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ABSTRACT

There is little information available about the effects of early-life parental stress on the reproductive potential of
the next generation. The aim of this study is to examine the reproductive potential of male mice whose parents
experienced maternal separation stress. In the present study, male first-generation offspring from parents were
undergone of maternal separation (MS) were examined. Sperm characteristics, histological changes in testis,
reactive oxygen species (ROS) production, expression of apoptotic and inflammatory genes and proteins were
assessed. Findings showed that MS experienced by parents significantly decreased the morphology and viability of
spermatozoa. Furthermore, significant changes in testicular tissue histology were observed. Increased production
of ROS, decreased glutathione peroxidase (GPX) and adenosine triphosphate (ATP) concentrations, and affected
the expression of genes and cytokines involved in inflammation. Finally, the mean percentage of caspase-1 and
NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) positive cells was significantly higher in first-
generation group. MS experienced by parents may negatively affect the reproduction of first generation offspring.

Apoptosis

1. Introduction

It is well proven that early-life stress has long-lasting impacts on an
individual's behavior in adulthood (Kikusui et al., 2005; Oomen et al.,
2010; Nishi et al., 2013; Korosi et al., 2012). Early-life events that in-
crease reactions to stress lead to increased stress hormone exposure and
consequently increased susceptibility to stress-induced disease
throughout the life span (Francis and Meaney, 1999).

Furthermore, there is a large amount of evidence that stress can
interfere with the functions of the reproductive system (Rai et al., 2003;
McGrady, 1984; Rabin et al., 1988; Khodamoradi et al., 2019a). Studies
have examined the effects of different types of stress on sex hormones,
and investigators are still trying to understand the mechanisms through
which stress affects reproductive functions in both sexes. Sexual func-
tions can be affected by stress-related hormones at all three levels of the
hypothalamic-pituitary—gonadal axis (HPG axis) (Rivier and Rivest,
1991). Early research demonstrated that stress is attended by an increase
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in hypothalamic-pituitary-adrenal (HPA) axis activity and a decline in
reproductive functions that can be a way to preserve the activity of the
adrenal cortex at the expense of gonadal activity (Selye, 1939). It is well
known that adrenal corticosteroids, corticotropin releasing factor (CRF),
and adrenocorticotropic hormone (ACTH) have key roles in modulating
the impact of stress on reproductive functions (Rivier and Rivest, 1991).
Previous studies have determined that experienced stressful conditions
by parents could negatively affected male reproductive function and
reduced the quality of sperm in offspring (McNamara et al., 2014;
Rodgers et al., 2013; Lavoie et al., 2019). It has further been shown that
maternal separation stress has long-term effects on male sexual devel-
opment (Rhees et al., 2001). Moreover, our previous study demonstrated
that early-life stress induced by maternal separation has damaging im-
pacts on testicular tissue and sperm parameters that may be mediated
through influence on mitochondrial function, activation of reactive ox-
ygen species (ROS) production, apoptosis pathways, and inflammatory
processes (Khodamoradi et al., 2019b). In this regards it has been
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determined that inflammatory response and overproduction of inflam-
matory markers including TLR4, NLRP3 and TNF« could activated the
apoptotic reactions which consequently impose negative effect on sperm
traits (Khodamoradi et al., 2019b; Ahmed, 2015; Taylor et al., 2004).
There is concern about whether the effects of early-life stress can be
transmitted to subsequent generations. Although some studies have
evaluated the harmful effect of early-life stress on behavioral responses
across generations (Schmauss et al., 2014), there is little information
available about the effects of early-life parental stress on the reproductive
potential of their next generation offspring. Maternal separation stress, as
a well-studied model of early-life stress, can result in long-lasting alter-
ations in the central nervous system development, such as the
stress-response regulatory systems. According to previous studies, higher
maternal behavior has been observed in adult females who received
intensive maternal care in the early stage of life. Thus, it has been sug-
gested that maternal behavior may be transmitted to the next generation
through non-genetic inheritance means (Kikusui et al., 2005; Champagne
et al., 2003a; Francis et al., 1999a, 1999b). In addition, a mother's
behavior with her offspring can play a significant role in the program-
ming of behavioral and neuroendocrine responses to stress in adulthood.
These effects are linked with constant alterations in gene expression in
regions of the brain that are mediators of stress response (Meaney, 2001).

Previous investigations showed that stress-induced ovarian tissue
changes can be transmitted to first-generation offspring. However, there
has been little investigation into whether maternal separation stress
experienced by parents can affect the male reproductive potential of their
offspring. In the other word, there is little evidence about the underlying
mechanisms mediating the negative and harmful effect of experience
stress by parents on sperm quality in next generation offspring. Hence,
this study was designed to examine the reproductive potential of male
mice whose parents experienced maternal separation stress focusing role
of inflammatory responses, oxidative stress and apoptosis.

2. Materials and methods
2.1. Experimental animals

Pregnant NMRI (Naval Medical Research Institute) mice were pur-
chased from the Pasteur Institute of Iran. The animals were kept under
controlled humidity (55-65%) and temperature (22-25 °C) conditions,
with a light-dark (12 h-12 h) cycle. All procedures were performed ac-
cording to guidelines approved by the Ethics Committee of Tehran Uni-
versity of Medical Sciences (IR.TUMS.MEDICINE.REC.1395.2507). In
this study, pups were randomly distributed into two groups: maternal
separation (MS) parents and control parents groups. In the MS parents
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group, pups were isolated from their mothers and housed in a separate
cage for 3 h between 9 am and 12 pm each day from postnatal day (PND)
2-14 (Lorigooini et al., 2019, 2020). The birth day was considered as
PND 0. The pups of the control parents group did not separate and were
with their mother. Pups of both groups were used to generate the
first-generation litters (Figure 1). Then, the male pups of the
first-generation were used in this study: MS offspring and control
offspring groups. Each group was contained 16 mice. Mice at PND 70
were sacrificed under deep anesthesia and had their testes were removed.
One testis from each mouse was used for molecular assessments and the
second testis was used for histological assessment. All experiments were
performed in triplicate (three measurements repeated on the same set of
individuals).

2.2. Semen analysis

The epididymis was separated from the testis and placed in a Petri
dish containing 1 ml of Ham's F-10 medium (Life Technology, Carlsbad,
CA, USA) supplemented with 5% bovine serum albumin (BSA; Sigma-
Aldrich, St. Louis, MO, USA). Sperm fluid was recovered from cauda
epididymis by dissection of the epididymis using needled-tuberculin sy-
ringes and incubated for 30 min at 37 °C and 5% CO2. Then, the obtained
suspension was centrifuged at 300 x g for 5 min and the sperm pellet was
re-suspended in 1 ml phosphate-buffered saline (PBS, Sigma-Aldrich,
Madrid, Spain). Epididymal spermatozoa were evaluated for count,
total motility, progressive motility, morphology, and viability according
to the world health organization (WHO) manual guidelines (Organisa-
tion, 1999). About 200 spermatozoa per replicate were assessed at 400X
magnification.

2.3. Sperm count

The sperm suspension was diluted (1:20) with PBS, and then 10 pl of
this diluted suspension was transferred onto a Neubauer slide and sper-
matozoa were counted under a light microscope.

2.4. Sperm motility

For assessing sperm motility, 10 pl of the sperm suspension was
placed on a Neubauer slide and the percent of motile sperm was assessed
under a light microscope according to the following criteria (Organisa-
tion, 1999); Grade A: percent of sperm with rapid progressive motility;
Grade B: percent of sperm with slow or sluggish progressive motility; and
Grade C: percent of sperm with vibrating motility. Total motility was
calculated by adding Grades A, B, and C.
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Figure 1. Schematic of study design.
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2.5. Sperm morphology

Diff-Quik stain was used for sperm morphology assessment according
to WHO guidelines (Organisation, 1999). The stained slides were
observed at 1000X magnification using a light microscope. At least 100
spermatozoa per slide were counted to calculate the percentage of
normal spermatozoa.

2.6. Sperm viability

The one-step eosin-nigrosin staining technique was used for assess-
ment of sperm viability (Bjorndahl et al., 2003). The semen sample and
eosin-nigrosin solution (1:1) were transferred into a microtube and
mixed by pipetting. This suspension was incubated at room temperature
for 30 s and then a smear was prepared. Air-dried slides were observed
under a light microscope to calculate the percentage of alive sperm
(colorless) and dead sperm (red color in head) (Klimowicz-Bodys et al.,
2012).

2.7. Histological evaluation

The testicular samples for histological analysis were immediately
placed in Bouin's fixative solution. The fixed testes were dehydrated
through graded ethanol (50%, 70%, 90% and absolute; Merck, Darm-
stadt, Germany) and then embedded in paraffin. The serial 5-pm thick
sections were obtained using a rotary microtome (Microm, Walldorf,
Germany) and rehydrated in a graded series of ethanol (absolute, 90%,
70%, and 50%). After clearing in xylene, the sections were stained with
haematoxylin and eosin and mounted with dibutyl phthalate in xylene
(DPX). For histological evaluation, transverse sections from nine
different regions of the testis were examined. The inner diameter, outer
diameter, and thickness of seminiferous tubules were measured by light
microscopy (Mazaud-Guittot et al., 2011) and ImageJ software (ImageJ,
U. S. National Institutes of Health, Bethesda, MD, USA).

2.8. ROS assay

The concentration of ROS production in testicular tissues was
measured by flow cytometry using 2', 7 -dichlorofluorescin diacetate
(DCFH-DA; Sigma, USA) after enzymatic digestion of mechanical minced
tissue (Dym et al., 1995). The testicular tissues were mechanically ho-
mogenized in Ham's F-10 medium (Life Technology, Carlsbad, CA, USA)
and then centrifuged at 10,000 x g for 5 min. The testicular homogenates
were incubated with 20 pM DCFH-DA at 37 °C in the dark for 45 min.
After washing with PBS, Dichlorofluorescein (DCF) fluorescence (green)
was measured in the FL-1 channel by a BD FACScan flow cytometer
(Becton Dickinson, San Jose, CA, USA) (Fatemi et al., 2014).

2.9. Real-time reverse transcriptase polymerase chain reaction (RT-PCR)
analysis

The expression levels of NLRP3 (NOD-, LRR- and pyrin domain-
containing protein 3), TLR4 (toll like receptor 4), ASC (apoptosis-asso-
ciated speck-like protein containing a CARD), caspase-1, TNFa (Tumor
Necrosis Factora), BAX (BCL2-associated X protein), and BCL2 (B-cell
lymphoma 2) genes were analyzed using RT-PCR. The isolation of total
Ribonucleic acid (RNA) from testes tissue was performed with TRIzol
reagent according to the manufacturer's instructions (Invitrogen, Carls-
bad, CA). The complementary DNA (cDNA) was produced in a reverse
transcription reaction using a PrimeScript RT reagent kit (Takara, South
Korea) according to the manufacturer's protocol. The RT-PCR was carried
out with gene specific primers and HOT FIREPol EvaGreen qPCR Mix
Plus (Solis BioDyne, Tartu, Estonia) using an ABI7500 (Applied Bio-
systems, Foster City, California, USA). The mRNA expression levels were
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normalized against glyceraldehyde-3-phosphate = dehydrogenase
(GAPDH) mRNA expression. The target genes' expression levels were
calculated by 272CT (Nouri et al., 2020). The primer sequences used for
RT-PCR are shown in Table 1.

2.10. Engyme-linked immunosorbent assay (ELISA)

The testicular tissue samples were mechanically homogenized in PBS
on ice. After centrifuging, the collected supernatant was used in the
ELISA assay. The concentrations of interleukin 1p (IL-1p) and interleukin
-18 (IL-18) in testicular tissue were detected using general ELISA Kits
(Koma Biotech-Korea) and the concentrations of glutathione peroxidase
(GPX) and adenosine triphosphate (ATP) were detected by specific ELISA
kits (R&D Systems, Minneapolis, MN, USA), according to the manu-
facturer's protocols.

2.11. Immunocytochemical analysis

The fixed testicular tissues were dehydrated in a graded series of
ethanol and then the 5-pym thick sections were prepared from paraffin-
embedded testicular tissues. After deparaffinization, the tissue sections
were rehydrated in graded ethanol to determine caspase-1 and NLRP3
immunoreactivity. The tissue sections were permeabilized with 10 mM
sodium citrate and 0.05% Tween 20, and blocked in a solution of 1% (w/
v) BSA (Sigma-Aldrich, St. Louis, MO, USA) in PBS. The tissue sections
were incubated overnight at 4 °C with primary antibodies against
caspase-1 (1:1000 dilution, Abcam, Cambridge, MA) and NLRP3 (1:500
dilution, Abcam, Cambridge, MA). After the secondary antibody (1:500
dilution, Abcam, Cambridge, MA) incubation for 2 h at 37 °C, the cellular
nuclei were stained with propidium iodide (PL; 1:1000, Sigma-Aldrich,
St. Louis, MO, USA). The cell counting and merging pictures were done
using “ImageJ” software (Image J, U. S. National Institutes of Health,
Bethesda, Maryland, USA).

2.12. Statistical analysis

Statistical data analysis was performed using SPSS version 20.0
software. The normality was checked using the Kolmogorov—-Smirnov
test and the statistical significance of the results was determined using
the independent samples t-test and the Mann-Whitney U. Data were re-
ported as the mean + SD (standard deviation), and p < 0.05 was
considered significant.

3. Results
3.1. Semen analysis

Our results (Table 2) showed that there was no significant difference
in sperm count between the MS offspring and control offspring groups (p
> 0.05, t = 0.2401, df = 4). Moreover, there was no difference in any
grade of motility (Grade A: rapid progressive motility) (p > 0.05, t =
2.424, df = 4); Grade B: slow or sluggish progressive motility (p > 0.05, t
= 0.1450, df = 4); Grade C: vibrating motility (p > 0.05, t = 1.239, df =
4) between the groups. However, our findings showed that normal
morphology (p < 0.05, t = 3.063, df = 4) and the viability (p < 0.05, t =
4.027, df = 4) of spermatozoa significantly decreased in the MS offspring
group compared with the control offspring group. Figure 2 shows
representative images of sperm morphology and viability.

3.2. Histological evaluation
Histological analysis of seminiferous tubules was evaluated with

haematoxylin and eosin (H & E) staining (Figure 3). The results showed
that the mean outer and inner diameters of the seminiferous tubules were
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Table 1. Primer Sequences used for RT-qPCR analysis.

Genes Forward Primers Reverse Primers

NLRP3 5'GGACCCACAGTGTAACTTGCAGA 3’ 5" AGGCTGCAGTTGTCTAATTCCAG 3’
TLR4 5" TGAGTGGTCAGTGTGATTGTGGT 3’ 5 TGTAGTGAAGGCAGAGGTGAAAG 3’
ASC 5" CACAAATCAGTCTCCAACACC 3’ 5" TAACCATTACCTTGTTCCCA 3’
Caspase-1 5" CACTCGTACACCTCTTGCCCTC 3 5 CTTTCACCTCTTTCACCATCTCCA 3
TNFa 5" TGTCTCAGCCTCTTCTCATTCCTG 3’ 5" AGGCCATTTGGGAACTTCTCATCC 3’
BAX 5" GCAAACTGGTGCTCAAGG 3 5’ CAGCCACAAAGATGGTCA 3

BCL2 5" ACTTTTAGGCGTGGCTGATG 3’ 5 GTGCTGCTCACTGTATTTTATTTT 3
GADPH 5" TGACATCAAGAAGGTGGTGAAG 3’ 5" CGAAGGTGGAAGAGTGGGAG 3’

Table 2. Sperm parameters in the control offspring and the MS offspring groups. Data are reported as mean =+ standard deviation (SD). *p < 0.05 compared with the

control offspring group.

Groups Count (x10°) Total Motility (%) Progressive Motility Progressive Motility Progressive Motility Morphology (%) Viability (%)
Grade A (%) Grade B (%)

Control offspring 1.67 + 0.5 82 +16.32 11 + 4.8 66 + 15.5 96.3 £ 1.7 91.1 £1.9

MS offspring 1.6 + 0.07 77.4 £ 13.56 4.00 £ 1.41 64 +18.17 92.428 + 1.38* 83.00 + 2.92*

Figure 2. Representative images of sperm morphology and viability. (A) Control offspring group; (B) MS offspring group; upper panel: Diff-Quik staining to evaluate

sperm morphology, scale bars are 10 pm; lower panel: Eosin and Nigrosin staining to evaluate sperm viability, scale bars are 30 pm. Samples were analyzed

in triplicate.

significantly lower in the MS offspring group compared with the control 3.3. ROS evaluation

offspring group (p < 0. 001, t = 9.515, df = 6 for inner diameter, p < 0.

001, t = 6.060, df = 6 for outer diameter, Table 3). There was no sig- ROS production in testicular tissue was evaluated using the DCFH-DA
nificant difference in the mean thickness of the seminiferous epithelium assay. The concentration of ROS production significantly increased in the
between the control offspring and MS offspring groups (p > 0.05, t = MS offspring group compared with the control offspring group (p < 0. 05,
2.284, df = 6). t = 3.634, df = 6, Figure 4).
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Figure 3. The histopathological features provided from H&E (Haemotoxylin and Eosin)-stained seminiferous tubules sections in the control offspring (A) and the MS

offspring (B) groups. Scale bars are 50 pm. Samples were analyzed in triplicate.

Table 3. Diameters of seminiferous tubules and seminiferous epithelial thicknesses in the control offspring and MS offspring groups. Data are reported as mean +

standard deviation (SD). ***p < 0.001 compared with the control offspring group.

Parameter

Control offspring MS offspring

Outer diameter of the seminiferous tubules (pm)
Inner diameter of the seminiferous tubules (ym)

Seminiferous epithelial thickness (pm)

274.696 + 5.223
121.873 £ 1.94
152.823 + 6.562

240.636 =+ 8.671%***
98.782 =+ 3.831***
141.854 + 6.584

1200

1000

580.35485

Concentration of ROS (uM)

200

Control offspring

517 3082

|
l

M5 offspring

Figure 4. The concentration of ROS production in the testicular tissue by flow cytometry using 2', 7 -dichlorofluorescin diacetate (DCFH-DA). Values are reported as
mean + SD (standard deviation). *p < 0.05 compared with the control offspring group. Samples were analyzed in triplicate.

3.4. RT-PCR analysis

The results of RT-PCR analysis showed that expression of TLR4
significantly increased in the testicular tissue of the MS offspring group (p
< 0.001, t = 9.086, df = 6) compared with the control offspring group.
Expression of the NLRP3 (p < 0.05, t = 3.486, df = 4), TNFu (p < 0.05, t
= 2.538, df = 6), and caspase-1 (p < 0.001, t = 6.213, df = 6) in the MS
offspring group was also higher compared with the control offspring
group. Furthermore, expression of ASC (p > 0.05, t = 1.312, df = 6) and
BAX (p > 0.05, t = 1.590, df = 6) in the MS offspring group did not
change in compared to the control group. In contrast, the expression of
BCL2 (p < 0.01, t = 3.991, df = 6) gene in the MS offspring group was
lower compared with the control offspring group (Figure 5).

3.5. Enzyme-linked immunosorbent assay (ELISA)

ELISA results showed that IL-1f (p < 0.01, t = 5.286, df = 6) and IL-18
(p < 0.001, t = 11.27, df = 6) concentrations significantly increased in
the MS offspring group compared with the control offspring group. The
GPx (p < 0.001,t=11.11, df = 6) and ATP (p < 0.001, t = 12.22, df = 6)
concentrations significantly decreased in the MS offspring group
compared with the control offspring group (Figure 6).

3.6. Immunocytochemical analysis

Testicular cells in the control offspring and MS offspring groups were
labeled with caspase-1 and NLRP3 markers. The cells' nuclei were stained
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Figure 5. The gene expression of TLR4, NLRP3, TNFq, caspase-1, ASC, BAX, and BCL2 using RT-PCR. Values are reported as mean + SD (Standard Deviation). *p <

0.05, **p < 0.01 and **

**p < 0.001 compared with the control offspring group. Samples were analyzed in triplicate.
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Figure 6. The concentrations of IL-1p, IL-18, GPx and ATP measured using ELISA. Values are reported as mean + SD (standard deviation). *p < 0.05 and ***p < 0.001

compared with the control offspring group. Samples were analyzed in triplicate.

with PI (Figure 7). Inmunocytochemistry staining showed that the mean
percentage of caspase-1 (p < 0.001, t = 25.35, df = 4) positive cells
significantly increased in the MS offspring group (49.00 + 1.00)
compared with the control offspring group. Also, the mean percentage of
NLRP3 positive cells significantly increased in the MS offspring group
(50.5 + 0.5) compared with the control offspring group (p < 0.001, t =
50.61, df = 4) (Figure 8).

4. Discussion

Our findings showed that MS stress experienced by parents signifi-
cantly decreased the morphology and viability of spermatozoa in the MS
offspring group. Furthermore, significant changes in testicular tissue
histology, including decreased diameters of the seminiferous tubules,
were observed in this group. MS stress experienced by parents also
significantly increased production of ROS, and decreased GPx and ATP
concentrations, and significantly affected expression of genes and cyto-
kines involved in inflammation, including NLRP3, TLR4, TNFa, caspase-
1, IL-14, IL-18, and BCL2. Finally, the mean percentage of caspase-1 and

NLRP3 positive cells was significantly higher in the MS offspring group
compared with the control offspring group.

Early-life stressful experiences can influence the development and
shaping of the brain and cause lifelong impacts affecting behavioral and
physiological responses (Heim et al., 2002; Apter-Levy et al., 2013).
Early-life events can also influence health during adulthood by affecting
the development of neural systems which play a role in modifying the
behavioral and endocrine responses to stress (Francis and Meaney, 1999;
Seckl and Meaney, 1993; Nemeroff, 1996; Sroufe, 1997; Heim et al.,
2000). It has been demonstrated that intensive maternal attention during
PND 2 to 14 can significantly influence several aspects of behavior,
including memory, learning, maternal behavior, and fearfulness (Francis
et al., 1999b; Meaney, 2001; Caldji et al., 2000).

The results of other investigations have shown that stress is attended
by an increase in HPA axis activity and a decline in reproductive func-
tions (Selye, 1939). Sexual functions can also be affected by stress-related
hormones at all three levels of the HPG axis (Rivier and Rivest, 1991). In
addition, repeated activation of the HPA axis disturbs the coordination
between the neurotrophic and immune pathways that can play a role in
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Figure 7. Immunocytochemical analysis of testicular cells for caspase-1 and NLRP3 markers. (A) Control offspring group; (B) MS offspring group; upper panel: PI
stained pictures; lower panel: merged pictures of PI and secondary antibody stained cells. Scale bars are 10 pm. Samples were analyzed in triplicate.
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Figure 8. Comparison of the mean percentage of positive cells for caspase-1 and
NLRP3 markers byimmunocytochemical assessment. Values are reported as
mean + SD (Standard Deviation). ***p < 0.001 compared with the control
offspring group. Samples were analyzed in triplicate.

the long-lasting consequences of early-life stress (Tractenberg et al.,
2016). Stress-induced activities in the adrenergic system can affect the
function of the endocrine and immune systems that are necessary for
normal fertility (Jozkow and Medras, 2012; Ostanin et al., 2007). Pre-
vious study has shown that MS stress significantly affects expression of
genes and cytokines involved in inflammatory responses. MS led to
increased expression of TLR4, NIRP3, TNFa, caspase-1, ASC, IL-1p and
IL-18 (Khodamoradi et al., 2019b).

Although there is a vast amount of evidence showing the negative
effects of prenatal stress on male sexual differentiation including
abnormal levels of testosterone and elevated androstenedione level
during the prenatal period (Ward, 1972, 1984; Wilke et al., 1982; Rhees
and Fleming, 1981), the long-term consequences of postnatal MS on
sexual behavior in males have not been well examined (Rhees et al.,
2001). However, it does appear that the adverse effects of prenatal stress
on sexual behavioral and morphological alterations are the result of
changes in the testosterone levels of male fetuses whose mothers were
stressed during pregnancy (Ward, 1984; Ward and Weisz, 1980).

The results of other studies have shown that early life physical and
sexual abuse can result in an increase in endocrine and autonomic re-
sponses to stress in adulthood (Heim et al., 2000; De Bellis et al., 1994).
Rhees et al. reported that, similar to stress during the prenatal period,
maternal separation stress in the postnatal period in male mice can in-
fluence sexual differentiation (Rhees et al., 2001). Our previous study
showed that chronic stress induced by maternal separation had harmful

effects on sperm characteristics and testicular tissue, probably through
the activation of ROS production and its influence on mitochondrial
function, inflammatory processes and apoptosis pathways.

The vulnerability of spermatozoa to oxidative stress has been well-
known as a factor affecting fertility status. Increased ROS production
disrupts the mitochondrial function and activates the caspases and
apoptosis (Makker et al., 2009; Abbaszadeh et al., 2018). The roles of
caspases 8, 9, 1, and 3 in spermatozoa have been investigated to study the
main apoptotic pathways (Paasch et al., 2004). Activated caspase-1
mediates inflammatory signaling pathways and links inflammation pro-
cesses with cell apoptosis (Gupta et al., 2001; Solary et al., 1998).
Conversely, mitochondrial injury can lead to the activation of apoptotic
signals and also NLRP3 inflammasome, which triggers the secretion of
the pro-inflammatory cytokines IL-18 and IL-18 (Tschopp and Schroder,
2010; Shimada et al., 2011, 2012). It has been demonstrated that bcl-2
plays a key role in protecting cells, most likely through mechanisms
which decrease production of ROS (Kane et al., 1993). In addition to its
role as an inhibitor of apoptosis, BCL2 may inhibit NLRP3 inflammasome
activation. It has also been reported that an increase in BCL2 expression
can lead to a decline in levels of IL-1 (Shimada et al., 2012). Moreover,
recent studies have shown that the activities of NLRP3- inflammasome
can be regulated by the proinflammatory cytokine TNF (Wree et al.,
2018; McGeough et al., 2017). According to this data, it seems that
stress-induced maternal separation can disturb the activities of NLRP3
inflammasome through changes in the levels of ROS, BCL2 and TNFa,
and consequently causes an increase in the production of IL-1p and IL-18.

Little is known about how the effects of maternal separation stress
experienced by parents can be transmitted to the next generation. It has
been demonstrated that early-life stress can induce alterations in DNA
methylation of the brain that may play a role in the physiological
adaptation to stress in adulthood. Furthermore, next-generation
sequencing has shown changes in DNA methylation of the genes which
encode the insulin receptor and its downstream target genes (IMcCoy
et al., 2016). Franklin et al. investigated the transgenerational effect of
chronic stress induced by maternal separation on behavioral responses.
They reported that chronic stress in early life changed the behavioral
response of the animals in their study to aversive environments during
adulthood. This stress changes DNA methylation of germline in in males
exposed to stress. Thus, most behavioral changes in response to maternal
separation stress are transmitted to male offspring (Franklin et al., 2010).
Although the mechanisms of sex-dependent alterations in behavior are
not known, sex steroids may be playing a role (Franklin et al., 2010; Mani
and Thakur, 2006; Singh and Prasad, 2008). On the other hand, since the
transition of stress-induced behavioral changes across generations in-
volves environmental factors, it seems to be caused by epigenetic changes
(Cameron et al., 2008; Weaver et al., 2004). Weaver et al. showed that an
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increase in the licking and grooming behavior of rat mothers with pups
can alter the epigenome of their offspring at the promoter of the hippo-
campal glucocorticoid receptor gene (Weaver et al., 2004). The actions of
estrogen to regulate gonadotrophin-releasing hormone (GnRH) and
luteinising hormone (LH) secretion are mediated by oestrogen receptors
in the anteroventral periventricular nucleus (AVPVN) (Petersen et al.,
1993, 2003; Herbison, 1998). Several studies have investigated the
maternal effects on the promoter methylation status of steroid receptor
genes in brain (Weaver et al., 2007; Szyf et al., 2005).

It has been reported that maternal separation stress experienced by
parents can induce the apoptotic process and subsequently interfere with
ovarian folliculogenesis in the first generation, but its mechanism has not
been studied. Cameron et al. reported that maternal effects can influence
neuroendocrine functions linked with sexual behavior in female rats. It
seems that epigenetic modifications at the estrogen receptor alpha (ERa)
promoter are the cause of these maternal effects (Cameron et al., 2008).
Furthermore, Champagne et al. reported that variations in maternal care
are linked with alterations in ERa expression in the hypothalamic medial
preoptic area (MPOA) that are transmitted to female offspring by their
mothers (Champagne et al., 2003b).

Our studies show that maternal separation stress can affect male
reproductive potential not only in the stressed mice but also in their
offspring, but the mechanisms of this are not well understood. Epigenetic
alterations may play a role in transmitting the deleterious effects of the
MS stress experienced by parents on the reproductive potential of their
next generation. Therefore, further studies are needed to clarify the
mechanisms involved in the transgenerational effects of maternal sepa-
ration stress such as possible epigenetic effects.

5. Conclusion

Our results provide evidence that maternal separation stress experi-
enced by parents significantly influenced the morphology and viability of
spermatozoa as well as testicular tissue in first-generation offspring.
Chronic stress induced by maternal separation had harmful effects on
sperm characteristics and testicular tissue, probably through the activa-
tion of ROS production and its influence on mitochondrial function, in-
flammatory processes, and apoptosis pathways. However, there is little
information about how the effects of maternal separation stress experi-
enced by parents can be transmitted to their offspring. Therefore, future
studies are necessary to investigate the involved mechanisms of the
negative effects of maternal separation stress experienced by parents on
the male reproductive potential of their next generation.
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