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Undirecting membership in models of Anti-Foundation

Bea Adam-Day and Peter J. Cameron

Abstract. It is known that, if we take a countable model of Zermelo–Fraenkel set theory ZFC
and “undirect” the membership relation (that is, make a graph by joining x to y if either
x ∈ y or y ∈ x), we obtain the Erdős–Rényi random graph. The crucial axiom in the proof
of this is the Axiom of Foundation; so it is natural to wonder what happens if we delete
this axiom, or replace it by an alternative (such as Aczel’s Anti-Foundation Axiom). The
resulting graph may fail to be simple; it may have loops (if x ∈ x for some x) or multiple
edges (if x ∈ y and y ∈ x for some distinct x, y). We show that, in ZFA, if we keep the loops
and ignore the multiple edges, we obtain the “random loopy graph” (which is ℵ0-categorical
and homogeneous), but if we keep multiple edges, the resulting graph is not ℵ0-categorical,
but has infinitely many 1-types. Moreover, if we keep only loops and double edges and
discard single edges, the resulting graph contains countably many connected components
isomorphic to any given finite connected graph with loops.
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1. Introduction

According to the downward Löwenheim–Skolem theorem [9, Corollary 3.1.4],
if a first-order theory in a countable language is consistent, then it has a
countable model. In particular, Zermelo–Fraenkel set theory ZFC, if consistent,
has a countable model. (This is the source of the Skolem paradox, since the
existence of uncountable sets is a theorem of ZFC.) Indeed there are many
different countable models, but they all have a common feature. To describe
this, we briefly introduce the Erdős–Rényi random graph (sometimes referred
to as Rado’s graph, for reasons we will see).

Erdős and Rényi [7] showed that there is a countable graph R such that, if
a random graph X on a fixed countable vertex set is chosen by selecting edges
independently with probability 1/2 (or, indeed, any fixed p with 0 < p < 1),
then X is isomorphic to R almost surely (that is, with probability 1). Moreover,
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R is highly symmetric; they showed that such a graph has infinitely many
automorphisms, but in fact it is homogeneous: any isomorphism between finite
induced subgraphs extends to an automorphism. Erdős and Rényi gave a non-
constructive existence proof, based on the following property, called the Alice’s
Restaurant property, or ARP:

Given any two disjoint finite sets U and V of vertices, there is a
vertex z joined to every vertex in U and no vertex in V .

In other terminology, R is the Fräıssé limit of the class of finite graphs. For
further discussion of the graph R, including the theorem below, we refer to [5];
for Fräıssé’s theorem, see [9, Theorem 6.1.2].

A model of Zermelo–Fraenkel set theory ZF consists of a collection of ob-
jects called sets, and a binary relation ∈ on this collection. In other words,
it is a directed graph. By “undirecting” this relation ∈, that is, defining an
undirected graph in which x and y are adjacent if either x ∈ y or y ∈ x,
we obtain a simple graph. (At the end of this section, we state the Axiom of
Foundation, one of the axioms of ZF, and show that it forbids directed cycles
for the membership relation; in particular it forbids loops (x ∈ x) and double
edges (x ∈ y ∈ x) in the undirected graph.) We call this the membership graph
of the model.

Theorem 1. The membership graph of a countable model of ZFC is isomorphic
to the Erdős–Rényi random graph R.

Proof. We verify the ARP. Let U and V be finite disjoint sets of vertices. Take
z = U ∪ {V }. (The existence of z is guaranteed by the Pairing and Union
axioms.) If u ∈ U , then u ∈ z, so z is joined to u. Suppose, for a contradiction,
that z is joined to a vertex v ∈ V . There are two cases:

• v ∈ z. Since v /∈ U , we must have v = V , so v ∈ v, contradicting
Foundation.

• z ∈ v. Then v ∈ V ∈ z ∈ v, also contradicting Foundation.
�

Remark. Observe that, in the proof, we use only the Empty Set axiom (as-
serting that sets exist), the axioms of Pairing and Union, and the Axiom of
Foundation. The other axioms (Infinity, Selection, Choice, and so on) are not
required.

In particular, there is a standard model of ZFC with the negation of the
Axiom of Infinity, or hereditarily finite set theory HF. We take the sets to be
the natural numbers, and represent a finite set {a1, . . . , an} of natural numbers
by b = 2a1 + · · ·+2an , so that, for a < b, we have a joined to b if and only if the
ath digit in the base 2 expansion of b is 1. The model of R given by undirecting
this membership relation is precisely the graph constructed by Rado [10].

We are grateful to the referee for the observation that the argument also
shows the following: if the Continuum Hypothesis holds, then the undirected



Undirecting membership in models of Anti-Foundation

membership relation on the hereditarily countable sets is a universal graph of
cardinality ℵ1.

The Axiom of Foundation We state the Axiom of Foundation, and its role
in forbidding directed cycles for the membership relation in models of ZF; see
[4,6] for more details.

The Axiom of Foundation states:

For every non-empty set x, there exists y ∈ x such that x ∩ y = ∅.

Suppose that there were a directed cycle x0 ∈ x1 ∈ · · · ∈ xn−1 ∈ x0. Let
x = {x0, x1, . . . , xn−1}. For any y ∈ x, say y = xi, we have xi−1 ∈ x ∩ y,
contradicting the Axiom of Foundation.

In fact the axiom also forbids infinite descending chains for the membership
relation, and is “equivalent” to this (but not by a first-order implication since
there is no first-order formula forbidding such chains).

2. The Anti-Foundation Axiom

Since the Axiom of Foundation is required for the proof of Theorem 1, what
happens if we delete it, or replace it by an alternative? We consider this ques-
tion when Foundation is replaced by Aczel’s Anti-Foundation Axiom [1]. Fol-
lowing Barwise and Moss [3], we use this axiom in the form of the Solution
Lemma [3, p.72], which we briefly discuss. Other formulations of the axiom
exist, see for example [8], but this form suits our purpose.

Let X be a set of “indeterminates”, and A a set of sets called “atoms”. A
flat system of equations is a set of equations of the form x = Sx, where Sx is
a subset of X ∪ A for each x ∈ X. A solution to the system is an assignment
of sets to the indeterminates so that the equations become true.

For example, if A = {a, b} with a and b distinct, then

x = {y, a},

y = {x, b}
is a flat system of equations.

The Anti-Foundation Axiom, or AFA, asserts that any flat system of equa-
tions has a unique solution. (In fact, the proofs we give here will not re-
quire such uniqueness, and so all the results hold for a weaker form of Anti-
Foundation.)

Note that the solution to the above system will satisfy x ∈ y, y ∈ x and
x �= y so will correspond to a double edge in the membership graph. Similarly,
the solution to x = {x} will give a loop in the graph.

The axioms system ZFA denotes ZFC with the Axiom of Foundation deleted
and replaced by the axiom AFA. Our concern is with membership graphs of
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models of ZFA. We note in passing that, if ZFC is consistent then so is ZFA:
see [3, Chapter 9].

Note that Barwise and Moss work in a set theory containing “urelements”
which are not themselves sets; this makes no difference to our arguments.

3. Membership graphs of models of ZFA

The argument showing that the membership graph of a model of ZFC is a
simple graph does depend on Foundation, as we saw. In ZFA, we have sets
x with x ∈ x, giving loops in the graph; and pairs x, y of distinct sets with
x ∈ y ∈ x, giving double edges.

The random loopy graph is obtained with probability 1 if we choose a graph
on a countable vertex set by choosing edges (including loop edges) from pairs
of not necessarily distinct vertices independently with probability 1/2. It is
homogeneous, and is the Fräıssé limit of the class of finite loopy graphs. The
relevant version of the Alice’s Restaurant property characterises it as the count-
able graph such that, for any two finite disjoint sets U and V of vertices, there
are vertices z1 and z2, where z1 is loopless and z2 has a loop, each joined to
all vertices in U and to none in V . The proof is very similar to the usual proof
for the random graph, and we will not give it here.

Theorem 2. The membership graph of a countable model of ZFA, ignoring mul-
tiple edges but keeping loops, is isomorphic to the random loopy graph.

Proof. We begin with some preliminaries. In a model of a subset of ZF includ-
ing at least Selection, there is no set whose members are all sets. For, if such
a set S exists, then Selection would give Bertrand Russell’s set R = {x ∈ S :
x /∈ x}, whose existence leads to a contraction on examining whether R ∈ R
or not.

It follows that, if the Union axiom also holds, there is no set S′ which
contains all the p-element sets, for a fixed positive natural number p: for the
union of S′ would be S. In particular, if T is any set, then there is a set of
cardinality p which is not a member of T .

Now let Γ be the membership graph of a countable model of ZFA, with
loops but no double edges. We will show that Γ satisfies the loopy version
of ARP. For this let {u1, . . . , um} and {v1, . . . , vn} be disjoint sets, and let
z1 = {x, u1, . . . , um} and z2 = {z2, x, u1, . . . , um}, where x is a vertex satisfying
the following conditions:

• x is not equal to any of the vj ;
• x is not contained in any of the vj or the ui;
• x is not contained in any of the sets contained in any of the vj .

Such an x exists, since otherwise the union of V ,
⋃

U ,
⋃

V , and
⋃ ⋃

V would
contain every set, a contradiction.
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Furthermore, we may assume that |x| = m+3, since by our earlier remarks
there is a set of this cardinality not a member of the “forbidden set” V ∪
(
⋃

U) ∪ (
⋃

V ) ∪ (
⋃ ⋃

V ) above.
We remark that the existence of z1 follows simply from Pairing and Union;

for z2, we invoke Anti-Foundation, letting z2 be the unique solution of the
equation

z = {z, x, u1, . . . , um}.

Both z1 and z2 are joined to all the vertices ui; and by construction, there
is a loop on z2. We claim that there is no loop on z1. For such a loop would
imply one of the following:

• z1 = ui for some i. Then we have x ∈ ui, contradicting our choice of x.
• z1 = x. But we chose x with |x| = m + 3, whereas |z1| ≤ m + 1. (Note

that in the same way we see that z2 �= x.)
Finally we have to show that z1 and z2 are not joined to any vj . We cannot

have any vj contained in z1 or z2; for the vj are distinct from the ui by
hypothesis, not equal to x by choice of x, and not equal to z2 since if so then
x would be a member of vj , again contrary to our choice of x. Also we cannot
have z1 or z2 ∈ vj , since if so then x belongs to a member of vj , again contrary
to our choice of x. �

Remark. As in the case of ZFC, it is interesting to note which axioms are
actually used in the proof. The Empty Set, Pairing and Union axioms are
once again used; of course, the Anti-Foundation Axiom is used; and as well,
we use the Selection Axiom.

What happens if we keep the multiple edges? We cannot describe all graphs
that can arise, but we note that there is no such graph which has the nice
properties of ℵ0-categoricity and homogeneity which hold in the random and
random loopy graphs. This will follow from the theorem of Engeler, Ryll-
Nardzewski and Svenonius (see [9, Theorem 6.3.1]), according to which a count-
able first-order structure is ℵ0-categorical (that is, determined uniquely by its
first-order theory and the property of countability) if and only if its theory
has only finitely many n-types for all n. An n-type of a first order theory T is
a set Φ(x̄) of formulas with at most n free variables in the language of T such
that T ∪ {∃x̄ ∧ φ} is consistent for every finite subset φ(x̄) of Φ. In a sense, an
n-type describes how a set of up to n elements might behave in a model of T .

Theorem 3. The membership graph of a countable model of ZFA, keeping dou-
ble edges, is not ℵ0-categorical.

Proof. Take a countable model of ZFA. Let an be distinct well-founded sets
for n ∈ N, for example, the natural numbers. For every natural number n,
consider the equations

y = {x0, . . . , xn−1},
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xi = {y, ai} for i = 0, . . . , n − 1.

By AFA, these equations have a unique solution in the model. We have xi ∈ y
and y ∈ xi, so all the edges {xi, y} are double. (These sets are all distinct, by
extension.) There are no further double edges on y, since if {y, z} is a double
edge then z ∈ y and so z = xi for some i.

Thus, for every natural number n, there is a set lying on exactly n double
edges. Since this property of the set is expressible in first-order logic there are
infinitely many 1-types in the graph, and so the graph cannot be ℵ0-categorical,
by the theorem of Engeler, Ryll-Nardzewski and Svenonius.

Moreover, we can take the infinite set of equations

y = {xn : n ∈ N},

xn = {y, an} for n ∈ N.

A solution to these equations will be a point lying on infinitely many double
edges. �

Another natural reduct is obtained by keeping only the double edges. The
double-edge graph of a model of ZFA has as vertices the sets and as edges all
pairs {x, y} with x ∈ y and y ∈ x (allowing x = y). Thus, it includes loops
and double edges but omits all “conventional” instances of the membership
relation (where a ∈ b but b /∈ a).

Theorem 4. Let D be the double-edge graph of a countable model of ZFA. Then,
for any finite connected loopy graph Γ, D has infinitely many connected com-
ponents isomorphic to Γ. It also has at least one infinite component.

Proof. An example will illustrate the general proof. Let Γ be the 4-cycle with
edges {v0, v1}, {v1, v2}, {v2, v3} and {v3, v0}, together with a loop at v0. Take
any four well-founded sets a0, a1, a2, a3 (for example, the first four natural
numbers), and consider the equations

y0 = {a0, y0, y1, y3},

y1 = {a1, y0, y2},

y2 = {a2, y1, y3},

y3 = {a3, y0, y2}.

The unique solution gives an induced subgraph isomorphic to Γ. Note that
there are no other double edges meeting these vertices: if, say, {y1, x} were
a double edge, then x ∈ y1, and so by Extensionality, x = a1 or x = y0 or
x = y2; the first is impossible since y1 /∈ a1 by assumption. So the given set is
a connected component.

Since there are infinitely many possible choices of a0, . . . , a3, there are in-
finitely many such connected components.

We saw earlier that there is a vertex with infinite valency; it lies in an
infinite component of D. �
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This leaves a few questions which we have not been able to answer in this
current work.

1. Is it true that the first-order theory of the membership graph of a count-
able model of ZFA has infinitely many countable models?

2. Is it true that there are infinitely many non-isomorphic graphs which are
membership graphs of countable models of ZFA?

3. Can more be said about infinite connected components of the double-edge
graph?

4. What about models of ZFA where the Axiom of Infinity is replaced with
its negation?

5. Is it true that, if two countable multigraphs are elementarily equivalent,
and one is the membership graph of a model of ZFA, then so is the other?

However, in a sequel by Adam-Day et al. [2] the first two questions are an-
swered affirmatively and a characterisation of the connected components of
double-edge graphs is given, thus answering the third question. The analogue
to Question 5 for double-edge graphs is shown to be negative, and indeed it
is shown that, for any double-edge graph, there is an elementarily equivalent
countable structure which is not itself a double-edge graph.
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