il ..• P~:', where all Pi, are distinct primes and all ai, are from N. 

Of course we have n ::::: x ::::: n! 

Thus x = pf' ... p~k where 0 ::::: u, ::::: /3, for all t = 1,2, ... , k and there exists at least a 

j E {I, 2, ... , s} for which 

Ui, E .aij , {/3~', ... ,fl;; - 0;, + i}. 

Clearly n! is a multiple of x, and is the smallest one. 

(b) See [1] too. We consider m E Z'i". 

Lemma 1. 1)(m)::::: m, and 1)(m) = m if and only ifm = 4 or m is a prime. 

Of course m! is a multiple of m. 

If m -I 4 and m is net a prime, the Lemma is equivalent to there are m" mz such that 

m = m,' m2 with 1 < m, ::::: m2 and (2m2 < m or 2m, < m). Whence TJ(m) ::::: 2m2 < m, 

respectively TJ(m):::::: max{m2, 2m} <m. 

Lemma 2. Let p be a prime::::: 5. Then = I](px) = x if and only if x is a prime> p, or x = 2p. 
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Proof: '7(P) = p. Hence x > p. 

Analogously: x is not a prime and x =l2p # x = XIX2, 1 < Xl S X2 and (2X2 < X1,X2 =I Pl, 

and 2xl < x)# '7(px) S max{p,2x2} < x respectively '7(PX) S max{p, 2x1, X2} < x. 

Observations 

'7(2x) = x {= x = 4 or x is an odd prime. 

'7(3x) = x # x = 4,6,9 or x is a prime> 3. 

Lemma 3. If (m,x) = 1 then x is a prime> '7(m). 

Of course, '7(mx) = max{'7(m), '7(x)} = '7(x) = x. And x =I '7(m), because if x = '7(m) then 

m· '7(m) divides '7(m)! that is m divides ('7(m) -I)! whence 1](m) S 1](m)-1. 

Lemma 4. Ifx is not a prime then '7(m) < x S 21](m) and x = 21](m) if and only if'7(m) is 

a prime. 

Proof: If x> 2'7(m) there are X1,X2 with 1 < Xl S X2,X = XIX2. For Xl < ,,(m) we have 

(x - I)! is a multiple of mx. Same proof for other cases. 

Let x = 2'7(m); if ,,(m) is nopt a prime, then x = 2ab,1 < a S b, but the product 

('7(m) ..,.l)('7(m)..,. 2) ... (2,,(m) -1) is divided by x. 

If ,,(m) is a prime, 1](m) divides m, whence m . 2'7(m) is divided by '7(m)2, it results in 

1](m· 2'1(m» ~ 2 . '7(m), but ('1(m) +1)('7(m) + 2) ... (21](m)) is a multiple of 21)(m) , that is 

,,(m. 2'7(m») = 2'7(m). 

Conclusion. 

All x, prime number> 1](m), are solutions. 

If '7(m) is prime, then x = 2'7(m) is a solution. 

"If x is not a prime, '7(m) < x < 2'7(m), and x does not divide (x - 1)!/m then x is a 

solution (semi-open question). If m = 3 it adds x = 9 too. (No other solution exists yet.) 

( c) 

Lemma 5. '1(ab) S '1(a) + '7(b). 

Of course, '7(a) = a' and '7(b) = b' involves (a' + b')! = b'!(b' + 1. .. (b' + a'). Let a' S If. 

Then '7(ab) S a' + b', because the product of a' consecutive positive integers is a multiple of a'! 

Clearly, if m is a prime then k = 1 and n", = m. 

If m is not a prime then '7(m) < ro, whence there is a k for which 1](k}(m) = '7(k+l )(m). 

If m =I 1 then 2 S n", S m. 
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Lemma 6. n", = 4 or n", is a prime. 

IT nm = nln2, 1 < nl ~ n2, then 17(nm) < nm· Absurd. n", i 4. 

(*~) This question remains open. 
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CONTRIBUTII LA STUDIUL UNOR FUNCTII ~I CONJECTURI 

iN TEORIA NUMERELOR 

Teoria Numerelor reprezinta pentru mine 0 pasiune. Rezultatele expuse mai departe con

stituie rodul catorva ani buni de cerceta.ri §i ca.utari. 

Actualitatea temei aste evidenta., din moment ce la Universitatea. din Craiova, Coni. dr. C. 

Dumitrescu & Conf. dr. V. Seleacu organizeaza <Prima Conierin~ Intemationala. dedicata. 

No!iunilor de tip 'Smarandache' in Teoria Numerelor>, §i anume: functii ('I §i extinderi ale 

sale, L, functii prime), secvente, operatii speciale, criterii de divizibilitate, teoreme, etc. de tip 

'Smarandache', in perioada 21-24 August 1997 [vezi ~ anuntul din ~Notices of the American 

Mathematical Societaty", University of Providence, Rl, SUA, Vol. 42, No. 11, rubrica "Math

ematics Calendar", p. 1366, Noiembrie 1995]. Conierinta Be va desf&fura sub egida UNESCO 

[240) [ef. Mircea Ichim, director, §i Lucretia BaJ.uta, secretara., Filiala UNESCO din BUCUI"e§ti). 

in felul acesta se deschid noi drumuri in Teoria Numerelor, formand un domeniu aparte, 

care a trezit interesul d.ivef§ilor speciali§ti. 

Un grup de cercetare privind aceste notiuni, in special concentrat asupra Functiei Smaran

dache, s-a format la Universitatea din Craiova, Romarua, Catedra de Matematica., condus 

de ca.tre Prof. dr. A.Dinca. (decan),Pref. dr. V.Boju, Coni. dr. V.Seleacu, Coni. dr. 

C.Dumitrescu, Coni. dr. LBaJ.a.cenoiu, Coni. dr. St.Zamir, Coni. dr. N.Radescu, Lect. 

E.Radescu, Lect. dr. LCojocaru, Lect. dr. Paul Popescu, Asist. drd. Marcela Popescu, 

Asist. N.virlan, Asist. drd. Carmen Roc§oreanu, prof. S.Cojocaru, prof. L.Titulescu, prof. 

E.Bnrton, prof. Panait Popescu, cercet. §t. M.Andrei, student Tomita. Tiberiu Florin, §i alte 

cadre didactice impreuna. cu studenti. 

Membrii acestui grup se intaInesc 0 data pe saptamana, in timpul anului §eclar, §i expun 

ultimele cerceta.ri asupra func~iei 'I, precum §i incerca.ri de generalizare. 

in afara grupului de cercetare de Ja Craiova, destui matematicieni §i inionnaticieni striini 

s-au ocupat de studiul funqiei 'I, cei mai activi fiind: Henry Ibstedt (Suedia), PaJ Gronlis 

(Norvegia), Jim Duncan, John C.MacCarthy, John R. Sutton (Anglia), Ken Tauscher (Aus

tralia), Th. Martin (SUA), Pedro Melendez (Brazilia), M.Costewitz (Franta), J.Rodriguez 

(Mexic), etc. [Pentru 0 imagine mai detaliata, vezi cele 240 de "Referinte" de la sf'ar§it.) 

Despre insemnatatea "Functiei Smarandache", cum a fost botezata. in revista londoneza. 
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<Personal Computer World>, Iulie 1992, p. 420: §i-a dat pentru prima data seama scien

tistul englez ~ke Mudge, editor al rubricii <Numbers Count> [10]. Iar valorile func~iei, 

fJ = 1,2,3,4,5,3,7,4: 6, 5, 11, 4, 13, ... au fost etalate de X. J. A. Sloane & Simon Plouffe in 

<Encyclopedia of Integer Sequences>, Academic Press, [M0453J, 1995, §i denumite "Numerele 

Smaranda.che" [140]. 

Articolele, notele, problemele (rezolvate sau deschise), conjecturi1e referitoare la a.cea.stii 

noua funqie in teoria numerelor sunt colectate intr-o revistii specialii numita "Srnaranda.che 

Function Journal", publicata anual ori bianual, de Dr. R. Muller, Number Theory Publishing 

Co., Glendale, Arizona., SUA. 

Mai mult, Ch. Ashbacher (SUA) i-a dedicat insa§i 0 monografie: "An introduction to the 

Smarandache function", Erhus L'niv. Press, Vail, 1995 [194], iar Kenichiro Kashihara (Japonia) 

are in pregatire 0 alta carte despre ,., [235]. 

De asemenea., multe reviste §i chiar enciclopedii §i-au deschis paginile mserarii de lucrari 

ce trateaza, recenzeaza., sau citeaza functia fJ §i valorile ei [vezi "Personal Computer \Vorld" 

(Londra), "Humanistic :'Aathematics :"etwork Journal" (Harvey Mudd College, Claremont, 

CA, Sua), "Libertas Mathematica" (Texas State University), "Octagon" (Bra§Ov, Roma.rua), 

"Encyclopedia of Integer Sequences" N, J. A. Sloane & Simon Plouffe (Academic Press; San 

Diego, New York, Boston, London, Sydney, Tokyo, TOronto; 1995), "Journal of Recreational 

:'Aathematics" (SUA), "Foaie Matematicii" (Chi§inau, Mildova), "The Mathematical Spect=" 

(University of Sheffield, Anglia), "Elemente der Mathematik" Elve\ia, "Zentralblatt fUr Mate. 

matik" (Berlin, Germania), "The Mathematical Reviews" (Ann Arbor, SUA), "The Fibonacci 

Quarterly" (SUA), etc.]. 

rar la conferinte nationale §i interna~ionale organizate, de exemplu la New Mexico State 

Cniversity of San Antonio (Texas), University of Arizona (Tucson), University of San Anto

nio (Texas), State University of Xew York at Farmingdale, L'niversityof Victoria (Canada), 

Congres International < Henry Poincare> (Universite de Nancy, Fran~a), <26th Annual I:a

nian Mathematics Conference> (Kerman, Iran), <The Second Asian Mathematics Conference> 

(Nakhon Ratchasima., Tilanda), <Programul manifestiirilor organizate Cn prilejul implinirii a 

100 ani de la apari'ia primului numiir al revistei 'Gazeta Matematicii' 1895-1995> (Alba-Iulia., 

Romania), etc. s-au prezentat articole §tiin~ce despre,., in perioada 1991-5. 

Arhivele care stocheaza cercetiirile asupra func~iei 'f/ (carti, revicte, bro§uri, manuscrise 
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publicate ori inedite, articole note, comentarii, scrisori, - obi§nuite ori electroniee - de la diver§i 

matematicieni §i editori, probleme, aplicatii, programe de conferinte §i simpozioane, etc.), cat 

§i asupra altor no~iuni din teza, se gesesc la: 

a) Arizona State University, Hayden Library, Coleciia Spercia.lii (online) "The Florentine 

Smarandache papers", Tempe, AZ 85287, USA; phone:(602) 965-6515, e-mail: 

ICCLM@ASUACAD.BITNET, responsabile:Carol Moore & Marilyn Wurzburger; 

b) Archeves of American Mathematics, Center for American History SRR 2.109, University 

of Texas, Colectia Speciala "The Florentine Smarandache papers", Austin, TX 78713, USA;' 

phone: (512) 495-4129, fax: (512) 495-4542, director Don Carleton; 

c) Biblioteca University din Craiova, Str. AI. I. Cuza, Nr. 13, Sectia Je Informare §! 

Documentare "Florentine Smarandache" din cadrul Seminarului Matematic <Gh. Titeica>, 

director O. Lohon, bibliothecara Maria Buz, fax: (051) 411688, Romania; 

d) Arhivele Statului, Filiala VaIcea, Fondul Special "Floretin Smarandache", responsabil: 

Ion Soare, Str. Gener:-I Praporgescu, Nr.32B, RID. VaIcea, Jud. VaIcea, Romania; care sunt 

puse la dispozitia publicului spre consultare. 

Se define§te, ~adar, 0 noua functie: 

. n-: Z· ---+- _·~~l, 

1)( n) este eel mai mic intreg m astfel inca.t m! este divizibil en n. 

Aeeasta func~ie este importantii cleoarece caracterizeazii numerele prime - prin urmatoarea 

proprietate fundamentala: 

Fie pun numar intreg > 4, atunei peste prim daea §i numai daea 1)(P) = p. 

Deci, punctele fixe ale acestei funClii sunt numere prime (la care se adauga §i 4). Datoritii 

acestei proprietii\i, functia 1) se fol<lSe§te ca 0 sita pentru cerna.rea numerelor prime. 

Studierea §i descoperirea unor relatii despre functia 1) duee implicit la aprofundarea cunO§tin

telor despre numerele prime, 0 preocupare in prezent fund distribuirea lor. [F.Burton incearcii 

generalizarea functiei 1) in corpul numerelor complexe [169}.] 

Totodata, functia 1) intra in conexiune §i cu foarte cunoscuta Funqie II( x), care reprezinta 

numiirul de numere prime mai mici decit sau egale en x, prin urmatoarea formula: 

z 

Pentru x ~ 4, II(x) == L:l1)(k)/kj -1, 
<=2 
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unde L b j inseamna pa.rtea intreaga a lui b. 

[vezi L.Seagull [189]]. 

Alte proprieta~i: 

Daca (a,b) = 1, atunci '1(ab) = rnax{'1(a),1/(b)}. 

Pentru orice numere pozitive nenuie, '1{ab) :<::: '1{a) + '1{b). 

1/ este 0 /unqie general crescatoare, adica: 

'fa EN 3b E N,b = b(a), 'fc E N,c > b,'1{c) > a. 

Functia 1/ face obiectul multor probleme deschise, care au ttrezit interesul maternaticienilor. 

De exernplu: 

a) Ecuafia '1( n) = T}( n + 1) nu are nici 0 soluiie. 

Nu a fost inca demonstrata., de§i LProdanescu [29, 92J crezuse initial ca i-a gasit solutia. 

L.lutescu [30] i-a dat 0 extindere acestei conjecturi. 

b) A.Mullin [239], inspirat de problema anterioara, conjectureaza ea ecualia T}{n) = '1(n +2) 

are doar un numar finit ,[e solujii. 

c) T. Yau [63} a propus determinarea tuturor valorilor pentru care funcfia '1 pastreaza relalia 

de recurenta a lui Fibonacci, adica: 

ne§tiindu-se dad acestea sunt In numar finit sau infinit. El insu§i a.f!3.nd pe n = 9, 119. 

Ch.Ashbacher [182, 207] a investigat relatia de rna; sus cu un program pe calculator pana. la n = 
= 1000000, descoperind valori aditionale pentru n = 4900,26243,32110,64008,368138, 

415662, dar nedemonstrand cazul general. H.Ibstedt [224] presupune ca exista 0 infinitate 

de astfel de triplete. 

d) Renumitul academician, P.Erdos [147], dE la Academia Ungara. de Stiinte, solicita cit i

torilor revistei engeleze <Mathematical Spectrum>, in care publica 0 serisoare, sa gaseasca 0 

formula asimptotica pentru: 

n<x 
7](n) > P(n) 
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unde P( n) reprezinta cel mal mare factor prim al lui n. 

Fieca.re perioada de timp are problemele ei deschise, carora de obi~i Ii se da de cap mal 

tarziu, odata cu progresul §tiintei. Si, totll§i, numarw noilor probleme nerezolvate, care apar 

datorita cercetarilor fire§te, cre§te exponential, in compara~e cu numarw vechilor probleme 

nerezolvate ce sunt in prezent solu~ionate. Oare existen~a problemelor deschise constituie 0 

criza matematica ori, dimpotriva, absenta lor ar insemna mal degraba 0 stagnare intelectuala? 

"Functia Smarandache" este pusa in combinatii §i rela\ii cu alte func\ii ori no\iuni din teoria 

numerelor §i analiza, precum: secvente-A, numarul de divizori, diferen\a dintre doua numere . 

prime consecutive, serii Dirichlet, funqii generatoare, func\ia logaritm, ordin normal, condi~ii 

Lipschitz, functii multiplicative ori aditive, eel mal mare factor, distributie uniforma., radacini 

necongruente, cardinal, triunghiullui Pascal, secventi s-aditiva., suma partilor alicuante, suma 

puterilor de ordin k ale partilor alicuante, suma partilor alicuante unitare, mediile aritmeti~ §i 

geometrica, §iruri recurente, ecua~ii §i inec~ii diofantice, numarw de numere prime, numirul 

de nurnere prime con~ente cu a modulo b, surna divizorilor, suma puterilor de ordin k ale 

divizorilor, suma divizorilor unitari, functia 'P a lui Euler, functiile gamma §i beta, nwnil.rul 

de factori primi (eu repeti~e),numarul factorilor primi distincti, partea intreaga., aproxi~i 

asimptoptiee, carnpuri algebriee, functia Mobius, functiile Cebi§ev e §i 111, etc. 

lar "Numerele Smarandache" sunt'asociate :P intrepatrunse respectiv cu: numerele abun

dente, aproape perfecte, arnicale, arnicale marite, numerele Bell, Bernoulli, Catalan, Carmicha

el, deficiente, Euler, Fermat, Fibonacci, Genocchi, numerele armonice, h-hiperperfecte, Kurepa, 

Mersenne, m-perfecte, numerele norocoase, k-indoite perfecte, perfecte, poligonale, pirarni

dale, poliedrale, primitive abundente, primitive pseodoperfecte, pseudoperfecte, pseudoprime, 

pitagoreice, reziduri patratice, cvasiperfecte, Stirling de ordinul 1 §i II, superperfecte, intangi

bile, numere!e sinistre, numerele Ulam, etc. 

References 

[lJ Constantin Corduneanu, abstract on this function in <Lihertas Mathematica>, Texas 

State Univerity, Arlington, VoL 9, 1989, 175; 

[2J "Smarandache Function Journal", Number Theory Publishing Co., R.Muller Editor, 

89 



Phoenix, ?l:ew York, Lyon, Vol. 1, No.1, 1990, ISSN 1053-4792: 

Prof. Dr. V.Seleacu & Lect. Dr. C.Dumitrescu, Department of Mathematics, University 

of Craiova, Rumania, editors for the next issue; 

registred by the Library of Congress (Washington, C.C., USA) under the code: QA.246. 

S63; 

surveyed by <Ulrich's International Periodicals Directory> (R.R.Bower, New Providence, 

~J), 1993-94, p. 3437, and 1994-95, p. 3787; 

and <The Internationa Directory of Little Magazines and Small Presses> (Paradise, CAl, 

27th edition, 1991, 533; 

mentionned by Dr. Sexban Andronescu in <New York Spectator>, No. 39-40, Math 1991, 

51; 

the journal was indexed by the <Mathematical Reviews>, Ann Arbor, MI., 94c, March 

1994, XXI; 

and by <Zentralblatt fiir :Mathematik>, Berlin, 1995; 

and <Curent Mathematical Publications>, Providence, RI, USA, ~o. 5, April 1994: 

reviewed by Constantin Corduneanu in <Libertas Matimatica>, tomus XI, 1991, 202; 

mentionned in the list of serials by <Zentralblatt fUr Mathematik>, (Berlin), Vol. 730, 

June 1992, 620; 

and reviewed by L.Toth (Cluj-Napoca, Romania) in <Zentralblatt fUr :Mathematik, Vol. 

74.5 (11004-11007), 1992; 

mentionned in <:\ia.thematics Magazine>, Washington, D.C., Vol. 6, No.4, October 1993, 

280; 

"Smarandache function", as a separate notion, was indexed in "Library of Congress Sub

ject Headings", prepared by the Catalogin Policy and Suport Office, Washington, D.C., 

16th Edition, Vol. IV (Q-Z), 1993,4456; 

[3J R.:MulIer," A Conjecture about the Smarandache Function", Joint Mathematics Meetings, 

New Mexico State rniversity, Las Cruces, 2'<M, April 5, 1991; 

90 



and Canadian Mathematical Society, Winter Meeting, December 9th, 1991, University of 

Victoria, BC; 

and The South West Section of the Mathematical Association of America / The Arizona 

Mathematics Consortium, University of Arizona., Tucson, April 3, 1992; 

[4J Sybil P.Parker, publisher, <McGraw-Hill Dictionary of Scientific and Technical Terms>, 

!'ew York, Letter to R.Muller, July 10, 1991; 

[5) William H. Buje, editor, <CRC Standard Mathematical Tables and Formulae>, The 

University of Akron, OH, Letter to R.Muller, 1991; 

[6) Prof. Dr. M.Hazewinkel, Stiching Mathematisch Centrum / Centrum voor Wiskunde en 

Informatica, Amsterdam, Netherlands, Letter to R.Muller, 29 November 1991; 

[7) Anna Hodson, Senior Editor, Cambridge University Press, England, Letterto R.Muller, 

28 January 1992; 

(8) R.Mulier, "Smarandache Function Journal", note in <Small Press Review>, Paradise, 

CA, February 1992, Vol. 24, No.2, p.5; and March 1993, Vol.25, No.3, p. 6; 

[9] Pilar Caravaca, editor, <Vocabtilario Cientifico y Teemco>, Madrid, Spain, Letter to 

R.Mulier, March 16, 1992; 

[10) Mike Mudge, "The Smarandache Function" in <Personal Computer. World>, London, 

England, ~o. 112, July 1992, 420; 

[11) Constantin M. Popa, Conference on launching the book " America, Paradisul Diavolului / 

jurnal de emigrant" (Ed. Auis, 00. prof. Nicolae Marines=, editor lleana Petrescu, lector 

Florea Miu, cover by Traian Radulescu, postface by Constantin M. Popa) de Florentin 

Smaranda.che (see p. 162), Biblioteca Judeteana <Theodor Aman>, Craiova, 3 iulie 1992; 

(12) Florea Miu, "Interviul nostru" in <Cuvi1ntul Libertatii> , Craiova, Romania,Anul III, 

!'r. 668, 14 iulie 1992, 1&3; 

[13) Mircea Moisa, "Mi§CaTea Literara Paradoxisi&", camet editorial in <Cuvantul Lib

ertatii>, Craiova, Nr. 710, 1992; 

91 



[14J John McCarthy, Mansfield, Notts, U.K., "Routines for calculating S(n)" and Letter to 

Mike Mudge, August 12, 1992; 

[15] R.R.Bowker, Inc., Biography of <Florentine Smarandache>, in "American Men & 

Women of Sience", New Providence, NJ, 18th edition, Vol. 6 (Q-S), 1992-3, 872; 

[16J Jim Duncan, Liverpool, England, "PCW Numbers Count Jullyl992 - The Smarandache 

Function", manuscript submitted to Mike Mudge, August 29, 1992; 

[17J J. Tomson, Number Theory Association, Tucson, An open problem solved (concerning the 

Smaranda.che Function) (unpublished), September 1992; 

[18] Thomas Martin, Proposed Problem concerning the Smarandache Function (unpublishe4), 

Pheonix, September 1992; 

[19] Stiven Moll, editor, Grolier Inc., Danbury, CN, Letter to R.Muller, 1 October 1992; 

[20J Mike Mudge, "Review, July 199"2 ! The Smarandache Function: a first visit?" in 

<Personal Computer World>, London, No. 117, December 1992, 412; 

[21] J. Thompson, Number Theory Association, "A Property of the Smarandache Function" , 

contributed paper, American Mathematical Society, Meeting 878, University of San An

tonio, Texas, January 15, 1993; 

and The South West Section of the ~1athematical Association of America, New Mexico 

Tech., Socorro, NM, April 16, 1993; 

see " Abstract of Papers Presented to the American Mathematical Society", Providence, 

Rl, Issue 85, Vol. 14, No.1, 41, January 1993; 

[22] Mike Mudge, "Mike Mudge pays a return visit to the Florentin Smaxandache Function" 

in <Personal Computer World>, London, No. 118, February 1993, 403; 

[23] David W. Sharpe, editor, <Mathematical Spectrum>, Sheffield, 1O,K., Letter to Th. 

Martin, 12 February 1993; 

[24] Nigel Backhouse, Helsby, Cheshire, U.K., "Does Samma (= Smarandache function used 

instead of Gamma function for so=ation) exist?", Letter to mike Mudge, February 18, 

1993; 

92 



[25J DR. J. R Sutton, Mumbles, Swansea, U.K., "A BASIC PROCedure to calculate S( n) 

for all powers of a prime number" and Letter to Mike Mudge, Spring 1993; 

[26J Pedro Melendez, Belo Horizonte, Brasil, Two proposed problems concerning the Smaran

dache Function (unpublished), May 1993; 

[27J Thomas Martin, Elementary Problem B-740 (using the reverse of the Smarandache Func

tion) in <The Fibonacci Quartely>, Editor:Dr. Stanley Rabinowitz, Westford, MA, Vol. 

31, No.2, p. 181, May 1993; 

[28] Thomas Martin, Aufgabe 1075 (using the reverse of the Smarandache Function) in 

<Elemente der Mathematik>, Editors: Dr. Peter Gallin & Dr. Hans Walser, CH-8494 

Bauma & CH-8500 Frauendfeld, Switzerland, Vol. 48, No.3, 1993; 

[29J LProda.nescu, Problema Propusa privind Functia Smarandache (nepublicata), Lic. N. 

Biilcescu, Rm. VaIcea, Romarua, Mai 1993; 

[30J Lucian Tu1escu, 0 generalizare a Problemei propuse de LProdanescu (nepublicata), Lic. 

No.3, Craiova, Mai 1993; 

[31] T.Pedreira, Blufton Colledge, Ohio,'"Quelques Equations Diophantiennes avec la Fanc

tion Smarandache", abstract for the <Theorie des Nombres et Automates>, CIRM, Mar

seille, France, May 24-8, 1993; 

[32] Prof. Dr. Bernd Wegner, editor in chief, <Zentralblatt fUr Mathematik I Mathematics 

Abstracts>, Berlin, Letters to RMuiler, 10 July 1991, 7 June 1993; 

[33J Anne Lemarchand, editrice, <Larousse>, Paris, France, Lettre vers RMuiler, 14 Juin 

1993; 

[34J Debra Austin, "Smarandache Function featured" in <Honeywell Pride>, Phoenix, Ari

zona, June 22, 1993,8; 

[35j RMuller, "Unsolved Problems related to the Sma.ra.ndache Function", Number Theory 

Publishing Co., Phoenix, New York, Lyon, 1993; 

93 



[36] David Dillard, soft. eng., Honeywell, Inc., Phoenix, "A question about the Smarandache 

Function", e-mail to <SIGACT>, July 14, 1993; 

[37] Ian Parberry, Editor of <SIGACT l\ews>, Denton, Texas, Letter to R.Muller (about 

computing the Smarandache Function), July 19, 1993; 

[38] G.Fernandez, Paradise Valley Community Colledge, "Smarandache Function as a Screen 

for the Prime Numbers", abstract for the <Cryptography and Computational ~umber 

Theory> Conference, North Dakota State tTniversity, Fargo, ND, July 26-30, 1993; 

[39] T.Yau, "Teaching the Smarandache Function to the American Competition Students", 

abstract for <Mathematica Seminar>, 1993; and the American Mathematical Society 

Meetings. Cincinnati, Ohio, January 14, 1994; 

[40] J. Rodriguez , Sonora, Mexico, Two open problems concerning the Smarandache Function 

(unpublished), August 1993; 

[41] J .Thomson, Number Theory Association, "Some Limits involving the Smarandache Func

tion", abstract, 1993; 

[42] J. T. Yau, "Is there a Good Asymptotic Expression for the Smarandache Functio~", 

abstract, 1993; 

[43] Dan Brown, Account Executive, Woifram Research, Inc., Champaing, IL, Letter to T.Yau 

(about setting up the Smarandache Function on the computing using Mathematica 

software), August 17, 1993; 

[44] Constantin Dumitrescu, "A brief History of the Smarandache Function" (former version), 

abstract for the <~ineteenth International Congress of the History of Science>, Zaragoza, 

Spain, August 21-9, 1993; 

published under the title "The Smarandache Function" in <Mathematical Spectrum>, 

Sheffield, UK, Vol. 26, No.2,. 39-40, 1993, editor D.W.Sharpe; 

also published in "Octagon", Bra.§Ov, Vol. 2, ~o. 1, April 1994, 15-6, editor M.Bencze; 

[45] Florin Vasiliu, "Florentin Smarandache, Ie peete du point sur Ie i", etude introductive 

au volume trilingue des poemes haiku-s <Clopotul Tarerii / La Cloche du Silence / 

94 



Silence's Bell>, par Florentin Smarandache, Editura Haiku, Bucharest, translator Rodica 

Stef'anescu, Fall 1993, 7-8 & 121 & 150; 

[46] M.Marinescu, "Nume romanesc in matematicil.", in <Universub, Anul IX, Nr. 199, 5, 

Editor Aristide Buhoiu, North Hollywood, Ca, August 1993; 

and " Literatura paradoxista in-creata de Smarandache", in <Jurnalul de Dolj>, Direct<x 

Sebastian Domozina, Craiova, No. 38, 1-7 November, 1993; 

[47] G.Vasile, "Apocaiipsul ca forma de guvernare", in <Baricada>, Nr. 37 (192), 24, 

Bucharest, 14 septembrie, 1993; 

[48] Mike Mudge, "Review of Numbers Count -118 - February 1993: a revisit to The Florentin 

Smarandache Function", in <Personal Computer World>, London, ~0.124, August 1993, 

495; 

[49] Pitl Cromis, !\or:vay, Submitted theoretical results on both problems (0) & (V) from [13], 

to Mike Mudge, Summer 1993; 

[50] Henry Ibstedt, Broby, sweden, completed a great'work on the problems (0) to (V), from 

(13], and won the <Personal Compute! World>'s award (concerning some open problems 

related to the Smarandache Function) cd August 1993; 

[51] Dumitru Acu, L'niversitatea din Sibiu, Catedra de Matematica, Romania, Scrisoarea din 

29.08.1993; 

[52] Francisco Beliot Rosado, Valladolid, Spain, Letra del 02.09.1993; 

[53] Dr. Petra Dini, Universite de Montreal, Quebec, e-mail du 23-Sep-1993; 

[54] Ken Tauscher, Sydney, Australia, Solved problem: To find the best bond for the Smaran

dache Function (unpublished), September, 1993; 

[55] A.Stuparu, Va.Jcea, Problem of Number Theory (unpublished), October 1993; 

[56] M.Costewitz, Bordeaux, France, Generalisation du probleme 1075 de l'<Elernente der 

Mathematik> (unpublished), October 1993; 

95 



[57] G.Dincu (Dr~, Romania), "Aritmogrif in Aritmetid" / puzzle, <Abracadabra>, 

Ann! 2, Nr. 13, 14-15, Salinas, CA, Editor Ion Bledea, November 1993; 

[58] T.Yau, student, Prima Community College, "Alphanumerics and Solutions" (unpub

lished), October 1993; 

[59J Dan Fomade, "Romani din Ariwna", in <Lucea.f'arul Romanesc>, Ann! III, Nr. 35, 14 

:Montreal, Canada, November 1993; 

[60] F.P.Mi§can, "Romani pe Mapamond", in <Europa>, Ann! IV, Nr. 150, 15, 2-9 November 

1993; 

[61J Valentin Verzeanu, "Florentin Smarandache", in <Clipa> journal, Anaheim, CA, No. 

117, 42, November 12, 1993; 

[62J LRotaru, "Cine este F.S.?", prefa~a lajurnalul de lagar din Turcia "Fugit ... ", Ed. Tempus 

(director Gheorghe Stroe), Bucure§ti, 1993; 

[63] T.Yau, student, Prima Co=unity College, two proposed problems: one solved, another 

unsolved (unpublished), November 1993; 

[64] G.Vasile,"' America, America, ... ", in <Acuz>, Bucharest, Ann! I, No.1, 12,8--14 Novem

ber, 1993; 

[65] Arizona State University, The "Florentin Smarandache Papers" Special Collection [1979-

], processed by Carol Moor & Marilyn Wurzburger (librarian specialists), Volume: 9 

linear feet, Call #: MS SC SM-15, Locn: HAYDEN SPEC, Collections Disk 13: 

A:\SMARDCHE\FLIL,..sMA, Tempe, AZ 85287, USA (online since November 1993); 

electronic mail: ICCLM@ASL"ACAD.BITNET, phone: (602) 965-6515; 

[66J G.Fernandez, Paradise Valley Community College, "An Inequation concerning the 

Smarandache Function", abstract for the <Mathematical Breakthroughs in the 20th 

Century> Conference, State1:niversity of New York at Farmingdale, April 8--9, 1994; 

[67] F.Vasiliu, "Paradoxism's Main Roots" (see "Introduction", 4), Xiquan Pub!. House, 

Phoenix, Chicago, 1994; 

96 



[68} P.Melendez, Belo Horizonte, Brazil, respectively T.Martin, Phoenix, Arizona, USA, 

"Problem 26.5" [questions (a), respectively (b) and (c)], in <Mathematical Spectrum>, 

Sheffield, UK, Vo1.26, Xo. 2, 56, 1993; 

[69] Jim Duncan, "Algorithm in Lattice C to generate S( n)", <Smarandache Function 

Journal>, Vol. 2-3, Xo. 1, pp. 11-2, December 1993; 

[70] Jim Duncan, "Monotonic Increasing and Decreasing Sequences of Sen)", <Smarandacbe 

Function Journal>, Vol. 2-3, No.1, pp. 1~, December 1993; 

[71} Jim Duncan, "On the Conjecture D~k) (1) = 1 or 0 for k ~ 2", <Smarandache Function 

Journal>, Vol. 2-3, No.1, pp. 17-8, December 1993; 

[72] John McCarthy, "A Simple Algorithm to Calculate S(n)", <Smarandache Function 

Journal>, Vol. 2-3, Xo. 1, pp. 19-31, December 1993; 

[73] Pal Gromi.s, "A Note on S(nT)", <Smarandacbe Function Journal>, Vol. 2-3, No.1, pp. 

33, December 1993; 

[74] PaJ Gronas, "A Proof of the Non..existence of 'Samma'" , <Smarandache Function 

Journal>, Vol. 2-3, No.1, pp. 36-7, December 1993; 

[75] John Sutton, "A BASIC PROCedure to calculate S(P"i)" , <Smarandache Function 

Journal>, Vol. 2-3, No.1, pp. 36-7, December 1993; 

[76] Henry Ibstedt, "The Florentin Smarandacbe Function Sen) - programs, tables, graphs, 

comments", <Smarandache Function Journal>, Vol. 2-3, Xo. 1, pp. 38-71, December 

1993; 

[77] Veronica Balaj, Interview for the Radio Tirni~a., November 1993, published in 

<Abracadabra>, Salinas, CA, Anul II, Nr. 15,6-7, January 1994; 

[78] Gheorghe Stroe, Postface for <Fugit ... / jurnal de laga.r> (on the forth cover), Ed. 

Tempus, Bucharest, 1994; 

[79] Peter Lucaci, "Un membru de valoare in Arizona", in < Ametrica> , Cleveland, Ohio, 

Anul 88, Vol. 88, No.1, p. 6, January 20, 1994; 

97 



[80] Debra Austin, "~ew Smarandache journal issued", in <Honeywell>, Phoenix, Year 7, 

:\0. 1, p. 4, January 26, 1994; 

[81] Ion Pachia Tatomirescu, "Jurnalul unui emigrant in <paradisul diavolului >", in 

<Jurnalul de Timi§>, Timi§Oara, Nr. 49, p. 2, 31 ianuarie - februarie 1994; 

[82] Dr. Nicolae Ridescu, Department of Mthematics, University of Craiova, "Teoria Nu

merelor", 1994; 

[83] Mihail!. Vlad, "Diaspora romaneasdi. / Un roman se afinna ca maternatician §i scriitor 

in S.L:".A.", in <Jurnalul de Tirgovi§te>, ~r. 68, 21-27 februarie 1994, p. 7; 

[84] Th. Marcarov, "Fugit ... / jurnal de lagar", in <Romania libera>, Bucharest, March 11, 

1994; 

[85] Charles Ashbacher, "Review of the Smarandache Function Journal", Cedar Rapids, lA, 

SlJA, published in <Journal of Recreational Mathematics>, end of 1994; 

[86] J.Rodriguez & T.Ya.u, "The Smarandache Function" [problem I, and problem II, III 

(" Alphanumerics and solutions") respectively], in <Mathematical Spectrum>, Shiffield, 

United Kingdom, 1993/4, Vol. 26, No.3, 84-5; 

[87] J.Rodriguez, Problem 26.8, in <Mathematical Spectrum>, Sheffield, United Kingdom, 

1993/4, Vol. 26, No.3, 91; 

[88] Ion Soare, "Valori spirituale va.J.cene peste hotare", in <Reviera Va.J.ceanli>, Rm. Va.J.cea, 

Anul III, Nr. 2(33), February 1994; 

[89J Stefan Smarandoiu, "Miscellanea", in <Pan Matematica>, Rm. Va.J.cea, Vol. 1, Nr. L 31; 

[90] Thomas Martin, Problem L14, in <Pan Matematica>, Rm. Va.J.cea, Vol. 1, Nr. 1,22; 

[91] Thomas Martin, Problems PP 20 & 21, in <Octogon>, Vol. 2, No.1, 31; 

[92] Ion Prodanescu, Problem PP 22, in <Octogon>, VoL 2, No.1, 31; 

[93] J.Thomson, Problems PP 23, in <Octagon>, Vol. 2, No.1, 31; 

[94] Pedro Melendez, Problems PP 24 & 25, in <Octogon>, Vol. 2, No.1, 31; 

98 



{95] Dr. C.Dumitrescu, "La Fonction de Smarandache - une nouvelle dans la theorie des 

nombres", Congres International <Henry-Poincare >, Universite de Nancy 2, France, 

14-18 Mai, 1994; 

[96] C.Dumitrescu, "La Fonction de Smarandache - une nouvelle fonction dans la theorie des 

nombres", Congre.. International <Henry-Poincare >, Universite de Nancy 2, France, 

14-18 Mai, 1994; 

[97J C.Dumitrescu," A brief history of the <Smarandache Function>", republished in <New 

Wave>, 34, 7-8, Summer 1994, Bluffton College, Ohio; Editor Teresinka Pereira; 

[98] C.Dumitrescu, "A brief history of the <Smarandache Function>", republished in 

<Octogon>, Bra§Ov, Vol. 2, No.1, 15-6, April 1994; Editor Mihaly Bencze; 

[99J Magda lanen, "Se intoarce acasa americanul / Florentin Smarandache", in <Curentul de 

Va.Jcea>, fun. Va.Jcea, Juin 4, 1994; 

[100] I.M.Radu, Bucharest, Unsolved Problem (unpUblished); 

[101] W.A.Rose, University of Cambridge, (and Gregory Economides, University of Newcas

tle upon Tyne Medical Scool, England), Solution to Problem 26.5 [(a), (b), (c)], in 

<Mathematical Spectrum>, U.K., Vol. 26, No.4, 124-5; 

[102] Davia E. Zitarelli, review of "A brief history of the <Smarandache Function>", in 

<HISTORIA MATHEMATICA>, New York, Boston, London, Sydney, Tokyo; Vol. 

21, ~o. 1, February 1994. 102; #21.1.42; 

and in <HISTORIA MATHEMATICA>, Vol. 21, ~o. 2, May 1994, 229; #21.2.29; 

[103] Carol Moore, Arizona State University Library, Letter to C.Dumitrescu and V.Seleacu 

conserning the Smarandache Function Archives, April 20, 1994; 

[104] T.Yau, "Teaching the Smarandache Function to the Amencam Competition Students", 

absract, Department of Mathematics, Vniversity of Oregon, 1994; 

[105] George Fernandez, Paradise Valley Community College, "An inequation concerning the 

Smarandache Function", to the International Congress of Mathematicians (ICM 94), 

Ziirich, 3-11 August 1994; 

99 



[106] George Mitin Varie§eScu, Sydney, Australia, abstraCt in "Orizonturi Albastre / Poeti 

Romani in Exil", Cogito Publishing Hoese, Oradea, 1993, 89-90; 

[107] Paula Shanks, <Mathematical Reviews>, Letter to R.Muller, December 6, 1993; 

[108] Harold W. Billings, Director of General Libraries, The University of Texas at Austin, "The 

Florentin Smarandache Papers (1978-1994)" Special Collection, Archives of American 

Mathematics, Center for American History, SRH 2.109, Tx 78713, tel. (512) 495-4129, 

nine linear feet; 

[109] M.Andrei, I.BaIa.cenoiu, C.Dumitrescu, E.Radescu, N.Radescu, and V.Seleacu, "A linear 

combination with the Smarandache Function to obtain the identity" , <Proceedings of the 

26th Annual Iranian Mathematics Conference>, pp. 437-9, Kerman, Iran, March 28-31, 

1995; 

[110] LRotaru, "Cine este Florentin Smarandache?", preface for "Fugit ... jurnal de lagar", p. 

5, Ed. Tempus, Bucharest, 1994; 

[111] Gee Stroe, postface for "Fugit ... jurnal de lagar", cover IV, Ed. Tempus, Bucharest, 

1994; 

[112] Henry Ibstedt, "Smarandache Function Gtaph / The prominence of Prime Numbers", 

<Smarandache Function Journal>, Vol. 4-5, No.1, first cover, September 1994; 

[113] Ion BaIacenoiu, "Smarandache Numerical Function", <Smarandache Function Journal>, 

Vo!' 4-5, No.1, pp. 6-13, September 1994; 

[114] P31 Gronas, "The Solution of the diophantine equation t7"(n) = n(fl), <Smarandache 

Function Journal> , Vol. 4-5, No.1, pp. 14-6, September 1994; 

[1151 J.R.Sutton, "Calculating the Smarandache Function for powers of a prime (Pascal pro

gram)", <Smarandache Function Journal>, Vol. 4-5, No.1, pp. 24-26, September 1994; 

[116] J.R.Sutton, "Calculating Smarandache Function without factorising", <Smarandache 

Function Journal>, Vol. 4-5, No.1, pp. 27-31, September 1994; 

100 



[l17] Henry IOOtedt, "An lllustration of the Distribution of the Smarandache Function", 

<Smarandache Function Jouranal>, Vol. 4-5, No.1, 34-5, September 1994; 

[118J Peter Bundschuh, Koln, "Auswertnng der eingesandten LOsungen", in <Elemente der 

Mathematik>, Switzerland, VoL 49, Ko. 3, 1994, 127-8; 

and Harald Fripertinger (Graz, Austria), Walter Janons (lnnsbruck, Austria), H~s 

Irminger (Wetzikon, CH), Joachim Klose (Bonn), Hansjurg Ladrach (Aarwangen, CH), 

Pieter Moree (Princeton, USA), Andreas Muller (Altendorf, CH), Wener Raffke (Vechta, 

Germany), Hans Schneider (Freiburg i. Br.), H.-J.Seiffert (Berlin), Michael Vowe (Ther

will, CH) solved the problem either; 

[Ug] Gh. Tomozei, "Functia Smarandache", prafce to <Exist impotriva mea>, pre-paradoxist 

poetry by F.Smarandache, Ed. Macarie, Targovi§te, 1994, pp. 5-9; 

also in <Literatorul>, Bucharest, Kr. 42 (159), 14-21 October 1994, p. 6; 

[120J Khalid Khan, London School of Economics, "Letter to the Editor / The Smarandache 

function", in <Mathematical spectrum>, VoL 27, No.1, 1994/5, 20-1; 

[121 J Pal Gronas, Stjordal, :\orway, "Let~er to the Editor / The Smarandache function", in 

<Mathematical Spectrum>, Vol. 27, No.1, 1994/5, 21; 

[122] Khalid Khan, London School of Economics, Solution to Problem 26.8, in <Mathematical 

Spectrum>, Vol. 27, No.1, 1994/5, 22; 

[123J Jane Friedman, "Smarandache in Reverse" /solution to problem B-740, in <The Fi

bonacci Quaterly>, USA, November 1994, pp. 468-9; 

[124] A.Stuparu, Problem H-490, in <The Fibonacci Quaterly>, Vol. 32, Ko. 5, November 

1994, p. 473; 

[12.5] Dumitru Ichim, Cronici, in <Cuvantul Romanesc>, Hamilton, Ontario, Canada, Anul 

20, ~r. 221, November 1994, p. 12; 

[126] Mihaly Bencze, Open Question: QQ 6, , in <Octogon>, Bril.§Ov, Vol. 2, ~o. 1, April 

1994, p. 34; 

101 



[127} Pro RHaileux, rooacteur en chef, <Archives Internationales d'Histoire des Sciences>, 

Universite de Liege, Belgique, Lettre vers RMuller, le 14 november 1994; 

[128) Marian Mirescu, "Catedra1a Func\iei Smarandache" (drawing), in <Abracadabra>, Sali

nas, CA, December 1994, p. 20; 

[129} A.D.Rachieru, "'Avalan§a' Smarandache", in <Banatul>, Timi§Oara, Nr. 4, 1994; 

[130J Gh.Suciu, "Spre America - Via Istambul", in <Minerva>, Bistrita-Nasaud, Anul V, No. 

39-40, p. 10, October - November 1994; 

[131] Ion Radu Zagreanu, "'Exist impotriva mea'", in <Minerva>, Bistri~Na.saud, Anul'V, 

No. 39-40, p.lO, October - November 1994; 

[132] R.1Iulier, editor of "Unsolved Problems related to Smarandache Function", ~umber The

ory PubL Co., Phoenix, 1993; 

reviewed in <Mathematical Reviews>, Ann Arbor, 94m: llOO5,11-06; 

[133] Gh.Stroe, "Smarandache Function", in <Tempus>, Bucharest, Annlii. Nr. 2(5), Novem

ber 1994, p.4; 

[134] Dr. Dumitru Acu, University of Sibiu, "Func~ia Smarandache ... ", <Abracadabra>, Sali

nas, CA, January 1995, No. 27, Anul III, p. 20; 

[135] Lucian Tutescu, " ... functia Smarandache ... ", in <Abracadabra>, Salias, CA, January 

1995, No. 27, Anul III, p. 20; 

[136] Constantin M. Popa, "Functia. .. ", in <Abracadabra>, Salinas, CA, January 1995, No. 

27, Anul Ill, p. 20; 

[137] Prof. M.N.Gopalan, Editor of < Bulletin of Pure & Applied Sciences>, Bombay, India, 

L~tter to M. Andrei, December 26, 1994; 

[138] Dr. Peter L. Renz, Academic Press, Cambridge, Massachusetts, Letter to R.Muller, Jan

uary 11, 1995; 

[139] Charles Ashbacher, review of the "Smarandache function Journal", in <Foumal of Recre

ational Mathematics>, USA, VoL 26(2), pp. 138-9, 1994; 

102 



[140] ~.J.A. Sloane, S. Plouffe, B. Salvy, "The Encyclopaedia of Integer Sequences", Academic 

Press, San Diego, New York, Boston, London, Sydney, Tokyo, Toronto, 1995, M0453 

~0167; 

also online: S(,PERSEEKER~RESEARCH.ATT.COM (by N.J.A. Sloane, S. Plouffe, B. 

Salvy, AT&T Bell Laboratories, Murray Hill, New Jersey 07974, USA) 

presented as: 

"SMARAKDACHE NUMBERS": S(n), for n = 1,2,3, ... , [1.10543], (the values of the: 

Smarandache Function), 

and 

"SMARANDACHE QUOTIENTS": for each integer n > 0, find the smallest k such that 

nk is a factorial, i.e. S(n)/n, for n = 1,2,3 ... ; 

and in the newest electronic version of the encyclopedia there are some other notions: 

"SMARANDACHE DOUBLE FACTORIALS", "SMARANDACHE SQUARE BASE", 

"SMARANDACHE CUBIC BASE","SMARANDACHE PRlME BASE", 

"SMAR.I\KDACHE SYMMETRIC SEQUENCE", "SMARAXDACHE CONSECUTNE 

SEQUEXCE", "SMARANDACHE DESCONSTRUCTIVE SEQUENCE", "SMAR.I\N

DACHE MIRROR SEQUENCE"," SMARANDACHE PERMUTATION SEQUENCE", 

"SMARANDACHE REVERSE SEQUENCE", "SMARANDACHE CONSECUTIVE 

SIEVE"; 

[141J Editors of <Mathematical Review of the book "Unsolved Problems related to Smaran

dache Function" by F.Smarandache, edited by R.Muller, 94m: 11005; 

[142] Jean-Marie De Koninck, Quebec, review of the paper" A function in the number theory" 

by F.Smarandache, in <Mathematical Reviews>, 94m: 11007, p. 6940; 

[143J Jean-Marie De Koninck, Quebec, review of the paper "Some linear equations involving 

a function in the number theory" of F.Smarandache, in <Mathematical Reviews>, 94m: 

11008, p. 6940; 

103 



[144] Annel Mercier, review of the paper" An infinity of unsolved problems concerning a func

tion in the number theory" of F.Smarandache, in <Nathematical. reviews>, 94m: 11010, 

p.6940; 

[145] Armel Mercier, review of the paper "Solving problems by using a function in the number 

theory" of F.Smarandache, <Mathematical. Reviews>, 94m: 11011, p_ 6941; 

[146] LM.Radu, Bucharest, Letter to the Editor ("The Smarandache function"), in <Mathema

tical. Spectrum>, UK, Vol. 27, No.2, p. 43, 1994/5; 

[147J Paul Erdos, Hungarian Academy of Sciences, Letter to the Editor ("The Smarandache 

function inter alia"), in <Mathematical. Spectrum>, Vol. 27, No. 2, pp. 43-4, 1994/5; 

[148] Ion Soare, "Un scriitor aJ paradoxurilor: Florentin Smarandache", 114 pages, Ed. Al

marom, Rm VaJcea, Romania, p. 67, 1994; 

[149] Dr. C.Dumitrescu, "Func~ia Smarandache", in <Foaie Matematicib, Chi§inau, Moldova, 

No.3, p. 43, 1995; 

[150] D.W. Sharpe, A. Stuparu, Problem 1, in <Foaie Matematica>, Chi§in3.u, Moldova, No. 

3, p. 43, 1995; 

[151} Pedro Melendez, Problem 2, in: <Foaie Matematica>, Chi§inau, Moldova, No.3, p. 43, 

1995; 

[152J Ken Tauscher, Problem 3, in <Foaie Matematidi>, Chi§inau, Moldova, No.3, p. 43, 

1995; 

[153] Thomas Yau, Problem 4, in <Foaie Matematica>, Chi§inau, Moldova, No.3, p. 43, 1995; 

[154] Lohon 0., Buz, Maria, University of Craiova Library, Letter No. 499, July 07, 1995; 

[155] Growney JoAnne, Bloomsburg University, PA, "The most Humanistic Mathematician: 

Folrentin Smarandache" 

and Larry Seagull, "Poem in Arithmetic Space", in the <Humanistic Mathematics 

Network>, Harvey Mudd College, Claremont, CA, October 1995, # 12, p. 38 and p. 

38-40 respectively; 

104 



[156] Le Charles T., "The most paradoxist mathematician of the world", in <Bulletin of Num

ber Theory>, March 1995, Vol. 3, No.1; 

[157] Seagull Larry, Glendale Community College, CA, August 1995, Anul III, Ko. 34, pp. 20-1; 

[158] Moore Carol (Library Specialist), Wurzburger Marilyn (Head of Special Collections), 

Abstract of "The Florentin Smarandache papers" special collection, Call #SM SC SM-

15, at Arizona State university, Tempe, AZ 85287-1006, Box 871006, Tel. (602) 965-6515, 

E-mail: icclmc@asuvm.intre.asu.edu, liSA; 

[159] Zitarelli David, abstract on C.Dumitrescu's "A brief history of the 'Smarandache Func

tion'", in <Historia Mathematica>, Academic Press, USA, May 1995, Vol. 22, No.2, p. 

213, # 22.2.22; 

[160J Alkire Leland G., Jr., Editor of <Periodical Title Abbreviations>, Kennedy Library, 

Eastern Washington University, Cheney, Washington, Letter to R.Muller, April 1995; 

[161] Summary of R.Muller's "Unsolved problems related to Smarandache Function" book, in 

<Zentralblatt fur Matematik>, Berlin, 1995, 8()4,.43, 11006; 

[162] Dumitrescu C., "Functia Smarandache", in <Caiet de informare matematica>, 'Nicolae 

Grigorescu' Collge, Campina, May 1995, Anul XVII,Ko. 33, p. 976; 

[163] Melendez Pedro, Bello Horizonte, Brazil, Proposed Problem 1, in <Caiet de inforIDlj.re 

matematica>, 'Xicolae Grigorescu' College, Campina, May 1995, Anu! XVII, No. 33, p. 

976; 

[164] Sharpe D.W., Stuparu A., Proposed Problem 2, in <Caiet de informare matematidi>, 

'Nicolae Grigorescu' College, Campina, May 1995, Anul XVII, No. 33, pp. 976-7; 

[J65] Rodriguez J., Sonora, Mexico, Proposed Problem 3, in <Caiet de informare matematicii>, 

'Nicolae Grigorescu' College, Campina, May 1995, Anul XVII, No. 33, p. 977; 

[166] Tauscer Ken, Sydney, Australia, Proposed Problem 4, in <Caiet de informare matem

aticil>, 'Nicolae Grigorescu' College, Campina, May 1995, Anul XVII, No. 33, p. 977; 

105 



[167J Index of <Mathematica Spectrum>, University of Sheffield, England, Summer 1995, VoL 

25-7, p. 71; 

[l68J Abstract on <Sma.randache Function Journal>, in <Ulrich's International Periodicals 

Directory>, USA, 1994-5, Mathematics 3783; 

[169] Burton Emil, <Tudor Arghezi> College, Craiova, Letter of May 18, 1995; 

[170] Fons Libris, Pretoria, South Africa, Letter to the Publisher, May 1995; 

[171] Sakharova V., <Referativnyi Zhurnal>, Moscow, Russia, Letter to R.Muller, July 20, 

1995, No. 64-645/11; 

[172] Dumitrescu C., Seleacu V., editors, "Some notions and questions in the number theorr", 

Erhus Univ. Press, Glendale, Arizona, 1994; 

[173} Erdos Paul, Hungarian Academy of Sciences, Budapest, Letter to T.Yau, June 18,1995; 

[174] Lungu Ai., Bonn, Germany, Letter of April 04,1995; 

[175] Vlad Mihail I., "Nota Editorului", in <Emigrant la Infinit>, Ed. Macarie, Targovi;te, 

Romania, 1995; 

[176] Henry Ibstedt, "Smarandache's Function S(n) Distribution for n up to 100", <Smaran

dache Function Journal>, Vol. 5--6, No.1, first cover, June 1995; 

[177] Marcela Popescu, Paul popescu, Vasile Seleacu, "On some numerical function", <Sma

randacbe Function Journal>, Vol. .'>-6, ~o. 1, pp. 3-5, June 1995; 

[178] I.Ba.lll.cenoiu, V.Seleacu, "Properties of the numerical function F.", <Smarandache FUlIc

tion Journal>, Vol. .'>-6, No.1, pp. 6-10, June 1995; 

[179} V.Seleacu, Narcisa Virlan, "On a limit of a sequence of a numerical function", 

<Smarandache Function Journal>, Vol. .'>-6, No.1, pp. 11-2, June 1995; 

[180] Emil Burton, "On some series involving the Smarandache Function", <Smarandache 

Function Journal>, Vol. .'>-6, No.1, pp. 13-5, June 1995; 

106 



[181) LBiilacenoiu, V.Selea.cu, "Some properties of the Smaranda.che Function of the type I", 

<Smaranda.che Function Journal>, Vol. 5-6, No.1, pp. 16-20, June 1995; 

(182) Charles Ashba.cher, "Some problems on Smaranda.che Function", <Smaranda.che Func

tion Journal>, Vol. 5-6, No.1, pp. 21-36, June 1995; 

[183] LBiilacenoiu, M.Popescu, V.Selea.cu," About the Smarandache Square's Complementary 

Function", <Smaranda.che Function Journal>, Vol. 5-6, No.1, pp. 37-43, june 1995; 

[184] Tomita Tiberiu Florin, "Some remarks concerning the distribution of the Smaranda.che 

function", <Smaranda.che Function Journal>, Vol. 5-6, No.1, pp. 44-9, June 1995; 

[185] E.R.adescu, N.lUdescu, C.Dumitrescu, "Some elementary algebraic considerations m

spired by the Smaranda.che Function", <Smaranda.che Function Journal>, Vol. 5-6, ~o. 

1, pp. 50-4, June 1995; 

[186} LBaJacenoiu, C.I?umitrescu, "Smaranda.che Functions of the Second Kind", <Smaran

da.che Function Journal>, Vol. 5-6, No.1, pp. 55-8, June 1995; 

[187] M.Popescu, P.Popescu, "The proble of Lipschitz Condition", <Smaranda.che Function 

Journal>, Vol. 5-6, no. 1, pp. 59-63, June 1995; 

[188] L.Seaguil," A generalization of a problem of Stuparu", <Smarandache Function Journal>, 

Vol. 5-6, 1\0. 1, p. 71, June 1995; 

[189] L.Seagull, "An important formula to calculate the number of primes less than x", 

<SmarandacheFunction Journal>, Vol. 5-6, No.1, p. 72, June 1995; 

[190] Tomikawa Hisaya, :\1:agalog Project Group, Tokyo, Japan, abstract of the <Smaranda.che 

Notions> journal, August 1995; 

[191] Erdos Paul, Hungarian Academy of Sciences, Budapest, Letter to T.Yau, August 7, 1995; 

[192} Hazewinkel :\1:., Stichting :\fathematics Centrum, Amsterdam, Letter to LBaJaceno;u, 

July 4, 1995; 

[193} Sloane N.J.A., AT&T Bell Labs, Murray Hill, New Jersey, l!SA, njas@research.att.com, 

E-maib to R.Muller, February - August 1995; 

107 



[194] Ashbacher Charles, Decisionmark, Ceder Rapids, Iowa, "An Introduction to the Smaran

dache Function", 60 pp., Erhus University Press, Vail, Az, USA, 1995; 

[195] Ecker Michael W., editor of <Recreational & Educational Computing>, Clarks Summit, 

PA, E-mail of 22 - SEP - 1995; 

[196] Ecker Michael W., Editor ok Recreational & Educational Compnting>, Clarks Summit, 

PA, Two E-mails of 26 - SEP - 1995; 

[197] Andrei M., Dumitrescu C., Seleacu V., Tutescu 1., Zanfir St., "Some remarks on 

the Smarandache function", in <Bulletin of Pure and Applied Sciences>, editor Prof. 

M.N.Gopa.lan, Bombay, India, Vol. 14E, No.1, 35-40, 1995; 

[198] Mudge Michael Richard, Letter to S. Abbott , The Editor of <The Mathematica.l 

Gazette>, U.K., October 7, 1995; 

[l99J Mudge Michael Richard, Letter to David Wells, The Author of the <Penguin Dictionary 

of Intersting and Curious Numbers>, U.K., October 8, 1995; 

[200] Mudge Micha.elRichard, "A paradoxal mathematician, hls function, paradoxist geometry, 

and class of paradoxes", manuscript, October 7, 1995; 

[201] Mudge Michael Richard, » A paradoxal mathematician, his function, paradoxist geomet~y, 

and class of paradoxes", manuscript, October 7, 1995; 

[202] Ashbacher Charles, Problem A, in <Personal Computer World>, London, October 1995; 

[203J Radu I.M., Problem B, in <Personal Computer World>, London, October 1995; 

[204] Mudge Mike, "The Smarandache Function revisited, plus a reader's miscellany", in 

<Personal Computer World>., London, October 1995; 

[205] Ashbacher Charles, "The Smarandache function-I", Letter to the Editor, in <The Mathe

matica Spectrum>, editor D.W.Sharpe, University of Sheffield, Vol. 28, No.1, 20, 1995/6; 

[206J Seagull L., "The Smarandache fundion-2", Letter to the Editor, in <The Mathematica.l 

Spectrum>, editor D.W. Sharpe, l:niversity of Sheffield, Vol. 28, No.1, 20, 1995/6; 

108 



[207J Ashbacher Charles, "The Smarandache function and the Fibonacci relationship", Letter 

to the Editor, in <The Mathematical Spectruim>, editor D.W.Sharpe, University of 

Sheffield, Vol. 28, :\"0. 1, 20, 1995/6; 

[208] Ashbacher Charles, Letter to R.Mulier, October 26, 1995; 

[209] Muller R., Letter to Elias Toubassi, 'Gniversity of Arizona, Tucson, October 30, 1995; 

[210] Dumitrescu Constantin, "Solved and Unsolved Problems related to the Smarandache 

Function", The Second Asian Mathematics Conference (AMC'95), Kakhon Ratchasima, 

Thailand, October 17-20, 1995; 

[211J Sandor Jozsef, Forteni Harghita, "On certain inequalities involving the Smarandache 

function", unpublished article; 

[212] Zitarelli David E., Letter to Mario Hernandez, November 1995; 

[213] Bruckman Pual S., Solution to problem H-490, in <The Fibonacci Quarterly>, Vo!' 33, 

~o. 5, Kovember 1995, pp. 476-7; 

and also M.Ballieu, A.Dujella, N.Jensen, H.-J.Seiffert, A.Stuparu; 

[214] 'First International Conference on Srnarandache Type Notions in Number Theory', Au

gust 21-24, 1997, 

organizers: C.Dumitrescu & V.Seleacu, Dep. of Math., Univ. of Craiova, Romania 

[see <Notices of the American Mathematical Society>, VoL 42, No. 11, :\"ovember 1995, 

p. 1366J; 

also the meeting is sponsored by UNESCO; 

[215] Radu I.M., Problem PP60, in <Octogon>, Br~v, Vol. 3, No.1, April 1995, p. 50; 

[216J Yau T., Problems PP66 & PP67, in <Octogon>, Br~v, Vol. 3, No.1, April 1995. p. 51; 

[217] Andrei M., Dumitrescu C., seleacu V., Tutescu L., Zanfir St., "Some Remarks on the 

Smarandache Function", in <Octogon>, Br~v, Vo!' 3, ~o. 1, April 1995, pp. 23-7; 

109 



[218] Abbott Steve, Farlingaye High School, England, Review of "The Smarandache Functipn 

Journal 4-5 (1)", in <The Mathematical Gazette>, London, Vol. 79, No. 4-86, November 

1995, p, 608; 

[219] Mudge Michael R., Dyfed, U.K., "Introducing the Smaranda.che - Kurepa and Smaran

dache - Wagstaff Functions" , manuscript, 11 - 19 - 1995; 

[220] Mudge Michael R., Dyfed, U.K., "The Smaranda.che Near-To-Primorial Function", 

manuscript, 11 - 19 - 1995; 

[221] Mudge Michael ft., Dyfed, U.K., Letter to R.Muller, 11- 19 - 1995; 

[222] Suggett Gareth, U.K., "Primes between consecutive Smaranda.che numbers", unpublished 

paper, November 1995; 

[223] BaJa.cenoiu Ion & Seleacu Vasile, "Some properties of the Smarandache Functions of the 

Type I", in <Octogon>, Bra.:jOv, Vol. 3, No.2, October 1995, pp. 27-30; 

[224] Ibstedt Henry, "Base Solution (The SmarandacheFunction)", Booby, Sweden, November 

30, 1995, manuscript; 

[225] Faure H" Centre de Mathematique et d'Informatique, Universite de Provence, Marseille, 

France, Letter to C.Dumitrescu, september 19, 1995; 

[226] Policarp Gane & Stadler Mihail, "Istoria Matematicii I Aniversarile din anuI1995", in 

<Caiet de Informare Maternatica>, Camp ina, Anul XVII, No. 34, December 1995, p. 

1013; 

[227] Popescu Titu, Karlsfeld, Germany, and Larry Seagull, "Poem in Arithmetic Space", pp. 

134-7 in the book <Estetica Paradoxismului> (143 pages), Editura Societa1ii Tempus, 

Bucharest, 1995; 

[228] Rodriguez J., Sonora, Mexico, Problem 5, <Foaie Maternatica>, Chi§inau, Column of 

<Problems with the Smarandache Function> edited by V.Suceveanu, No.4, p. 37, 1995; 

[229j Melendez P., Belo Horizonte, Brazil, Problem 6, <Foaie Maternati~>, Chi§inau, Column 

of <Problems with the Smarandache Function> edited by V.Suceveanu, !'io. 4, p. 37, 

1995; 

110 



[230J Yau t., Prima Community College, Tucson, Az, Problem 7, <Foaie Matematica>, Chi

§inau, Column of <Problems with the Smaranda.che Function> edited by V.Suceveanu, 

No.4, p. 37, 1995; 

[231] Seagull 1., Glendale Community College, USA, Problem 9, <Foaie Matematica>, Chi§i

nau, Column of <Problems with the Sma.ra.nda.che Function> edited by V.Suceveanu, 

Ko. 6, p. 40, 1995; 

[232J Stuparu A., Va.Icea, Romania, Problem 10, <Foaie MatematiC§>, Chi§inau, Column of: 

<Problems with the Smarandache Function> edited by V.Sucevea.nu, ~o. 6, p. 40, 1995; 

[233] Crudu Dumitru, "Florentin Smaranda.che sau incapa!a.narea unui exilat", in <Vatra>, 

Tg. Mure§, Anul XXV, XL 25, p. 92, October 1995; 

[234] Biirbulescu Radu, "Florentine Smaranda.che: 'Exist impotriva meam
, <Observatorul>, 

Munchen, Germany, Anul VIII, No. 2-4 (27-9), p. 72, Martie - Decembrie 1995; 

[235J Kashihara Kenichiro, Tokyo, Japonia, E-mail toR.Muiler. December 1995 - January 

1996; 

[236] Strazzabosco Barbara, secretary to Prof. B.Wegner, editor, <Zentralblatt fur Mathema

tik>, Berlin, Letter to R.Muller, October 13, 1995; 

[237} Kiser Lisa A., Lock Haven University, PA, Letter to Ch. Ashbacher, Cedar Rapids, lA, 

December 4, 1995; 

[238] TUf<escu Lucian, "Functia lui Smaranda.che - 0 noua func!ie in teoria functiilor". Societat.ea 

de ~tiinte Matematice din Romania, <Programul manifestanlor organizate cu prilejul 

implinirii a 100 ani de la aparif<ia primului numiir al ravistei 'Ga.zeta Matematica', 1895-

1995>, Inspectoratul ~colar al Judetului Alba, SaJa de ~nte a Liceului Militar 'Mihai 

Viteazul', Alba Iulia, Symposium, 18-20 February 1995; 

[239] A.Mullin, Huntsville, AL, USA, "On the Smaranda.che Function and the Fixed-Point 

Theory of Numbers", unpublished manuscript, 1995; 

[24OJ Corduneanu Constantin, "Personalla", in <Libertas Mathematica>, Texas State Univer

sity, Arlington, USA, Vol. XV, p. 241, 1995; 

111 



THE FUNCTION THAT YOU BEAR ITS NAME! 

This quatation is from a Letter of September 24, 1993, by Constantin M. Popa., an essayist 

of the Paradoxist Literary Movement [a movement stating that <the sense has a non-sense and, 

reciprocally, the non-eense has a sense too>], referring to the <Smarandache> Function! 

It's a comic sentence, somehow opposite to the Swiss-French mathematician Jacques Sturm 

(1803-55)'s lectures at l'Ecole Polytechnique, where, teaching students about the <Sturm> 

Theorem, Jacques said: 

"Le theoreme dont j'ai l'honneur de porter Ie nom~ (the theorem that I am honored of to bear 

my name), i.e.: 

let p(x) be a real polynomial, 1'1 = rI, and each pi = -ri, where ri are the succesive remainders 

computed by Euclidean Algorithm for the highest common factor of p and p' (this is called the 

Sturm Sequence); 

if p is non-zero at the end points od an interval, then the number of roots in that interval, count

ing multiplicity, is the difference between the number of sign changes of the Sturm Sequence at 

the two end points. 

Maybe it was accidentally that just this of my 40 math papers focused the attention of 

numbertheorists, a paper written when I was a high school student in 19708, "A function in 

the number theory" : 

Sen) is defined as the smallest integer such that S(n)! is divisible by n .. 

Some open problems and conjectures are related to it. For examples: 

1. The equation S(n) = S(n + 1) has no solution. 

2. The function verifies the Fibonacci relationship 

Sen) + Sen + 1) = Sen + 2) 

for infinitely many positive integers n. 

{Some progress has been got, verifying by computer programs these previous assertions for 

n up to 100,000; but it's seems to be still hard to find an analytic method for proving them.} 

I attached some reference works published by various journals about "the function that I 

bear its name", and I'll be glad to here from you. 

[For Professor Puaul Hartung and his students, the Number Theory Class, Department of 

Mathematics ans Computer Science, Bloomsburg L"niversity, PA; November 13th, 1995, time: 

4:00-5:00 p.m.] 
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SMARANDACHE TYPE FUNCTION OBTAINED BY DUALITyl 

Abstract. In this paper we extended the Smarandache function from the set N' of 

positive integers to the set Q of rationa.Ls. 

Using the inversion formula this function is a.Lso regarded as a generating function. 

We make in evidence a procedure to construct (numerical) function starting from a given 

function in two particular cases. Also conections between the Smarandache function and 

Euler's totient function as with Riemann's zeta function are etablished. 

1. Introduction 

The Smarandache function [13J is a numerical function S 

S(n) = min{ mlm! is divisible by n}. 

N' -+ N' defined by 

From the definition it results that if 

(1) 

is the decomposition of n into primes then 

S(nl = maxS(pf') (2) 

and moreover, if [n" n2] is the smallest common multiple of nl and n2 then 

(3) 

The Smarandache function characterizes the prime in the sense that a positive integer p;:: 4 

is prime if and only if it is a fixed point of S. 

From Legendre's formula: 

(4) 

it results !2] that if an(p) = «pn - 1)) and b,,(p) = pn then considering the standard numerical 
, p-l 

scale 

[PJ : bo(p), I>, (p), ... , b,,(p), ... 

lTogether with C.Dumitrescu, N.V-ulan, St. Zamfu, E.Radescu and KRadescu 
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and the generalized scale 

we have 

(5) 

that is S(,;) is calculated multiplying by p the number obtained writing the exponent 0 in the 

generalised scale [PJ and "reading" it in the standard scale (P). 

Let us observe that ~e calculus in the generalised scale [PJ is essentilly different from the 

calculus in the usual scale (p), becuase the usual relationship b"+1 (p) = pb,. (P) is modified in 

a,,+1(P) = pa,,(p) + 1 (for more detals see [2]). 

In the following let us note Sp( 0) = S(P,,). In [3] it is proved that 

(6) 

where a[pJ( a) is the sum of the digits of 0 written in the scale [pI, and also that 

(p_l)2 p-1 
Sp(a) = --(Ep(a) + a) + --a(p)(a) + afpl(") 

p p 
(7) 

where a(p)(a) is the sum of the digits of 0 written in the standard scale (P) and Ep(a) is the 

exponent of p in the decomposition into primes of a! From (4) it results that Ep(a) = L: [~], 
i~l P' 

where [hJ is the integral part of h. It is also said [l1J that 

Ep(o) = a - a(p)(a) 
p-l 

We can observe that this equality may be writen as 

Ep(a) = ([~LJ [Pi 

(8) 

that is the exponent of p in the decomposition into primes of a! is obtained writing the integral 

part of alp in the base (P) and reading in the scale [Pl. 

Finally we note that in [1] it is proved that 

(9) 

From the definition of S it results that Sp(Ep(a» =p[~] =a-ap (ap is the remainder of 

a with respect to the modulus m) and also that 

(10) 
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so 
_SP:....(=--a.:...) _-_rT-,!:CP::.o) (....:Sp:...:(=--a"",-)) Sp(a) - 1 - %)(Sp(a) -1) > a; < a. 

p-l - p-l 

(ising (6) we obtain that Sp(a) is the unique solution of the system 

(ll) 

2. Connections with classical numerical functions 

It is said that Riemann's zeta function is 

We may establish a connection between the function Sp and Riemann's function as follows: 

'. Proposition 2.1. If n = IT p:'n is the dcomposition into primes of the pozitive integer n then 
i=l 

Proof. We firs establish a connection with Euler's totient function <p. Let us observe that, 

for a 2:: 2,p"-1 = (p -l)a,,-l(P) -;-1, so rT[p](p"-l) = p. Then by means of (6) it results (for 

a 2:: 2) that 

Using the well known relation between <p and ( given by 

(8 - 1) _ L <pen) 
~-R~I~ 

and (12) it results the required relation. 

Let us remark also that, if n is given by (1), then 

, , 
<pin) = II <p(pf') = mSp, (Pi',-l) - Pi) 

i::;;l i=l 

and 
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~ow it is said tha.t 1 + <p(p,) + ... + <p(pf') = pf' and then 

0,-1 

L Sp,(P~) - (a; -l)p, =·pi'· 
bol 

Consequently we may write 

0,-1 

Sen) = max(S L Sp,(p7) - (a; - 1)p;) 

To establish a connection with Mangolt's function let us note II = min, V = max, II =the 
d 

d 
greatest common divisor and V=the smallest common multiple. 

d 
We shall write also nl II n2 = (nl' n2) and nl V n2 = [n" n2J. 

d 
o 

The Smarandacbe function S may be regarded as function from the lattice Cd = (N", II, V), 
o 

into lattice C = (N", II, V) SO that 

S( V nil = V Sen;). (12) 
i='f,I i=!,k 

Of course 5 is also order preserving in the sense that nl So n2 -+ Send < S(n2)' 

It is said [10J that if (V, II, V) is a finite lattice, V = {x" X2,' •• ,x,,} with the induced order 

S, then for every function f : V -+ N the asociated genera.ting function is defined by 

Magolt's function A is 

F(x) = Lf(y) 
v::5:~ 

{ 

lnpifn=p' 
A(n) = 

o otherwise 

The generating function of A in the lattice Cd is 

Fd(n) = L A(k) = In n 
k~dn. 

The last equality follows from the fact that 

k Sin {o} kAn =k {o} k\n(k dividesn) 
d 

The generating function of A in the lattice C is the function W 

F(n) = LA(k) = Wen) = In[1,2, ... ,nJ 
k::5n 

116 

(13) 

(14) 

(15) 



Then we have the diagram from below. 

We observe that the definition of S is in a closed connection with the equa.lities (1.1) and 

(2.2) in this di~am. If we note the Mangolt's function by f then the relations 

[1,2, ... , nJ = eFt,,) = ef (1)e1(2) .•. ef(n) = e1t(n) 

together with the definition of S suggest us to consider numerical functions of the from: 

v(n) = min{m/n ~d [1,2, .. . ,m]} (J6) 

where ,,·ill be detailed in section 5. 

A 

~£ 
.~ ~ (12) 

Fd(n) = L A(k) = Inn i I F(n) = L A(k) = W(n) 
kIn I I kSn 

~'----------~--------~ 

~ £ 12.3) i:S I') '1') I: I q,(n) = L W(k) kin ,i k$.n 

\ 
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3. The Smarandache function as generating function 

Let V be a partitial order set. A function f : V -+ N may be obtained from its generating 

function F, defined as in (15), by the inversion formula 

f(x) = EF(z)J.I(z,x) (17) 
rSz 

where J.I is Moebius function on V, that is J.I: VXV -+ N satisfies: 

(J.ll) J.I(x,y) = 0 if x '1. y 

(J.l2) J.I(x,x) = 1 

(J.l3) E J.I(x,y) =0 ifx<z 

It is said [10l that if V = {1,2, ... ,n} then for (V,~d) wehavep(x,y) = J.I (~), whereJ.l(k) is 

the numericai. Meobius function J.I(I) = I,J.I(k) = (_I)' if k = PtP2 .. . Pk and J.I(k) = 0 if k is 

divisible by the square of an integer d > l. 

If f is the Smarandache function it results 

Fs(n) = ES(n). 
din 

Until now it is not known a closed formula for Fs, but in[8] it is proved that 

(i)Fs(n) = n if and ouly if n is prime, n = 9, n = 16 or n = 24. 

(ii)Fs(n) > n if and only if n E {8, 12, 18,20} or n = 2p with P a prime (hence it results 

Fs(n) ~ n + 4 for every pozitive integer n) and in [2] it is showed that 
... ,t i-I 

(m)F(PIP2 .. ·Pt) = 2: 2 Pt· 
,,=1 

In this section we shall regard the Smarandache f . .mction as a generating function that is 

using the inversion formula we shall construct the function s so that 

sen) = I2Il(d)S G) . 
dlr. 

n8) 

If n is given by (1) it results that 

Let us consider Sen) = maxS(pi') = S(p:"'). We distinguish the following cases: 
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(ad if S(p:;') 2': S(pr;) foe all i -# io then we observe that the divisors d for which f.l(d) l' 0 
are of the form d = 1 or d = Pi,Pi, ... Pi,. A divisor of the last form may contain Pic or not, so 
using (2) it results 

sen) = S(p~;' )(l-cf_,+C;_l + ... +( _l)'-' C::J) +S(p:"-')( -HCi_,-CL, + ... +( -1)'C::J) 
that is sen) = 0 ift ~ 2 or S(p:"-') and sen) = Pic otherwise. 

(a2) if there exists, jo so that S(p:"-') < S(p~io) and 

we also suppose that S(p;;"O) = max{S(p?)/S(p:"-') < S(p?)}. 
Then 

sen) = S(p:;O)(l- C;_l + cL, - ... + (-l)'-lC;:il+ 

+S(p~")(-l + c':'2 - C;_2 - ... + (-l)t-lc;=D+ 
+S(p;;'-')(l- C,'_2 + C;_2 - ... + (-1)'-2c:=i) 

so sen) = 0 lit ~ 3 or'S(p;:O-') = S(p';:O) and sen) = -Pi, otherwise. 
Consequently, to obtain sen) we construct as above a maximal sequence i;, i2 , ••• , i k , so 

that Sen) = S(p~;' ),S(p~"-') < S(p~;'), ... , S(p;:~~,-l) < S(p~:') and it results that sen) = 0 
ift ~ k + 1 or S(p~:') = S(p~:'-') and sen) = (_I)k+1 otherwise. 

Let us observe that 

Otherwise we have O"[pJ(a -1) - CTiPJ(a) = -1. So we may write 

{ 

0 ift ~ k + 1 or O"iPJ(ak -1) - CT[pJ(ak) = p-l sen) = 
( -1 )k+l Pk otherwise 

Application. It is said [10] that (V, /I, V) is a finit lattice, with the indused order $ and 
for the function f : V -r .v we consider the generating function F defined as in (15) then if 
gij = F(Xi!\X,) it results detg.i = f(x,)· f(X2)' .... f(xn). In [10] it is shown also that this 
assertion may be generalized for partial ordered set by defining 

giJ = L f(x). 
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t:sing these results, if we denote by (i,j) the greatest common divisor of i and j, and 

~(r) = det(S«i,j») for i,j = r;r then D.(r) = s(l) . s(2) ..... s(r). That is for a suffisient 

large r we have D.(r) = 0 (in fact for r ~ 8). Moreover, for every n there exists a sufficient 

large r so that D.(n, r) = det(S(n + i, n + j» = 0, for i,j = r;r because D.(n, r) = IT Sen + 1). 
i=l 

4. The extension of S to the rational numbers 

To obtain this extension we shalll define first a dual function of the Smarandache function. 

In [4] and [6] a duality principale is used to obtain, starting from a given lattice on the 

unit interval, other lattices on the same set. The results are used to propose a definition· of 

bitopological spaces and to introduce a new point of view for studying the fuzzy sets. In [5J 

the method to obtain news lattices on the unit interval is generalised for an arbitrary lattice. 

In the following we adopt a method from [5] to construct all the functions tied in a certain 

sense by duality to the Smarandache function. 

Let us o~serve that if we note lRd(n) = {min $. m!}, Cd(n) = {mJm! $. n},lR(n) = 
{min $ m!},C(n) = {m/m! $ n} then we may say that the function 5 is defined by the 

triplet (A, E, lRo), because S(n) = A{mJm E lRo(n)} . .Now we may investigate all the functions 
d 

defined by means of a triplet (a,b, e), where a is one of the symbols V,A,A, V,b is one of the 
d 

symbols E and It, and c is one of the sets lRo(n) , Cd(n), lR(n), C(n) defined above. 

Not all of these functions are non-trivial. As we have already seen the triplet (A, E, lRd) 

defined the fJIlction 51 (n) = 5(11), but the thriplet (A, E, Cd) defines the function 52 ( n) ,= 

A{m/m! $d n}, wich is identically one. 

Many of the f.mctions obtalned by this method are step functions. For instance let 53 be 

the function defined by (A,E,R). We have 53(n) = A{mln :5 m!} so S3(71) = m if only if 

n E [em -I)! + I,m!]. Let us focus the attention on the function defined by (I\,E,Cd ) 

5.(4) = V{mJm! $d n} 

where there is, in a certain sense, the dual of Smaranda.che function. 

Proposition 4.1. The function 8. satisfies 

S.(nl V n2) = 5.(nJ) V 5.(n2) 
d 

so is a morphism from (N*, V) to (N-, V) 
d 
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Proof. Let us denote by 1'1,])2, ... ,Pi,." the sequence of the prime numbers and let 

The nt/\n2 = I1p;nm(Q.,P;). If S.(nl Vn2) = m,S.(ni) = mi, for i = 1,2 and we suppose 
d d 

m, :S m2 then the right hand in (22) is mill m2 = m. By the definition S. we have Ep.{m) :S 

min(a;,,B;) for i ~ 1 and there exists j so that E",(m + 1) > min(a;,,Bi). Then a; > Ep;(m) 

and /3; ~ Ep,(m) for all i ~ 1. We a.Iso wave Ep,(mr ) :S a; for r = 1,2. In addition there exist 

hand k so that Ep .. (m+1) > ah,e.,(m+l) > a •. 

Then min(a;,/3;) ~ min(e"(ml)' ep.(m2» = Ep;(ml), because ml :S m2, so m -1 :S m. If 

we assume ml < m it results that m! :S nl, so it exists h that E".(m) > ah and we have the 

co~tradiction Ep.(m) > min{ah,:h}. Of course S.(2n + 1) = 1 and 

S.(n) > 1 if and only ifn is even. (21) 

Proposition 4.2. Let Pb])2, ... , Pi, .. , be the sequence of all consecutive primes and 

the decomposition of n E N' in!e primes such that the first part of the decomposition contains 

the (eventualy) consecutive primes, and let 

t; = { S(pf;) -1 if Ep,(S(pf'» > a; 

S(Pf') + Pi -1 if Ep;(S(Pi')) = cr; 
(22) 

Proof. If Ep,(S(P'i') > ai, then from the definition of the function S results that S(pi')-l 

is the greatest positive integer m much than Ep,(m) :S ai. Also if E.,(S(pi'» 

S(pn + Pi - 1 is the greatest integer m with the property that E .. (m) = a;. 

a; then 

It results that min{tl: t 2 ,.··, tk,Pk+l-l} is the greatest integer m much that Ep_;(m!) :S ai, 

fori=1,2, ... ,k. 

Proposition 4.3. The junction 8. Slltisfies 

for all positive integers nl and n2. 
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Proof. The equality results using (22) from the fact that (n, + n2, [nt, n2]) = (nt, n2)). 

We point out now some morphism properties of the functions defined bu a triplet (a,b,c) 

as above. 

d 
Proposition 4.4. (i) The functions 55: N" --t N*,55(n) =V {m/m!:S;d n} satisfies 

55(n, /\ n2) = S5(n,) /\ S5(n2) = 55(n,) /\ 55(n2) (23) 
d d 

d 
(ii) The function S6 : N" --t N"" 56(n) =V {mln:S;d m!} satisfies 

d d 

56(nJ V n2) = 56(nt) V 56 (n2) (24) 

(iii) The function 57 : N" --t N", 57 (n) =V {m/m! :S; n} satisfies 

(25) 

Proof. (il Let A. = {a,fa;! :S;d n,l. B = {b;/b;! :S;d n2} and C = {Ck/Ck! :S;d nJ V n2}' 
• 

The" we have A. C B or B C A.. Indeed, let A. = {a"a2, .... ah},B = {b"hz, .. ·,br } so that 

a; < a'Hand bj < bj ,.,. Then if ah :S; br it results that a; :S; br for i = l,h so a;! :S;. br ! Sci n2· 

That minds A. C B. Analogously, if br :S; ah it results B C A.. Of course we have C = A. U· B 

so if A. c B it results 

d d 

S5(n,!\ n2) =V Ck =V ai = 55 (n,) = min{5,(n,), 5s(n2)} = 5,(n,) /\ 5,(n2) 
d d 

From (25) it results !hai 55 is order preserving in Ld (but not in L, becua.se m! < m! + 1 

but 5s(m!) = [1,2,.,., m] and 5s(m! + 1) = I, because m! + 1 is odd), 
d 

(ii) Let us observe that 56(n) =V {m/3i E n so that Ep,(m) < a;}. If a = V{m/n:S;d m!} 

then n:S;d (a -+- I)! and a + 1 = A{m/n:S;d m!} = S(n), so 56(n) = [1,2, ... ,S(n) -1]. 
d d 

Then we have 56 (n, V n2) = [1,2, ... , 5(nl V n2) - I} = [1" 2 ... , 5(n,) V 5(n2) - 1] and 
d 

56 (nJ) V 56 (n2) = [[1,2, ... , S6(n,) - I;, [1, 2, ... , S6(n2) - 1]] = [1,2, ... , 56(n,) V 56(n2) - 1]. 

(iii) The relations (27) result from the fact that 57 (n) = [l,2, ... ,m] if and only if n E 

[mL (m + I)! - 1]. 

Now we may extend the Smarandache function to the rational numbers. Every positive 

rational number a possesses a unique prime decomposition of the form 

(26) 
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with integer exponents l>p, of which only finitely many are nonzero. Multiplication of 
rational numbers is reduced to addition of their integer exponent systems. As a consequence 
of this reduction questions concerning divisibility of rational numbers are reduced to questions 
concerning ordering of the corresponding exponent systems. That is if b = n p!3p then b divides 

p 
a if and only if /3. $ l>p for all p. The greatest co=on divisors d and the least common 
multiple e are given by 

d = (a,b, ... ) = IIr(ap.Bp •... ), e = [a,b, ... J = IIp'''''''(ap.!3p .... ) 
p 

(27) . 

Futr.ermore, the least coomon multiple of nonzero numbers (multiplicatively bounded above) 
is reduced by the rule 

• J 1 [a,b, ... =-(1! ) 
a' b'''· 

(28) 

to the greatest common divisor of their reciprocals (multiplicatively bounded below). 
Of course we may write every positive rational a under the form a = n/n" with n and n, 

positive integers. 

Definition 4.5. The extencion S : Q:;. -+ Q:;. of the Smarandache function is defined by 

sr 32..) = S,(n) . 
\n, S.(n,) (29) 

A consequence of this definition is that if n, and n2 are positive integers then 

(30) 

Indeed 

(
1 d 1) (1) 1 1 1 1 S n, V n2 =S nl~n2 = S.(nl~n,) = S.(n,)J\S.(n,) = S.(n,) V S.(n,) = 

and we can imediately deduce that 

S (:, V ::J = (S(n)VS(m»' (SCJ VSCJ) (31) 
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- - 1 
It results that function 5 defined by 5(a) = -1- satisfies 

5(;;) 

sen] /\ n2) = S(n,) /\ S(n2) and 
d 

S (~ /\ ~) = S ( ~) /\ S (~) 
nl a. n:;,: \nl n2 

for every positive integers n, a.J2d n2. ~oreover, it results that 

S (nl /\~) = (S(n,)/\S(nz)). (S (~) /\S (~)') 
ml d m2 ml m2 

(32) 

and of course the restriction of r; to the positive integers is 54. The extent ion of S to all the 

rationals is given by S(-a) = Sea). 

5. Numerical functions inspired from the definition 

of the Smarandache function 

\Ve shall use now the equality (21) and the relation (18) to consider numerical functions as 

the Smarandache function. 

We may say that m! is the product of all positive "smaller" than m in the lattice C. 

Analogously the product Pm of all the divisors of m is the product of all the elements "smalier" 

than m in the lattice C. So we may consider functions of the form 

8(n) = /\{mln ~d p(m)}. (33) 

It is said that jf m = pf' .~' ..... p'f' then the product of all the divisors of m is p(m). = 

VmT(m) where r(m) = (XI T l)(xz + 1) ... (Xt + 1) is the number of all the divisors ot m. 

If n is given as in (1) then n ~d p(m) id and only if 

9, == X,(XI + l)(xz + 1) ... (Xt + 1) - 20:, ~ 0 

9z = xz(x, + l)(xz + 1) ... (x, + 1) - 20:2 ~ 0 (34) 

9, = x, (x, T l)(xz + 1) ... (Xt + 1) - 20:, ~ 0 

so 8( n) may be obtained solving the problem of nOn linear programming 

(min)f = p~' . p? ..... pf' (35) 
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under the restrictions (37). 

The solutions of this problem may be obtained applying the algorithm SUMT (Sequencial 

Unconstrained Minimization Techniques) due to Fiacco and Me Cormick [7J. 

Examples 

1. For n = 34 
•. 512

, (37) and (38) become (min)f(x) = 3~15~' with Xl(XI + 1)(x2 + 1 ~ 8), 
k 

X,(XI + 1 )(X2+ 1) ~ 24. Considering the function U(x, n) = f(x) -r L 1n91(X), and the system 
i=l 

I7U /17Xl = 0, I7U /17X2 = 0 (36) 

in [7J it is showed that if the solution xl(r),x2(r) can't be explained from the system we 

can make r --+ o. Then the system becomes Xl(XI + 1)(x2 + 1) = 8, X2(XI + 1)(x2 + 1) = 24 

with the (real) solution Xl = 1, X2 = 3. 

So we have min{m/34
. 512 $ p(m)} = mo = 3.53

• 

Indeed p(mo) = m~("'<»/2 = m~ = 34 .512 = n. 

2. For n = 32 .567, from the system (39) it results for X2 the equation 2x~+9x~+7x,-98 =.0, 

with th real solution x, E (2,3). It results Xl E (4/6,5/7). Considering Xl = 1, we oho;erve 

that for x, = 2 the pair (Xl, X,) is not an admissible solution of the problem, but X2 = 3 give 

9(32 .57
) = 34 .512 • 

3. Generaly for n = p~' . p~3, from the system (39) it results the equation 

with solutions given by Cartan's formula. 

Of course, using "the method of the triplets", as for the Smarandache function, many other 

functions may be associated to 9. 

For the function II given by (18) it is also possible to generate a class of function by means 

of such triplets. 

In the sequel we'll focus the attention on the analogous of the Smarandache function and 

on his dual in this case. 

Proposition 5.1. If n has the decomposition into primes git:en by (1) then 

(i) lI(n) = ~axpf' 
I=l,t 

d 

(ii) lI(nl V n,) = lI(nl) V lI(n,) 
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Proof. 

(i) Let max pro = p;:-. Then pf' ~ p;:- for all 1, t, so pf' ~d [1,2, ... ~']. But (pr', p;') = 1 

for i 1- j and then n ~d [1,2, ... p~'J. 

~ow if for some m < p;:" we have n ~d [1,2, ...• mj, it results the contradiction~' ~d 

[1.2, ... ,m]. 
d 

(ii) If n1 = TIp"p, 71.2 = Dr then 71.1 V 71.2 = TIr(ap/lp) so 

d 

v(nl V nz) = maxpma%(opfl'P) = rr:ax{maxpCl.'P, maxp31». 

The function V, = V is defined by means of the triplet (V, E, !R[dJ) where R[dl = {min ~d 

[1,2 •...• mn. His dual, in the sense of above section, is the function defined by the triplet 

(V. c. C[dJ). Let us note 1/4 this function 

v4(n) = V{m![l, 2, ... , m} ~d n} 

That is v4(n) is the greatest natural number with the property that all m ~ v,(n) divide n. 

Let us observe that necessary and sufficient condition to have v.( n) > 1 is to exist m > 1 

so that every prime p ~ m devides n. From the definition of v. it also results that v,(n) = m 

if and only if n is divisible by every i ~ n and not by m + L 

Proposition 5.2. The function V4 satisfies 

d 

v4(nl Vn2)=v,(nl)l\v,(n2) 

d 

Proof. Let us note n = "-I 1\ n2, v,(n) = m, v,(ni) = mi for i = 1,2. If ml = mt!1 m2 

than we prove that m = mI' From the definition of v, it results 

v.(ni) = mi f-t [Vi::; m; -t n is divisible by i but not by m + 1] 

If m < m1 then m + 1 ~ m, ::; m so m + 1 divides 71.1 and n2. That is m + 1 divides n. 

If m > ml then m1 + 1 ~ n, so ml + 1 divides n. But n divides n1, so ml + 1 divides nl

If tJ = max{iij ~ i '* n divides n} then v4(n) may be obtained solving the integer linear 

programming problem 
to 

(max)f = L: x;lnp 
i=l 

Xi ~ Ct; for i = l,ta 
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to 

LX; lnp; s: lnPt.,+I' 
i=l. 

IT fo is the maximal value of f for above problem, then v.(n) = eJ•. 

For instance v.(~ .32 .5.11) = 6. 

Of course, the function v may be extinded to the rational numbers in the same way as 
Smarandache function. 
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FUNC'fII ARITMETICE 

Este bine cunoscuta importan~a functiilor aritmetice in teoria nimerelor, importanta da

torata pe de-a parte bogatiei rezultatelor ce se obtin cu ajutorul acestor funqii, §i pe de alta 

parte frumusetii acestor rezultate. 

Este intr-adevar TIU numai util, dar §i frumos sa §tim ea daca fi(x) este numilrul numerelor 

prime mai miei sau egale cu x, atunci fi(x) este asimptotieegal eu x lnx sau cii daca se cunQa§te 

funetia sumatoare F(n) = "Lf(a) pentru functia numericii f, atunei f se poate exprima en 

ajutorul functiei F prin formula de inversiune 

fen) = '£p.(a)F(n/d). 

in cele ee urmeaza vom prezenta 0 functie numericii definita recent [19] ale carei proprieti\ii 

sunt deci prea putin cunoscute pana acum. 

Aceasta func';ie f : Z* -t N este earacterizata de proprietatile: 

(i) 'in E Z*(17(n)! = M . n) (multiplu de n); 

(ii) 17(n) este eel m~ mie nwnar natural eu proprietatea (i). 

Lema 1 Pentru oriee k,p E N*,p;f 1, numarul k se poote serie in mod unie sub forma: 

k = t,a", (p) + t2a",(p) + ... + tla",(p) (1) 

(p'" -1) . . , 
unde a",(p) = -(--)-, pentru 1 = 1, ... ,1, n, > n2 > ... > nz > 0 §I to E ll,p-l] n N pentru 

p-l . 
j = 1, ... 1-1, iariz E [l,pj nN. 

Demonstratia este evident a, fiind yorba be scrierea numilrului k in baza generalizata.: 

[p]a,(p) , a2(P), ... ,a,,(p), ... 

Pentru fieeare numar prim p E N* putem defini acum 0 functie : 

avand proprietatile: 

(1/1) ,.",(a - n(p») = p"; 

(172) 1l.(t,a", (p) T t2a",(p) + ... + tea,..) = t,,.,,,(a.., (p) + t2""'(a,.,(P») + ... + t.,.",(a,..(p)). 

Intr-adevar, utillzand lema precedent a oriee numa. kEN" poate fi scris sob forma (1) §i 

atunci putem defini: 
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Teorema 1 Fieeare jllnejie '1., ell p > 0 numar prim, are proprietatile: 

(iii) Vk E N*(1)p(k))! = M . pk; 

(iv) '1p(k) este eel ma; mie numar natural avand proprietatea (iii). 

Demonstratie. Se §tie ea exponentul €p,,, la care apare p in descompunerea in factori a lui 

n! este dat de formula lui Legendre: 

Prin lirmare exponentulla care apare p in deseompunerea in factori a lui (Tfp(k))! este: 

_ 2: [t lpT': + t2p'" + ... + t.pn.l _ ,r t,P'" + topT'" + ... + tepn, 1 . 
en "i k) - . J - T 
" P' l p J 

+ I IP T op ..,. ... T epP + . . . ,p op. ... .P = r t '" 't n,. . t "'] [t "l + t "2 + + t "'J' 
L Po P'" 

= (tiP"; - 1 + t2P'" - 1 + ... + t,p'" - 1) + (t,p'" - 2 T topT" - 2 + ... ) + ... + t, = 

= t,ip'" - 1 + p'" -1 + .. . +pO) +t2(p'" -1 + p'" - 2+ ... + pO) + . .. +i,(p'" ·-1 +p'" - 2+ ... ) 

Dec;: 

§i teorema este demonstrata.. 

Funqia '7 : Z -+ N se poate construi cu ajutorul func1iilor TIp in felul urmator: 

(a) '7(=1) = 0; 

(b) pentru oriee rt = cpr1 . ~2 •••• • ptt, CU E = ±l §i Pi numere prime 

distincte, iar C>i ?: 1 definim: 

'1(n) = max'l.(C>i). 

Teorema 2 Funetia'1 definitii. prin eondiiiile (a) §i (b) are proprietajile (i) §i (ii). 

Demonstratie. (i) este evident[, deoarece ('1(n)' = mp-x('1p(C>i))), deei '1(n)! este divizibil 

cu n. Proprietat.ea (ii) rezulta din (iv). Sa observam ca funetiile '1. sunt crescatoare, nu sunt 

injective, dar considernd '1. : N" --+ {I/k = 1,2, ... } se verifid surjectivitatea. Funetia '1 nn 

este uiei ea injectiva, dar '1 : Z' -+ N \ {I} este surjectiva. 

Consecinta. Fie n ?: 4. Atunci n este numar prim daca §i numai daca '1(n) = n. 

Demonstratie. Daea n = peste numa. prim, cu P?: 5, atunei '1(n) = Tfp(l) = p. 

Fie acum '1(n) = n. Dar '1{n) = max'1(p;), deci n = p. 
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APLICATII 

1. Care este eel mai mic numar natural n eu proprietatea: n! = M('f31.327.7'3) ? 

Solutie. 

Pentru a caleula '12(31) scriem numiruJ. a, = 31 in baza generalizata. [2], unde: 

[2J: 1,3,7,15,31,63, .... 

Pentru a ealeula 1/3(27) considera.rn baza generalizata 

[3]: 1,4,13,40, .... §i deducem 27 = 2*13+1 = 2a3 (3)+a,(3), deci 1/3(27) = 2*33 +h3' = 
= 57. 

Analog ob1inem '17(13) = 84. Deci '1(±'f3' * 327 * 7'3) = max(32,57,84) = 84. Prin urma.re 

84! este divizibil eu ±'f3' * 327 * 7'3 §i este eel mai mic numar natural eu aceasta. proprietate. 

2. Care sunt numerele ale caror factoriale se termina in 0 mie de zerouri? 

Solutie: Daea n = 10'000 atunei '1(n)! = MlO'000 §i est.e eel mai mie numar natural eu 

aceasta proprietate. 

Avem: 

'1(10'000) = '1(2'000 '!' 5'000) = max('12(1000), '75(1000» = '15(1000), iar cum: 

[5J = 1,6,31,156,781, .... 

deducem 1000 = ha3(5)+ha4(5)+2a3(5)+a,(5), deci '75(1000) = h53 +h54+h5 = 4005. 

A§adar numarul 4005 este eel mai mie numar na.tural aI ciirui fa.ctorial se termina eu 1000 

de zerouri. Fa.ctorialul numerelor 4006,"4007,4008 §i 4009 se termina §i el eu 0 mie de zerouri, 

dar 401O! = 4009! . 4010 are 1001 zerouri. 

In legatura eu functia '1 am a1ci.tuit [2OJ 0 lista de probleme nerezolvate. lata citeva dintre 

acestea: 

(1) Sa se giiseascii fOrIDule pentru exprimarea lui '1( n ). 

in [1 J §i [2] se dau astfel de fonnule. in fond, din cele prezentate mai sus putem spune cii da.cii 

n = pr' '~' .... . p~', atunei '1(n) = m~'1(pf') = m~T/p;(ai), adicii '1(n) = m~'1(pi(ai){p.D,]), 
's i=l,t. 

deci '1(pf') se obtine inmu1tind num3.rul Pi cu num3.rul obtinut scriind exponentul ai in baza 

generalizata. [Pi] §i "citind" rezultatul in baza standard (P) : I,p,p2, ... ,pn, .... 

(2) Exista exprimari asimptotice pentru '1( n) ? 

(3) Pentru un numar intreg fixat m, in ee condi~ii '1( n) divide diferenta n - m? (in particular 

pentru m = 1). Desigur, pentru m = 0 avem solutiile n = k! sau n este un numar liber de 

pat rate. 

(4) Este '1 0 fune1;ie a1gebridl? Mai general, sa spunem ca 9 este 0 J-funelie, J nenula, da.cii 

J(x,g(x» = 0 pentru orice x §i J E R[x,yJ. Este '7 0 J-functie? 
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(5) Fie A 0 mulJ<ime de numere naturale nenule consecutive. Sa se determine max card A 

pentru care TJ este monotona pe A. Se poate observa ea avem max card A 2': 5 dea.oarece 

pentru A = {I, 2, 3, 4, 5} valorile lui TJ sunt respectiv 0,2,3,4,5. 

(6) en numar se spune ca este numar ,., algebric de grad n daci. el este radii.cina polinomului: 

P,( x) = ,.,( n) . xn + TJ( n - 1) . xn
-

I + ... + ,.,(1) . Xl. Pentru ce feI de numere n exista numere 

algebrice de ordinul n care sa fie numere intregi? 

(7) Sunt numerele Pn = TJ(n)/n uniform distribuite in intervalul (0, I)? Raspunsul este 

negativ §i a fost demonstrat de Gh.Ashbacher. 

(8) Este numarul 0, 0234537465114 ... , format prin coneatenarea valorilor lui TJ{ n), un numar 

irational? Raspunsul este a.fi.!mativ §i a fost demonstrat de Gh.Ashbacher. 

(9) Se pot reprezenta numerele intregi n sub forma: 

unde intregii k, aI, a2, .... ak §i semnele sunt convenabil alese? 

Dar sub forma: 

Sau sub forma: 

(10) Gii.siti 0 forma generala a exprimarii in fraqii continue a lui TJ(n)/n, pentru n 2': 2. 

(11) Exista intregii m, n, p, q cu m of n sau p of q pentru care: 

,.,(m) 7,.,(m+ 1) + ... +,.,(m+ p) = TJ(n) +TJ(n + 1) + ... +,.,(n +q)? 

(12) Exista intregii m, n,p, k sau m of n §i p > 0 astfel incat: 

TJ(m)2 +TJ(m+ 1)2 + ... + TJ(m+p)' = k? 
'7(n)2 + TJ(n + 1)2 + ... + TJ(n + p)2 

(13) Cate numere prime au forma '7(n)' TJ(n + 1)· .. . 1](n + k) pentru 0 valoare fixata a lui 

k? Se observa ca 1](2) . ,.,(3) = 23 §i ,.,(5) . ,.,(6) = 53 sunt prime. 

(14) Exista doua numere distincte k §i n pentru care: 

log,(kn) TJ(nk) este numar intreg? 

(15) Este numarul: 

lim (1+ I: (lk) - In 1]( n») numar finit? 
n-+oo k=21] , 

Raspunsul este negativ [9;. 
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(16) Verifica f/ 0 condi~ie de tip Lipschitz? 

Raspunsul este negativ §i apariine tot lui Gh.Ashbacher. 

(17) Exista 0 formula de recurenta pentru §irul an = f/( n)? 

un alt grup de probleme nerezolvate este urmatorul: 

Exista numere nenule nonprime at, a2, ... , an in relatia P astfeI incat f/(al), f/(a2), ... , f/( an) 
sa. fie in relatia R:! Casiti eel mai mare n cu aceasta proprietate (unde P §i R reprezinta una 

din urrnatoarele categorii de numere): 

(i) numere abundente: a E Neste abundent dacli u{a) > 2a. 

(ii) numere aproape perfecte: a este aproape perfect daca u(a) = 2a -1; 

(iii) numere amicale: a §i b sunt amicale dacli u(a) = u(b) = a + b; 

(iv) numere Bell: S" = f: S( n, k), unde S( n, k) sunt numerele Stirling de categoria a doua 
1=1 

S(O,O) = 1, iar Sen, k) se deduc din x" = f: S(n, k) . Xk, X(k) = x(x - I) ... (Xk + 1), pentru 
k=1 

1 ~ k ~ n; 

(v) numerele Cullen: Cn = n * 2" + 1, n 2: 0; 

(vi) numerele Fermat: F" = 2'" + 1; 

(vii) numerele Fibonacci: 11 = h = 1,ln+2 = In+! + In; 

(viii) numerele armonice: a este armonic daca media armoruca a divirorilor lui a este numar 

intreg; 

(ix) numerele Mersenne: Mp = 2" ..:. 1; 

(x) numerele perfecte: u( a) = 2a §i desigur lista ar put~a continua. 

Desigur se pot formula prohleme interesante continand functia f/, probleme in legitura.cu 

funcJ;ii numerice sau categorii speciale de numere (printre care sunt §i cele enumarate mai sus). 

Rezolvarea acestor probleme va oferi legatura inca necunoseuta, dintre func~ia f/ §i celelalte 

eategorii de fune!ii numeriee. 

Demersul spre aceasta legaturaa poate fi Iacut de exemplu §i cu ajutorul ecuatiilor (inecuatii-

lor) diofantice. lata eateva dintre aceastea: 

(i) f/(m * x + n) = A, unde A peate fl: C;:', 

- P" (al n-lea numar prim), 

- [8(x)] (8(x) = ~ lnp, este funetia 8 a lui Ceba§ev), 
p$% 

- [w(x)] (w(x) = 2: A(n), unde A(n) are valoarea lui p daca n este 0 putere intreaga a 
,,<r 

numil.rului prim p §i este zero in caz contrar), 

- S(n,x) sau S(m,x), 
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- II(x) (nuroarul numerelor prime ce nu depil.§esc pe x) §i desigur lista posibilitatilor pentru 

A poate continua. 

(ii) f/(mx -+ n) < B, unde B poate fi: 

-d(x) (numiirul divizorilor pozitivi ai lui x), 

- rex) (funqia lui Euler de speta intai), 

00 t:c-l 

rex) =! 7dt, 
o 

- 1/3(x,x) (func\ia lui Euler de speta a doua, !3(x,y) = r(x)r(y)jf(x +y», 

- /lex) (functia lui Mobius). 

Exista muite posibilitati de a alege pe B. Mmane de desooperit cele intr-adevar interesante, 

care dau legatura lui 1) cu notiuni devenite clasice in teoria numerelor. 
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FUNCTII PRIME ~I COPRIME 

Vom construi urma.toare1e funqii ( pe care Ie numim prime): 

De exemplu 

P,: N ~ {0,1}, 

( ) 
_ { 0, da.cii n este prim; 

P, n -
1, in caz contrar. 

P, (0) = P, (l) = P, (4) = P, (6) = ... = 1,P, (2) = P, (3) = P1(5) = ... = o. 

Analog: 

~i in general: 

P,: N 2 ~ {0,1}, 
I 

{ 

0, dacl. m §i n sunt aIllimdoua. prime; 
P2(m,n) = 

1, in caz contrar. 

p.: N' ~ {0,1}, 

) 
.{ 

0, dad .. m §i n sunt toate prime; 
Pk(nl, n2,···, nk = 

1, in caz contrar. 

Functiile coprime se definesc similar, doar ca. se impune 0 conditie mai slab!: in acolada 

de mai sus nl> n2, ... , nk sunt prime intre ele. 
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ASUPRA UNOR CONJECTURI ~I PROBLEME NEREZOLVATE 

REFERITOARE LA 0 FUNCTIE 1."1" TEORIA NUMERELOR 

1. Introducere 

Am construit [19] 0 funetie TJ care asocia.za fieeiirui intreg nenul n eel mai mie intreg pozitiv 

m astfel ineat m! este multiplu de n. 

De aiei rezulta ea daca n are descompunerea in facton primi: 

eu Pi numere distincte, ai E N' §i e = ±1 atunei: 

'lin) = ~~'l(pi'); 

§i 'l(±l) = O. 

Pentru ealculullui TJ(Pj') observam ea dacii: 

pk -1 
<>k(p) = --1' k = 1,2, ... ; 

p-

at unci din formula lui Legendre: 

rezulta '1(po .(p)) = pk. 

Mai general, eonsider<ind ba.za generalizata: 

lP] : <>l(P),<>2(P),···; 

§i seriind exponentul a in aeeasta ba.za: 

eu nl > n2 > ... > ne > 0 §i tl E [1,p -1] pentru j = 0,1, ... ,1-1 §i t/ E [1,p], in [19J am 

aratat cli: 
e 

'l(p.) = L tipn, . 
i=l 
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2. Proprietap ale functiei " 

Din felul in care a foot definita rezulta imediat ca funqia " este para.: ,,( -n) = I](n). De 

a.semenea pentru orice n E N· avem: 

~<,,(n) <1' 
(n -I)! - n - , 

R ul 1)(n) . dO' . d " . 4' va.! .. W aport -- este m3.Xlm aca §l numaJ aca n este pnm sau n = §l are oare mmrma. 
n 

daca §i numai dacil n = k!. Evident" nu este 0 funqie periodica. 

Pentru orice numar prim p func\ia f17 : N* -+ N, f17( a) = ,,(pn) este crescli.toare, noninjectiva., 

dar considerand "p: N" -+ {p"jk = 1,2, ... } este verificata surjectivita.tea. 

Func1jia " este in general crescatoore pe N*, in sensul c8.: 

"In E IV" (3)mo E N" "1m ~ mo 7](m) ~ n. 

Prin urmare funciia este in general descrescaloore pe Z: adica: 

'In E Z: (3)mo E Z: "1m :-::; rna I](rn) :-::; n. 

De asemenea nu este injectiva., dar considerand: 7] : Z* -+ N \ {I} este verificata surjectiv

itatea. 

Definitia 1. (P.ErdOs §i J.L.Selfridge) 

Numarul n se nllme§te hariera pentru jllnctia nllmerica j daca pentru orice m < n avem 

m+j(m):-::; n. 

Se observa ca pentru orice c E [0,1] funcljia f definita prin fern) = e'1)(m) nu are 0 infinitate 

de bariere deoarece exista. mo E N astfel inca.t pentru orice n ~ rna avem: 

,,(n) ~ ~ dacil n + e:- ,,(n) ~ n. 
e 

Ser· ,,1 di - d 1 1 . la L.., -( ) este vergenta eoarece -( ) ~-. 
n~2 7] n 7] n n 

A vern de asemenea: 

2' 

=2+~. 
1c:-loM. 

." 
intr-adevar, pentru m = ~ avern ,,(22m

) = 2 + 2"'. 
k-2 ori 
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3. Formule de calcul pentru '7( n) 

in [2j se arata. e[ formula (1) poa.te fi scrisa. sub forma: 

(2) 

a.dica. pentru a caIcula pe 1)(p.) scriem exponentul a in baza generalizata. [Pi §i "i\ citim" in baza 

standard (p): 

(p): l,p,p2, ... ,p\ ... 

sa. observa.m ca. "cititrea" in baza (p) presupune uneori calcule cu cifro p, care nu este cilia 

in aceasta. baza, dar poat.e apa.re ca cifra in baza [Pl. Vom exemplifica utiliza.rea formulei (2) 

pentru calculullui '7(389
). Parcurgem urma.toa.rele etape: 

(i) scriem exponentul a = 89 in baza 

[3]: 1,4,13.40,121, ... 

obtinem 3[3; = 2021; 

(ii) "citim" numil.rul2021 in ba.za (3): 1,3,9,27, .... Avem 2021(3) = 183(10), deci 1)(389
) = 

= 183, ceea ce inseamna co. eel mai mie numar natura.! a.! ciirui factoria.! este divizibil eu 389 

este 189. 

• [
1831 Intr-a.devar: L -3; = 89. 

,<1 J 

Fa.cem observa~ia ca. in baza genera.lizata. [Pi tehnica de lucru este eseU§~ia.! diferita de tehnica 

de lucru din baza standard (p); aceasta datorita faptului ca. §irul b,,(p) = pn, care deterrntna 

baza (p) satisfa.ce relatia de recurent": 

bn+1 (p) = p. bn(p); 

in timp ce §irul an(p) = (~ - 1)/(p - 1) cu ajutorul caruia se genereaza. baza [PJ satisfa.ce 

relatia de recurenta: 

an+1(p) = p. an(P) + 1. (3) 

Datorita relatiei (3) pentru a face a.dunarea in ba.za [Pi proceda.m astfe!: incepem a.dunand 

cifrele de ordinul zecilor §i nu a.! unitatilor (cifrele corespun.zi!.toare coloanei a2(p)). Da.ca. 

a.dunand aceste cifre obtinem numarul pa2 (p), yom utiliza 0 unitate din clasa unitaWor (coefici

entii lui a1(p» pentru a obtine pa2(p) + 1 = a3(p). 

Continuand a.dunarea pe coloana "zecilor" daca. ob1inem din nou pa2(P), yom utiliza 0 noua. 

unitate din elasa unitatilor, etc. De exemplu pentru: 

mIs] = 441, n{S] = 412 §i rIS] avem 
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m+n+r=442+ 
412 

44 

Incepem adunarea eu coloana zecilor: 

4· a,(5) + a,(5) + 4 . a2(5) = 5· a2(5) + 4 . a,(5); 

§i utiliz"-nd 0 unitate din coloana unitiitilor obtiuem: 

a3(5) + 4· a2(5), deci b = 4. 

Continuand obtinem: 

§i utilizand 0 noua "unitate": 

a.(4) + 4· a3(5), deci c = 4 §id = 1. 

in sfaqit, adunand unitiiti!e rama.se: 

rezultii ca trebuie modificat §i a = O. Deci m + n + r = 1450[5J. 

Aplicarea formulei (2) la calculul valorilor lui T7 pentru toate numerele intre N! = 31000000 

§i N2 = 31001000, pe un PC 386 a dus la ob\inerea unui timp de Iucru de mai mult de 16 

minute, din care cea mai mare parte a foot utilizata pentru descompunerea numerelor in factori 

primi. 

Algoritmul a foot urmaiorul: 

1. Descompunerea numerelor n in factori primi n = pt'P~ .. . P:'; 

2. Pentru n fixat, determinarea valorii maxPi . d;; 

3. 1)0 = "f/(pf'), pentru i determinat la 2; 

4. Deoarece T7(pd;) ::; Pi . di ignoram factorii pentru care p; . a. ::; 1/0; 

5. Caleulam T7(P~J) pentru Pi . aj > 1/0 §i determinam cea mai mare dintre aceste valori, care 

va fi "f/(n). Pentru punctele 2 - 5 din progra.tn au trebuit mai putin de 3 secunde. 

Pentru a obtine alte formule de caleul pentru functia "f/ (de fapt pentru "f/(P")) sa consideram 

exponentul a seris in cele doua baze: 
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n. • • pi-I 
a(p) = LC,' p' §ill/pj = Lkjaj(p) = Lk;' --. 

;=0 ;=1 ;=1 p - 1 

Obtinem: 

(p - 1) . a = t kjp' - t k;, deci notand: 
j=1 ;=1 

"(.) = f: C, - suma cifrelor lui a seris in baza (p); 
.=0 

"[PJ(a) = t k; -surna cifrelor lui a seris in baza [p}; §i tin<i.nd cont de faptul ca t kiP' = 
;=1 .1=1 

p(a[pJ)<p) obtinem: 

I)(p.) = (p -1)· a + "(Pl(a). (4) 

Tinand cont de exprimarea lui a in baza (p) obtinem: 

" " p' a(p) = L c,(pi+l -1) + LC, sau: 
i=O i=O 

p" 1 
-_. a = LC,' ai+l(p) + -_. "(p)(a), 
p-l;=o p-l 

(5) 

prim urmare: 
p-l 1 

a = -p- . (aIPJ)(pJ + p' "(pl(a) (6) 

lnlocuind aceasta valoare a lui a in (4), se obtine: 

(7) 

Not<i.nd cu E"."p exponentullui p in expresia lui n!, 

En .• = L [~]; 
i~1 P 

se §tie [18} ca E",p = (n - "(p)(n))j(p - 1), deci exprim<i.nd pe "(p)(a) din (6), se deduce: 

(8) 

o alta formula pentru E",. se poate obtine astfel: 

a = C" . p" + C,,_I . pn-I + ... + CI . p + Co deci: 

E.,p = ; + ;-1 + ... ~ = Cn + (CnP + C"_I) + ... + (C,.p"-I + C"_IP,,-2 + ... + CI) = 

= C"a,,(p) + C"_Ia.._I(P) + ... + Clal' 
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eu alte cuvinte dadi alp) = Cn . Cn - i ..... Ci . Co atunci: 

_ _ ((ra1) ) 
Ea,p - «a - CO)(p»[pJ = l"pJ. (p) [P]' 

Din (7) §i (8) se ob~ine: 

a (P_1)2. p-1 
TJ(p) = --. (E.,p + a) + -_. O'(p)(a) + O'[p](a); 

P P 

iar din (2) ti (7) se deduce: 

4. FUNC'IIA SUMATOARE Fr, 

Se §tie ea oriearei funetii numerice J i se poate ata§a funetia sumatoare Fi definita prin: 

Fi(n) = L J(d); 
din 

§i ea J se poate exprima eu ajutorul lui Fi prin formula de inversiune: 

J(n) == L I-'(i) . F(j), (9) 
i,]=n 

unde I-' este functia lui Mobius (1-'(1) = 1, 1-'( k) = (-1)') daca numarul i este produsul a q 

numere prime diferite §i 1-'( i) == 0 daca i este divizibil eu un patrat). 

Pentru TJ avem: 

F(n) == f~(n) = LTJ(d) §i 
din 

F(p' = TJ(l) + TJ(pJ + ... + ,.,(pa). 

Din (4) deducem ,.,(pi) = (p -1)· j + "[P](j) deci: 

in eonsecin iii: 
F( oJ ( ) a.(a+1) ~ "J p = p - 1· 2 + L... "[P]\) 

j=1 
(~O) 

Sa consideram acum: 

n = Pt . Pt-i ..... Pi 
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eu PI < 1'2 < ... < Pt numere prime nu nea.phat consecutive 

Desigur 1](n) = Pt §i din: 

F(l) = 1](1) = 0; 

Fly,) = 1](1) + 7)(PI) = PI; 

F(PI . 1'2) = PI + 21'2 = F(p,) + 21'2; 

F(Pl . 1'2 . Pa) = PI + 21'2 + 22Pa = F(p, . P2) + 22Pa; 

rezultii prin indue~ie: 

F(Pl . 1'2 ..... Pt) = F(p, . 1'2 ..... Pt-l) + 2'-lp'; 

adidi: 
t 

Fly, . 1'2 ..... p,) = E2i
- ' pi. 

i=l 

Egalitatea (9) devine: 

PI = 7)(n) = E J.l(u)· F(v) = F(n) - EF (!:) + EF (~) + ... + (_1)'-1. tF(Pi); 
'!.L,v:=n i PI i,j p, p, i=l 

§i deoareee F(Pi) = Pi, ob~inem: 

= F(p, . 1'2 ..... Pi-d + 2i-l . F(pi+l . Pi+2 ..... Pt)· 

in mod analog avem 

F - = F(p, . P2'" Pi-I) + 2'- . F(pi+l . Pi+2'" p;-d + 2-'- F(p;+l . P;+Z'" Pt)· ( 
n ) . I . 1 

PiPj 

Notand Nij = Pi· ... · Pj, ob\inem atunei: 

'-I 
EPi = -F(n) + EF(Ni- 1 + 2i- 1

. F(i+l,,)) - E(F(Ni-I) + 2,-1. F(Ni+l,j_I)+ 
i=l i<i 

+2;-1. F(Nj+l,')) + ... 
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Generalizan ale funC§iei '1 

I.BaIacenoiu [3] propune trei func~ii care generalizeaza func\ia '1. In cele ce urmea.za vom 

prezenta aceste generalizari. 

Fie X 0 multme nevida., r 0 rela~ie de eclllvalenta pe X pentru care nota.m eu Xr multimea 

ca.t §i (I, ::;) 0 multime total ordonata.. Da.cii. 9 : X --t I este 0 func\ie injectiva oarecare, atunci 

functia I : X --t I, f(x) = g(x) se spune ca este 0 functie de standartizare. In acest caz despre 

mullimea X se spune ca este (r, (I, ::;),j) stadartizata. 

Dad. r, §i r2 sunt doua. relatii de eehivalenta pe X se §tie ea relatia r = r, II r2 unde: 

este 0 relatie d echivalenta.. 

Despre funcliile I, : X --t I, i = 1,8 se spune ca au aceea§i monotieitate dadi pentru orlce 

X,Y E X avem: 

J;(:x)::; I,(y)/J;(x)::; Ii(Y) 

pentru ariee i,j = 1, s. 

In f3i Be demonstreaza urmatoarea teorema: 

Dad funC1;iile de standardizare Ii : X --t I eorespunzatoare relaliilor de echivalenta r" i = 

1,8 sunt de aceeati monotonie atunei functia f = max Ii este functia de standardizare core

spunzatoare relatiei r = II r i §i are aceea§i monotonie eu func\iile f;. Un alt element prelirninar , 
eonsiderlirii celor trei generalizliri ale funcliei '1 prezentate in [3] este definitia unnatoare. 

Daca T §i 1. sun! leg; binare pe X respecti" I, spunem despre Iunctia de s!andarrlizare 

I: X --t I ca esteI: compozabila daca tripietul (f(x),j(y),j(xTy» salis/ace condijia I:. in 

acest caz Sf rnai spune ca funcjia I I: standarrlizeaza structura (X, T) pe structuro (I,::;, 1.). 

De exemplu functia '1 determina urmatoarele standardizan: 

(a) funetia '1 standardizeaza I:, struetura (N',·) pe structura (N',::;,+) prin: 

L : '1(a· b) ::; '1(a) + '1(b); , 
(b) functia '1 standardizeaza I:2 acelea§i structuri, considernd: 

L: max{'1(a),'1(b)}::; '1(a· b)::; '1(a) , ,,(b). 
2 

Functia Smarandache '1 : N' --t N a fost definita in [16] eu ajutorul urmatoarelor funqii 
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Pentru oriee numar prim p fie 'h> : N' -+ N' astfel 

(i) (T}p(n»! este divizibil cu pn; 

(ii) 1),.(n) este eel mai mic intreg pozitiv cu proprietatea (i). 

Pentru fiecare n E N' sa. considera.m §i rel~iile r n C N' X N' definite prin conditille: 

1. Da.ca. n este de forma n = 1" cu p = 1 sau p numar prin §i i E N* vom spune ca a este 

in rela~ia rn cu II da.ca. §i numai dadL min{k/k! = MP'}; 

2. Da.ca. n = p~' , p~ , ... , p;' atunei 

r" = r~ /\ T~ 1\ ... /\ r~. 

Definitia 2. Pentru once n E N' funqia Smarandache de primul tip este funcJia "In : N* -+ 

N' definiti1 astfel: 

1. Da.ca. n = pi, eu p = 1 sau p numar prim atunci 8 .. (a) = k, k fiind eel mai mic intreg 

pozitiv pentru care k! = Mp;.; 

2. Daca n = p~l ,Til, ... ,p~~ atunci Tlk = ~a.x7J .,(a). 
j=l,t 1', 

Se observa ca: 

a) Funetiile"ln sunt funetii de satndarduzare, corespunzatoare relatlllor rn §i pentru n = 1 

avemXr1 = N*; 

b) Daca n = p atunci "In este functia T}p definita. in [16]; 

e) Functiile 'In sunt erescatoare, deci sunt de a.ceea§.i monotonicitate, in sensu! dat mai sus. 

Theorem 1. Funciiile "In, Ll standardizeaza structura (N*, +) pe structura (N*, ::;, +) prin: 

Ll : ma.x{"In(a), T}n(b)} ::; T}n(a + b) ::; "In(a) + 'T}n(b) pentru once a, bEN' §i deasemenea 

L. standardizeazi1(N',+) pe (N,::;,.) pnn 

L.: max{"In(a),"In(b)}::; "In(a+b) ::;"In(a)*"In(b) pentru orice a,bE N'. 

Demonstrapa este data in [3]. 

Definitia 3. FlmcJiile 8marandacbe de al doilea tip sunt funcliile T}k : N' -+ N* definite pnn 

'T}k( n) = T}n( k) pentru once kEN', unde "In sunt funcJiile Smarandache de primul tip. 

Observam ca pentru k = 1 funetia if este functia 'I definita. in [17], cu modifica.rea "1(1) = 1. 

Intradevar, pentru n > 1 avem: 

T}I(n) = "In(1) = max'1p;J(l) = m~'h> (ij) = 'I(n). 
J 1 j 1 
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Theorem 2. Functiile Smarandache de al do ilea tip L3 standardizeaza strTletura (2V*, *) pe 

structure (N*,-::;,t) prin 

L3: max{1)k(a),1)k(b)} -::; 1)k(a* b) -::; 1)k(a) +1)k(b) pentru orice a,b E N* §i L4 standard

izeaza (N°, *) pe (N*, 5" *) prin 

L4: max{1)k(a),1)k(b)} 5, T/k(a '" b) 5, 1)k(a) * 1)k(b) pentru orice a,b E N*. 

Pentru a defini funqiile Smarandache de al treilea tip sa considera.m §irurile: 

staisfa.cand rela~ii de recurenta ak" = ak * an §i respectiv bkn = bk * b". 

Desigur exista orieate astfe! de §iruri deoarece putem alege 0 valoare arbitrara pentru a2 §i 

apoi sa determina.m ceilalti termeni eu ajutorul relaiiei de recuren~a. eu ajutorul §irurilor (a) 

§i (b) definim functia f! : N* -t :,,-. prin 

f!(n) = 1).n(b,,), un;le 1).n este funetia Smarandache de primu1 tip. Se observa ea: 

(u) Daca an = 1 §i b" = 1 pentru orice n E N" atunei f: = 1)1; 

(v) Daca an = n §i b" = 1 pentru orice n E N* atunci f: = 1)'. 

Definitia 4. Funcjiile Smarandache de al treilea tip sunt. funcjiile T/~ = f! in cawl in eare 

§irurile fa) §i (b) sunt diferite de cele de la (u) §i (v). 

Theorem 3. Funcjiile f! realizeaza standardizarea L5 intre structurile (N°, *) §i (N", 5" +, *) 

prin 

Demonstra~ia acestei teoreme este deasernenea data in [3]. De aiei rezulta ea funetiile 

Smarandache de al treilea tip satisfae: 

Exemplu: Considerand §irurile (a) §i (b) date prin an = bn = n, pentru oriee n E N*, 

func~ia Smarandache de al treilea tip corespunzatoare este T/~ : N* -t N*, T/~ (n) = T/n (n) §i I:s 
devine: 
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pentru orice k, n E N*. 

Aceasta relatie este echivalenta eu relatia urmatoare, scrisa eu ajutorul functiei 1]: 

5. Probleme rezolvate §i probleme nerezolvate referitoare la func\ia 1] 

In [20] se da 0 lista cuprinzatoare de probleme deschise referitoare la func~ia 1]. in [22] 

M.Mudge reia 0 parte din aceste probleme. Apari'ia artiwlului lui M.Mudge ca §i aparitia 

unei reviste dedicata studiului funetiei 1) (Smarandache Function Journal in eolaborare eu 

Facultatea de ~fatematica din Craiova §i Number Theory Publishing Co. din Glendale, Arizona) 

au dctenninat cre§terea interesului pentru aceasta funetie. In cele ee urmeaza Yom enumera 

cateva dintre problemele propuse In [8] §i reluate in [22] aratand stadiul rezolvani lor, dar Yom 

aminti §i alte probleme interesante aparute ulterior articolului lui M.Mudge. 

1. Sa se investigheze §irurile i, i + 1, i + 2, ... , i + x pentru care valorile lui 1] sunt crescatoare 

( descrescatoare). Raspunsul la aceasta problema au dat J .Duncan [7] §i Gr¢nas [ll J. Acesta 

din urma arata cii. exista §iruri crescatoare U, < U2 < ... < Ur de lungime oricat de mare pentru 

care valorile funcJjie 1] sunt decrescatoare. 

Referitor la urmatoarele trei probleme nu cunoa§tem publicarea vreunui rezultat. 

2. Gasi~i eel mai mic numar natural k astfel incat pentru orice n mai rnic sau egal eu no eel 

putin unul dintre numerele: 1)(n), 1)( n + 1), ... ,1)( n + k - 1) este: 

(A) un pihrat perfee; 

(B) un divizor allui kn. 

ee se intampla pentru k §i no tinzand la infinit? 

3. Construiti numere prime avand forma -1)'( n'):"'1)'( n---:+-l")-.-. -. 1]""('n-+"-'k') uncle lib desemneaza 

intregul obtinut prin concatenarea numerelor a §i b. 

en §ir 1 ~ a, ~ ... de numere intregi se spune ca este un A-§ir dacii Diei un ai nu este suma 

a eel pu~in doi termeni din §ir. 

4. Investigati posibilitatea constnurii unui A-§ir astfel Incat §irul asociat 1)( all, 1]( a2)" .. , 

1)(an), ... este de asemenea un A-§ir. 

Notand D,,(x) = 11)(x + 1) - '7(x)1 §i Dik+l)(X) = ID~k)(x + 1) - D~k)(x)1, pentru kEN', 

unde D~l)(x) = D,,(x) articolullui M.Mudge reia urmatoarea problema. 

5. Investigati conjectura D~k) (x) are valoarea unu sau zero pentru oricare k :::: 2 . 
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J . Duncan [8J verifica conjectura pentru toate nurnerele naturale parra la 32000. in acela.§i 

articol se arata ca raportul Intre numa.ruI de I-uri §i nurniirul zerourilor este aproximativ egal 

cu 1 pentru valori mari ale lui k. De asemenea se arata ca pentru k > 100 §i pana la 32000 

raportul Dik)(x)!D~k-l)(x) este aproximativegal cu -2. 

T.Yau [24] pune u=atoarea problema: pentru ce triplet de numere consecutive n.n+l, n+2 

func;ia'l verifica 0 egalitate de tip Fibonacci, adica '1(n) + 'I(n + 1) = 'I(n + 2). Elobserva 

ca in primele 1200 de numere naturale exist a doua solu~ii §i anume n = 11 §i n = 121, dar nu 

ga.se§te 0 solu,ic generala. 

P.Gronas rIO] da riispuns urmatoarei intrebiiri: "Exista 0 func1;ie de numere n pentru care 

o-,(n) = n?" unde o-,(n) = I: '1(d). EI arata ca singurele solutii ale acestei ecuatii sunt 
d/",d>O 

n E {8, 12, 18,20, 2p} unde peste numiir prim. 

Y1.Costewitz [15] abordeaza pentru prima oara problema giisirii cardinalului multimii M" = 
{x/'7(x) = x}. in [25] se arata ca dacii descompunerea lai n in factori primi este no = p~' 'p:;' ... . ' 
p;t CUPl < P2 < ... < Pt §inotamei = L:[n/pfl iarno =p~1.p;2 ..... p~t §ip~1-al.p~-a2 ..... p~:-.af, 

at unci card M" = (o-(!lo) - o-(no)o-(Q») unde o-(n) este suma divizorilor lui n, iar Q = Dqt., 
k 

numerele q" q2, ... ,qr fiind toate numerele prime mai mici decat n §i care nu sunt divizori ai 

lui n. Exponentul fk este fk = I: r ~Jl. 
J Lq1 
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K-Divisibility and K-Strong Divisibility Sequences 

A sequence of rational integers 9 is called a divisibility sequence if and only if 

nim =? g(n)lg(m) 

for all positive integers n, m. [See [3] and [4]] 

Also, 9 is called a strong divisibility sequence if ans only if 

(g(n),g(m) = g«n,m)) 

for all positive integers n, m. [See [1], [2], [3], [4] and [5]] 

Of course, it is easy to show that the results of the Smamda.che function 8( n) is niether a 

divibility or a strong divisibility sequence because 4120 but 8(4) = 4 does not divide 5 = 8(20), 

and (3(4),8(20)) = (4,5) = 1 '" 4 = 8(4) = 8«4,20». 

a) H,)wever, is there an infinite subsequence of integers M = {m" mo, ... } such that S is a 

divisibility sequence on M? 

b) If P {PI, Po, ... } is the set of prime numbers, the 3 is not a strong divisibility sequence 

on P, because for i '" j we have 

(S(Pi)'S(p;) = (Pi, Pi) = 1 '" 0 = S(I) = S«Pi,Pi))' 

And the same question can be asked about P as was asked in part (a). 

We introduce the following two notions, which are generalizations of a "divisibility sequence" 

and "sttrong divisibility sequrnce" respectiVely. 

1) A k-divisibility sequence, where I 2': 1 is an integer, is defined in the following way: 

If nlm =? g(n)ig(m) =? g(g(n))lg(g(m)) =? '" =? [1('" (g(n) .. . ),1[1('" (g(m») . .. ) for all 

• times 
positive integers n, m. 

For example, g(n) = n! is a k-divisibility sequence. 

Also: any constant sequence is a k-divisibility sequence. 

• times 

2) A k-strong divisibility sequence, where k 2': 1 is an integer, is defined in the following 

way: 

If (g( nl), g( no), ... , g( n.)) = g( (nl, no, ... , n.)) for all positive integers nl, no, ... , n •. 

For example, g(n) = 2n is a k-strong divisibility sequence, because (2nl,2n2, ... ,2nk) = 

= 2 * (n" no, ... , no) = g«n!> n2,"" n.)). 
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Remarks: If 9 is a divisibility sequence and we apply its definition k-times, we get that 9 

is a k-divisibility sequence for any k 2: L The converse is also true. If 9 is k-strong divisibility 

sequence, k 2: 2, then 9 is a strong divisibility sequence. This can be seen by taking t'he 

definition of a k-strong divisibility sequence and replacing n by nl and all n2, . .. , nk by m to 

obtain (g(n),g(m), ... ,gem)) = g«n; m, ... , m» or (g(n),g(m)) = g«n, m)). 

The converse is also true, as 

(n"n2, ... ,nk) = « ... «n"n2),n3), ... ),nk). 

Therefore, we found that: 

a) The divisibility sequence notion is equivalent to a k-c.ivisibility sequence, or a generali

zation of a notion id equivaient to itself. 

Is there any paradox or dilemma? 

b) The strong divisibility sequence is equivalent to the k-strong divisibility sequence notion. 

As before, a generalization of a notion is equivalent to itself. 

Again, is there any. paradox or dilemma? 
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Conjecture (General Fermat Numbers) 

Let a, b be integers ~ 2 and k an integer such that (a, c) = l. 

One construct the function P(k) = 06" + C, where k E {O, 1,2, ... }. 

Then: 

a) For any geven triplett (a,b,c) there is at least a ke such that peke) is prime. 

b) There are no (a, b, c) triplett such that P( k) is prime for all k ~ O. 

c) Is it possible to find a triplett (a, b, c) such that P(k) is prime for ifinetely many k's? 
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ASUPRA UNEI MET ODE A LUI W.SIERPINSKI DE REZOLVARE iN 
NUMERE 

INTREGI A ECUATIILOR LINIARE 

in nota unnatoare se fae ca.teva remarci privind metoda expusa de Sierpinski in [IJ, remarci 

ce au ca scop sirnplificarea §i extinderea acestei metode (vezi [2]). 

Fie 0 ecuatie liniara alxl + ... + anX" = b avand coeficientii numere Intregi. 

a) in cazul in care un coeficient ai este negativ W.S. inlocuie§te necunoscuta Xi cu --:Xi 

pentru ea toti coeficientii sa fie pozitivi. 

Considerarn d aeeasta Inlocuire nu este necesara, deoarece in rezolvare nu intampmam 

dificultati eauzate de coefieien~ii negativi, §i apoi se mare§te inutil numarul variabilelor - fie ele 

§i auxiliare; (ciliar in [1], in momentul cand se compara coeficientii ar putea fi considerati in 

valoare absoluta). 

b) Dad doi din ceficien~ii a}, ... , an ar fi egali, de exemplu a, = a2, W.S. punea X, + X2 = x, 

in care ideea de a mic§Ora numarul necunoscutelor; considerarn ca aceast pas peate fi extins, §i 

anume daea al = ±a2 = .,. ±ak putem lua XI ±X2±.' .±Xk = X semnele mnd corespunzatoare 

coeficientilor, (substitutie care nu lasa sa se mtrezareasCaIn [1] p. 94); putem extinde chiar 

mai mult; dad spre exemplu coeficientii ai, a2, . .. , ar au un divizor pozitiv eomun d tf 1, deci 

ai = da:, i = 1, ... , r, atunci se notea.za a~xl + ... + a~xr = x, §i reducerea numarului de 

necunoscute este mai masiva; de fiecare data ecuatia nou ob1;inuta are ma.; pU1;ine necunoscute. 

§i este echivalenta eu prima; j astificarea rarnane aceea§i ca in [I}. 

c) Apoi W.S. alege eel mai mare coeficient (toti presupu1;i de el fiind naturali), al de exepmlu, 

§i prin impartirea intrega la un altul, a2 sa zicem se ob1;ine a, = a2' P + ~,p EN, inlocu.indu

se x; = PXJ + X2, x; = x}, a; = a2 deducand astfel la redueerea coeficientului cal mai mare: 

consideram ca nu este in mod forletar sa se efectuieze aceasta operatie avand drept coeficient pe 

cel mai mare (in modul), ci sa se aleaga acei coeficienti ai §i aj pentru care impartirea intreaga 

sa aiba forma a; = pa, ± T cu r = 1 sau, dadi nu e posibil, in a.§a fel ca restul sa fie cat l!1ai mic 

in modul, nenul (vezi [2], capitolul "Another whole number algorithm to solve linear equa.tions 

(using congruency)" p. 16-21) deoarece se cauta sa se ob1;ina. printr-un numar cat mai mic 

de.pa.§i coeficientul ±1 pentru eel putin una din necunoscute (este posibil sa. se obtina acest 

coeficient in cazul in care ecuatia admite solutii intregi - vezi [2J, p. 19, Le=a 5); iar in alte 

eazuri se alege ehiar eel mai mic (!) coeficient in modul (din acelea§i considerente - vezi [2], 

capitolul "A whole number algorithm to solve linear equations" p. 11-15), alteori un coeficient 

intermediar intre aceste extreme; (vezi [2] p. 14, Note); aceasta opera1ie este mai importanta, 
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deeat a) §i b) §i ar fi deci indica.t sa se execute prima-aplicaz:ea ei iacand apoi inutiJa folosirea 

celorlalte. 

Ca exemplu vom prelua a.ceea§i ecua.j;ie din [1 J p. 95, pe = 0 vom rezolva in conformitate 

eu cele expuse aiei 6x+lOy-7z = 11. Solutia I. -7 = 6( -1)-1 §i 6(x-z)-z+10y = 11, deci 

am obiinut din primul pas coefieientul-l. ~otand x - z = t E Z, atunei z = 6t + lOy -11 de 

unde x = t + z = 7t + lOy - 11, iar yeste arbitrar in Z.Solutia II. 6( x + 2y - z) - 2y - z = 11 

§i tot din primul pas am obiinut coeficiei1tul -1. Punand x + 2y - z = u E Z obiinem 

6u - 2y - z = 11 §i astfel z = 6u - 2y -11. Rezulta x = u - 2y + z = 7u - 4y - 11 eu y E Z 

arbitrar. Observam ca cele doua soluiii sunt diferite ca expresie intre ele ii diferite de cea data 

de W.Sierpinski in [1], p. 95, dar toate trei sunt echivalente ca solutii generale pentru eeuaiia 

data (vezi [3], sau [2] p. 4-10). 
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iN LEGATURA CU 0 PROBLEMA DE LA CONCURSUL DE MATEMATICA, 

FAZA LOCALA, RAMNICUL V ALCEA 

Se prezinta in aceasta nota 0 extindere a unei probleme data la Olimpiada de matematica, 

faza locala, la P...amn.icul VaIcea, clasa a VI-a, 1980. 

Fie ai, ... , a2r.+1 numere intregi §i b1 , ••• , b:!n+1 acelea§i numere in alta ordine. Sa se arate 

ca. expresia: E = (a\ ± bd . (a2 ± b:!) ..... (a2n+l ± b2,,+1), unde semnele + sau - sint luate 

arbitrar in fiecare paranteza, este un numar par. 

Solutie: 

Presupunem cit expresia E este un numar impar. Atunei rezulta ea fiecare paranteza este 

un numar impar, deci In fiecare paranteza. avem un numar par §i unul impa.r. 

A vern astfei 2n .... 1 numere pare. (l) 

Daca intr-c paranteza exista, sa zicem, un ai, numar par, atunci exist a 0 alta paranteza in 

care un bj , = ai, §i deci bjo este numar par. 

Astfel pentru fiecare ai =numar par dintr-o paranteza, exista un bj numar par §i ar trehui 

sa avem in total, in eXpresia E, un nwnar par de ntL'Ilere pare. Dar aceasta contrazice (1), 

contradic1ie care demonstrea.za problema. 

Observatia 1. Demonstratia ar fi decurs intr-un mod analog daca. ne-am fi refer:t la 

n'lmarul de numere impare din expresie. 0 propunem cititorului. 

Observatia 2. Pentru n = 3 se obtine problema data la olimpiada, problema de care am 

amintit In partea anterioara a notei. 

["Calet 32/matematica", Cralova, Anul IV, Nr. 4, pp. 44-5, Reprografia Universitatii din 

Cralova} 
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NUMEROLOGY (I) 

or 

Properties of the Numbers 

1 1 Reverse sequence: 

1, 21, 321, 4321, 54321,654321.7654321, 87654321,987654321,10987654321, 1110987654321, 

121110987654321, ... 

2) Multiplicative sequence: 

2, 3 ,6, 12, 18, 24, 36, 48, 54, ... 

General definition: if ml, m2, are the first two terms of the sequence, then mk, for k ~ 3, is 

the smallest number equal to the product of two previous distinct terms. 

All terms of rank >- 3 are divisible by ml and m2' 

In our case the first two terms are 2, respectively 3. 

3) Wrong numbers: 

(A number n = a,a2 ... ak, of at least two digits, with the foilowing property: 

the sequence at, a2, . .. ak, bk+I, bk+2.' .. (where bk+i is the product of the previous k terms, 

for any i ~ 1 1 contains n as its term.) 

The author conjectures that there is no wrong number (!l 

Therefore, this sequance is empty. 

4) Impotent numbers: 

2,3,4,5,7,9,11,13,17,19,23,25,29,31, 41, 43, 47, 49,53,59,61, ... 

(A number n those proper divisors product is less than n.) 

Remark: this sequence is {p,p'; where p is a positive prime}. 

5) Random sieve: 

1,5,6,7,11,13,17,19,23,25,29,31,35,37,41,43,47,53,59, ... 

General definition: 

- choose a positive number "1 at random; 

- delete all multiples of all its divisors, exept this number; 

- chose another number "2 greater than "I among those remaining; 

- delete all multiples of all its divisors, ecxept this second number; 

... so on. 

The remaining numbers are all coprime two by two. 
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The sequence obtained uk,k ~ 1, is less dense than the prime number sequence, but it 

tends to the prime number sequence as k tends to infinite. That's why this sequence may be 

important. 

In our case, u, = 6, Uz = 19, U3 = 35, .... 

6) Cubic base: 

0,1,2,3,4,5,6,7, 10, 11, 12,13,14, 15,16, 17,20,21,22,23,24,25,26,27,30,31,32, 

100, 101, 102, 103, 104, 105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 120, 121, 1?2, 

123, ... 

(Each number n written in the cubic base.) 

(One defines over the set of catura! numbers the following infinte ba.se: for k ~ 1 Sk = k' 3.) 

We prove that every positive integer A may be uniquely written in the cubic base as: 

A == (aT." .azal)(C3) d~ f= aiC;, wi~h 0:::; al :::; 7,0:::; az:::; 3,0:::; a3:::; 2 and 0:::; ai:::; 1 for 
i=i 

i ~ 4, and of course an = 1, in the following way: 

- if en :::; A < Cn+l then A == Cn + T,; 

- if Cm :::; Tl < Cm+! then Tl = Cm + TZ, m < n; 

and so on untill one obtains a rest T; == O. 

Therefore, any number may be written as a sum of cubes (1 not counted as cube - being 

obvious )+e, where e = 0, 1, ... , or 7. 

If we denote by erA) the superior square part of A (i.e .. the largest cube less than or equa! 

to A), then A. is written in the cube base as: 

.4 == ciA) + ciA - ciA)) + ciA - ciA) - c(A - crAll) + .... 

This base may be important for partitions with cubes. 

7) Anti-symmetric sequence: 

11. 1212, 123123, 12341234, 1234512345, 123456123456, 12345671234567, 1234567812345678, 

123456789123456789, 1234567891012345678910, 12345678910111234567891011, 

123456789101112123456789101112, ... 

8-16) Recurence type sequences: 

A. 1,2,5,26,29,677,680,701,842,845,866,1517,458330,458333,458354, ... 

(ss2( n) is the smallest number, strictly greater than the previous one, which is the squares 

sum of two previous distinct tenns of the sequence; 

in our particular case the first two terms are 1 and 2.) 
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Recurrence definition: 1) The number 0 :0:::: b belong to 882; 

2) If b, c belong to 8S2, then Il + .? belong to 8S2 too; 

3) Only numbers, obtained by rules 1) and/or 2) applied a finite number of times, belongs 

to SS2. 

The sequence (set) SS2 is increasingly ordered. 

[Rule 1) may be changed by: the given numbers a,,02, ... ,ak, where k ~ 2, belongs to 

SS2.j 

B. 1, 1, 2, 4. 5, 6, 16, 17, 18, 20, 21, 22, 25, 26, 27, 29, 30, 31, 36, 37, 38, 40, 41, 42, 43, 45, 

46, ... 

(ssl( n) is the smallest number, strictly greater than ihe previous one (for n ~ 3), which 

is the squares sum of one or more previous distinct terms of the sequence; 

in our particular case the first term is L) 

Recurrence definition: 

1) The number a belongs to 551; 

2) If b,,~, ... , bk belongs to SSI, where k ~ 1, then b; 2 +~. 2 + ... + b;2 belongs to 

551 too; 

3) Only numbers, obtained by reles 1) and/or 2) applied a finite number of times, belong 

to 851-

The sequence (set) 551 is increasingly ordered. 

[Rule 1) may be changed by: the given numbers 0"a2, ... ,ak, where k ~ 1, belong to 

551.] 

C. 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21, ... 

(nss2(n) is the smallest number, strictly greater than the previous one, which is NOT 

the squares sum of two previous distinct terms of the sequence; 

in our particular case the first two terms are 1 and 2.) 

Recurrence definition: 

1) The numbers a :0:::: b belong to NSS2; 

2) If b, c belomg to :--'582, then 52+ c 2 DOES ~OT belong to NS82; any other numbers 

belong to !\SS2; 

3) Only numbers, obtained by rules 1) and/or 2) applied a finite number of times, belong 

to NS82. 

The sequence (set) NSS2 is increasingly ordered, 
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[Rule 1) may be changed by: the given nliIIlbers at, a2, ... , ak, where k 2:: 2, belong to 

!'\SS2.] 

D. 1, 2, 3, 6, 7, 8, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 

33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 47, ... 

(nssl(n) is the smallest number, strictly greater than the previous one, which is NOT 

the squares sum of the one or more previous distinct terms of the sequence; 

in our particular case the first term is 1.) 

Recurrence definition: 

1) The number a belongs to :"iSS1; 

2) H b,,~, ... ,bk belongs to NSSl, where k 2:: 1, then bi2+~'2+ ... + b[2 DO NOT 

belong to NSSl; any other numbers belong to NSSl; 

3) Only numbers, obtained by rules 1) and/or 2) applied a finite number of times, belong 

to NSS1. 

The sequence (set) NSS1 is increasingly ordered. 

[Rule 1) may ch~ge by: the given numbers at,a., ... ,a., where k 2:: 1, belong to NSSl.] 

E. 1,2,9,730,737,389017001,389017008,389017729, ... 

(cs2( n) is the smallest number, strictly greater than the previous one, which is the cubes 

sum of two previous distinct terms of the sequence; 

in our particular case the first two terms are 1 and 2.) 

Recurrence definition: 

1) The numbers a ::S b belong to CS2; 

2) He,d belong to CS2, then c'3 +,[3 belongs to CS2 too; 

3) Only numbers, obtained by rules 1) and/or 2) applied a finite number of times, belong 

to CS2. 

The sequence (set) CS2 is increasingly ordered. 

[Rule 1) may be changed by: the given numbers a" a2, ... ak, where k 2:: 2, belong to 

CS2.] 

F. 1, 1,2, 8, 9, 10, 512, 513, 514, 520, 521, 522, 729, 730, 731, 737, 738, 739, 1241, ... 

(csl(n) is the smallest number, strictly greater than the previous one (for n 2:: 3), which 

is the cubes sum of one or more previous distinct terms of the sequenCe; 

in our particular case the first ferm is 1.) 

Recurrence definition: 

1) The numbers a ::S b belong to CSl; 
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2) If ~,b2, ... , bk belongs to CSl, where k 2:: 1, then ~' 3 + bi 3 + ... + bk' 3 belong to 

CSI too; 

3) Only numbers, obtained by rules 1) and/or 2) applied a finite number of times, belong 

to CSL 

The sequence (set) CS1 is increasingly ordered. 

[Rule 1) may be changed by: the given numbers at, a2, ... ak, where k 2:: 2, belong to 

CSl.} 

G. 1, 2, 3,4, .5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 

29, 30, 31, 32. 33, 34, 36, 37, 38, ... 

(ncs2(n) is the smallest number, strictly greater than the previous one, whic...'t is NOT 

the cubes sum of two previous distinct terms of the sequence; in our particular case the 

first term is 1 and 2.) 

Recurrence definition: 

1) The numbers a ~ b belong to ~ CS2; 

2) If c, d belong to NCS2, then c'3+d'3 DOES NOT belong to ~CS2; any other numbers 

do belong to NCS2; 

3) Only numbers, obtained by rules 1) and! or 2) applied a finite number of times, belong 

to :--ICS2. 

The sequence (set) ~CS2 is increasingly ordered. 

[Rule 1) may be changed by: the given numbers a" a2, . .. ak, where k 2:: 2, belong to 

NCS2.: 

H. L 2, 3, 4, 5, 6, 7, 10, 11. 12, 13, 11, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 29, :30, 

31, 32, 33, 34, 37, 38, 39, ... 

(nc.s1(n) is the smallest number, strictly greater than the previous one, which is NOT 

the cubes sum of the one or more previous distinct terms of the sequence; 

in our parti~ular case the first term is 1.) 

Recurrence definition: 

1) The number a belongs to NCSl; 

2) If b,,~, ... ,bk belongs to NCSl, where k 2:: 1, then b1 2+ bi2 + ... + bk'2 DO ~OT 

belong to ~CS1; any other numbers belong to :\CS1; 

3) Only numbers, obtained by rules 1) and/or 2) applied a finite number of times, belong 

to NCSl. 
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The sequence (set) XCSI is increasingly ordered. 

[Rule 1) may change by: the given numbers a" a2,"" ak, where k 2: 1, belong to NCSl.] 

I.General-recurrence type sequence: 

General recurrence definition: 

Let k 2: j be natural numbers, a" a2, ... , ak given elements, and Raj-relationship 

(relation among j elements). 

Then: 

1) The elements a" az, . .. , ak belong to SGR. 

2) If m" m" ... , mj belong to SGR, then R(m" mo, ... , mj) belongs to SGR too. 

3) only elements, obtained by rules 1) and/or 2) applied a finite number oftimes, belo,;g 

to SGR. 

The sequence (set) SGR is increasingly ordered. 

:\1ethod of consttruction of the general recurrence sequence: 

- level 1: the given elements a" a2, .. . , ak belong to SGR; 

-leveI2: apply th~ relationship R for all combinations of j elements among aI, a" . .. , ak; 

the results belong to SGR too; 

order all elements of levelland 2 together; 

- level i + 1: 
if b" 1>" .... brr. are all elements of levels 1,2, ... , i-I, and C" C2, ••. , c,. are all ele-

ments of level i, then apply the relationship R for all combinations of j elements among 

b
" 

1>" ..• , bm , CI, C" ... , c,. such that at least an element is from the level i; 

the results belong to SGR too; 

order all elements of levels i and i + 1 together; 

and so on ... 

17)-19) Partition type sequences: 

A. L 1, 1.2,2, 2. 2, 3. 4, 4, ... 

(How many times is n written as sum of non-nul squares, desregarding the terms order; 

for example: 

9 = 1'2 + 1'2 + 1'2 T 1'2 + r2 + 1'2 + 1'2 + 1'2 + 1'2 

= 1'2+ 1'2+ r2+ 1'2+ 1"2+2'2 

=1'2+2'2+2'2 

= 3'2, 
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therefore ns(9) = 4.) 

B. 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6,6, ... 

(How many times is n written as a sum of non-null cubes, desregarding the terms order; 

for example: 

9=1'3+1'3+1'3-t-1"3+1'3+1'3+1"3+1'3+1'3 

=1'3+2'3, 

therefore nc( 9) = 2.) 

C. General-partition type sequence: 

Let f be an arithmetic function, and R a relation among numbers. 

{ How many times can n be written under the form: 

n = R(f(nJ),J(n2), ... ,f(nk» 

for some k and n" n2,' .. , n. such that 

n, + n2 + ... + nk = n?} 

20) Concatenate sequence: 

1,22, 333, 4444, 55555, 666666, 7777777,88888888, 999999999, 10101010101010101010, 

1111111111111111111111, 121212121212121212121212, 13131313131313131313131313, 

1414141414141414141414141414, 151515151515151515151515151515, ... 

21) Triangular base: 

1,2,10,11, 12, 100, 101, 102, no, 1000, 1001, 1002, 1010, 1011, 10000, 10001, 10002, 10010, 

10011, 10012, 100000, 100001, 100002, 100010, 100011, 100012, 100100, 1000000, 1000001, 

1000002, 1000010, 1000011, 1000012, 1000100, ... 

(Numbers written in the triangular base, defined as follows: ten) = n(n + 1)/2, for n 2:: 1.) 

22) Double factorial base: 

1, 10, 100, 101, no, 200, 201, 1000, 1001, 1010, noo, llOl, lll0, 1200, 10000, 1001, 10010, 

10100, 10101, lOll0, 10200, 10201, llOOO, 11001, 11010, 11100, ll101, 11110, 11200, 11201, 

12000, ... 

(Numbers written in the double factorial base, defined as follows: df(n) = n!!) 

23) Non-multiplicative sequence: 

General definition: let m" m2, ... , m. be the first k given terms of the sequence, where 

k 2:: 2; 
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then mi, for i :::: k + 1, is the smallest number not equal to the product of k previous distinct 

terms. 

24) ;-\on-arithmetic progression: 

1,2,4, 5, 10, 11, 13, 14,28,29,31, 32,37,38,40,41,64, .. ' 

General definition: if m}, m2, are the first two terms of the sequence, then mk, for k :::: 3, is 

the smallest number such that no 3-term arithmetic progression is in the sequence. 

in our case the first two terms are 1, respectively 2. 

Generalization: same initial conditions, but no i-term arithmetic progression in the sequence 

(for a given i :::: 3). 

25) Prime product secuence: 

2,7,31,211,2311,30031,510511,9699691, 223092871, 6469693231, 200560490131, 

7420738134811, 304250263527211, ... 

Pn = 1 + P1P2" ·Pn, where Pk is the k-th prime. 

Question: How many of them are prime? 

26) Square produc~ sequence: 

2,5,37,577,14401,518401,25401601, 1625702401, 131681894401, 13168189440001, 

l593350922240001, .. , 

Sn = 1 + s, S2 ... Sn, where Sk is the k-th square number. 

Question: How many of them are prime? 

27) Cubic product sequence: 

2,9,217,13825,1728001,373248001, 128024064001,65548320768001, ... 

Cn = 1 + C,C2 .•. en, where Ck is the k-th cubic number. 

Question: How many of them are prime? 

28) Factorial product sequence: 

2, 3, 13, 289, 34561, 24883201, 125411328001, 5056584744960001, ... 

Fn = 1 .J.. J,h ... fn, where fk is the k-th factorial number. 

Question: How many of them are prime? 

29) V-product sequence {generalization}: 

Let Un, n :::: 1, be a positive integer sequence. Then we define a V-sequence as follows: 

Vr. = 1 + U, U2 ••. Un· 

30) ;-\ on-geometric progression: 

1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 33, 34, 35, 

37.38, 39,40,41,42,43,45,46,47,48,50, 51,53, .. , 
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General definition: if m}, m2, are the first two tennB of the sequence, then m", for k ;?: 3, is 

the smallest number such that no 3-term geometric progression is in the sequence. 

In our case the first two terms are 1, respectively 2. 

31) Unary sequence: 

11, 111, 11111, 1111111, 11111111111, 1111111111111, 11111111111111111, 

1111111111111111111, 11111111111111111111111, 11111111111111111111111111111, 

1111111111111111111111111111111, ... 

u( n) = u:-:-:I, Pn digits of "1", where Pn is the n-th prime. 

The old quenstion: are there an infinite number of primes belomging to the sequence? 

32) Xo prime digits sequence: 

1, 4, 6, 8, 9, 10, 11, 1, 1, 14, 1, 16, 1, 18, 19, 0, 1,4, 6, 8, 9, 0, 1,4, 6, 8, 9, 40, 41, 42, 4, 

44, 4, 46, 4, 48, 49, 0, .. , 

(Take out all prime digits of n.) 

33) X 0 square digits sequence: 

2, 3, 5, 6, 7, 8, 2, 3, 5, 6, 7, 8, 2, 2, 22, 23, 2, 25, 26, 27, 28, 2, 3, 3, 32, 33, 3, 35, 36, 37, 38, 

3,2,3,5,6,7,8,5,5,52,52,5,55,56,57,58,5,6,6,62, ... 

(Take out all square degits of n.) 

34) Concatenated prime sequence: 

2, 23, 235, 2357, 235711, 23571113, 2357111317, 235711131719, 23571113171923, ... 

Conjecture: there are infinetely many primes among these numbers! 

35) Concatenated odd sequence: 

1,13, 135, 1357, 13579, 1357911, 135791113, 13579111315, 1357911131517, ... 

Conjecture: there are infinetely many primes among these numbers! 

36) Concatenated even sequence: 

2, 24, 246, 2468, 246810, 24681012, 2468101214, 246810121416, ... 

Conjecture: none of them is a perfect power! 

37) Concatenated S-sequence {generalization}: 

Let S"S2,S3,S4, ... ,Sn, •.. be an infinite sequence (noted by 5.) 

Then: 

S" S" 32, S,S2S3, S,828384, 8,82838, ... 8r., . •. is called the Concatenated S-sequence. 

Question: 

a) How many terms of the Concatenated S-sequence belong to the initial S-sequence? 
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b) Or, how many terms of the Concatenated S-sequence verify the realtion of other given 

sequences? 

The first three cases are particular. 

Look now at some other examples, when S is the sequence of squares, cubes, Fibonacci 

respectively (and one can go so on): 

Concatenated Square sequence: 

L 14, 149, 14916, 1491625, 149162536, 14916253649, 1491625364964, ... 

How many of them are perfect squares? 

Concatenated Cubic sequence: 

1, 18, 1827, 182764, 182764125, 182764125216, 1827631252166343, ... 

How many of them are perfect cubes? 

Concatenated Fibonacci sequence: 

1, 11, 112, 1123, 11235, 112358, 11235813, 1123581321, 112358132134, .. , 

Does any of these numbers is a Fibonacci number? 

References 

[1] F.Smarandache, "Properties of ~umbers", University of Craiova Archives, 1975; [see also 

Arzona State University Special Collections, Tempe, Arizona, USA]. 

38) Teh Smallest Power Function: 

5 P( n) is the smallest number m such that m 'm is divisible by n. 

The following sequence SP(n) is generated: 

1,2,3,2,5,6,7,4,3,10, 11,6,13,14,15,4, 17,6,19,10,21,22,23,6,5,26,3,14,29, 

30, 31, 4, 33, 34, 35, 6, 37, 38, 39, 20, 41, 42, ... 

Remark: 

If p is prime, then SP(n) = p. 

If r is square free, then SP(r) = r. 

If n = (1'1' SI) ..... (Pk' Sk) and all Si ~ Pi, then SP(n) = n. 

If n = p' s, where P is prime, then: 
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p, if 1 ::; S ::; P; 

p'2, ifp+l::;s::;2p'2; 

SP(n) = p'3, if2p'2 + 1::; s::; 3p'3; 

p't, if(t -1)p'(t -1) + 1::; s::; tp't. 

Generally, if n = (PI' 81) ..... (Pk' Sk), with all Pi prime, then: 

SP(n) = (PI' t , )· ... · (Pk' tk), where ti = Ui if (Ui -l)p' (Ui - 1)+ ::; Si ::; UiPi' Ui for 

1::; i ::; k. 

39) A 3n-digital subsequence: 

13, 26, 39, 412, 515, 618, 721, 824, 927, 1030, 1133, 1236, ... 

(numbers that can be partitioned into two groups such that the second is three times biger 

than the first) 

40) A 4n-digital subsequence: 

14, 28. 312, 416, 520, 624, 728, 832, 936, 1040, 1144, 1248, ... 

('lUmbers that can be partitioned into two grpoups such that the second is four times biger 

than the first) 

41) A 5n-digital subsequence: 

15, 210, 315, 420, 525, 630, 735, 840, 945, 1050, 1155, 1260, ... (numbers that can be 

partitioned into two groups such that the second is five times biger than the first) 

42) A second function (numbers): 

1, 2, 3, 2, 5, 6. 7,4,3, 10, 11, 6, 13, 14, 15, 4, 17,6, 19, 10, 21, 22, 23, 12,5,26, 9, 14, 29, 

30,31, 8,33, ... 

(S2( n) is tha smallest integer m such that m 2 is divisible by n) 

43) A third function (numbers): 

1, 2, 3, 2, 5, 6, 7, 8, 3, 10, 11, 6, 13, 14, 15, 4, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 

30,31,4,33, ... 

(S3( n) is the smallest integer m such that m 3 is divisible by n) 
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NUMERALOGY (II) 

or 

Properties of Numbers 

1) Factorial base: 

0, 1, 10,11,20,21, 100, 101, no, Ill, 120, 121,200,201,210,211,2"20,221, 300, 301, 310, 

311,320,321, 1000, 1001, 1010, 1011, 1020, 1021, 1100, 1101, 1110, 1111, 1120, 1121, 1200, .,. 

(Each number n written in the factorial base.) 

(We define over the set of natural numbers the following infin.ite base: for k ;::: 1 Ik = k!) 

It is proved that every positive integer A may be uniquely written in the factorial base as: 

A = (an ... a2al)(F) dgj .t adi' with all a; = 0, 1, ... i for i ;::: l. 
,=1 

in the following way: 

- if In ::; A < In+! then A = In + rl; 

- if 1m::; rl < f m+l then rl = f m + ro, m < n; 

and so on untill one obtains a rest rj = O. 

What's very interesting: al = 0 or 1; a2 = 0, 1, or 2; a3 = 0,1,2 or 3, and so on ... 

If we note by I(A) the superior factorial part of A (i.e. the largest factorial less than or 

equal to A), then A is written in the factorial base as: 

A = f(A) + f(A - f(A) + I(A - f(A) - I(A - I(A») + .... 

Rules of addition and substraction in factorial base: 

for each digit ai we add and substract in base i + 1, for i ;::: 1. 

For examplu, addition: 

base5432 

2 0 + 
2 2 

o 

because: 0 + 1 = 1 (in base 2); 

1 + 2 = 10 (in base 3): therefore we write 0 and keep 1; 

2 + 2 + 1 = 11 (in base 4). 

Now substraction: 
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base5432 

becuase: 1 - 0 = 1 (in base 2); 

o 0 

320 

0-2 =? it's not possible (in base 3), go to the next left unit, which is 0 again (in 

base 4), go again to the next left unit, which is 1 (in base 5), therefore 1001 -+ 0401 -+ 0331 

and then 0331 - 320 = 11. 

Find some rules for multiplication and division. 

In a general case: 

if we want to design a base such that any number 

A = (an ... azal)(B) d~ f: aibi, with all ai = 0, 1, ... ti for i 2': 1, where all ti 2': 1, then: 
i=1 

this base should be 

b, = l,bi+l = (ti+ l)*bi for; 21. 

2) :vfore general-sequence sieve: 

For; = 1,2,3, ... , let Ui > 1, be a strictly increasing positive integer sequence, and Vi < u, 

another positive integer sequence. Then: 

From the natural numbers set: 

- keep the vl-th number among 1,2.3, ... , u, - 1, and delete every ul-th numbers; 

- keep the v2-th number among the next Uz - 1 remaining numbers, and delete every uz-th 

numbers: 

... and so on, for step k(k 2 1): 

-keep the vk-th number among the next Uk - 1 remaining numbers, and delete every uk-th 

numbers; 

Problem: study the relationship between sequences Ui, Vi, i = 1,2,3, ... , and the remaining 

sequence resulted from the more general sieve. 

Ui and Vi previously defined, are called sieve generators. 
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3) Mobile periodicals (I): 

· .. 000000000000000000000000000000010000000000000000000000000000000000 .. . 
· .. 00000000000000000000000000000011100000000000000000000000000000000 .. . 
· .. 000000000000000000000000000001101100000000000000000000000000000000 .. . 
· .. 000000000000000000000000000000111000000000000000000000000000000000 .. . 
· .. 000000000000000000000000000000010000000000000000000000000000000000 .. . 
· .. 000000000000000000000000000000111000000000000000000000000000000000 .. . 
· .. 000000000000000000000000000001101100000000000000000000000000000000 .. . 
· .. 000000000000000000000000000011000110000000000000000000000000000000 .. . 
... 000000000000000000000000000001101100000000000000000000000000000000 .. . 
· .. 000000000000000000000000000000111000000000000000000000000000000000 .. . 
· .. 000000000000000000000000000000010000000000000000000000000000000000 .. . 
... 000000000000000000000000000000111000000000000000000000000000000000 .. . 
· .. 000000000000000000000000000001101100000000000000000000000000000000 .. . 
· .. 00000000000000000000000000001100011 0000000000000000000000000000000 .. . 
· .. 000000000000000000000000000 11 0000011000000000000000000000000000000 .. . 
· .. 00000000000000000000000000001100011 0000000000000000000000000000000 .. . 
... 000000000000000000000000000001101100000000000000000000000000000000 .. . 
· .. 000000000000000000000000000000111000000000000000000000000000000000 .. . 
· .. 000000000000000000000000000000010000000000000000000000000000000000 .. . 
· .. 000000000000000000000000000000111000000000000000000000000000000000 .. . 
· .. 000000000000000000000000000001101100000000000000000000000000000000 .. . 
· .. 000000000000000000000000000011 00011 0000000000000000000000000000000 .. . 
· .. 000000000000000000000000000 110000011000000000000000000000000000000 .. . 
· .. 0000000000000000000000000011000000011 00000000000000000000000000000 .. . 
· .. 000000000000000000000000000110000011000000000000000000000000000000 .. . 
· .. 00000000000000000000000000001100011 0000000000000000000000000000000 .. . 
· .. 000000000000000000000000000001101100000000000000000000000000000000 .. . 
· .. 000000000000000000000000000000111000000000000000000000000000000000 .. . 
· .. 000000000000000000000000000000010000000000000000000000000000000000 .. . 
· .. 000000000000000000000000000000111000000000000000000000000000000000 .. . 
... 000000000000000000000000000001101100000000000000000000000000000000 .. . 
· .. 000000000000000000000000000011 00011 0000000000000000000000000000000 .. . 
... 000000000000000000000000000110000011000000000000000000000000000000 .. . 
· .. 000000000000000000000000001100000001100000000000000000000000000000 .. . 
... 000000000000000000000000011000000000110000000000000000000000000000 .. . 
... 000000000000000000000000001100000001100000000000000000000000000000 .. . 
... 000000000000000000000000000110000011000000000000000000000000000000 .. . 
· .. 000000000000000000000000000011000110000000000000000000000000000000 .. . 
· .. 000000000000000000000000000001101100000000000000000000000000000000 .. . 
· .. 000000000000000000000000000000111000000000000000000000000000000000 .. . 
.. . 000000000000000000000000000000010000000000000000000000000000000000 .. . 
· .. 000000000000000000000000000000111000000000000000000000000000000000 .. . 
· .. 0000000000000000000000000000011011000000000000000000000000000 .. . 
· .. 00000000000000000000000000001100011 0000000000000000000000000000000 .. . 
· .. 000000000000000000000000000110000011000000000000000000000000000000 .. . 
... 000000000000000000000000001100000001100000000000000000000000000000 .. . 
... 000000000000000000000000011000000000110000000000000000000000000000 .. . 
... 000000000000000000000000110000000000011000000000000000000000000000 .. . 

This sequence has the form 

,1,111,11011, Ill, 1,111, H011, nOOOll, 11011, Ill, ~,111, 11011, 1100011, 110000011, ... 

5 7 9 
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4) Mobile periodicals (II): 

· .. 000000000000000000000000000000010000000000000000000000000000000000 .. . 
· .. 000000000000000000000000000000111000000000000000000000000000000000 .. . 
· .. 000000000000000000000000000001121100000000000000000000000000000000 .. . 
· .. 00000000000000000000000000011100000000000000000000000 .. . 
· .. 000000000000000000000000000000010000000000000000000000000000000000 .. . 
· .. 000000OOOOOOOOOOOOOOOOOOOOOOOO111000000000000000IlOOIlOO)()()()()()()()()()()() 
· .. 0000000000000000000000000000011211000000000000000000000 .. . 
· .. 0000000000000000000000000000112321100000000000000000 .. . 
· .. 0000000000000000000000000000011211000000000000000000000 .. . 
· .. 000000000000000000000000000000111000000000000000000000000000000000 .. . 
· .. 0000000000000000000000000000000100000000000000000000 .. . 
· .. 00000000000000000000000000000011100000000000000000000000000000000 .. . 
· .. 0000000000000000000000000000011211000000000000000000000000 .. . 
· .. 000000000000000000000000000011232110000000000000000000000000000 .. . 
· .. 000000000000000000000000000112343211000000000000000000000000000000 .. . 
· .. 0000000000000000000000000000112321100000000000000000 .. . 
· .. 000000000000000000000000000001121100000000000000000000000000000000 .. . 
· .. 000000000000000000000000000000111000000000000000000000000000000 .. . 
· .. 00000000000000000000000000000001000000000000000000000000000000 .. . 
· .. 00000000000000OOOOO()()()()oooOOOOI11000000000000000000000000000000000 .. . 
· .. 000000000000000000000000000001121100000000000000000000000000000000 .. . 
· .. 000000000000000000000000011232110000000000000000000000000000000 .. . 
· .. 00000000000000000000112343211000000000000000000000000000000 .. . 
· .. 0000000000000000000000000011234543211 00000000000000000000000000000 .. . 
· .. 000000000000000000000000000112343211000000000000000000000000000000 .. . 
· .. 0000000000000000000000000000112321100000000000000000000000 .. . 
· .. 000000000000000000000000000001121100000000000000600000000 .. . 
· .. 000000000000000000000000000000111000000000000000000000000 .. . 
· .. 000000000000000000000000OOOOOOO1000000000000000()()()()(JIOOO()()()(lOOOIOOOOOO)()()(10000[)()()(OOOOOlOOO' .. 
... 0000000000000000111 
· .. 00000000000000000000000011211000000000000000 .. . 
· .. 0000000000000000000001123211000000000000000 .. . 
· .. 000000000000000000000000000112343211000000000000000 .. . 
· .. 0000000000000000000000000011234543211000000000000000 .. . 
· .. 00000000000000000000000001123456543211000000000000000 .. . 
· .. 0000000000000000000000000011234543211000000000000000 .. . 
· .. OOOOOOOOOOOOOOOOOOOOOOOOOOi1112343211000000000000000 .. . 
· .. 0000000000000000000000000000112321100000000000000000000 .. . 
· .. 0000000000000000000000000000011211000000000000000 .. . 
· .. 00000000000000000000000000000011100000000000000000 .. . 
... 000000000000000100000000000000000000000 .. . 
· .. 0000000000000001110000000000000000000000 .. . 
· .. 00000000000000000000001121100000000000000000000000000000000 .. . 
· .. 000000000000000000000011232110000000000000000000000000 .. . 
· .. 000000000000000000000000000112343211000000000000000 .. . 
· .. 0000000000000000000000000011234543211 ooooooooilOOoooooooooooooOOOOO .. . 
· .. 000000000000000000000000011234565432110000000000000000000000000000 .. . 
· .. 000000000000000000000000112345676543211000000000000000000000000000 .. . 

This sequence has the form 

1,111,11211, Ill, ~,111, 11211, 1123211, 11211, 111, p11, 11211, 1123211, 112343211, .. " 

5 7 9 
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5) Infinite numbers (I): 

... 111111111111111111111111111111101111111111111111111111111111111111 .. . 

... 111111111111111111111111111111000111111111111111111111111111111111 .. . 

... 111111111111111111111111111110010011111111111111111111111111111111 .. . 

... 111111111111111111111111111111000111111111111111111111111111111111 .. . 

... 111111111111111111111111111111101111111111111111111111111111111111 .. . 

... 111111111111111111111111111111000111111111111111111111111111111111 .. . 

... 111111111111111111111111111110010011111111111111111111111111111111 .. . 

... 111111111111111111111111111100111001111111111111111111111111111111 .. . 

... 111111111111111111111111111110010011111111111111111111111111111111 .. . 

... 111111111111111111111111111111000111111111111111111111111111111111 .. . 

... 111111111111111111111111111111101111111111111111111111111111111111 .. . 

... 111111111111111111111111111111000111111111111111111111111111111111 .. . 

... 111111111111111111111111111110010011111111111111111111111111111111 .. . 

... 111111111111111111111111111100111001111111111111111111111111111111 .. . 

... 111111111111111111111111111001111100111111111111111111111111111111 .. . 

... 111111111111111111111111111100111001111111111111111111111111111111 .. . 

... 111111111111111111111111111110010011111111111111111111111111111111 .. . 

... 111111111111111111111111111111000111111111111111111111111111111111 .. . 

... 111111111111111111111111111111101111111111111111111111111111111111 .. . 

. . . 111111111111111111111111111111000111111111111111111111111111111111 .. . 

... 111111111111111111111111111110010011111111111111111111111111111111 .. . 

... 111111111111111111111111111100111001111111111111111111111111111111 .. . 

... 111111111111111111111111111001111100111111111111111111111111111111 .. . 

... 1111111111111l1111111111110011111110011111111111111111111111111111 .. . 

... 111111111111111111111111111001111100111111111111111111111111111111 .. . 

... 111111111111111111111111111100111001111111111111111111111111111111 .. . 

... 111111111111111111111111111110010011111111111111111111111111111111 .. . 

... 111111111111111111111111111111000111111111111111111111111111111111 .. . 

... 111111111111111111111111111111101111111111111111111111111111111111 .. . 

... 111111111111111111111111111111000111111111111111111111111111111111 .. . 

... 111111111111111111111111111110010011111111111111111111111111111111 .. . 

... 111111111111111111111111111100111001111111111111111111111111111111 .. . 

... 111111111111111111111111111001111100111111111111111111111111111111 .. . 

... 111111111111111111111111110011111110011111111111111111111111111111.: . 

... 111111111111111111111111100111111111001111111111111111111111111111 .. . 

... 111111111111111111111111110011111110011111111111111111111111111111 .. . 

... 111111111111111111111111111001111100111111111111111111111111111111 .. . 

... 111111111111111111111111111100111001111111111111111111111111111111 .. . 

... 111111111111111111111111111110010011111111111111111111111111111111 .. . 

... 111111111111111111111111111111000111111111111111111111111111111111 .. . 

... 111111111111111111111111111111101111111111111111111111111111111111 .. . 

... 111111111111111111111111111111000111111111111111111111111111111111 .. . 

. . . 111111111111111111111111111110010011111111111111111111111111111111 .. . 

... 111111111111111111111111111100111001111111111111111111111111111111 .. . 

... 111111111111111111111111111001111100111111111111111111111111111111 .. . 

... 111111111111111111111111110011111110011111111111111111111111111111 .. . 

... 111111111111111111111111100111111111001111111111111111111111111111 .. . 

... 111111111111111111111111001111111111100111111111111111111111111111 .. . 
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6) Infinite numbers (II): 

... 111111111111111111111111111111121111111111111111111111111111111111 .. . 

... 111111111111111111111111111111222111111111111111111111111111111111 .. . 

... 111111111111111111111111111112232211111111111111111111111111111111 .. . 

... 111111111111111111111111111111222111111111111111111111111111111111 .. . 

... 111111111111111111111111111111121111111111111111111111111111111111 .. . 

... 111111111111111111111111111111222111111111111111111111111111111111 .. . 

... 111111111111111111111111111112232211111111111111111111111111111111 .. . 

... 111111111111111111111111111122343221111111111111111111111111111111 .. . 

... 111111111111111111111111111112232211111111111111111111111111111111 .. . 

... 111111111111111111111111111111222111111111111111111111111111111111 .. . 

... 111111111111111111111111111111121111111111111111111111111111111111 .. . 

... 111111111111111111111111111111222111111111111111111111111111111111 .. . 

... 111111111111111111111111111112232211111111111111111111111111111111 .. . 

... 111111111111111111111111111122343221111111111111111111111111111111 .. . 

. .. 111111111111111111111111111223454322111111111111111111111111111111 .. . 

... 111111111111111111111111111122343221111111111111111111111111111111 .. . 

... 111111111111111111111111111112232211111111111111111111111111111111 .. . 

... 111111111111111111111111111111222111111111111111111111111111111111 .. . 

... 111111111111111111111111111111121111111111111111111111111111111111 .. . 

... 111111111111111111111111111111222111111111111111111111111111111111 .. . 

... 111111111111111111111111111112232211111111111111111111111111111111 .. . 

... 111111111111111111111111111122343221111111111111111111111111111111 .. . 

... 111111111111111111111111111223454322111111111111111111111111111111 .. . 

... 111111111111111111111111112234565432211111111111111111111111111111 .. . 

... 111111111111111111111111111223454322111111111111111111111111111111 .. . 

... 111111111111111111111111111122343221111111111111111111111111111111 .. . 

... 111111111111111111111111111112232211111111111111111111111111111111 .. . 

... 111111111111111111111111111111222111111111111111111111111111111111 .. . 

... 111111111111111111111111111111121111111111111111111111111111111111 .. . 

... 111111111111111111111111111111222111111111111111111111111111111111 .. . 

... 111111111111111111111111111112232211111111111111111111111111111111 .. . 

... 111111111111111111111111111122343221111111111111111111111111111111 .. . 

... 111111111111111111111111111223454322111111111111111111111111111111 .. . 

... 111111111111111111111111112234565432211111111111111111111111111111 .. . 

... 111111111111111111111111122345676543221111111111111111111111111111 .. . 

... 111111111111111111111111112234565432211111111111111111111111111111 .. . 

... 111111111111111111111111111223454322111111111111111111111111111111 .. . 

... 111111111111111111111111111122343221111111111111111111111111111111 .. . 

... 111111111111111111111111111112222211111111111111111111111111111111 .. . 

... 111111111111111111111111111111222111111111111111111111111111111111 .. . 

... 111111111111111111111111111111121111111111111111111111111111111111 .. . 

... 111111111111111111111111111111222111111111111111111111111111111111 .. . 

... 111111111111111111111111111112232211111111111111111111111111111111 .. . 

... 111111111111111111111111111122343221111111111111111111111111111111 .. . 

... 111111111111111111111111111223454322111111111111111111111111111111 .. . 

... 111111111111111111111111112234565432211111111111111111111111111111 .. . 

... 111111111111111111111111122345676543221111111111111111111111111111 .. . 

. . . 1111111111111111111111112'23456787654322111111111111111111111111111 .. . 
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7) Car: 

· .. 000000000000000000000000000000000000000000000000000000000000000000 .. . 
... 000000000000000000111111111111111111111111100000000000000000000000 .. . 
· .. 000000000000000001111111111111111111111111110000000000000000000000 .. . 
· .. 000000000000000011000000000000000000000000011000000000000000000000 .. . 
· .. 00000000000000011 0000000000000000000000000001100000000000000000000 .. . 
... 000000011111111100000000000000000000000000000111111111000000000000 .. . 
... 000000111111111000000000000000000000000000000011111111100000000000 .. . 
· .. 00000011000000000000000000000000000000000000000000000 1100000000000 .. . 
... 000000110000000000000000000000000000000000000000000001100000000000 .. . 
· .. 000000110000044400000000000000000000000000000004440001100000000000 .. . 
... 000000111111444441111111111111111111111111111144444111100000000000 .. . 
· .. 000000111114444444111111111111111111111111111444444411100000000000 .. . 
... 000000000000444440000000000000000000000000000044444000000000000000 .. . 
... 000000000000044400000000000000000000000000000004440000000000000000 .. . 
... 000000000000000000000000000000000000000000000000000000000000000000 .. . 

8) Finite lattice: 

... 000000000000000000000000000000000000000000000000000000000000000000 .. . 

... 077700000000000700000007777777700777777770077007777777700777777770 .. . 

... 077700000000007770000007777777700777777770077007777777700777777770 .. . 

... 077700000000077077000000007700000000770000077007770000000770000000 .. . 

... 077700000000770007700000007700000000770000077007770000000777770000 .. . 

... 0777oo0oo0077~777777oo000077oo000000770000077oo7770000000770000000 .. . 

... 077777700077000000077000007700000000770000077007777777700777777770 .. . 

... 077777700770000000007700007700000000770000077007777777700777777770 .. . 

... 000000000000000000000000000000000000000000000000000000000000000000 .. . 

9) Infinite lattice: 

... 111111111111111111111111111111111111111111111111111111111111111111 .. . 

... 177711111111111711111117777777711777777771177117777777711777777771 .. . 

... 177711111111117771111117777777711777777771177117777777711777777771 .. . 

... 177711111111177177111111117711111111771111177117771111111771111111 .. . 

... 177711111111771117711111117711111111771111177117771111111777771111 .. . 

... 177711111117777777771111117711111111771111177117771111111771111111 .. . 

... 177777711177111111177111117711111111771111177117777777711777777771 .. . 

... 177777711771111111117711117711111111771111177117777777711777777771 .. . 

... 111111111111111111111111111111111111111111111111111111111111111111 .. . 

Remark: of course, it's interesting to "design" a large variety of numerical <object sequences> 

in the same way. Their numbers may be infinte if the picture's background is zeroed, or infinite 

if the picture's background is not zeroed - as for the previous examples. 

10) Multiplication: 

Another way to multiply two integer numbers, A and B: 

- let k be an integer ::::: 2; 

- write A and B on two different vertical columns: c(A), respectively c(B); 

- multiply A by k and write the product Ai on the column c(A): 
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- divide B by k, and write the integer part of the quotient B, on the column c(B); 

... and so on with the new numbers AI and B" until we get a Bi < k on the column c(B); 

Then: 

- write another column c(r), on the right side of c(B), such that: 

for each number of column c(B), which may be a multiple of k plus the rest r (where 

r = 0, 1,2, ... , k -1), the corresponding number on c(r) will be r; 

- multiply each number of column A by its corresponding r of c(r), and put the new products 

on another column c(P) on the right side of c(r); 

- finally add all numbers of column c(P). 

A x B = the sum of all numbers of c(P). 

Remark that any multiplication of integer numbers can be done only by multiplication with 

2,3, ... , k, division by k, and additions. 

This is a generalization of Russian multiplication (where k = 2). 

This multiplication is usefulJ when k is very small, the best values being for k = 2 (Rus

sian multiplication - known since Egyptian time), or k = 3. IT k is greater than or equal to 

min{lO, B}, tjis multiplication is trivial (the obvious multiplication). 

Example 1. (if we choose k = 3): 

73 x 97 =7 

Xa I 

c(A) 

79 

219 

657 

1971 

5913 

therefore: 73 x 97 = 7081. 

/3 
c(B) 

97 

92 

1~ I 
1 I 
I 

, 

c(r) c(P) 

1 79 

2 .{.98 

1 657 

0 0 

1 I 5919 

I 7081 total 

Remark that any multiplication of integer numbers can be done only by multiplication with 

2,3, divisions by 3, and additions. 

Example 2. (if we choose k = 4): 

i3 x 97 =7 
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X4 /4 I 
etA) c(B) i e(r) c(P) 

73 97

1 

1 73 
I 

292 ! 24 0 0 

1168 6 2 2336 

4672 1 1 4672 

I I 7081 rota! 

therefore: 73 x 97 = 7081. 

Remark that any multiplication of integer numbers can be done only by multiplication with 

2,3,4, divisions by 4, and additions. 

Example 3. (if we choose k = 5): 

73 X 97 =? 

Xs 

e(.4) 

73 

365 

1825 

therefore: 73 X 97 = 7081. 

i 
/5 

e(B) 

97 

19 

3i 

j I 

I 

e(r) e(P) 

2 146 

4 1460 

3 5475 

I 7081 total 

Remark that any multiplication of integer numbers can be done only by multiplication with 

2,3,4,5, divisions by 5, and additions. 

This multiplication becomes less useful! when k increases. 

Look at another example (4), what happens when k = 10: 

Example 4. 73 x 97 =? 
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therefore: 73 X 97 = 7081. 

Remark that any multiplication of integer numbers can be done only by multiplication with 

2,3, ... , 10, divisions by 10, and additions - hence we obtain just the obvious multiplication1 

11) Division by k'n: 

Another way to devide an integer numbers A by k' n, where k, n are integers 2: 2: 

- write A arld k'n on two different vertical columns: c(A), respectively c(k'n); 

- devide A by k, and write the integer quotient A, on the column ciA); 

- devide k'n by k, and write the quotient q, = k'(n -1) on the column c(k'n); 

... and so on with the new numbers A, and q" untill we get qn = 1(= k'O) on the column 

c(k'n); 

Then: 

- write another column c(r), on the left side of c(A), such that: 

for each number of column ciA), which may be multiple of k plus the rest r (where 

r = 0,1,2, ... , k - 1), the corresponding number on c(r) will be r; 
- write another column c(P), on the left side of c(r), in the following way: the element on 

line i (except the last line which is 0) will be k'(i -1); 

- multiply each number of column c(P) by its corresponding r of c(r), and put the new 

products on another column c(R) on the left side of c(P); 

- finally add all numbers of column c( R) to get the final rest R, while the final quotient will 

be stated in front of c(k'n)'s 1. 

Therefore: 

Aj(k'n) = An and rest Rn. 
Remark that any division of an integer number by k' n can done only by divisions to k, 

calculations of powers of k, multiplications with 1,2, ... ,k - 1, additions, 

This division is useful! when k is small, the best values being when k is an one-digit number, 

and n large. If k is very big and n very smali, this division becomes useless. 
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Example 1. 1357/(2' 7) =? 

I i /2 /2 ! I , 

c(R) c(P) c(r) c(A) c(2'7) 

1 2'0 1 11357 2'7 I line! 

0 2'1 0, 678 2'6 'r I 'n~ 
4 2'2 Ii 339 2'5 Iline3 

8 2'3 1 169 2'4 line" 

0 2'4 0 84 2'3 lines 

0 2"5 0, 42 2"2 lineo 

64 I 2"6 11 21 2"1 line7 

1 i 10 2'0 lasUine 

771 I ! I 

Therefore: 1357/(2'7) = 10 and rest 77. 

Remark that the division of an integer number by any power of 2 can be done only by 

divisions to 2, calculations of power of 2, multiplications and additions. 

Example 2. 19495/(3'8) =? 

1 

o 
0 

54 

0 

486 

I 

1458 1 , 
4374 i 

I 
63731 

3'2 ; 0 

3'3 2 

3'4 0 

3'5 2 

3"6 2 

3"7 2 

I 

Therefore: 19495/(3' 8) = 2 and rest 6373. 

/3 

2166 3"6 line3 

7ft2 3'5 I line" 
I 

240 3'4 ' lines 

80 3"3 lineo 

e6 3"2 line, 

8 3"1 I lines 

2 3"0 lasLline 

I 

Remark that the division of an integer number by any power of 3 can be done only by 

divisions to 3, calculations of power of 3, multiplications and additions. 

179 



References 

[lJ Alain Bouvier et ~ichel George, sous la deriction de Francois Le Lionnais, "Dictionnaire 

des Mathematiques", Presses Universitaires de France, Paris, 1979, p. 659; 

"The Florentin Smarandache papers" special collection, Arizona State 1;niversity, Tempe, 

AZ 85287. 

12) Almost prime of first kind: 

a, :2: 2, and for n :2: 1 ~+] is the smallest number that is not divisible by any of the previous 

terms (of the sequence) aI, a2~···, an. 

Example for a, = 10: 

10,11,12,13,14,15,16,17,18,19,21,23,25,27,29,31,35, 37, 41.43, 47, 49, 53, 57, 61, 67. n, 
73, ... 

If one starts by a, = 2, it obtains. the complete prime sequence and only it. 

If one starts by a2 > 2, it obtains a."ter a rank r, where ar = p(a,)2 with p(x) the strictly 

superior prime part of x, i.e. the largest prime strictly less than x, the prime sequence: 

- between a, and ar , the sequence contains all prime numbers of this interval and some 

composite numbers; 

- from ar+l and up, the sequence contains all prime numbers greater than ar and no com

posite numbers. 

13) Almost primes of second kind: 

a, :2: 2, and for n :2: 1 an+> is the smallest number that is coprime with all of the previous 

terms (of the sequence) a1,a2,' .. ,an -

This second kind sequence merges faster to prime numbers than the first kind sequence. 

Example for a, = 10: 

10, 11, 13, 17, 19, 21. 23, 29, 31,37,41,43,47,53,57,61,67, 71, 73, ... 

If one starts by a, = 2, it obtains the complete prime sequence and only it. 

If one starts by a2 > 2, it obtains after a rank r, where a r = PiP; with Pi and Pi prime 

number strictly less than and not dividing a" the prime sequence: 

- between a, and a" the sequence contains all prime numbers of this interval and some 

composite numbers; 

- from ar +1 and up, the sequence contains all prime numbers greater than ar and no com

posite numbers. 
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1) Odd Sequence: 

NUMEROLOGY (III) 

or 

Properties of Numbers 

1, 13. 135, 1357, 13579, 1357911, 135791113, 13579111315, 1357911131517, ... 

How many of them are primes? 

2) even Sequence: 

1, 24, 246, 2468, 246810, 24681012, 2468101214, 246810121416, ... 

Conjecture: No number in this sequence is an even power. 

3) Prime Sequence: 

2, 23, 235, 2357, 235711, 23571113, 2357111317, 235711131719, ... 

How many of them are primes? 

Conjecture: A finite number. 

4)5-sequence: 

General definition: Let 5 = {$I, $2, $3,' .. ,Sn,' .. } be an infinite sequence of integers. 

Then the corresponding 5-sequence is {SI, SIS2, • •. ,S, 82 ..• 8 n , ... } where the numbers are 

concatenated together. 

Question 1: How many termsof the 5-sequence are found in the original set 57 

Question 2: How many terms of the 5-sequence satisfy the properties of other given se

quence? 

For example, the odd sequence above is built from the set 5 = {I, 3, 5, 7, 9, ... } and 

every element of the S-sequence is found in S. The even sequence is built from the set 

5 = {2,4, 6,8,10, ... } and every element of the corresponding S-sequence is also in 5. Howev!"r, 

the question is much harder for the prime sequence. 

St:ldy the case when 5 is the Fibonacci numbers {I, 1,2,3,5,8,13,21, ... }. The correspond

ing F-sequer:.ceis then {I, 11, 112, 1123, 11235, 112358, 11235813, ... }. In particular, how many 

primes are in the F-sequence? 

5) Uniform sequences: 

General definition: Let n "" 0 be an integer and d" d2 , . .. , de distinct digits in base B > r. 

Then, multiples of n, written using only the comlete set of digits dl, d2 , • .. , de in base B, 
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increasingly ordered, is called the uniform sequence. 

Some particular examples involve one digit only. 

a) Multiples of 7 written in base 10 using only the digit 1. 

111111,111111111111, 111111111111111111, 1111111111111111111111111, ... 

b) Multiples of 7 written in base 10 using only digit 2. 

222222, 222222222222, 22222222222~222222, 2222222222222222222222222, ... 

c) Multiples of 79365 written in base 10 using only the digit 5. 

55555,555555555555, 555555555555555555, 5555555555555555555555555, ... 

In many cases, the uniform sequence is empty. 

d) It is possible to create multiples of 79365 in base 10 using only the digit 6. 

Remark: If there exists at least one such multiple of n written with the digits dl , d2 , •• . , dr 

in base B, then there exists an infinite number of multiples of n. If m is the initial multiple, 

then they all have the form, m, mm, mmm, ... 

With a computer program it is easy to select all multiples of a given number written with 

a set of digits, up to a maximum number of digits. 

Exercise: Find the general term expression for multiples of 7 using only the digits {I, 3, 5} 

in base 10. 

6) Operation Sequence: 

General definition: Let E be an ordered set of elements, E = {eI, e2, ... } and 9 a set of 

binary operations well-defined on E. Then 

a,,+! = rnin{el6le292 ... Bnt:n+t1 > a", for n ~ 1. 

where all 9, are oprations belonging to 9. 

Some examples: 

a) When E is the set of natural numbers and 9 = {+, -, *, /}, the four standard arithmeJ;ic 

operations. 

Then 

al = 1 

an+! = rnin{lB,B2 ••• Bn(n + I)} > an, for n ~ 1. 
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where Iii E e. 
Questions: 

a) Given N as the set of numbers and e = {+, -, *, /} as the set of operations, is there a 

general formula for the sequence? 

b) If the finite sequence is defined with the finite set of numbers {I, 2, 3, ... ,99} and the set 

of operations the same as above, where 

Same questions as in (a). 

el Let N be the set of numbers and e = {+, -, *, I, **, (V)}, where x"y is x to the power 

y and x( V)y is the x-th root of y. Define the sequence by 

The same questions can be asked, althought they are harder and perhaps more intresting. 

d) Using the same set of operations, the algebraic operation finite sequence can be defined: 

al = 1 

an+l = min{lill 2i12 •• . il9899} > an, for n ~ l

And pose the same questions as in (b). 

More generally, the binary operations can be replaced by I.;-ary operations, where all I.; are 

integers. 

an.,.l = min{lill 2i12 ..• ill kl il2 (kl + 1 )il2 • .. il2(k l + k2 -1) ... (n + 2 - It,.iI, ... iI,(n + I)} > an 

where n ~ 1-

Where each iii is a ki-ary relation and kl + (k2 -1) + ... + (It,. -1) = n + 1. .'Iote that the 

last element of the I.; relation is the first element of the 1.;+1 realtion. 

Remark: The questions are much easier when e = {+, - }. Study the operation type 

sequences in this easier case. 

e) Operators sequences at random: 
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Same definition and questions as the previous sequences, except that the minimum condition 

is removed. 

a n+1 = {e1(J1e.O, ... (J"e,,+1} > an, for n 2:: l. 

Therefore, a n .,.1 will be chosen at random, with the only restriction being that it be greater 

than an. 

Study these sequences using a computer program with a random number generator to choose 
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P-Q Relationships and Sequences 

Let A = {an},n 2:: 1 be a sequence ofnurnbers and q,p integers 2:: 1. 

\Ve say that the terms ak+!, a ..... , ... ,ak+p, ak+P+b ak+p+2,' .. , ak+p.,.q satisfy a p - q rela

tionship if 

ak+l0akT20 ... Oak+p = ak+P+10ak+p+20 ... Oak+P+q 

where 0 may be any arithmetic operation, although it is generally a binary relation on A. If 

this relationship is satisfied for any k 2:: I, then {an}, n 2:: 1 is said to be a p - q - 0 sequence. 

For operations such as addition, where 0 = +, the sequence is called a p- q-additive sequence. 

As a specific case. we can easily see that the Fibonacci/Lt;cas sequence (an + an+! = a n+., 

for n2:: 1), is a 3 - I-additive sequence. 

Definition. Given any integer n 2:: I, the value of the Smarandache function S(n) is the 

smallest integer m such that n ditides mL 

If we consider the sequence of numbers that are the values of the Smarandache function for 

the integers n 2:: 1, 

1,2,3,4,5,3,7,4,6,5,11,4,13,7,5,6,17, ... 

they can be incorporated into questions involving the p - q - 0 relationships. 
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a) How many ordered quadruples are there of the form (S(n), Sen + 1), Sen + 2), Sen + 3» 
such that Sen + 1) + Sen + 2) = Sen + 3) + Sen + 4) which is a 2 - 2-additive relationship? 

The three quadruples 

S(6) + S(7) = S(8) + S(9), 3 + 7 = 4 + 6; 

S(7) + S(8) = 5(9) + S(10), 7 + 4 = 6 + 5; 

S(28) + 5(29) = S(30) + S(31), 7 + 29 = 5 + 3L 

are known. Are there any others? At this time, these are the only known solutions. 

b) How many quadruples satisfy the 2 - 2-subtrac relationship Sen + 1) - Sen + 2) = 

Sen + 3) - Sen + 4)? 

The three quadruples 

5(1) - S(2) = S(3) - 5(4), 1- 2 = 3 - 4; 

5(2) - S(3) = 5(4) - S(5), 2 - 3 = 4 - 5; 

8(49) - 8(50) = 5(51) - 8(52), 14 -10 = 17 - 13 

are known. Are th"re any others? 

c) How many 6-tuples satisfy the 2-3-additive relationship 8(n+l) +8(;'+2) +8(n+3) = 
5(n + 4) + Sen + 5) + Sen + 6)? 

The only known solution is 

8(5) -+- 8(6) -+- 5(7) = 8(8) + S(9) + 5(10), 5 + 3 -+- 7 = 4 + 6 + 5. 

Charles Ashbacher has a computer program that calculates the values of the Smarandacbe 

function. Therefore, he may be able to find additional solutions to theese problems. 

More general, if jp is a ;rary raltion and g. a q-ary relation, both defined on the set 

{all 42, a3~·· .}, then ail ,ai2 ,"" ai", ajl , an,'" ,aj" satisfies a fp - gq relationship if 

If this relationship holds for all terms of the sequence, then {an}, n ;::: 1 is called a jp _.g. 

sequence. 

Study some jp - gp relationship for weill-known sequences, such as the perfect numbers, 

Ulam numbers, abundant numbers, Catalan numbers and Cullen numbers. For example, a 

2 - 2-additive, subtractive or multiplicative relationship. 
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If Ip is a JraIY relationship on {a"a2,a3,"'} and Ip(a,,,ai,, ... ,a;.) = I(aj"aj" ... ,aj,) 

for all ai., aj. where k = 1,2,3, ... ,p and for all p ~ 1, the {an}, n ~ 1 is called a perfect 

f-sequence. 

If not all Jrplets (a;" a;" . .. , a;p) and (aj" aj" . .. , aj,) satisfy the I. relation or the relation 

is not satisfied for all p ~ 1, then {an}, n ~ 1 is called a partial perfect I-sequence. For 

example, the sequence 1,1,0,2,-1,1,1,3,-2,0,0,2,1,1,3,5,-4,-2,-1,1,.-1,1,3,0,2, ... is 
p 2. 

a partial perfect additive-sequence. This sequence has the property that I: a, = I: aj, for 
t=] j=p+l 

allp~1. 

It is constructed in the following way: 

for all p ~ 1. 

a) Can you. the reader, find a general expression of an (as a function of n)? Is it periodic, 

convergent or bounded? 

b) Develop other perfect or partial perfect I-sequences. Think about multiplicative seq

uences of this type. 
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Digital Subsequences 

Let {an} n ~ 1 be a sequence defined by a property (or a relationship involving its terms) 

P. We then screen this sequence, selecting only the terms whose digits also satisfy the property 

or relationship. 

186 



1) The new sequence is then called a P-digital subsequence. 

Examples: 

a) Sqare-digital subsequence: 

Given the sequence of perfect squares 0,.1,4,9,16,25,36,49,64,81,lOO,121,144, ... only 

those terms whose digits are all perfect squares {O, 1,4, 9} are chosen. The first few terms are 

0,1,4,9,49,100,144,400,441. 

Disregarding squares of the form NOO ... 0, where N is also a perfect square, how many 

numbers belong to this subsequence? 

b) Given the sequence of perfect cubes, 0,1,8,27,64,125, ... only those terms whose digits 

are all perfect cubes {O, 1, 8} are chosen. The first few terms are 0,1, 8, 1000, 8000. 

Disregarding cubes of the form NOO . .. 0, where N is also a perfect cube, how many numbers 

belong to this subsequence? 

c) Prime-digital subsequence: 

Given the sequence of prime numbers, 2,3,5,7,11,13,17,19,23,.... Only those primes 

where all digits are prime numbers are chosen. The first few terms are 2,3,5,7,23,29, .... 

Conjecture: This subsequence is infinite. 

In the same vein, elements of a sequence can be chosen if groups of digits, except the 

complete number, satisfy a property (or ~elationship) P. The subsequence is then called a 

P-partial-digital subsequence. 

Examples: 

a) Squares-partial-digital subsequence: 

49,100,144,169,361,400,441, ... 

In other words, perfect squares whose digits can be partioned into two or more groups that 

are perfect squares. 

For example 169 can De partitioned into 16 and 9. 

Disregarding square numbers of the form Noo . .. 0, where N is also a perfect square, how 

many numbers belong to this sequence? 

b) Cube-partial-digital subsequence: 

1000,8000,10648,27000, ... 

i.e. all perfect cubes where the digits can be partioned into two or more groups that are 

perfect cubes. For exampie 10648 can be partitioned into 1, 0, 64 and 8. 
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Disregarding cube numbers of the form NOO ... 0, where N is also a perfect cube, how many 
~ . 

numbers belong to this sequence? 2.fc. ~ 
c) Prime-partial-digital subsequence: 

23, 37, 53, 73, 113, 137, 173, 193, 197, ... 

i.e. all prime numbers where the digits can be partioned into two or more groups of digits 

that are prime numbers. For example, 113 can be partioned into 11 and 3. , 
Conjecture: This subset of the prime numbers is infinte. 

d) Lucas-partial-digital subsequence: 

Definition. A number is a Lucas number of sequence L(O) = 2, L(I) = 1 and L(n + 2) = 
L(n + 1) + L(n) for n ::::: l. 

The first few elements of this sequence are 2,1,3,4,7, Ii, 18,29,47,76,123,199, ... 

A number is an element of the Lucas-partial-digital subsequence if it is a Lucas number and 

the digits can be partioned into three groups such that the third group, moving left to right, is 

the sum of the first two groups. For example, 123 satisfies all these properties. 

Is 123 the only Lucas number that satisfies the properties of this partition? 

Study some P-partial-digital subsequences using the sequences of numbers. 

i) Fibonacci numbers. A search was conducted looking for Fibonacci numbers that satisfy 

the properties of such a partition, but none were found. Are there any such numbers? 

ii) Smith numbers, Eulerian numbers, Bernouli numbers, Mock theta numbers and Smaran

dache type sequences are other candidate sequences. 

Remark: Some sequences may not be partitionable in this manner. 

If a sequence {an}, n ::::: 1 is defined by an = fen), a function of n, then an f-digital sequence 

is obtained by screening the sequence and selecting only those numbers that can be partioned 

into two groups of digits g, and g2 such that g2 = f(g,)· 

Examples: 

a) If an = 2n, n ::::: 1, then the even-digital subsequence is 12,24,36,48,510,612,716,816, 

918.1020, ... 

where 714 can be partitioned into 7 and 14 in that order and 

b) Lucky-digital subsequence: 

Definition: Given the set of natural numbers 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, .... 

First strike out every even numbers, leaving 1,3,5,7,9,11. 13, 15, 17, 19,21, .... Then strike out 
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every third in the remaining list, every fourth number in what remains after that, every fifth 

number remaining after that and so on. The set of numbers that remains after this infinite 

sequence is performed are the Lucky numbers. 

1,3,7,9,13,15,21,25,31,33,37,43,49,51,63, ... 

A number is said to be a member of the lucky-digital subsequence if the digits can be 

partitioned into two number mn in that order such that Lm = n. 

37 and 49 are both elements of this sequence. How many others are there? 

Study this type of sequence for other well-known sequences. 

References 

[1] F .Smarandache, "Properties of the Numbers", University of Craiova Archives, 1975. [See 

also the Arizona State Special Collections, Tempe, AZ., t:SA]. 

Magic Squares 

For n 2: 2, let A be set of n2 elements and I an n-ary relation defined on A. As a gener

alization of the XVIth-XVIIth century magic squares, we present the magic square of order n. 

This is square array of elements of A arranged so that I applied to all rows and columns yields 

the same result. 

If A is an arithmetic progression and I addition, then many such magic squares are known. 

The following appeared in Durer's 1514 engraving, "Melancholia" 

Questions: 

16 3 2 13 

5 10 11 8 

9 6 7 12 

4 15 14 

1) Can you find magic square of order at least three or four where A is a set of prime 

numbers and I is addition? 
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2) Same question when A is a set of square, cube or other spacial numbers such as the Fi

bonacci, Luca,,;, triangular or Smarandache quotients. Given any m, the Smarandache Quotient 

q( m) is the smallest nll..'Tlber k such that mk is a factorial. 

A similar definition for the magic cube of order n, where the elements of A are arranged in 

the form of a cube of length n. 

3) Study questions similar to tose above for the cube. An interesting law may be 

References 
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Prime Conjecture 

Any odd number can be expressed as a sum of two primes minus a third prime, not including 

the trivial solution p ;= p + q - q. 

For example, 

1;= 3 + 5 - 7;= 5 + 7 -11 ;= 7 + 11 -17 = 11 + 13 - 23 = ... 

3;= 5 + 11 - ,3 ;= 7 T 19 - 23;= 17 + 23 - 37;= ... 

5 ;= 3 + 13 - 11 = .. . 
7 = 11 + 13 - 17 ;= .. . 

9=5+7-3= ... 

11=7-:-17-13= ... 

a) Is this conjecture equivalent to Coldbach's conjecture? The conjecture is that any cdd 

prime::::: 9 can be expressed as a sum of three primes. This was solved by Vinogradov in 1937 

for any odd number greater then 33
" . 

b) The number of times each odd number can be expressed as a sum of two primes minus 

a third prime are called prime conjecture numbers. None of them is known! 

c)\Vrite a computer progra...-n to check this conjecture for as many positive numbers as 

possible. 
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There are iniinitely many numbers that cannot be expressed as the absolute difference 

between a cube and a square. These are called bad nurnbers(!) 

For example, F.Smarandache has conjuctured [1] that 5, 6, 7, 10, 13 and 14 are bad numbers. 

However, 1, 2, 3, 4, 8, 9, ll, 12, and 15 are not as 

a) \Vrite a computer program to determine as many bad numbers as possible. Find an 

ordered array of a's such that a = Ix3 - y2 i, for x and y integers;::: 1. 

References 
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SOME PERIODICAL SEQUENCES 

1) Let N be a positive integer with not all digits the same, and N' its digital reverse. 

Then, let N, =abs(N - N'), and N{ its digital reverse. Again, let N, =abs(N, - Nfl, N~ 

its digitai reverse, and so on. 

After a finite number of steps one finds an Nj which is equal to a previous Ni , therefore the 

sequence is periodical [because if N has, say, n digits, all other integers following it will have n 

digits or less, hence their number is limited, and one applies the Dirichlet's box principle]. 

Foe examples: 

a) If one starts with N = 27, then N' = 72; 

abs(27 - 72) = 45; its reverse is 54; 

abs(45 - 54) = 09, ... 

thus one gets: 27,45,09,81,63, 27,45, ... ; 

the Lentgh of the Period LP = 5 numbers (27,45,09,91,63), and Length of the Sequence 

'till the first repetition occurs LS = 5 numbers either. 

b) If one starts with 52, then one gets: 

52,27,45,09,81,63, 27,45, ... ; 

then LP = 5 numbers, while LS = 6. 

c) If one starts with 42, then one gets: 

42,18,63,27,45,09,81, 63,27, ... : 

then LP = 5 numbers, while LS = 7. 

For the sequences of integers of two digits, it seems like: LP = 5 numbers (27,45,09,81,63); 

or circular permutation of them), and 5 ::; LS::; 7. 

Question 1: To find the Length of the Period (with its corresponding numbers), and the 

Length of the Sequence'till the firs repetition ocurrs for: the integers of three 

digits, and integers offour digits. (It's easier to write a computer prograrnm in 

these cases to check the LP and LB.) 

An example for three digits: 321,198,693,297,495,099,891, 693, ... ; 

(similar to the previous period, just inserting 9 in the middle of each number). 

Generalization for the sequences of numbers of n digits. 

2) Let N be a positive integer, and N' its digital reverse. For a given positive integer C, 
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let N, =abs(N' - C) and N; its digital reverse. Again, let Nz =abs(N, - C), N; its digital 

reverse, and so on. 

After a finite number of steps one finds an an N; wich is equal to a previous N" therefore 

the sequence is periodical [same proofj. 

For example: 

If IV = 52, and c = 1, than one gets: 

.52,24,41,13,30,02,19,90,08,79,96,68,85,57,74,46,63, 35, 52, ... ; 

thus LP = 18, LS = 18. 

Question 2: To find the Length of the Period (with its corresponding numbers), and the 

Length of the Sequence'till the first repetition occurs (with a given non-null c) 

for: integers of two digits, and the integers of three digits. 

(It's easier to write a computer progtam in these cases to check the LP and 

LS.) 

Genera:Jization for sequences of numbers of n digits. 

3) Let IV be a positive integer with n digits a,aZ . .. an, and c a given integer> 1. 

Multiply each digit a, of N by c, and replace a; with the last digit of the product aiXC, say 

it is b,. Note IV, = b,oz ... On, do the same procedure for IV" and so on. 

After a finite number of steps one finds an IVj which is equal to a previous N" therefore the 

sequence is periodical [same proof]. 

For exemple: 

If lV = 68 and C = 7: 

68,26,42,84, 68, ... 

thus LP = 4, LS = 4. 

Question 3: To find the Length of the Period (with its corresponding numbers), and the 

Length of the Sequence'till the first repetition occurs (with a given c) for: inte

gers of two digits, and the integers of three digits. 

(It's easier to write a computer program in these cases to check the LP and 

LS.) 

Generalization for sequences of numbers of n digits. 

4.1) Generalized periodical sequence: 

Let N be a positive integer with n digits a,aZ ... an' If f is a function defined on the set of 
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integers with n digits or less, and the values of f are also in the same set, then: there exist two 

natural numbers i < j such that 

f(f( ... f(s) .. . )) = f(f(f(··· f(s) .. . ))), 

where f occurs i times in the left side, and j times in the right side of the previuOB equality. 

Particularizing f, one obtaines many periodical sequences. 

Say: If N has two digits al a2, then: add'em (ifthe sum is greater than 10, add the resulted 

digits again), and substruct'em (take the absolute value) - they will be the first, and second 

digit respectively of N1 . And same procedure for 1'11 . 

Example: 75,32,51,64,12,31,42,62,84,34,71,86,52,73,14,53,82, 16, 75, ... 

4.2) ~ore General: 

Let 5 be a finite set, and f : 5 -+ 5 a function. Then: for any element s belonging to 5, 

there exist two natural numbers i < j such that 

f(f(··. f(s) .. . )) = f(f(f(··· f(s) .. . )), 

where f occurs i times in the left side, and j times in the right side of the previuos equality. 
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SEQUENCES OF SUB-SEQUENCES 

For all of the following sequences: 

a) Crescendo Sub-sequences: 

1, 1,2, 1,2,3, 1,2,3,4, 1,2,3,4,5, 1,2,3,4,5,6, 1,2,3,4,5,6,7, 1,2,3,4,5,6,7,8, ... 

b) Descrescendo Sub-sequences: 

1, 2,1, 3,2,1, 4,3,2,1, 5,4,3,2,1, 6,5,4,3,2,1, 7,6,5,4,3,2,1, 8,7,6,5,4,3,2,1, ... 

c) Crescenco Pyramidal Sub-sequences: 

1, 1,2,1, 1,2,3,2,1, 1,2,3,4,3,2,1, 1,2,3,4,5,4,3,2,1, 1,2,3,4,5,6,5,4,3,2,1, ... 

d) Descrescenco Pyramidal Sub-sequences: 

1, 2,1,2, 3,2,1,2,3, 4,3,2,1,2,3,4, 5,4,3,2,1,2,3,4,5, 6,5,4,3,2,1,2,3,4,5,6, ... 

e) Crescendo Symmetric Sub-sequences: 

1,1, 1,2,2,1, 1,2,3,3,2,1, 1,2,3,4,4,3,2,1, 1,2,3,4,5,5,4,3,2,1, 

1,2,3,4,5,6,6,5,4,3,2,1, ... 

f) Descrescenco Symmetric Sub-sequences: 

1,1, 2,1,1,2, 3,2,1,1,2,3, 4,3,2,1,1,2,3,4, 5,4,3,2,1,1,2,3,4,5, 

6,5,4,3,2,1,1,2,3,4,5,6, ... 

g) Permutation Sub-sequences: 

1,2, 1,3,4,2, 1,3,5,6,4,2, 1,3,5,7,8,6,4,2, 1,3,5,7,9,10,8,6,4,2, ... 

find a formula for the general term of the sequence. 

Solutions: 

For purposes of notatipn in all problems, let a(n) denote the n-th term in the complete 

sequence and b(n) the n-th subsequence. Therefore, a(n) will be a number and b(n) a sub-

sequence. 

a) Clearly, ben) contains n terms. Using a well-known summation formula, at the end of 

ben) there would be a total of n(n
2
+1) terms. Therefore, since the last number of b(n) is 

n, a«n(n + 1»)/2) = n. Finally, since this would be the terminal number in the sub-sequence 

ben) = 1,2,3, ... ,nthegeneralformulaisa«(n(n+1)/2)-i) = n-ifor n ~ 1 and 0 ~ i ~ n-i. 

b) With modifications for decreasing rather than increasing, the proof is essentialy the same. 

The final formula is a«(n(n + 1)/2) - i) = 1 + i for n ~ 1 and 0 ~ i ~ n - 1. 

c) Clearly, ben) has 2n - 1 terms. Using the well-known formula of summation 1 + 3 + 5 + 
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... + (2n - 1) = n2
, the last term of b(n) is n, so counting back n - 1 positions, they increase 

in value hy one each step until n is reached. 

a(n' - i) = 1 + i, for 0 :s; i :s; r.-1. 

After the maximum value at n -1 position back from n', the values descreases by one. So 

at the n-th position back, the value is n - 1, at the (n -l)-st position back the value is n - 2 

and so forth. 

a( n' - n - i) = n - i-I for 0 :s; i :s; n - 2. 

d) Using similar reasoning a(n') = n for n 2: 1 and 

a(n~ - i) = n - i, for 0 :s; i :s; n-l 

a(n2 
- n - i) = 2 -t- i, for 0 :s; i :s; n - 2. 

e) Clearly, b(n) contains 2n terms. Applying another well-known summation formula 2 + 
4 + 6 + ... + 2n = n(n + 1), for n 2: 1. Therefore, a(n(n + 1)) '" 1. Counting backwards n - 1 

positions, each term descrea.ses by 1 up to a maximum of n. 

a((n(n + 1)) - i) '" 1 + i, for O:S; i :s; n-1. 

The value n psitions down is also n and then the terms descrease by one back down to one. 

a((n(n -t- 1)) - n - i) '" n - i, for 0 :s; i :s; n-1. 

f) The number of terms in b(n) is the same as that for (el. The only difference is that now 

the direction of increase/decrease is reversed. 

a((n(n + 1)) - i) '" n - i, for 0 :s; i :s; n - 1. 

a((n(n -,.-1)) - n - i) = 1 + i, for O:s; i :s; n - 1. 

g) Given the following circular permutation on the first n integers. 

234 

357 
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Once again, ben) has 2n terms. Therefore, a(n(n + 1)) = 2. Counting backwards n ~ 1 

positions, each term is two Jarger than the successor 

a((n(n + 1))- i) = 2 + 2i, for 0 s: i s: n-1. 

The next position down is one Jess than the previuos and after that, each term is again two 

less the successor. 

a((n(n+ 1)) -n-i) = 2n -1-2i, forO s: is: n-1. 

As a single formula using the permutation 

a((n(n + 1)) - i) = 'Pr.(2n - i), for 0 s: is: 2n - 1. 
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RECREATIONAL MATHEMATICS 

ARITMOGRAF I 

Aflati, de la A la B, denumirea unei §tiin~e fundament ale, iar pe orizontal notiuni din 

aceasta §tiinta. inlocmnd cifrele prin litere. 

A 

B 

A 

! PER I MET R~T 
l.§,uPRAFATA 
l~fL"LTIME 
lNUMERAL 
:ELEMENT 
IECUATIE 
!IPOTEZA 

~POLIGO:\' 
ITRISECTOARE 
iGENERATOARE 

B 
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ARIFMOGRAF II 

Inlocuind cifrele prin litere vet;i ohtine, de la A. la B, denumirea unei ramuri matematice, 

iar orizontal no~iuni din aceasta ramura. 

Solutie: 

A 

B 

A 

!U~ G H 
! S FER A 

-=:JC 0 N~ 
!SEGME:'>T 

O:;POTEN1.7ZA 
,APOTEMA 

rsEMIDREAPTA 
~MEDIANA 

ITRIEDRU 

B 
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The Lucky Mathematics! 

If, by a wrong calculation (method, algorithm, operation, etc.) one arrives to the right 

answer, that is ca.lled a Lucky Calculation (Method, Algorithm, Operation, etc.)! 

The wrong calculation (method, algorithm, operation, etc.) should by funny (somehow 

similar to a correct one. producing confusion and sympathy)! 

Can somebody find a Lucky Integration or Differention? 
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