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Abstract 

Cysteine S-nitrosylation is a type of reversible post-translational modification of 

proteins, which controls diverse biological processes. It is associated with redox-based 

cellular signaling to protect against oxidative stress. The identification of S-nitrosylation 

sites is an important step to reveal the function of proteins; however, experimental 

identification of S-nitrosylation is expensive and time-consuming work. Hence, 

sequence-based computational prediction of potential S-nitrosylation sites is highly 

sought before experimentation. Herein, a novel predictor PreSNO has been developed 

that integrates multiple encoding schemes by the support vector machine and random 

forest algorithms. The PreSNO achieved an accuracy and Matthews correlation 

coefficient value of 0.752 and 0.252 respectively in classifying between SNO and non-

SNO sites when evaluated on the independent dataset, outperforming the existing 

methods. The web application of the PreSNO and its associated datasets are freely 

available at http://kurata14.bio.kyutech.ac.jp/PreSNO/. 

 

Keywords: Cysteine S-nitrosylation, Support vector machine, Random forest, Feature 

encoding, Feature selection

http://kurata14.bio.kyutech.ac.jp/iPSN/
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Introduction 

S-nitrosylation (SNO) is a type of reversible post-translational modification (PTM) of 

proteins that play a key role in regulating many cellular functions1, 2. In the SNO 

process, a thiol group of cysteine residues is covalently attached by recycling nitric 

oxide 3-8. Different studies suggest that SNO on cysteine is critically responsible for 

redox pathways, cardiovascular, immune, and neuronal systems 9-12 and affects various 

pathophysiological events such as cancers and diabetes13-19. Detailed mechanisms of 

SNO remain to be elucidated, due to the low abundance and labile nature of SNO. 

Therefore, identification of SNO sites is essential for an understanding of both the 

pathological and physiological mechanisms as well as the basic design of drugs. 

 

To identify the SNO sites of proteins by using the molecular signature, large-scale 

proteomic experimental works have been accomplished 2, 20-22. Notwithstanding the 

increasing number of experimentally determined SNO proteins, the explicit 

identification of SNO sites remains challenging. In particular, large-scale experimental 

screenings of SNO sites are time-consuming and laborious works. As an alternative to 

experimental efforts, the computational methodology can serve to provide a potential 

proteome-wide identification of SNO sites. 

 

To date, a few computational models, e.g., GPS-SNO 23, SNOSite 24, and iSNOPseAAC 
25, have been developed to predict the SNO sites. The GPS-SNO used their Group-based 

Prediction System (GPS) algorithm with the encoding schemes including matrix 

transformation, weight training, and motif selection, and it was trained by using 504 

SNO sites of 327 proteins. The SNOSite used the maximal dependence decomposition 

via support vector machine (SVM), trained by 586 SNO sites of 384 proteins. The 

iSNOPseAAC implemented a Conditional Random Field (CRF) algorithm with the 

encoding scheme of the pseudo amino acid composition, trained by using 731 SNO sites 

of 438 proteins. Recently, DeepNitro has been developed that employed a deep learning 

algorithm with the encoding schemes of the composition of amino acid pairs and 

position-specific scoring matrix (PSSM) 26. Existing predictors still remain to be 

improved. First, since the existing predictors of GPS-SNO 23, SNOSite 24, and 

iSNOPseAAC 25 used a small training dataset, they provided poor predictions when 

evaluated with the independent dataset. Second, although feature extraction and 

selection are critically important for machine learning (ML)-based algorithms, the 

existing algorithms used only position-wise encoding methods, which were unable to 
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fully characterize the potential SNO sites. Third, since the SNOSite and iSNOPseAAC 

predictors do not provide the probability scores of SNO sites, users cannot understand 

the stringency of prediction. Finally, most of the methods used the old versions of 

datasets, which include many false-negative samples that are now verified 

experimentally as the positive samples. 

 

In this work, to overcome those problems, we have developed a novel predictor PreSNO 

(Prediction of S-nitrosylation sites) using the latest, large-scale dataset by integrating two 

different classifiers of the support vector machine (SVM) and random forest (RF), as 

shown in Figure 1. In particular, we combined different established encoding schemes, 

namely, the composition of profile-based amino acid pair (CPA)), the k-space spectral 

amino acid composition (SAC), tripeptide composition from the PSSM (TCP), and 

physicochemical properties of amino acids (PPA). These four encodings were inputted 

separately into SVM and RF. Finally, all these models were integrated via a linear 

regression (LR) model to calculate the probability score of S-nitrosylation at each 

cysteine residue. To construct the PreSNO and assess its prediction performance, 5-fold 

cross-validation (CV) was carried on the training dataset, and the prediction was 

executed on the independent data. The PreSNO outperformed other existing prediction 

models. Additionally, we employed two other combination methods of the sequential 

combinational model and meta-classifier, to demonstrate the advantage of the LR-based 

combination employed by the proposed PreSNO. 

 

Materials and methods 

Dataset 

Recently, Xie et al. have constructed a high-quality dataset based on extensive literature 

search and previously reported datasets26, where the positive samples are experimentally 

confirmed as S-nitrosylation sites, to develop the DeepNitro predictor. Any SNO sites 

other than experimentally confirmed SNO sites were defined as the negative samples. 

This procedure is commonly employed to generate negative samples 27-29, although 

erroneous data may deteriorate the prediction performance.  

 

In this study, we utilized the DeepNitro dataset that encompassed 3,113 unique proteins 

with 4,762 SNO sites. To avoid the overestimation of the prediction model, we filtered 

the protein sequences with an identity cut-off of 30% by using CD-HIT 30, signifying 

that the sequence identity was >30% in these cases. In general, a decrease in the 
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sequence identity cut-off is able to avoid overfitting risks caused by redundant samples 

containing many homologous sites26, while decreasing the number of available samples. 

Since our dataset was large, we used a low sequence identity cut-off (30%). After CD-

HIT elimination, we obtained 3,734 positive and 20, 548 negative samples. The 

experimentally verified SNO sites were considered as the positive samples (SNO sites), 

whereas the remaining cysteine residues, which had not been experimentally verified as 

SNO sites, were considered as the negative samples (non-SNO sites). Subsequently, 

each sequence window with length 2w+1, having cysteine residue (C) at the center, was 

characterized, where w is the number of residues. We eliminated the identical window 

sequence (i.e., if the given SNO or non-SNO sites share an identical flanking sequence, 

the negative one is deleted) 26. Finally, we obtained 3,734 positive and 20,333 negative 

samples. From these samples, we randomly selected 20% as the independent dataset 

(351 SNO sites with 3,168 non-SNO sites), while the remaining samples of 3,383 SNO 

sites and 17,165 non-SNO sites were considered as the training dataset. Generally, the 

prediction accuracy is often impaired by an unbalanced ratio of positive to negative 

samples in the training data31-33. To solve the potentially biased prediction, the non-

SNO fragment sequences were randomly pooled from the entire non-SNO samples to 

keep a ratio of SNO to non-SNO sites at 1:1. All of the curated training and independent 

datasets are available in our web server.  

 

Feature vectors 

To encode the SNO and non-SNO sequences, four encoding schemes of the CPA, SAC, 

TCP, and PPA were used. Each of the encoding schemes is summarized as follows. 

 

CPA encoding 

The CPA encoding was developed from the PSSM profile 31, 32, 34. In brief, the PSSM 

was generated from the Swiss-Prot (December 2010) database by using PSI-BLAST 

(version 2.2.26+) with two constraints: iteration times and e-value of 3 and 1.0×10-3, 

respectively. Then, we generated potential k-space composition of the profile-based 

amino acids, i.e., CPA, in the same way as the previous study on pupylation site 

prediction 32. For a window sequence, a 2,205-dimensional feature vector was generated 

by the CPA encoding. The limitation of PSSM is that it requires a long computational 

time to generate profile information for a given sequence.  
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SAC encoding 

We calculated the k-space spectrum composition of amino acids, SAC, to measure the 

sequence context of SNO or non-SNO sites. We scanned the whole curated sliding 

window with length 2w+1 and counted all the potential numbers of amino acid pairs. 

441 (=21×21) pairs of amino acids (including the null residue (-)) are generated for a 

single k-space (i.e., AA, AC, AD, …, --). 21×(kmax+1)×21 residue pairs are generated 

when k signifies the space between two residues. In this study, we set kmax to 4. The 

SAC encoding is widely used in computational biology research32, 35, 36. 

 

TCP encoding 

The TCP is a novel encoding scheme generated from the PSSM profile. After 

generating the PSSM by using PSI-BLAST, we calculated a score with respect to each 

component of three residues from the PSSM. In brief, for a positive or negative 

sequence with 21 amino acid residues (including null residues), the TCP scheme 

provided a 9,261 (=21×21×21)-dimensional feature vector for an SNO or non-SNO site. 

The score value of each tripeptide (qi, qj, qk, where i, j, k = 1, 2, …, 21) were calculated 

and normalized as follows: 

𝑉𝑖,𝑗,𝑘(𝑁) =
max{𝑚𝑖𝑛{PSMM(𝑡, 𝑞𝑖), PSSM(𝑡 + 1, 𝑞𝑗), PSSM(𝑡 + 2, 𝑞𝑘)} , 0}

2𝑤
     (1) 

where N is the index of the curated tripeptide (N=1, 2, …, 9,261) and t is the row 

position of the first residue of each curated tripeptide in the PSSM. The PSSM (t, qi) is 

the score of amino acid residue qi at the position of tth row. The PSSM (t+1, qj) and 

PSSM (t+2, qk) stand for the scores of residue (t+1)th and (t+2)th row positions, 

respectively. 

 

PPA encoding 

The PPA database (version 9.1) includes the various mathematical indices of 

physicochemical properties of amino acids 37 and is widely used for protein and peptide 

prediction 38-43. We used 15 types of informative amino acid indices to encode SNO and 

non-SNO samples (Table S1). At w=20, a 615 (=(2×20+1)×15)-dimensional feature 

vector was obtained for an SNO or non-SNO site through the PPA encoding scheme. 
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Machine learning model 

The SVM and RF algorithms were employed to classify the SNO and non-SNO sites. 

Both algorithms have been extensively used to predict binary class samples 24, 32, 44-46. 

To minimize the classification error, the SVM aims to find the optimal hyperplane to 

accurately classify samples based on the consecutive features of the training dataset. For 

numerical calculations, the provided sequences were converted into the representative 

feature vectors with fixed length and the class labels of the SNO site and non-SNO site 

are set to 1 and 0, respectively. We used an SVMlight package function with default 

parameters at http://svmlight.joachims.org/ 36, 47, 48. 

 

The RF is an ensemble learning of ML algorithms 49. In brief, the RF consists of N 

individual decision trees, T = {T1, T2, …, TN}. The RF generates new training datasets 

for N trees by utilizing the bootstrap sampling and then assigns M features to each node 

of the trees to give the best split according to the Gini impurity. To improve the 

prediction performance, the RF scores were combined as a weighted sum. An R 

package was employed (https://cran.r-project.org/web/packages/randomForest/) with 

the default of 1,000 trees to estimate the performance. 

 

Feature optimization 

There are several feature ranking procedures32, 39, 40, 48, including mRMR, Chi-square, 

and Wilcoxon rank-sum (WR) test. In this study, the WR test was employed. According 

to the relevance to the redundancy between the features, the WR test can rank all the 

features themselves 50, 51.  

 

Performance evaluation 

To evaluate the prediction performance of the PreSNO, commonly used four threshold-

dependent yardstick measures were applied52, 53: accuracy (AC), sensitivity (SN), 

specificity (SP), and Matthews’ correlation coefficient (MCC) defined by:  

 

TNFPFNTP

TNTP
AC




                                       (2) 

FNTP

TP
NS


                                               (3) 

FPTN

TN
SP


                                               (4) 

http://svmlight.joachims.org/
https://cran.r-project.org/web/packages/randomForest/
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    FN)(TPFPTNFPTPFN)(TN

FNFPTNTP
MCC




               (5) 

where TP, TN, FP, and FN illustrate the numbers of true positive (i.e., accurately 

predicted as SNO), true negative (i.e., accurately predicted as non-SNO), false positive 

(i.e., wrongly predicted as SNO), and false negative (wrongly predicted as non-SNO), 

respectively. As the threshold-independent measure, the area under the ROC curves 

(AUC) was used. 

 

Combined model 

LR-based combination model 

To enhance the performance of the PreSNO, we combined the SVM and RF probability 

scores via the LR model54. The SVM and RF scores provided by each encoding scheme 

of CPA, SAC, TCP, and PPA were linearly combined as follows,  

 

 SV𝑀𝑐𝑜𝑚 = CPA × 𝑤1 + SAC × 𝑤2 + TCP × 𝑤3 + PPA × 𝑤4               (6) 

 RF𝑐𝑜𝑚 = CPA × 𝑤5 + SAC × 𝑤6 + TCP × 𝑤7 + PPA × 𝑤8                (7) 

 

Furthermore, both the scores of the SVMcom and RFcom models were linearly combined 

as follows. 

 

 PreSNO = SVM𝑐𝑜𝑚 × 𝑤9 + RF𝑐𝑜𝑚 × 𝑤10                             (8) 

 

where w1, w2, w3, w4, w5, w7, w8, w9, and w10 are the weight coefficients. The sum of the 

weight coefficients for each combined model is 1. Each weight coefficient was adjusted 

between 0 and 1 with an interval of 0.05.  

 

Sequential combination model 

To construct a sequential combination model, we combined the four encoding feature 

vectors of the CPA, SAC, TCP, and PPA in a row, as follows: 

𝐹𝑐𝑜𝑚 = 𝐹(CPA). 𝐹(SAC). 𝐹(TCP). 𝐹(PPA)                                        (9)     

where Fcom is the combined feature vector and F(.) represents each encoding feature 

vector. The total dimension of Fcom was 14,286. 

 

Meta-classifier 

To construct the meta-classifier for sequence S, many probability scores were estimated 
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by implementing different encoding schemes and then they were combined as the new 

feature vector defined by:  

𝑃𝑐𝑜𝑚 = 𝑃(𝐶(1), En(1)), … 𝑃(𝐶(𝑖), En(𝑗)), … , 𝑃(𝐶(𝑛), En(𝑚))          (10) 

where Pcom is the new feature vector, 𝑃(𝐶(𝑖), En(𝑗)) the prediction probability by each 

classifier C(i) with encoding scheme En(j), i the index of the classifier, j the index of the 

encoding scheme, n the number of classifiers and m the number of encoding methods. 

Finally, S was classified by MLs based on the new feature vectors. In this study, we 

used 4 encoding schemes for S and two ML algorithms, which generated 8 types of 

probability scores. The feature vectors consisting of 8 probability scores were used to 

train the SVM and RF models.  

 

PreSNO web server 

The web application programs of the PreSNO were written in PERL, R, HTML, PHP, 

and CGI scripts. After submitting a query protein, the web application returns the 

prediction result within several minutes. The final output webpage provides the query 

sequence name, all predicted cysteine site positions, and probability scores of the 

predicted SNO sites, together with a job ID, like "2019012100011". Users can save this 

ID on behalf of the future query for a month. 

 

Results and Discussion 

Analysis of SNO and non-SNO sites sequence 

We scrutinized the amino acid residue preference of the window sequences of the SNO 

and non-SNO samples by a two-sample pLogo 55. As shown in Figure 2, over- and 

under-represented residues (SNO and non-SNO samples) for a given window sequence 

(p <0.05) are displayed at each position above and below the X-axis, respectively. The 

height of the logos is in proportion to their corresponding amino acid occurrence 

frequency of SNO or non-SNO samples. The cumulative percentages of over- or under-

represented amino acids are displayed on the Y-axis. A substantial dissimilarity in the 

window sequences was found between SNO and non-SNO samples. Particularly, in the 

sequences having the SNO site, the charged residues of the aspartic acid (D), glutamic 

acid (E), lysine (K), and arginine (R) were enriched. For the sequences having a non-

SNO site, neutral amino acids of cysteine (C), and tryptophan (W) were seen. These 

results demonstrated distinct position-specific sequence preferences between the SNO 

and non-SNO sites, suggesting that position-specific amino acids are effective in 

identifying the SNO sites. 

https://en.wikipedia.org/wiki/Tryptophan
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Interestingly, in the sequences with a non-SNO site neutral amino acids including "C" 

and "W" were frequently observed. On the other hand, charges residues of E", "D", "K", 

and "R were often found around the SNO site. These charged residues would be more 

exposed to solvent rather than neutral residues, increasing the accessibility to the SNO 

sites. They are also responsible for salt bridges to facilitate two non-covalent 

interactions: hydrogen bonding and ionic bonding, which may promote nitrosylation. 

 

Optimization of dataset ratio and window size  

Generally, the use of an unbalanced ratio of positive to negative samples, employed for 

training the ML model, deteriorates the prediction performance 33. To solve this issue, a 

well-adjusted ratio of the positive to negative samples have been considered by many 

PTM site prediction studies 31, 34, 51. In this study, we used different ratios of SNO to 

non-SNO samples to train the SVM and RF classifiers implementing each scheme of 

CPA, SAC, TCP, and PPA (Figure S1). The performance was evaluated by a 5-fold CV 

test on the training dataset. In both the SVM and RF algorithms, a ratio of 1:1 achieved 

higher performance than any other ratios (Figure S1). 

 

To distinguish the SNO from non-SNO sites, the window size is an essential factor that 

affects the prediction performance. Hence, we optimized the window size in a range 

from 13 to 45 using four different encodings (CPA, SAC, TCP, and PPA) and two 

different classifiers (SVM and RF) by a 5-fold CV test on the training dataset. Figure S2 

shows that the AUC of RF and SVM peaked at size 41. Therefore, we used the optimal 

sequence length of 41 for the subsequent analysis (model construction).  

 

Construction and evaluation of PreSNO 

The training dataset is transformed into feature vectors by using four encoding schemes 

(CPA, SAC, TCP, and PPA) and individually inputted to SVM and RF. Particularly, we 

selected 350 and 330 critical TCP-encoding features (identified by WR test) and inputted 

them to SVM and RF, respectively. On the other hand, the CPA, SAC, and PPA encoding 

features were used as such (without applying feature selection). The resultant prediction 

models were verified using 5-fold CV. 

 

Table 1 shows that the CPA encoding achieved the best performance with AUC values 

of 0.768 and 0.819 for SVM and RF, respectively, followed by the SAC scheme. Next, 
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we evaluated the SVM and RF models implementing one of the four encoding schemes 

on the independent dataset. The CPA encoding achieved the best performance for the 

four different encodings, with AUC values of 0.714, and 0.694 for SVM and RF, 

respectively. The TCP and PPA showed a reasonable performance regardless of 

classifiers on both the training and independent datasets. Since the TCP and PPA 

encodings represent different features from the CPA and SAC, the four features are 

integrated to expect high performance. Hence, we employed all the four encodings for 

the subsequent analysis.  

 

Finally, we combined the above models implementing one of the four encoding 

schemes to construct three predictors, SVMcom, RFcom, and PreSNO. The weight 

coefficients of them were optimized to maximize the AUC. For the SVMcom, the weight 

coefficients for the CPA, SAC, TCP, and PPA schemes were 0.15, 0.3, 0.1, and 0.45, 

respectively (Table 2). In the RFcom, the weight coefficients for the CPA, SAC, TCP, 

and PPA schemes were 0.25, 0.15, 0.5, and 0.1, respectively (Table 2). In the SVMcom, 

the PPA and SAC-based models significantly contributed to the prediction, compared to 

the other encoding models. In the RFcom, the TCP greatly contributed to the prediction 

and the CPA moderately did. The contribution of each encoding scheme depended on 

the classifier algorithms. In the PreSNO, the weight coefficients for the scores of the 

SVMcomand RFcom were 0.35, and 0.65, respectively. Performance comparison of these 

three predictors showed that the PreSNO achieved the highest AUC value of 0.837 on 

the training dataset (Figure 3A), where SP, SN, AC, and MCC were 0.863, 0.536, 

0.700, and 0.422, respectively (Table 3). Particularly, the AC of the PreSNO was ~2-

4% higher than RFcom and SVMcom, showing the advantage of integrating multiple 

classifiers. Furthermore, we compared the performances of the three predictors on the 

independent dataset. As shown in Figure 3B, the PreSNO achieved higher performance 

than any other individual classifiers. The PreSNO provided the best performance not 

only on the training dataset but also on the independent dataset. 

 

Sequential combination model and meta-classifier  

To demonstrate the strength of the combination method employed by the PreSNO, we 

built two competitive combination models. First, we assembled the four feature 

encoding vectors of CPA, SAC, TCP, and PPA in a row. It was named as the sequential 

combination model. The total dimension of the sequential combination model was 

14,286. Based on the WR test, we selected the top 1,250 and 1,500 features and inputted 

them to RF and SVM, respectively, and evaluated the resultant prediction models using 
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the 5-fold CV test. The two sequential combination models of the SVM and RF yielded 

AUC values of 0.811 and 0.829 on the training dataset, respectively (Figure S3A), and 

achieved 0.746 and 0.737 on the independent dataset, respectively (Figure S3B). 

 

Second, we built a meta-classifier that integrated the output scores of different 

algorithms46, 56, 57. To construct the meta-predictor, the eight models utilized by the 

PreSNO (prior to weight optimization) were employed. The predicted probability scores 

from the eight models were inputted to SVM and RF individually. We characterized the 

above two approaches as shown in Figure S3A. The PreSNO showed an AUC of 0.837 

on the training dataset, which was ~0.7- 4.0% higher than the sequential combination 

model and meta-classifier. It presented an AUC of 0.756 on the independent dataset, 

which was ~1.0-2.0% higher than the two models. Differing from the LR-based model 

and sequential combination model, in the meta-classifier model, the RF performed 

better than SVM on the training datasets; the SVM was slightly superior to the RF 

algorithm on the independent dataset (Figures 3, S3, and S4). Since the PreSNO 

outperformed the two combination models, we selected the PreSNO as the final 

predictor.  

 

Analysis of feature importance 

By using the prediction models, the critical features were analyzed. We collected the 

average scores of the top 20 amino acid features and ranked them for the CPA, TCP, 

and SAC schemes via the WR test. The top 20 amino acid patterns were identified as 

critically important residues of adjacent SNO and non-SNO sites. The p-value of the 

residue pattern scores, selected for the CPA, SAC and TCP schemes, are shown in 

Table S2. The important features are depicted using a radar diagram (Figure 4ABC). In 

the CPA scheme the pattern of "AL" was top-ranked (Table S2), but its significance 

was low. It is because the WR test selected the SNO and non-SNO site-specific patterns 

based on the sum of the ranks28. The "A×××L" pattern was enriched in the SNO sites. 

The patterns of "LL", "K××A", "Y×E", "L×××A", "L×××V", "KK", and "LS" were 

enriched around the non-SNO sites (Figure 4A). In the SAC scheme, the top-ranking 

patterns of "LL" and the second one of "L×E" were enriched around non-SNO sites 

(Figure 4B). In both the CPA and SAC schemes k-spaces residue pairs (i.e., " ", "×", 

"××", "×××", "××××") were observed (Figure 4), indicating that 0,1,2,3 and 4 spaces of 

residue pairs are useful for the CPA and SAC schemes. In the TCP scheme, the top-

ranking pattern "LKK" was enriched around non-SNO sites. The patterns of "NLE", 

"DKL", "GLK", "AAL", "ALL", and "DAK" were enriched around SNO sites (Figure 
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4C). Those analyses suggested that statistically, different sequence patterns exist 

between the SNO and non-SNO samples.  

 

Furthermore, we investigated the significant residue patterns for each encoding from 

Table S2 and compared the amino acid preferences among them. As shown in Table 

S3, in the CPA, SAC, TCP, and PPA encodings, charged, hydrophobic, and polar amino 

acids containing patterns were distributed on both the SNO and non-SNO sequences. It 

was hard to find specific patterns to SNO, while different amino acid patterns 

significantly existed between the SNO and non-SNO sequences. In the SAC, TCP, and 

PPA, charged amino acid containing patterns would be preferred by the SNO sites 

rather than by the non-SNO ones, which may suggest that the charged residues play a 

role in SNO. 

 

Comparison with other existing tools 

To date, four predictors (GPS-SNO 23, SNOSite 24, iSNOPseAAC 25, and DeepNitro 26) 

are publicly available to predict SNO sites. To make a fair comparison among the four 

available predictors, we submitted the independent samples (351 SNO sites with 3,168 

non-SNO sites) to them and measured the numbers of TP, FP, TN, and FN and 

calculated SP, SN, AC, and MCC. As shown in Table 4, the PreSNO (SP=0.769, 

AC=0.752, and MCC=0.252) greatly outperformed the SNOsite, iPseAAC, GPS-SNO, 

and DeepNitro. In terms of balanced performance, the PreSNO and DeepNitro were the 

two top methods showing the lowest difference between SN and SP. Other prediction 

models were biased towards either SN or SP, where the difference (|SN-SP|) was large, 

due to their imbalanced ratios of the training to independent samples. Overall, the 

proposed PreSNO provided a more reliable prediction than the existing tools. 

 

Advantages of PreSNO 

The advantages of the PreSNO over existing predictors are summarized: (1) The 

PreSNO integrated four types of complementary encoding schemes to train the SVM 

and RF models, while the existing predictors used only position-wise encoding methods 

that were unable to fully characterize the potential SNO sites. (2) The PreSNO 

employed the most updated version of the dataset as well as the DeepNitro predictor, 

while the existing GPS-SNO 23, SNOSite 24, and iSNOPseAAC 25 predictors used the 

small and old version of SNO datasets. (3) The PreSNO server provided the probability 

scores of the SNO sites so that users can understand the actual prediction results, while 

the existing SNOSite and iSNOPseAAC predictors did not. 
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Conclusions 

We have established a computational tool PreSNO to predict SNO sites by integrating 

the four encoding schemes with SVM and RF algorithms through an LR model. The 

PreSNO is a promising predictor that outperforms the existing prediction models. The 

LR-based combination of the PreSNO was demonstrated to outperform two typically 

used combination methods (sequential combination method and meta classifier). 

Furthermore, a feature selection analysis characterized significant sequence patterns to 

facilitate an understanding of the prediction model. Finally, a web application of our 

tool is provided for the public. 

 

Authors’ contributions 

MMH and HK conceived the project. MMH collected and analyzed the datasets. MMH 

drafted the manuscript. HK, MMH, MSK, and MB thoroughly revised the manuscript. 

All authors approved and read the final manuscript.  

 

Competing interests 

The authors have declared no competing interests. 

 

Acknowledgments 

MMH is a JSPS international research fellow http://www.jsps.go.jp/english. This work 

was supported by the Grant-in-Aid for Scientific Research (B) (19H04208) and partially 

supported by the developing key technologies for discovering and manufacturing 

pharmaceuticals used for next-generation treatments and diagnoses both from the 

Ministry of Economy, Trade and Industry, Japan (METI) and from Japan Agency for 

Medical Research and Development (AMED). 

 

References 

1. I. Gusarov and E. Nudler, Molecular cell, 2018, 69, 351-353. 

2. M. Lenarcic Zivkovic, M. Zareba-Koziol, L. Zhukova, J. Poznanski, I. Zhukov 

and A. Wyslouch-Cieszynska, The Journal of biological chemistry, 2012, 287, 

40457-40470. 

3. H. P. Monteiro, P. E. Costa, A. K. Reis and A. Stern, Biomedical journal, 2015, 

38, 380-388. 

http://www.jsps.go.jp/english


15 

4. M. W. Foster, D. T. Hess and J. S. Stamler, Trends in molecular medicine, 2009, 

15, 391-404. 

5. B. Derakhshan, G. Hao and S. S. Gross, Cardiovascular research, 2007, 75, 

210-219. 

6. D. T. Hess, A. Matsumoto, S. O. Kim, H. E. Marshall and J. S. Stamler, Nature 

reviews. Molecular cell biology, 2005, 6, 150-166. 

7. S. R. Jaffrey, H. Erdjument-Bromage, C. D. Ferris, P. Tempst and S. H. Snyder, 

Nature cell biology, 2001, 3, 193-197. 

8. J. S. Stamler, S. Lamas and F. C. Fang, Cell, 2001, 106, 675-683. 

9. C. T. Stomberski, D. T. Hess and J. S. Stamler, Antioxidants & redox signaling, 

2019, 30, 1331-1351. 

10. J. Feng, L. Chen and J. Zuo, Journal of integrative plant biology, 2019, DOI: 

10.1111/jipb.12780. 

11. S. B. Wang, V. Venkatraman, E. L. Crowgey, T. Liu, Z. Fu, R. Holewinski, M. 

Ranek, D. A. Kass, B. O'Rourke and J. E. Van Eyk, Circulation research, 2018, 

122, 1517-1531. 

12. E. Vanzo, J. Merl-Pham, V. Velikova, A. Ghirardo, C. Lindermayr, S. M. 

Hauck, J. Bernhardt, K. Riedel, J. Durner and J. P. Schnitzler, Plant physiology, 

2016, 170, 1945-1961. 

13. V. Mahishale, B. Patil, M. Lolly, A. Eti and S. Khan, Chonnam medical journal, 

2015, 51, 86-90. 

14. J. Romero-Aguirregomezcorta, A. P. Santa, F. A. Garcia-Vazquez, P. Coy and 

C. Matas, PloS one, 2014, 9, e115044. 

15. L. F. Anderson, S. Tamne, J. P. Watson, T. Cohen, C. Mitnick, T. Brown, F. 

Drobniewski and I. Abubakar, Euro surveillance : bulletin Europeen sur les 

maladies transmissibles = European communicable disease bulletin, 2013, 18. 

16. Y. Koriyama, Yakugaku zasshi : Journal of the Pharmaceutical Society of 

Japan, 2013, 133, 843-848. 

17. Z. Wang, Cancer letters, 2012, 320, 123-129. 

18. T. Nakamura, O. A. Prikhodko, E. Pirie, S. Nagar, M. W. Akhtar, C. K. Oh, S. 

R. McKercher, R. Ambasudhan, S. Okamoto and S. A. Lipton, Neurobiology of 

disease, 2015, 84, 99-108. 

19. T. Yasukawa, E. Tokunaga, H. Ota, H. Sugita, J. A. Martyn and M. Kaneki, The 

Journal of biological chemistry, 2005, 280, 7511-7518. 

20. T. Nakamura, S. Tu, M. W. Akhtar, C. R. Sunico, S. Okamoto and S. A. Lipton, 

Neuron, 2013, 78, 596-614. 



16 

21. P. Anand and J. S. Stamler, Journal of molecular medicine, 2012, 90, 233-244. 

22. S. L. Cook and G. P. Jackson, Journal of the American Society for Mass 

Spectrometry, 2011, 22, 221-232. 

23. Y. Xue, Z. Liu, X. Gao, C. Jin, L. Wen, X. Yao and J. Ren, PloS one, 2010, 5, 

e11290. 

24. T. Y. Lee, Y. J. Chen, T. C. Lu, H. D. Huang and Y. J. Chen, PloS one, 2011, 6, 

e21849. 

25. Y. Xu, J. Ding, L. Y. Wu and K. C. Chou, PloS one, 2013, 8, e55844. 

26. Y. Xie, X. Luo, Y. Li, L. Chen, W. Ma, J. Huang, J. Cui, Y. Zhao, Y. Xue, Z. 

Zuo and J. Ren, Genomics, proteomics & bioinformatics, 2018, 16, 294-306. 

27. F. Luo, M. Wang, Y. Liu, X. M. Zhao and A. Li, Bioinformatics, 2019, 35, 

2766-2773. 

28. Z. Chen, X. Liu, F. Li, C. Li, T. Marquez-Lago, A. Leier, T. Akutsu, G. I. Webb, 

D. Xu, A. I. Smith, L. Li, K. C. Chou and J. Song, Briefings in bioinformatics, 

2018, DOI: 10.1093/bib/bby089. 

29. X. Wang, R. Yan, J. Li and J. Song, Molecular bioSystems, 2016, 12, 2849-

2858. 

30. L. Fu, B. Niu, Z. Zhu, S. Wu and W. Li, Bioinformatics, 2012, 28, 3150-3152. 

31. M. M. Hasan, M. S. Khatun, M. N. H. Mollah, C. Yong and G. Dianjing, 

Molecules, 2018, 23(7), 1667. 

32. M. M. Hasan, Y. Zhou, X. Lu, J. Li, J. Song and Z. Zhang, PloS one, 2015, 10, 

e0129635. 

33. F. Provost, AAAI Technical Report, 2000, 1-3. 

34. M. M. Hasan and H. Kurata, IEEE 18th International Conference on 

Bioinformatics and Bioengineering (BIBE), Taichung, 2018, 356-359. 

35. Y. Zhou, P. Zeng, Y. H. Li, Z. Zhang and Q. Cui, Nucleic acids research, 2016, 

44, e91. 

36. Z. Chen, Y. Zhou, Z. Zhang and J. Song, Briefings in bioinformatics, 2015, 16, 

640-657. 

37. S. Kawashima, P. Pokarowski, M. Pokarowska, A. Kolinski, T. Katayama and 

M. Kanehisa, Nucleic acids research, 2008, 36, D202-205. 

38. B. Manavalan, T. H. Shin, M. O. Kim and G. Lee, Frontiers in Immunology, 

2018, 9, 1695. 

39. M. M. Hasan, S. Yang, Y. Zhou and M. N. Mollah, Molecular bioSystems, 2016, 

12, 786-795. 



17 

40. M. M. Hasan, M. S. Khatun, M. N. H. Mollah, C. Yong and D. Guo, 

International journal of nanomedicine, 2017, 12, 6303-6315. 

41. M. M. Hasan, M. S. Khatun and H. Kurata, Protein and peptide letters, 2018, 

25, 815-821. 

42. M. M. Hasan, D. Guo and H. Kurata, Molecular bioSystems, 2017, 13, 2545-

2550. 

43. B. Manavalan, T. H. Shin, M. O. Kim and G. Lee, Frontiers in pharmacology, 

2018, 9, 276. 

44. M. M. Hasan, M. S. Khatun and H. Kurata, Cells, 2019, 8(2), 95. 

45. V. Boopathi, S. Subramaniyam, A. Malik, G. Lee, B. Manavalan and D. C. 

Yang, Int J Mol Sci, 2019, 20 (8), 1964. 

46. B. Manavalan, S. Basith, T. H. Shin, L. Wei and G. Lee, Molecular Therapy-

Nucleic Acids, 2019, 16, 733-74. 

47. S. Khatun, M. Hasan and H. Kurata, FEBS Lett, 2019, DOI: 10.1002/1873-

3468.13536. 

48. Z. Chen, Y. Zhou, J. Song and Z. Zhang, Biochimica et biophysica acta, 2013, 

1834, 1461-1467. 

49. L. Breiman, Machine learning, 2001, 45, 5-32. 

50. M. M. Hasan, M. M. Rashid, M. S. Khatun, and H. Kurata, Sci Rep, 2019, 9, 

8258. 

51. M. M. Hasan and H. Kurata, PloS one, 2018, 13, e0200283. 

52. B. Manavalan, R. G. Govindaraj, T. H. Shin, M. O. Kim and G. Lee, Front 

Immunol, 2018, 9, 1695. 

53. B. Manavalan, T. H. Shin, M. O. Kim and G. Lee, Front Immunol, 2018, 9, 

1783. 

54. M. S. Khatun, M. M. Hasan and H. Kurata, Frontiers in Genetics, 2019, 10:129.  

55. J. P. O'Shea, M. F. Chou, S. A. Quader, J. K. Ryan, G. M. Church and D. 

Schwartz, Nature methods, 2013, 10, 1211-1212. 

56. L. Wei, R. Su, S. Luan, Z. Liao, B. Manavalan, Q. Zou and X. Shi, 

Bioinformatics, 2019, DOI: 10.1093/bioinformatics/btz408. 

57. B. Manavalan, S. Basith, T. H. Shin, L. Wei and G. Lee, Bioinformatics, 2019, 

35, 2757-2765. 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Large-Scale+Assessment+of+Bioinformatics+Tools+for+Lysine+Succinylation+Sites


18 

 

Figure Legends 

 

Figure 1. The overall framework of the PreSNO. 

 

Figure 2. Amino acid residue preference around the SNO and non-SNO sites. 

The residues flanking the SNO sites that were significantly enriched or depleted 

(p<0.05) are shown. The pLogo of the two-sample sequence was prepared using the 

webserver http://www.twosamplelogo.org/. 

 

Figure 3. ROC curves of the SVMcom, RFcom, and PreSNO.  

(A) Training data. (B) Independent data. 

 

Figure 4. Average scores of top 20 amino acid patterns selected by the WR test. 

Green color denotes the SNO sites, while blue color denotes the non-SNO sites. 

(A) CPA, (B) SAC, and (C) TCP scheme.  

http://www.twosamplelogo.org/
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Supplementary Information 

Figure S1. Effect of the ratio of positive to negative training datasets on prediction 

performances by the ML models with a single encoding scheme of the CPA, SAC, TCP, 

or PPA.  

(A) AUC values provided by the SVM. (B) AUC values provided by the RF. 

 

Figure S2. Effect of different window sizes on the AUC values with a single encoding 

scheme of the CPA, SAC, TCP, or PPA on the training datasets. (A) SVM and (B) RF 

algorithms.  

 

Figure S3. Prediction performance provided by the RF and SVM with the sequential 

combination of the CPA, SAC, TCP, and PPA.  

(A) Training data. (B) Independent data. 

 

Figure S4. Prediction performance by the meta-classifier algorithms of the SVM and 

RF.  

(A) Training data. (B) Independent data. 

 

 

Table S1. Selected amino acid index properties for the PPA encoding scheme. 

 

Table S2. Top 20 selected features based on the CPA, SAC, TCP, and PPA encoding 

schemes by the WR test. 

 

Table S3. Comparison of unique amino acids between different encodings. 
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Tables 

 

Table 1. Effect of the four types of encoding schemes on the AUCs by the SVM and RF on the 

training and independent datasets.  

Methods SVM RF 

Training Independent Training Independent 

CPA 0.768 0.714 0.819 0.694 

SAC 0.764 0.709 0.788 0.682 

TCP 0.738 0.682 0.763 0.672 

PPA 0.731 0.703 0.759 0.680 
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Table 2. Weight coefficients of each encoding scheme for two combined models 

Combined model CPA SAC TCP PPA 

SVMcom- weight coefficient 0.15 0.30 0.10 0.45 

RFcom-weight coefficient 0.25 0.15 0.50 0.10 
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Table 3. Prediction performance by the combined models on the training dataset 

Methods TP FP TN FN SP SN AC MCC 

SVMcom 1586 500 2883 1797 0.852 0.469 0.661 0.348 

RFcom 1709 465 2913 1674 0.862 0.505 0.684 0.393 

PreSNO 1812 462 2921 1571 0.863 0.536 0.700 0.422 

In the PreSNO, the weight coefficients of the SVMcom and RFcom scores were 0.35 

and 0.65, respectively. 
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Table 4. Comparison of the PreSNO with existing predictors 

Model TP FP TN FN SP SN AC MCC AUC 

GPS-SNO 99 825 2337 253 0.739 0.281 0.693 0.014 0.523 

iSNOPseAAC 101 768 2394 251 0.757 0.287 0.710 0.031 - 

SNOSite 235 1749 1413 117 0.447 0.668 0.469 0.069 - 

DeepNitro 202 776 2386 148 0.755 0.578 0.737 0.222 0.731 

PreSNO  211 733 2431 141 0.769 0.604 0.752 0.252 0.756 

All threshold values of the GPS-SNO and DeepNitro were considered. In the 

iSNOPseAAC and SNOSite predictors, the medium threshold was used in their 

corresponding online servers. 
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(Hasan et al. Figure 4) 

 

 



Supplementary Information 

Prediction of S-nitrosylation Sites by Integrating Support Vector 

Machine and Random Forest 
 

Md. Mehedi Hasana, Balachandran Manavalanb , Mst. Shamima Khatuna, and 

Hiroyuki Kurataa,c* 

 

 

 

Figure S1. Effect of the ratio of positive vs negative training datasets on prediction 

performances by the ML models with a single encoding scheme of the CPA, SAC, TCP, 

or PPA.  

(A) AUC values provided by the SVM. (B) AUC values provided by the RF 

 



 

 

 

Figure S2. Effect of window sizes on the AUC values by a single encoding scheme of the 

CPA, SAC, TCP, or PPA on the training datasets by 5-fold CV test. 

 (A) SVM and (B) RF algorithms.  

 

 



 

Figure S3. Prediction performance provided by the RF and SVM with the sequential 

combination of the CPA, SAC, TCP, and PPA.  

(A) Training data. (B) Independent data. 

 

 

 

 
 

Figure S4. Prediction performance by the meta-classifiers of the SVM and RF.  

(A) Training data. (B) Independent data. 

 

 

 

 



 

Table S1. Selected amino acid index properties for the PPA encoding scheme.  

PPA property Amino acid index properties 

BLAM930101 

 

 

MAXF760101 

 

 

TSAJ990101 

 

 

NAKH920108 

 

 

CEDJ970104 

 

 

LIFS790101 

 

 

NOZY710101 

 

 

HUTJ700103 

 

 

NAKH900109 

 

 

BIOV880101 

 

 

MIYS990104 

 

 

 0.96 0.77 0.39 0.42 0.42 0.80 0.53

 0.00 0.57 0.84 0.92 0.73 0.86 0.59

 -2.50 0.53 0.54 0.58 0.72 0.63  

 1.43 1.18 0.64 0.92 0.94 1.22 1.67

 0.46 0.98 1.04 1.36 1.27 1.53 1.19

 0.49 0.70 0.78 1.01 0.69 0.98  

 89.3 190.3 122.4 114.4 102.5 146.9 138.8

 63.8 157.5 163.0 163.1 165.1 165.8 190.8

 121.6 94.2 119.6 226.4 194.6 138.2  

 9.36 0.27 2.31 0.94 2.56 1.14 0.94

 6.17 0.47 13.73 16.64 0.58 3.93 10.99

 1.96 5.58 4.68 2.20 3.13 12.43  

 7.9 4.9 4.0 5.5 1.9 4.4 7.1

 7.1 2.1 5.2 8.6 6.7 2.4 3.9

 5.3 6.6 5.3 1.2 3.1 6.8  

 0.92 0.93 0.60 0.48 1.16 0.95 0.61

 0.61 0.93 1.81 1.30 0.70 1.19 1.25

 0.40 0.82 1.12 1.54 1.53 1.81  

 0.5 0.0 0.0 0.0 0.0 0.0 0.0

 0.0 0.5 1.8 1.8 0.0 1.3 2.5

 0.0 0.0 0.4 3.4 2.3 1.5  

 154.33 341.01 207.90 194.91 219.79 235.51 223.16

 127.90 242.54 233.21 232.30 300.46 202.65 204.74

 179.93 174.06 205.80 237.01 229.15 207.60  

 9.25 3.96 3.71 3.89 1.07 3.17 4.80

 8.51 1.88 6.47 10.94 3.50 3.14 6.36

 4.36 6.26 5.66 2.22 3.28 7.55  

 16. -70. -74. -78. 168. -73. -106.

 -13. 50. 151. 145. -141. 124. 189.

 -20. -70. -38. 145. 53. 123.  

 -0.04 0.07 0.13 0.19 -0.38 0.14 0.23

 0.09 -0.04 -0.34 -0.37 0.33 -0.30 -0.38

 0.19 0.12 0.03 -0.33 -0.29 -0.29  



PUNT030101 

 

 

WOEC730101 

 

 

BASU050102 

 

 

SUYM030101 

 -0.17 0.37 0.18 0.37 -0.06 0.26 0.15

 0.01 -0.02 -0.28 -0.28 0.32 -0.26 -0.41

 0.13 0.05 0.02 -0.15 -0.09 -0.17  

 7.0 9.1 10.0 13.0 5.5 8.6 12.5

 7.9 8.4 4.9 4.9 10.1 5.3 5.0

 6.6 7.5 6.6 5.3 5.7 5.6  

 0.0728 0.0394 -0.0390 -0.0552 0.3557 0.0126 -0.0295

 -0.0589 0.0874 0.3805 0.3819 -0.0053 0.1613 0.4201

 -0.0492 -0.0282 0.0239 0.4114 0.3113 0.2947  

 -0.058 0.000 0.027 0.016 0.447 -0.073 -0.128

 0.331 0.195 0.060 0.138 -0.112 0.275 0.240

 -0.478 -0.177 -0.163 0.564 0.322 -0.052  

 

 



 

Table S2. Top 20 selected features based on the CPA, SAC, TCP, and PPA schemes by 

the WR test. 

Sequential 

order 

CPA SAC TCP PPA 

p-value Selected 

pattern 

p-value Selected 

pattern 

p-value Selected 

pattern 

p-value Window 

position 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

6.03E-01 

7.37E-06 

1.42E-04 

1.63E-05 

8.61E-01 

6.90E-01 

2.54E-03 

9.17E-02 

6.16E-01 

3.67E-01 

2.58E-01 

3.19E-01 

8.25E-05 

1.39E-03 

2.61E-01 

3.16E-02 

1.15E-07 

6.65E-01 

7.42E-01 

5.57E-01 

AL 

LL 

K××A 

Y×E 

R×××E 

LA 

A×××L 

V×K 

A××L 

KV 

E×××R 

W×Y 

L××××A 

L×××V 

S×P 

KK 

LS 

E×L 

E×××D 

L×G 

3.06E-03 

1.63E-04 

1.70E-04 

6.52E-02 

3.47E-02 

8.41E-02 

2.28E-03 

5.10E-03 

2.82E-01 

3.22E-02 

2.24E-07 

5.96E-04 

2.68E-02 

5.20E-01 

9.10E-02 

7.09E-04 

1.34E-03 

5.88E-01 

3.86E-01 

1.08E-03 

LL 

L×E 

E×××R 

E×L 

L×G 

LA 

AL 

L××××V 

V×K 

E××R 

K×L 

E××××L 

R×××E 

L×××A 

R×L 

KV 

G×L 

A××L 

A×K 

A××××L 

2.54E-03 

6.52E-01 

2.49E-02 

9.95E-01 

2.56E-01 

9.37E-01 

1.31E-02 

8.58E-01 

9.38E-01 

4.25E-01 

9.84E-01 

4.081E-04

7.25E-01 

7.95E-05 

8.29E-01 

9.8E-03 

1.17E-01 

5.89E-08 

4.98E-02 

1.49E-02 

LKK 

NRK 

NLE 

LIK 

DER 

DAN 

DAV 

ELL 

LLL 

LAK 

ELE 

DKL 

FKS 

GLK 

AAA 

EKK 

ESV 

AAL 

ALL 

DAK 

1.35E-02 

6.33E-04 

4.47E-02 

3.33E-06 

5.44E-01 

3.67E-02 

7.57E-02 

1.14E-03 

3.11E-03 

7.88E-02 

3.15E-02 

1.02E-03 

4.11E-02 

3.49E-02 

7.46E-02 

5.44E-03 

3.11E-02 

3.45E-03 

2.22E-03 

2.54E-02 

(L, -9) 

(E, +11) 

(K, -2) 

(H, +6) 

(D, -3) 

(E, +6) 

(V, -11) 

(S, -2) 

(T, -12) 

(R, +6) 

(P, +8) 

(V, -15) 

(P, +2) 

(K, +10) 

(E, +7) 

(N, +18) 

(Y, -13) 

(R, +11) 

(G, +16) 

(L, +9) 

A p-value is calculated by a two-sample t-test. 



 

Table S3. Comparison of the amino acid residue patterns selected by different encodings. 

Encoding CPA 

 

SAC TCP PPA 

Sample SNO non-

SNO 

SNO non-

SNO 

SNO non-

SNO

SNO non-SNO

Pattern AxxxL 

 

LL 

KxxA 

YxE 

LxxxxA 

LxxxV 

KK 

LS 

LxG 

ExxxR 

KxL 

ExxxL 

RxxxE 

KV 

GxL 

AxxxL 

LL 

LxE 

ExxR 

AL 

LxxxV 

NLE 

DKL 

GLK 

EKK 

AAL 

ALL 

DAK 

LKK

DAV

(L, -9) 

(E, +6) 

(V, -15) 

(R, +11) 

(K, +10) 

(L, +9) 

(Y, -13) 

(E, +11)

(K, -2) 

(H, +6) 

(S, -2) 

(T, -12) 

(P, +8) 

(G, +16)

(P, +2) 

(N, 18) 

#charged 0 3 3 2 4 2 3 2 

#hydrophobic 2 3 3 3 3 3 2 2 

#polar 0 1 0 0 1 0 1 4 

Blue indicates charged amino acids; red hydrophobic amino acids; black polar amino 

acids. 

#charged, the unique number of charged amino acid containing patterns; 

#hydrophobic, the unique number of hydrophobic amino acid containing patterns; 

#polar, the unique number of polar amino acid containing patterns. 

 




