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Abstract

Magnetic Resonance Imaging (MRI) provides an insight into opaque struc-
tures and does not only have a large number of applications in the field
of medical examinations but also in the field of engineering. In technical
applications, MRI enables a contactless measurement of the two- or three-
dimensional velocity field within minutes. However, various measurement
methods would benefit from an acceleration of the measurement procedure.
Compressed Sensing is a promising method to fit this need. A random under-
sampling of the sampled data points enables a significant reduction of acqui-
sition time. As this method requires a nonlinear iterative reconstruction of
unmeasured data to obtain the same data quality as for a conventional fully
sampled measurement, it is essential to estimate the influence of uncertainty
on the quantitative result. This paper investigates the implementation of in-
terval arithmetic approaches with a focus on the applicability in the frame of
compressed sensing techniques. These approaches are able to handle bounded
uncertainty not only in the case of linear relationships between measured data
and the computed outputs but also allow for solving the necessary optimality
criteria for the fluid velocity reconstruction in an iterative manner under the
assumption of set-valued measurement errors and bounded representations of
noise.
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1 Introduction

Magnetic Resonance Imaging (MRI) is commonly associated with medical exam-
inations. Moreover, this measurement method has found increasing applications
in the field of fluid mechanics in the past decade. An inherent feature of MRI
is the comparatively fast two- or three-dimensional data acquisition inside opaque
systems. Various studies demonstrated that MRI is capable of estimating values
of different flow properties quantitatively, such as velocity, temperature, Reynolds
stresses, and species concentrations in technical fluid systems [3, 7].

However, possible applications of conventional MRI methods in engineering sys-
tems are limited. Conventional methods, for example, are notably prone to flow-
induced errors. An approach to overcome these errors and to enable measurements
in strongly turbulent flows at high flow velocities was presented in [4]. However, the
main disadvantage of this method is the long acquisition time. Apart from that,
even with conventional methods, the temporal resolution of MRI is comparatively
low. Therefore, it is hardly possible to capture non-stationary flows. These exam-
ples show that there is a tremendous need to accelerate data acquisition of different
MRI methods and — simultaneously — to capture the effect of uncertainty.

In contrast to other imaging techniques like photography or computed tomogra-
phy, MRI measurements are based on determining spatial frequencies rather than
measuring a spatial distribution. For that reason, the two- or three-dimensional
measured data are referred to as k-space. The reconstruction of the spatial data
from the frequency domain is straightforward using the discrete Fourier transform.
Therefore, the size of the k-space matrix defines the resolution of the final data. At
the same time, the number of sampled frequencies determines the required mea-
surement time. Hence, an acceleration of the measurement is thus possible by
measuring less spatial frequencies. However, only an approach that preserves the
high resolution of the MRI measurement is favorable.

A promising method to achieve this is Compressed Sensing [15]. In this method,
a random sampling of the spatial frequencies allows a considerable reduction of
measurement time. Due to random sampling, noise-like errors occur when applying
a linear reconstruction, whereas a nonlinear iterative reconstruction estimates the
missing values and, therefore, undersampling errors are suppressed.

As in any other measurement technique, uncertainties due to the thermal noise
of the receiver chain and external sources of errors corrupt the data. Besides,
systematic errors due to flow instabilities and other flow- or imaging-related errors
may occur. Some of these appear as random ghosts, which will eventually lead to
difficulties in the nonlinear iterative reconstruction. Hence, it is of great interest
to investigate how statistical uncertainty and measurement errors affect the results
of image reconstruction in MRI when applying Compressed Sensing. Throughout
this paper, bounded intervals represent these uncertainties and are therefore able to
capture equally the effect of random noise within certain interval bounds (however,
without any need to know the underlying probability distributions) or the influence
of bounded systematic errors. If stochastic effects play a major role, those interval
ranges need to be defined in such a way that they contain a certain percentage
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of uncertain data. As shown in Sec. 5, these intervals can exemplarily be deduced
from empirical standard deviations. Alternative methods to estimate these intervals
(without the aim of providing a list of all reasonable options) rely either on a
multiplicative inflation of each measured point in the k-space or make use of interval
data that are coupled with variations of the power spectral density.

This paper is structured as follows. Sec. 2 gives an overview of the fundamental
principles of MRI measurement techniques. Nonlinear least-squares techniques for
the reconstruction of fluid velocities in the field of MRI are summarized in Sec. 3
before novel interval procedures are developed in Sec. 4 which allow for a quantifi-
cation of uncertainty in the field of compressed sensing. Representative numerical
results for a benchmark scenario comprising real measured data, acquired with the
help of an MRI scanner available at the University of Rostock, are presented in
Sec. 5. Finally, conclusions and an outlook on future work are given in Sec. 6.

2 Fundamentals of MRI-Based Measurements

The interaction of the nuclear spin with a strong external magnetic field and the
corresponding effect of nuclear magnetic resonance (NMR) are the fundamentals
of MRI. In general, MRI works on every chemical element containing a non-zero
atomic spin. However, conventional MRI typically images hydrogen. A high-
frequency excitation pulse and fast switching of magnet field gradients generate
a complex-valued signal that provides a two- or three-dimensional insight into the
measured human body or technical system. As mentioned before, the MRI data
consists of the spatial frequencies from the area that is investigated; in MRI, this
area is usually referred to as the Field of View (FOV). The application of the dis-
crete Fourier transform yields a complex data set in the spatial domain, which then
provides observable information that can then either be visualized or analyzed fur-
ther in a quantitative manner. In this resulting data set, the magnitude indicates
the signal intensity, while the image phase offers the possibility to encode other
parameters such as velocity or temperature.

The final spatial resolution of the measured data is proportional to the size of
the k-space. The acquisition time of an MRI measurement, in turn, depends on
the number of sampled frequencies as well as on the used measurement method; in
MRI, this measurement method is usually also called a sequence. A sequence, in
general, consists of three parts: First, the excitation of the FOV takes place by us-
ing a high-frequency pulse. Afterwards, several magnetic field gradients are played
out to encode location, velocity, or other information. Third, readout takes place.
This procedure repeats as often as it is required to capture all spatial frequencies.
Depending on the sequence design, it becomes possible to derive strategies that
range from gathering measurements by sampling of a single data point up to in-
vestigating the whole k-space at once within a single repetition. Most conventional
methods make use of a line-wise sampling, which results in comparatively short
acquisition times and acceptable errors for most applications. However, there are
various other possibilities for a sequence design. Depending on that, the different
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approaches are more or less prone to several systematic errors and require a few
tenths of a second up to several minutes of measurement time. In general, the
more excitations are needed to complete the measurement, the more extended the
acquisition time is. For more details on the nuclear physics of MRI and different
sampling methods, the interested reader may refer to [2].

2.1 Velocity Measurement

In recent years, MRI gained much interest from the field of fluid mechanics, be-
cause it enables contactless measurement of velocity fields and other flow-related
parameters without requiring optical access. The most successful approaches of
measuring velocities with MRI make use of a phase-contrast measurement similar
to the method developed in [17]. Due to multiple mechanisms that affect the image
phase of the MRI signal, it is not possible to obtain the absolute velocities from
the image phase φ of a single measurement. Therefore, capturing one velocity com-
ponent requires two separate measurements with varying velocity encoding. The
phase difference ∆φ between these two complex data sets X1 and X2 results from

∆φ = ∠ (X∗2 ·X1) , (1)

where (·)∗ indicates the conjugate complex of the respective argument. Here, the
phase angle is determined element-wise for a complex-valued quantity x = xR+xI,
xR ∈ R, xI ∈ R with the complex unit  according to the Matlab-like syntax
∠ (z) = atan2 (xI, xR). The velocity u for each entry in the phase data set ∆φ is
computed element-wise from this data set by accounting for the predefined velocity
sensitivity venc in the expression

u = ∆φ
venc
π

. (2)

In addition, the image magnitude provides information on the signal intensity.
Because only areas containing a high amount of hydrogen enable a strong MRI
signal, the values of surroundings such as air and walls are close to zero with
randomly distributed phase angles. Note that a high density of hydrogen does not
necessarily result in a high signal intensity. Other effects like the relaxation of the
MRI signal and flow instabilities can also cause a significant signal loss. However,
the image magnitude enables the segmentation of regions of interest (ROI) from
the surrounding at least as if the signal to noise ratio (SNR) is sufficiently large.

One of the most important sources of noise in an MRI measurement is the ther-
mal noise of the receiver chain. Bruschewski et al. [3] presented a robust calculation
of the measurement uncertainty from the variance (Var) of two equally measured
images A and B

σu =
1√

2 · nSA

√
Var {uA(ROI)− uB(ROI)} , (3)

where nSA indicates the number of signal averages. Besides that, several systematic
errors may occur. As every spatial frequency contains information of every pixel
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inside the FOV, the MRI signal is averaged during the measurement. Especially in
flow measurements, the occurrence of instabilities and turbulence will lead to small
k-space changes within the data acquisition which are observable as ghosts in the
final image.

Furthermore, as already mentioned, these effects reinforce signal loss, which will
lead to a decrease in SNR. Additionally, the encoding process in most conventional
measurement methods is not instantaneous. Encoding of location and velocity com-
ponents takes place at different time steps, which eventually leads to a distortion
of the geometry and the flow field, known as misregistration [14].

As soon as multiple measurements have been performed, a simple estimate of
the accuracy is obtained by calculating the flow rate Q for each of the repetitions.
In an n × m image, the flow rate results from the summed flow velocities in the
region of interest u(ROI) and the pixel size A

Q =

n∑
i=1

m∑
j=1

uij(ROI) ·A . (4)

2.2 Fundamental Optimization Problem Related to Com-
pressed Sensing

Donoho [6] and Candés et al. [5] first presented the mathematical approach of
Compressed Sensing for which [15] demonstrated that this method is perfectly
applicable to MRI. In general, three necessary conditions are required to apply
compressed sensing: First, a random sampling pattern is required that will result
in noise-like errors if applying a linear reconstruction. Second, the data must have
a sparse representation in a known transform domain. Finally, iterative nonlin-
ear reconstruction is required to obtain a data quality comparable with that of a
conventional measurement. Applying this to MRI is straightforward by randomly
skipping repetitions within the data acquisition, which will result in randomly miss-
ing data points in the k-space. These missing values are set to zero (zero filling)
to obtain an initialization value for the iterative reconstruction. Second, like any
other natural image, conventional MRI images have a sparse representation in a
transform domain, for example, if calculating the finite differences, also known as
total variation (TV transform) [15]. If applying this to a perfect noise-free image,
only data points with high contrast will lead to high values while the rest is zero
(sparsity). However, if randomly distributed noise and noise-like errors occur in
the image, the sparse representation of the image is no longer sparse in the mathe-
matical sense. Therefore, the iterative nonlinear reconstruction of the missing data
points necessitates the sparsity-enforcing minimization of the l1 norm || · ||1 of the
sparse transform Ψ of the image X, i.e.,

min J2 (x) = ‖Ψ{X}‖1 . (5)

The Euclidean norm ||·||2 of the deviation between the measured k-space data Y
and the Fourier transform F 〈2〉 of the reconstructed image X restricts the solution



348 Kristine John, Andreas Rauh, Martin Bruschewski, Sven Grundmann

domain of this optimization in terms of the constraint

J1 (x) =
∥∥∥M̃s ◦ F 〈2〉 {X} −Y

∥∥∥2
2
< ε . (6)

The matrix M̃s in (6) represents the undersampling and zero-filling utilizing the
element-wise Hadamard product and ε defines the tolerance of the reconstruction.
This optimization problem is solved in its unconstrained Lagrangian form leading
to the cost function

J (x) = J1 (x) + λ · J2 (x)

=
∥∥∥M̃s ◦ F 〈2〉 {X} −Y

∥∥∥
2

+ λ · ‖Ψ{X}‖1 with λ > 0
(7)

as proposed in Lustig et al. [15].

Holland et al. [10] made suggestions to extend this cost function to achieve
an improved reconstruction, especially in technical phase-contrast measurements.
They proposed a separated sparse transform of the real <{·} and imaginary ={·}
parts of the data to prevent errors in the phase reconstruction, i.e.,

J2 (x) = ‖Ψ{<{X}}+ Ψ{={X}}‖1 . (8)

Moreover, they suggested a further constraint of the optimization problem: As
the geometry in technical MRI is commonly well known, they defined a binary
mask Mb which is zero at data points where no signal is expected, which can be
expressed according to

J3 (x) = ‖(E−Mb) ◦X‖22 , (9)

where E is a matrix containing the value one in all of its entries and having the
same dimension as the binary mask Mb and the image X.

Furthermore, additional sparse transforms can be used to reconstruct the un-
dersampled data. In this paper, the cost function includes the total variation ΨTV

and the Wavelet transform ΨW. The resulting cost function J (x) is then defined
as

J (x) =
∥∥∥M̃s ◦ F 〈2〉 {X} −Y

∥∥∥2
2

+ λ1 · ‖ΨTV{<{X}}+ ΨTV{={X}}‖1
+ λ2 · ‖ΨW{<{X}}+ ΨW{={X}}‖1
+ λ3 · ‖(E−Mb) ◦X‖22 .

(10)

Details concerning the actual choice of the total variation term as well as the
Wavelet transform as regularizing and sparsity-enforcing cost function components
are given in Sec. 3.3.
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3 Nonlinear Least-Squares Estimation Techniques
for the Reconstruction of Fluid Velocities from
Undersampled k-Space Measurements

The fully sampled k-space (Y) is transformed back to the original image space
by applying the two-dimensional inverse Fourier transform. The definition of the
(normalized) standard one-dimensional discrete Fourier transform of the data set X
is

F {X} = F (X) with X ∈ Cm×n , (11)

which is applied in a column-wise manner to the data X given in matrix form.
The two-fold application of this one-dimensional transform then expresses the two-
dimensional discrete Fourier transform F 〈2〉 {X}:

F 〈2〉 {X} = F〈2〉 (X) = F
{
F {X}T

}T
with X ∈ Cm×n . (12)

This can be stated analogously in terms of the complex-valued matrix prod-
uct [9, 20,21,24]

F 〈2〉 {X} = W1 ·X ·WT
2 , (13)

Here, the matrices W1 and W2 result form the application of the one-dimensional
Fourier transform to the square identity matrices Im ∈ Rm×m and In ∈ Rn×n
according to

W1 = F {Im} and W2 = F {In} . (14)

Due to the before-mentioned normalization of the Fourier transform operator
F {X}, the inverse of the matrices W1 and W2 is given by

W−1
1 = WH

1 = (W∗
1)
T

and W−1
2 = WH

2 = (W∗
2)
T
, (15)

where the operator (·)∗ as also in (1) represents the conjugate complex, and (·)H
is the Hermitian (conjugate complex and transposed) of the respective argument.
Taking into account the information given above in Eqs. (11)–(14), a column-wise
notation of the two-dimensional Fourier transform, making use of the Kronecker
matrix product [25] of W2 and W1, leads to

col
(
F 〈2〉 {X}

)
= col

(
W1 ·X ·WT

2

)
= (W2 ⊗W1) · x (16)

with the matrix argument X reshaped into the column vector

x = col (X) ∈ Cm·n×1 . (17)

Hence, the partial derivative of (16) with respect to the image X in column-wise
notation is given by

∂
(
col
(
F 〈2〉 {X}

))
∂x

= W2 ⊗W1 . (18)
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This partial derivative will be exploited later on in order to derive necessary opti-
mality criteria for the reconstruction of the image X from undersampled measured
data Y by minimizing the cost function (10). In analogy to the reconstructed im-
age, the application of the column operator to the undersampled measured data
set yields

y = col (Y) . (19)

Furthermore, denote y′ ∈ CN ′
, N ′ ≤ m · n, as the vector of measured data from

which all zero-elements resulting from zero-filling are removed.

3.1 Fundamental Least-Squares Optimization Problem

Under consideration of these preliminaries, the term J1 (x) of the cost function
J (x) derived in (10) can be formulated according to

J1 (x) =
∥∥∥M̃s ◦ F 〈2〉 {X} −Y

∥∥∥2
2

=
(
Ms · (W2 ⊗W1) · x− y′

)H
·
(
Ms · (W2 ⊗W1) · x− y′

)
=
(
Ms · (W2 ⊗W1)

∗ · x∗ − y′
∗
)T
·
(
Ms · (W2 ⊗W1) · x− y′

)
,

(20)

with Ms as a substitute for M̃s in classical matrix-vector multiplication. Now, nec-
essary optimality criteria are derived subsequently for the unconstrained minimiza-
tion of the cost function (20) by a suitable choice of the complex-valued vector x.

3.1.1 Analysis of Complex Differentiability

Before the necessary optimality criterion for the reconstruction of x can be stated,
differentiability of J1 (x) with respect to the complex-valued argument x needs to
be analyzed. Generally, the cost function J1 (x) can be split up into its real and
imaginary parts according to

J1 (x) = U (xR,xI) + V (xR,xI) (21)

with the respective arguments xR = col (<{X}) and xI = col (={X}), i.e., x =
xR + xI.

Note that due to the fact that the cost function J1 (x) is defined as the square
of the magnitude of a complex-valued vector argument, the relation

V (xR,xI) = 0 (22)

holds true for arbitrary arguments x = xR + xI. Classically, necessary optimality
criteria for regular extrema of a cost function J1 (x) are determined by computing
the first partial derivative with respect to its argument and setting the resulting
vector to zero. For complex-valued arguments such kind of differentiation in the
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classical sense, i.e., the kind of differentiation rules that are well-known for real-
valued functions with real arguments, is only possible in a straightforward manner
if the Cauchy-Riemann equations [11]

∂U (xR,xI)

∂xR
=
∂V (xR,xI)

∂xI
and

∂U (xR,xI)

∂xI
= −∂V (xR,xI)

∂xR
(23)

are satisfied. However, this is never true for quadratic vector norms such as (20)
as well as for the absolute value of a complex argument. This statement is easily
verified by the fact that

∂V (xR,xI)

∂xR
≡ 0 and

∂V (xR,xI)

∂xI
≡ 0 (24)

hold true because possible function values of J1 (x) are always real and non-nega-
tive. Hence, the cost function J1 (x) is proven not to be an analytic function for
arbitrary complex vector arguments x [1, 8].

Therefore, J1 (x) needs to be considered as a bi-variate function in both vector
arguments xR and xI [1, 8]. Then, the total differential dJ1 with respect to both
independent arguments is computed according to

dJ1 =
∂J1 (xR,xI)

∂xR
dxR +

∂J1 (xR,xI)

∂xI
dxI (25)

with the independent differentials dx and dx∗ for x and its conjugate complex x∗,
respectively, which are given by

dx = dxR + dxI and

dx∗ = dxR − dxI .
(26)

Using those independent differentials, the Wirtinger differential operators (cf. [1,
8,11]) can be defined for which the classical rules for differentiation hold according to
the well-known rules for differentiation of real-valued functions with real arguments:

∂

∂x
:=

1

2
·
(

∂

∂xR
−  ∂

∂xI

)
and

∂

∂x∗
:=

1

2
·
(

∂

∂xR
+ 

∂

∂xI

)
, respectively .

(27)

3.1.2 Derivation of Necessary Optimality Criteria

Using the differentials (27), the total differential of the cost function term J1 (x)
under consideration is given by

dJ1 =

(
∂J1
∂x

)T
· dx +

(
∂J1
∂x∗

)T
· dx∗ (28)
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with
∂J1
∂x

=
(
Ms · (W2 ⊗W1)

)T
·
(
Ms · (W2 ⊗W1)

∗ · x∗ − y′
∗
)

(29)

as well as

∂J1
∂x∗

=
(
Ms · (W2 ⊗W1)

∗
)T
·
(
Ms · (W2 ⊗W1) · x− y′

)
. (30)

A thorough analysis of the expressions (29) and (30) shows that

∂J1
∂x∗

=

(
∂J1
∂x

)∗
(31)

always holds for the cost function under investigation. Therefore, differentiation
with respect to both x and x∗ and setting the total differential dJ1 in (28) to zero
yields the unique optimum (in the least-squares sense) specified by the algebraic
set of equations

∂J1
∂x∗

= 0 . (32)

Due to the underdetermined nature of the expression Ms · (W2 ⊗W1) ·x−y′ = 0,
it is replaced by the minimum norm solution

xopt = M+
s · y′ , (33)

where uniqueness of xopt is ensured if the matrix

Ms = Ms · (W2 ⊗W1) (34)

has full rank1 and hence its left pseudo inverse

M+
s =

(
M∗

s
T ·Ms

)−1
·M∗

s
T

(35)

exists. For the image reconstruction by means of the fully sampled k-space, Ms

becomes equal to the identity matrix of appropriate dimension and hence, M+
s

turns into the operator of the exact inverse of the two-dimensional Fourier trans-
formation (13) and (16).

3.2 Extended Least-Squares Optimization Problem

Now, the derivation of necessary optimality criteria for the minimization of the
overall cost function (10) is continued. To achieve differentiability of this cost
function according to (28)–(32), it is approximated by the following expression

J (x) ≈‖Ms · (W2 ⊗W1) · x− y′‖22 + λ1 ·
√
‖ΨTV · x‖22 + µTV

+ λ2 ·
√
‖ΨW · x‖22 + µW + λ3 · ‖(E−Mb) ◦X‖22

(36)

1Note that the full rank property of the matrix (34) corresponds to strict positive definiteness
of the cost function J1 (x) defined in (20).
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with the sufficiently small regularization parameters µι > 0, ι ∈ {TV,W}.
Applying the Wirtinger differentials (27) to the purely quadratic term

Q1 (x) = J1 (x) = ‖Ms · (W2 ⊗W1) · x− y′‖22 (37)

with the complex-valued vector argument Ms · (W2 ⊗W1) · x− y′ ∈ CN ′
leads to

the partial derivatives

∂Q1 (x)

∂x
= (Ms · (W2 ⊗W1))

T ·
(
Ms · (W2 ⊗W1)

∗ · x∗ − y′
∗)

and

f1 (x) :=
∂Q1 (x)

∂x∗
=
(
Ms · (W2 ⊗W1)

∗)T · (Ms · (W2 ⊗W1) · x− y′) . (38)

Analogously, the square root expressions in (36) (representing the regularization
of the l1 norm expressions given by the second and third summands in the cost
function (10)) can be redefined as

Qι (x) =

√
‖Ψι · x‖22 + µι =

√
x∗T ·Ψ∗ι

T ·Ψι · x + µι , ι ∈ {TV,W} , (39)

with the corresponding derivatives

∂Qι (x)

∂x
=

ΨT
ι ·Ψ

∗
ι · x∗

2Qι (x)
and fι (x) :=

∂Qι (x)

∂x∗
=

Ψ∗ι
T ·Ψι · x

2Qι (x)
. (40)

Finally, the term

QMb (x) = ‖(E−Mb) ◦X‖22
= col ((E−Mb) ◦X∗)

T · col ((E−Mb) ◦X)

= x∗T · diag {col (E−Mb)}T· diag {col (E−Mb)} · x

= x∗T · diag {col (E−Mb)} · x

(41)

is also re-written in terms of a quadratic form in the complex vector argument x,
where diag {col (E−Mb)} denotes a diagonal matrix formed by the elements of
the vector col (E−Mb). Hence, the associated derivatives are given by

∂QMb (x)

∂x
= diag {col (E−Mb)} · x∗ =: Mb · x∗ and

fMb (x) :=
∂QMb (x)

∂x∗
= diag {col (E−Mb)} · x =: Mb · x .

(42)

The partial derivatives specified in (38), (40), and (42) can now be used to
formulate a generalization of the expressions (31) and (32) according to

∂J (x)

∂x∗
=

(
∂J (x)

∂x

)∗
=
∂Q1 (x)

∂x∗
+ λ1 ·

∂QTV (x)

∂x∗
+ λ2 ·

∂QW (x)

∂x∗
+ λ3 ·

∂QMb (x)

∂x∗
= 0 .

(43)
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As before, see eq. (32), the system of algebraic equations

f (x) =
∂J (x)

∂x∗

= f1 (x) + λ1 · fTV (x) + λ2 · fW (x) + λ3 · fMb (x) = 0
(44)

is solved to find the optimal solution xopt minimizing the cost function J (x) in
terms of its approximation in (36). However, in contrast to (32), this expression is
no longer linear. Therefore, iterative solution approaches have to be employed to
find appropriate values for the vector x. Classically, the evaluation of this neces-
sary optimality condition is replaced with a direct minimization of J (x) by means
of local optimization procedures such as the conjugate gradient technique. Un-
fortunately, such local optimization procedures do not allow for a straightforward
consideration of (bounded) measurement errors in y and y′, respectively, and typ-
ically become less effective for increasing dimensions of the search space.

3.3 Specification of the TV-Part in the Cost Function in
Matrix-Vector Form

To determine a closed-form expression for the TV operator as in (39), the upper
bi-diagonal Toeplitz matrix

Bξ (a, b) =



a b 0 · · · 0

0 a b
. . .

...
...

. . .
. . .

. . . 0
. . . a b

0 · · · 0 a


∈ Rξ×ξ (45)

is defined. Using this matrix, the two-dimensional finite difference operator ΨTV · x
can be expressed according to

ΨTV · x = col
(
Tm ·X

)
+ col

((
Tn ·XT

)T)
=
(

(In ⊗Tm) + (Tn ⊗ Im)
)
· x .

(46)

Here, the reformulation of the column operators col (·) exploits the general prop-
erty [25]

col (A ·B ·C) = (In ⊗ (A ·B)) · col (C) , (47)

which is well known in the field of matrix Kronecker products, with the general
matrices A ∈ Rk×l, B ∈ Rl×m, C ∈ Rm×n, and the identity matrix In ∈ Rn×n.
Moreover, using the Toeplitz matrices Bξ (−1, 1) given in (45), the matrices Tξ

with ξ ∈ {m,n} are defined as

Tξ =

[
Bξ−1 (−1, 1) eξ−1

0Tξ−1 0

]
, (48)
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where eξ−1 ∈ Rξ−1 is the (ξ − 1)th unit vector and 0ξ−1 a zero vector of the spec-
ified dimension. Note, the derivation given above for the finite difference operator
shows that

ΨTV = Ψ∗TV (49)

holds during all solution stages of the interval arithmetic solution procedures sum-
marized in the following section.

In a similar fashion, general Wavelet transformation approaches can be restated
as complex-valued matrix-vector products ΨW · x. Specifically, the square root of
a quadratic norm operator over the reconstructed image according to

ΨW · x = col (Im ·X) = (In ⊗ Im) · x (50)

can be integrated at this point as the simplest version of the W-part of the cost
function. Analogously, also the following simple uniform averaging operator over
the reconstructed image can be expressed according to

ΨW · x = col
(
Em ·X

)
+ col

((
En ·XT

)T)
=
(

(In ⊗Em) + (En ⊗ Im)
)
· x

(51)

with the square matrices Em ∈ Rm×m and En ∈ Rn×n containing the value one in
all of their entries.

4 Interval Methods for Solving Necessary Opti-
mality Criteria with Applications to Compressed
Sensing

In this section, two possibilities are introduced for solving the nonlinear system
of equations (44) by means of two different interval arithmetic approaches. The
first one, which is in the focus of this paper, is a computationally less expensive
approximation technique for determining confidence bounds on the reconstructed
data x by applying a linearized version of (44). This linearized model is then
combined with an interpretation of the influence of all nonlinear terms in (44) due
to (39) and (40) by additive outer interval bounds.

From that perspective, this approach can be seen as a simplified approximation
of the second alternative for solving (44), namely, the Krawczyk method. This
method represents an interval extension of the classical Newton iteration for finding
guaranteed outer enclosures of the zeros of a nonlinear system of equations.

In contrast to the first approach, linearization errors (as well as errors due to
the use of an approximate matrix inverse) are directly quantified by the Krawczyk
iteration in the form of guaranteed interval bounds. Therefore, the reliability of
the results is enhanced in the second alternative, on the cost of a computationally
more demanding solution procedure.
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4.1 An Interval-Based Linearization Technique

For the derivation of the interval-based linearization technique, the necessary opti-
mality criterion (44) is re-written into the form(

MH
s ·Ms + λ3 ·Mb

)
· x = MH

s · y′ −
(
λ1 · fTV (x) + λ2 · fW (x)

)
. (52)

By simple algebraic reformulations, the desired result can be separated on the left-
hand side of (52) according to

x =
(
MH

s ·Ms + λ3 ·Mb

)−1
·MH

s · y′

−
(
MH

s ·Ms + λ3 ·Mb

)−1
·
(
λ1 · fTV (x) + λ2 · fW (x)

)
.

(53)

Due to the fact that the right-hand side of (53) also depends on the unknown
vector x, the iterative solution process

[x]
〈κ+1〉

=
(
MH

s ·Ms + λ3 ·Mb

)−1
·MH

s · [y′]

−
(
MH

s ·Ms + λ3 ·Mb

)−1
·
(
λ1 · fTV

(
[x]
〈κ〉
)

+ λ2 · fW
(

[x]
〈κ〉
))
(54)

is used to determine enclosures [x] for the image to be reconstructed.
By applying the Neumann series

(I−T)
−1

=

∞∑
k=0

Tk , (55)

which converges if ‖Tn‖ < 1 can be proven for some n ≥ 1, and truncating the
series after its linear term, the matrix inverse involved in the expression (54) can
be approximated by(

MH
s ·Ms + λ3 ·Mb

)−1
≈Msb := 2 · Im·n −MH

s ·Ms − λ3 ·Mb . (56)

This approximation avoids numerical problems of finding the exact matrix inverse
due to the usually large dimensions (m · n) × (m · n) of the involved operands.
Moreover, the numerical burden required to determine this approximation is by far
smaller than computing the inverse. Note that the expression (56) holds with the
equality sign for the case λ3 = 0 (see the definition of the matrix pseudo inverse in
eq. (35)). By means of numerical tests of the approximated iteration process

[x]
〈κ+1〉

= Msb ·MH
s · [y′]−Msb ·

(
λ1 · fTV

(
[x]
〈κ〉
)

+ λ2 · fW
(

[x]
〈κ〉
))

(57)

according to Sec. 5.2, it can be shown that its outcome is sufficiently accurate in
practice if it is applied to measured data with sufficiently small positive parameter
values λ3.
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The iteration (57) is initialized with the solution [x]
〈0〉

which corresponds to
setting λ1 = λ2 = 0. It is continued until it converges to a solution satisfying the
element-wise enclosure property

[x]
〈κ+1〉 ⊆ [x]

〈κ〉
with

∥∥∥diam
{

[x]
〈κ+1〉

}
− diam

{
[x]
〈κ〉
}∥∥∥2

2
< ε , (58)

where diam {·} is the element-wise defined diameter of an interval matrix, cf. [12],
and ε > 0 a user-defined accuracy level.

To avoid the well-known problem of overestimation due to multiple dependencies

of fTV

(
[x]
〈κ〉
)

and fW

(
[x]
〈κ〉
)

on common interval variables, the following range

constraints can be applied during the interval evaluations of both terms fι

(
[x]
〈κ〉
)

with ι ∈ {TV,W}. Analyzing the definitions (39) and (40), the complex-valued
intersection relation

fι

(
[x]
〈κ〉
)

:=
Ψ∗ι

T

2
· f̌ι
(

[x]
〈κ〉
)

with f̌ι

(
[x]
〈κ〉
)

:=

 Ψι · [x]
〈κ〉

Qι

(
[x]
〈κ〉
) ∩ 〈0,d〈κ〉ι 〉


(59)

can be defined. In (59), the first term in curly brackets denotes the naive interval

evaluation of the fraction included in (40), while 〈0,d〈κ〉ι 〉 is a complex-valued inter-
val vector in midpoint-radius notation with discs of arbitrary phase each centered
at the origin of the complex plane. Each interval vector component has a radius

according to its respective entry in the vector d
〈κ〉
ι , where the individual elements(

d
〈κ〉
ι

)
j
≤ 1 are determined by the following range bounds

sup


√√√√√√
∥∥∥∥∥∥∥
(
Ψι · [x]

〈κ〉
)
j

Qι

(
[x]
〈κ〉
)
∥∥∥∥∥∥∥
2

2

 ≤
(
d〈κ〉ι

)
j

(60)

with

(
d〈κ〉ι

)
j
=



sup



1+

m·n∑
ζ=1
ζ 6=j

(∥∥∥Ψι · [x]
〈κ〉
∥∥∥2
2

)
ζ(∥∥∥Ψι · [x]

〈κ〉
∥∥∥2
2

)
j



− 1
2


<1 for 0 6∈

(∥∥∥Ψι · [x]
〈κ〉
∥∥∥2
2

)
j

1 else . (61)

Note that these range bounds can be determined in a straightforward man-
ner by applying the triangle inequality individually to each element of (60) and
overbounding the range by neglecting the positive parameter µι in (61).
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4.2 Krawczyk Iteration for an Interval-Based Solution of the
Necessary Optimality Criterion

Like for the first option, this second alternative has the advantage — in contrast
to local optimization procedures — that interval uncertainty in the vector y′ of
measured data can directly be accounted for when determining interval enclosures
of all possible candidates satisfying the necessary optimality condition (44). How-
ever, this second approach is a fully verified version which is not influenced by
linearization errors as introduced in (56).

For that purpose, the Krawczyk operator [12,13,16,18]

[k] := xm −YH · f(xm) +
(
I−YH ·H ([x])

)
·
(

[x]− xm

)
(62)

needs to be evaluated in order to find a guaranteed outer interval enclosure for
the complex-valued image reconstruction according to x ∈ [x]. This iterative so-
lution scheme depends on the partial derivative of the necessary optimality condi-
tions (44). An analytic expression for the corresponding square Jacobian can be
stated as

H (x) = H1 + λ1 ·HTV (x) + λ2 ·HW (x) + λ3 ·HMb , (63)

where the individual derivatives are constant point matrices except for the deriva-
tives of the regularizing terms that result from the consideration of the sparsity
pattern of the MRI data in terms of the finite difference and Wavelet transforma-
tions. In detail, the individual derivatives associated with the summands in (44)
are given by

H1 =
∂f1 (x)

∂x
=
(
Ms · (W2 ⊗W1)

∗)T · (Ms · (W2 ⊗W1)) (64)

for the fundamental quadratic cost function — which is identical to

H1 = MH
s ·Ms (65)

according to the definition of Ms in (34) —

Hι (x) =
∂fι (x)

∂x
=

Ψ∗ι
T ·Ψι

2Qι (x)
−

(
Ψ∗ι

T ·Ψι · x
)
·
(
Ψ∗ι

T ·Ψι · x
)H

4Q3
ι (x)

(66)

for the regularizing terms ι ∈ {TV,W}, and

HMb =
∂fMb (x)

∂x
= diag {col (E−Mb)} = Mb . (67)

In analogy to the linearized solution procedure presented in the previous subsec-
tion, the range bounds introduced in (59)–(61) can be used to minimize the effect
of overestimation in an interval evaluation of (66). For that purpose, the following
interval expressions

Hι ([x]) =
1

4Qι ([x])
·Ψ∗ι

T ·
(

2 · Im·n −
(
f̌ι ([x])

)
·
(
f̌ι ([x∗])

)T)
·Ψι (68)
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can be employed during the evaluation of the Krawczyk iteration (62).

Moreover, the iteration (62) depends on the matrix YH which is defined as the
(approximate) inverse of the Jacobian (63) according to

YH =
(
H (xm)

)−1
(69)

after its evaluation at the midpoint

xm = mid {[x]} (70)

of the current interval enclosure of the desired reconstructed image. In analogy to
the simplified procedure, this term can be approximated by means of the Neumann
series (in the case of its convergence), which leads to

YH ≈ 2 · Im·n −H (xm) . (71)

If this series expansion does not converge, the matrix H (xm) needs to be inverted
in classical floating-point arithmetic.

In contrast to the procedure from the previous subsection, the iteration (62) is
not influenced by possible inaccuracies due to the approximation of the matrix YH

as long as the norm of the matrix I −YH ·H ([x]) is sufficiently small. This ma-
trix captures all arising approximation and truncation errors in a rigorous manner
during the evaluation of the iteration formula (62).

The Krawczyk iteration (62) is initialized with the exact interval enclosure
[x] = [x]ini of the simplified optimization problem

f̃ (x) = f1 (x) + λ3 · fMb (x) = 0 , (72)

resulting from the parameter choice λ1 = λ2 = 0 in (44) for all possible measured
data y′ ∈ [y′]. This simplified solution can be stated explicitly with the help of (65)
and (67) in terms of

[x]ini =
(
MH

s ·Ms + λ3 ·Mb

)−1
·MH

s · [y′] (73)

and is, therefore, identical to the initialization [x]
〈0〉

of the simplified iteration
scheme (54).

Now, the following three cases need to be distinguished [12,13,16,18]:

Case 1: The initialization interval [x]ini does not contain any possible solution of
the full optimization problem (44) if the evaluation of (62), leading to the
vector [k], and the corresponding initialization for [x] = [x]ini do not overlap
according to

[k] ∩ [x]ini = ∅ . (74)
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Then, the initial search domain needs to be enlarged. Commonly, the en-
largement is performed by the convex hull over each element of both interval
vectors [k] and [x]ini according to

[x]ini := [k] ∪ [x]ini . (75)

To find a solution, the iteration (62) is then restarted with the redefined,
inflated interval box [x]ini.

Case 2: If a partial overlapping between the initialization [x]ini as well as with the
interval box [k] occurs according to

[k] 6⊂ [x]ini with [k] ∩ [x]ini 6= ∅ , (76)

the same inflation of the solution domain as in (75) is performed. Finally,
assuming convergence of the Krawczyk iteration, the following Case 3 will
be obtained.

Case 3: The interval domain [x], and thus also [k], is guaranteed to contain the
solution of the optimization problem (44) if the relation

[k] ⊂ [x] (77)

holds for all vector components of [x]. The iteration according to this last case
is continued after improving the interval enclosure according to the refined
set

[x] := [k] ∩ [x] (78)

up to the point where the difference of the interval diameters between [x] and
[k] falls below some predefined threshold value.

5 Numerical Results

For the computation of interval bounds2 for fluid flow rates from the reconstructed
images [x] according to (57), it is necessary to evaluate the corresponding phase an-
gles in an element-wise manner for each entry [Xij ], i ∈ {1, . . . ,m}, j ∈ {1, . . . , n},
in the associated matrix [X], cf. (1).

This is done by a generalization of the atan2 function to a four-quadrant defini-
tion according to Tab. 1. The definitions in this table are based on the assumptions
that the cases 13, 14, and 16 (corresponding to the principal values of the arc-
tangent function) are evaluated directly on the basis of the atan implementation
available in the interval toolbox IntLab [23] for Matlab.

2In the following, interval quantities are specified by their lower and upper bounds (resp. their
infima and suprema) according to [xR] = [inf{[xR]} ; sup{[xR]}] and [xI] = [inf{[xI]} ; sup{[xI]}].
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For all other cases, it was assumed that the origin of the complex plane as
a point value has the phase value zero, while each complex interval [Xij ] inter-
secting with the negative real axis provides the phase interval [−π ; π]. Cases
which are not explicitly listed (such as the positive, respectively, negative imagi-
nary axes) are associated directly with the corresponding point-valued phases of
±π2 . In addition, all cases further denoted by N/A are undefined due to improper
interval definitions. For the remaining cases in Tab. 1, it is assumed implicitly that
inf{[xR]} ≤ sup{[xR]} as well as inf{[xI]} ≤ sup{[xI]} as the characterization for a
proper interval holds under all circumstances.

5.1 Description of the MRI Experiment: Local Optimization
Approaches for the Reconstruction of Flow Rates from
Measurements in Floating Point Representation

For the investigation of the interval-based evaluation technique for the image re-
construction, the following MRI experiment has been employed. It is based on
ten repetitions of single point measurements in the k-space for the fluid flow in a
circular-shaped pipe under consideration of a single cross section plane. These ten
repetitions were repeated for different sampling percentages. As shown in Fig. 2,
these percentages range from 10%–100%. The largest value corresponds to the
task of an image reconstruction from fully sampled k-space information, while the
smallest value represents the scenario in which only 10% of the data were acquired.

For each of these experiments, the phase information was then reconstructed by
applying a conjugate gradient method as a local search procedure for the optimal
data [X] ∈ Cm×n, where m = n = 64 holds for the scenario under investigation.
The extended cost function (36) was parameterized with the settings λ1 = 10−3,
λ2 = 0, and λ3 = 0.01 with µTV = 10−6. The conjugate gradient method was
evaluated for at most 200 iterations, where in each of them a maximum number of
150 line search steps was allowed with an accuracy threshold of 10−29 [19].

In Tab. 2, the columns minimum and maximum denote the extremal values of
the flow rate computed by means of eq. (4) within the 10 repetitions of the mea-
surement of each sampling percentage3. For the corresponding individual image
reconstructions, mean values as well as respective empirical standard deviations
were determined according to the two subsequent columns. It can be noticed that
both extremal values for the fluid flow are well explained by the mean and stan-
dard deviation, which gives raise to the assumption that the measurement was not
corrupted by any extreme outliers.

In preparation for the following subsection, where the influence of uncertainty in
the k-space data was investigated, also a further reconstruction was performed, see
the last column in Tab. 2. Here, the raw data in the k-space were first averaged in

3Note, all presented solution techniques (i.e., the classical floating point-based local optimiza-
tion as well as the novel interval-based solution techniques) provide local velocity distributions
for the velocity within a given ROI which are subsequently reduced to a flow rate value as scalar
output quantity as an integral characterization of the fluidic properties in the pipe cross section
under investigation.
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a point-wise manner, while the image reconstruction was performed afterwards for
the averaged data set. It can be seen that these values partially lead to significantly
smaller and/or larger values for the reconstructed minimum and maximum bounds
of the flow rate determined according to the previously describe procedure. Hence,
it is practically reasonable to perform the image reconstruction separately for all
available data sets as soon as multiple measurements have been performed for the
same layer of a quasi-stationary fluid flow.

Table 2: Reconstruction of the absolute values of the flow rate in liters per minute
on the basis of a floating point conjugate gradient method with 10 repetitions of
the measurement.

sampling minimum maximum mean std. dev. averaged

100% 38.229 46.390 43.028 2.828 46.683

90% 37.538 44.073 41.643 2.043 45.797

80% 37.348 43.262 40.755 2.296 45.851

70% 36.481 43.203 40.544 2.218 47.390

60% 39.270 44.832 42.564 1.953 48.590

50% 39.103 43.134 40.749 1.230 43.215

40% 36.211 46.764 42.397 3.382 42.916

30% 36.921 43.547 41.587 1.950 48.107

20% 38.476 44.131 41.173 2.235 44.658

10% 44.810 47.748 46.124 0.973 38.704

Due to the fact that the evaluation of the first row in Tab. 2 is based on a fully
sampled data set, it can be viewed as a reference measurement with which consis-
tency of all further results can be checked experimentally. A graphical summary of
these data is given in Fig. 1, where the horizontal dashed lines highlight the range
of flow rates with 100 % sampling and the gray bars the respective ranges of all
other data sets. The black error bars indicate intervals centered around the mean
values given in Tab. 2 with positive and negative deviations given by the computed
standard deviations for each of the investigated sampling percentages.

5.2 Interval-Based Iterative Solution of Optimality Criteria:
Validation of the Accuracy of the Approximations In-
volved in the Linearized Solution Approach

To analyze the sensitivity as well as the effectiveness of the suggested interval
approach for the velocity reconstruction in compressed sensing in terms of the
resulting interval diameters and its computational complexity, two different types
of uncertainty models were compared. The first one exploits the averaged k-space
information (see the last column of Tab. 2), which was inflated by independent
interval uncertainty of either η% ∈ {0.01%, 0.1%, 1%, 3%} of each data point.
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Figure 1: Visualization of the flow rate reconstruction using the floating point
conjugate gradient approach.

It can be seen from Tab. 3 that an increase in the considered uncertainty leads
to a two-sided growth of both interval bounds for the reconstructed flow rate. Here,
table entries highlighted with a gray color denote those interval bounds that are
wider than the worst-case reconstruction results from the before-mentioned point-
valued conjugate gradient method.

Besides the possibility for a direct calculation of flow rates from the recon-
structed velocity data including the influence of bounded uncertainty, it should
be noted that the considered implementation of the proposed interval routine
is computationally efficient in the sense that for uncertainties in the range4 of
η% ∈ {0.01%, 0.1%, 1%, 3%} the average computing time increased by a factor of
approx. 5.5 in comparison to a single run of the conjugate gradient method. Only
for tiny interval bounds in the case of η% = 0.01% uncertainty, the relative com-
puting time increased by a factor of approx. 50. However, even the latter increase
is by far less than considering multiple evaluations of the conjugate gradient ap-
proach with random disturbances of the k-space data, where even m × n = 4096
evaluations for the extremal values of the data set do not provide any guarantee of

4Note, the two interval models presented in this section for an uncertainty representation are
basically chosen as a starting point for the analysis of the sensitivity and reliability of a velocity
reconstruction on the basis of variable sampling percentages. These intervals do not necessarily
capture the complete ranges of random disturbances and measurement outliers occurring during
the experiment. Future work will, therefore, deal with the systematic identification of the most
appropriate disturbance models, for example by accounting for independent tolerance bounds
with identical width for each measured point in the k-space with a simultaneous optimization of
the respective bounds on the basis of various experiments. This future work will also deal with
answering the question on whether or how the interval-based solution can be used to quantify
image distortions during the sparsity-enforcing reconstruction which may be introduced by a
random undersampling if — unfavorably — data points with high relevance are excluded from
the measured data set.
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including the complete range of possible reconstruction results.

Table 3: Interval-based reconstruction of the flow rate in liters per minute for var-
ious percentages of the assumed measurement uncertainty. Negative infima of the
given values denote cases in which the uncertainty becomes too large to determine
whether a flow rate in positive of negative direction takes place, cf. the interval
diameters of 2π in the last row of Fig. 4.

η% = 0.01% η% = 0.1% η% = 1% η% = 3%

samp. inf sup inf sup inf sup inf sup

100% 42.364 43.909 33.840 50.497 −65.912 91.102 −93.241 93.241

90% 44.866 46.144 37.414 52.593 −75.868 91.958 −93.241 93.241

80% 42.541 43.803 34.659 51.028 −37.342 84.316 −93.241 93.241

70% 46.290 48.173 34.738 57.355 −19.203 82.081 −93.241 93.241

60% 44.274 46.043 35.567 53.963 −31.317 83.051 −93.241 93.241

50% 40.306 47.534 37.015 50.439 −17.240 76.605 −93.241 93.241

40% 36.700 50.049 33.465 52.790 −17.769 80.482 −93.241 93.241

30% 39.563 51.834 30.103 60.619 −47.507 90.212 −93.241 93.241

20% 39.059 39.539 36.551 41.887 4.005 64.139 −41.996 84.861

10% 37.555 38.453 37.082 38.904 34.450 41.159 17.804 56.076

To compare the outcome of the previous — simple — uncertainty model with an
approach motivated by variations of the power spectral density (PSD) of each point
in the k-space data, the following results in Tab. 4 are presented. Here, the standard
deviation of the PSD for each point in the raw data from the experiment described
in the previous subsection was computed first. For each of the sampling percentages,
these standard deviations (defined for each individual point in the k-space) were
normalized by the computed maximum value in a second stage (separately for
the real and imaginary parts of the data set). Finally, additive complex-valued
symmetric interval bounds were created from these quantities for each k-space
point by scaling with the interval [−ηPSD ; ηPSD], where ηPSD was chosen from the
set ηPSD ∈ {0.01; 0.1; 1; 3}.

A comparison of Tabs. 3 and 4 shows that both uncertainty models provide
quite similar results and justify the use of set-valued uncertainties with a constant
percentage for each of the measurement points in the k-space, especially in cases
of a sampling of more than 30 % of the points in the k-space.

This result is confirmed by Fig. 2, where the outcome of the classical conjugate
gradient approach in gray bars is compared with both interval-based uncertainty
models for the tolerance settings of η% = 0.1 % and ηPSD = 0.1, respectively. It can
be seen that the interval approach is able to predict the range of flow rates reliably
(if compared with the dashed lines that are identical to Fig. 1), except for the case
of 10 % sampling in which also the classical technique fails to provide estimates
that are consistent with the fully sampled setting. Most likely, the reason for this
phenomenon is the fact that parts of the relevant data points were not captured
sufficiently within the measurement process. In addition, it should be pointed out
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Table 4: Interval-based reconstruction of the flow rate in liters per minute for var-
ious uncertainty levels ηPSD derived from variations of the power spectral density.

ηPSD = 0.01 ηPSD = 0.1 ηPSD = 1 ηPSD = 3

samp. inf sup inf sup inf sup inf sup

100% 42.488 43.790 35.543 49.193 −46.386 87.237 −93.241 93.241

90% 44.992 46.020 39.331 51.075 −55.045 89.023 −93.241 93.241

80% 42.570 43.774 35.183 50.602 −33.069 83.193 −93.241 93.241

70% 46.192 48.273 35.603 56.639 −29.974 85.053 −93.241 93.241

60% 44.249 46.070 34.932 54.467 −36.030 84.175 −93.241 93.241

50% 39.366 48.390 34.688 52.120 −53.283 88.013 −93.241 93.241

40% 30.214 55.176 27.438 57.047 −85.971 92.974 −93.241 93.241

30% 36.986 54.422 22.055 66.554 −92.272 93.232 −93.241 93.241

20% 35.943 42.359 3.081 64.875 −93.241 93.241 −93.241 93.241

10% 36.721 39.238 29.906 44.293 −93.241 93.241 −93.241 93.241

that the computed interval ranges are typically wider than the floating point results
because independent uncertainty was considered for each available k-space point in
comparison with the classical approach in which only ten repetitions of the whole
measurement were used in order to quantify the range of possible flow rates.

Finally, a graphical comparison of the influence of different interval diameters
of the uncertainties can be found in Figs. 3 and 4. Here, the first rows depict the
spatial dependency of the reconstructed flow rates which are directly proportional
to the computed phase angles. The second rows, which are point-wise strictly larger
than the infima, represent the corresponding upper interval bounds, while the third
rows visualize the increase of the local uncertainty distribution for variable values
of η%. Note that the circular geometry of the pipe under investigation can be seen
directly in those figures by the point values zero in the respective outer domains.

Figs. 3 and 4 highlight especially the fact that the uncertainty distribution in
the reconstructed images is not homogeneous over all volume elements and that ex-
cessively large measurement uncertainty leads to the phenomenon that phases can
no longer be reconstructed due to the fact that entries in the interval matrix [X]
intersect with the negative real axis in the complex plane (i.e., angle bounds be-
come equal to [−π ; π]). Comparing the outcome of the interval-based velocity
reconstruction with the uncertainty of a scalar volume flow variable as shown in
Fig. 1, it should be pointed out that Fig. 1 only allows for detecting significant
variations of the averaged flow rate over the complete pipe cross section (on the
basis of multiple measurements), while the interval approach allows for determining
directly those locations in the reconstructed image where the computed results are
most sensitive against the assumed error (resp. disturbance) model.
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(a) Flow rates corresponding to η% = 0.1 % in Tab. 3.
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(b) Flow rates corresponding to ηPSD = 0.1 in Tab. 4.

Figure 2: Visualization of the interval-based flow rates reconstruction in comparison
with the floating point conjugate gradient approach.
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(b) Lower interval bound inf{∠[X]}.
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(c) Upper interval bound sup{∠[X]}.
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(d) Upper interval bound sup{∠[X]}.
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(e) Interval diameter diam {∠[X]}.
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(f) Interval diameter diam {∠[X]}.

Figure 3: Comparison of the interval enclosures for the reconstructed phase
angles ∠[X] with the uncertainty levels η% = 0.01 % (left column) and η% = 0.1 %
(right column) according to Tab. 3 and 60% sampling.
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(a) Lower interval bound inf{∠[X]}.
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(b) Lower interval bound inf{∠[X]}.
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(c) Upper interval bound sup{∠[X]}.
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(d) Upper interval bound sup{∠[X]}.
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(f) Interval diameter diam {∠ ([X])}.

Figure 4: Comparison of the interval enclosures for the reconstructed phase
angles ∠[X] with the uncertainty levels η% = 1 % (left column) and η% = 3 %
(right column) according to Tab. 3 and 60% sampling.
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6 Conclusions and Outlook on Future Work

In this paper, a novel technique has been derived for the interval-based analysis
of the influence of measurement uncertainty in the frame of compressed sensing
techniques for MRI. On the one hand, it allows for a direct computation of interval
bounds for the reconstructed spatial distribution of velocity data as well as for
the respective (integral) flow rates. On the other hand, it could be shown that
simple uncertainty models (based on independent uncertainties for each individual
measurement point in the k-space) can be treated in a numerically efficient manner.
These techniques typically only increase the computational effort by a factor smaller
than 10 which is by at least two orders of magnitude smaller than the effort that
would be necessary for an uncertainty quantification on the basis of brute force
Monte-Carlo techniques.

In future work, a thorough comparison will be performed between the proposed
linearized evaluation technique as well as a fully verified variant of the interval
Newton method for solving the necessary optimality criteria related to the cost
function J (x) derived in this paper. A first attempt concerning this comparison
can be found in [22]. Both interval-based evaluation techniques will, furthermore,
be employed to optimize the sampling patterns in the k-space to find solutions
which allow for an accelerated MRI measurement as well as for a further systematic
reduction of reconstruction uncertainty. In addition, also the identification of most
appropriate interval representations of the employed uncertainty models is a subject
of ongoing research.
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