
Secure VM management with strong user binding
in semi-trusted clouds

著者 Inokuchi Keisuke, Kourai Kenichi
journal or
publication title

Journal of Cloud Computing

volume 9
page range 3-1-3-22
year 2020-01-17
URL http://hdl.handle.net/10228/00007863

doi: https://doi.org/10.1186/s13677-020-0152-9

Journal of Cloud Computing:
Advances, Systems and Applications

Inokuchi and Kourai Journal of Cloud Computing: Advances, Systems
and Applications (2020) 9:3
https://doi.org/10.1186/s13677-020-0152-9

RESEARCH Open Access

Secure VMmanagement with strong
user binding in semi-trusted clouds
Keisuke Inokuchi and Kenichi Kourai*

Abstract

In Infrastructure-as-a-Service (IaaS) clouds, remote users access provided virtual machines (VMs) via the
management server. The management server is managed by cloud operators, but not all the cloud operators are
trusted in semi-trusted clouds. They can execute arbitrary management commands to users’ VMs and redirect users’
commands to malicious VMs. We call the latter attack the VM redirection attack. The root cause is that the binding of
remote users to their VMs is weak. In other words, it is difficult to enforce the execution of only users’ management
commands to their VMs. In this paper, we propose UVBond for strongly binding users to their VMs to address this
issue. UVBond boots user’s VM by decrypting its encrypted disk inside the trusted hypervisor. Then it issues a VM
descriptor to securely identify that VM. To bridge the semantic gap between high-level management commands and
low-level hypercalls, UVBond uses hypercall automata, which accept the sequences of hypercalls issued by
commands. We have implemented UVBond in Xen and created hypercall automata for various management
commands. Using UVBond, we confirmed that a VM descriptor and hypercall automata prevented insider attacks and
that the overhead was not large in remote VM management.

Keywords: Virtual machines, Clouds, Remote management, Hypercall automata, Disk encryption

Introduction
Infrastructure-as-a-Service (IaaS) clouds provide users
with virtual machines (VMs). Users can install their own
operating system and applications as they like. They man-
age provided VMs from remote hosts via the web inter-
face or API. When they perform remote management of
their VMs, they first connect to the management server
provided in a cloud and then access their VMs via the
server. For example, the management server has the abil-
ity for booting new VMs, shutting down running VMs,
and migrating VMs to other hosts. In addition, users can
log in VMs using a feature called out-of-band remote
management, which allows users to access virtual serial
and graphical consoles without servers running inside the
VMs.
Although the management server is managed by cloud

operators, not all the operators are trusted in semi-trusted
clouds [1–8]. Cloud operators are hired by cloud providers
and perform daily management in clouds. In semi-trusted
clouds, their providers are trusted but some of the cloud

*Correspondence: kourai@ksl.ci.kyutech.ac.jp
Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, 8208502 Fukuoka, Japan

operators may be untrusted. This is a usual situation
according to several reports [9, 10]. Untrusted cloud oper-
ators can abuse the privileges of the management server
and mount attacks against users’ VMs. They can execute
arbitrary management commands to VMs and eavesdrop
on and tamper with their sensitive information. In addi-
tion, they can redirect users’ commands to malicious
VMs. We call this attack VM redirection attack, which is
a kind of man-in-the middle attack. Using this attack,
they can steal users’ console input inside the malicious
VMs. The root cause of these attacks is that the binding of
remote users to their VMs is weak. It is difficult to enforce
the execution of only users’ management commands to
their VMs.
In this paper, we propose UVBond, which strongly

binds users to their VMs via encrypted disks of VMs.
In UVBond, the trusted computing base (TCB) includes
only the hypervisor and hardware. UVBond boots user’s
VM by decrypting its encrypted disk inside the trusted
hypervisor and issues a VM descriptor to securely iden-
tify that VM. Using this descriptor, UVBond guarantees
thatmanagement commands specified by the user are exe-
cuted only to the user’s VM. Untrusted cloud operators

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-020-0152-9&domain=pdf
http://orcid.org/0000-0002-5455-4418
mailto: kourai@ksl.ci.kyutech.ac.jp
http://creativecommons.org/licenses/by/4.0/

Inokuchi and Kourai Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:3 Page 2 of 22

cannot execute commands to users’ VMs. They cannot
redirect users’ access to their malicious VMs. To con-
trol the execution of management commands only in
the hypervisor, UVBond uses hypercall automata as a
whitelist, which accept only the sequences of hypercalls
issued to the hypervisor by users’ commands. A hypercall
is the interface from management software and VMs to
the hypervisor and executes privileged operations. As long
as a hypercall sequence is not rejected, UVBond permits
user’s access to the VM corresponding to a VM descriptor.
We have implemented UVBond in Xen 4.4.0 [11].

UVBond encrypts and decrypts virtual disks of VMs only
in the hypervisor. It supports paravirtual disk drivers,
which are mandatory for efficient disk access but difficult
to handle only in the hypervisor. For its secure imple-
mentation, UVBond duplicates I/O rings and grant pages
in Xen. To distinguish multiple management commands
executed simultaneously, UVBond identifies each process
in the hypervisor and applies one hypercall automaton
to one process. We have created hypercall automata for
various management commands. UVBond also supports
secure VM resumption and migration. According to our
experiments, it was confirmed that cloud operators could
not execute management commands to user’s VM or redi-
rect user’s commands to a malicious VM. In addition, it
was shown that the overhead of using hypercall automata
was negligible and the degradation of disk performance
was up to 9.5%.
The main contributions of this paper are as follows:
• We identify that untrusted cloud operators can

execute management commands to arbitrary VMs
because the binding of remote users to their VMs is
weak.

• We enable strong binding of remote users to their
VMs via encrypted disks of the VMs.

• We use hypercall automata to bridge the semantic
gap between high-level management commands and
low-level hypercalls.

• We implement UVBond for paravirtual disk drivers
in Xen and created various hypercall automata.

• We confirm that cloud operators cannot execute
management commands to arbitrary VMs with
acceptable overhead.

This paper is an extended version of our previous con-
ference paper [12]. In this paper, we clarified how we
have created hypercall automata for various management
commands through an experiment. We showed six com-
plete hypercall automata and explained the relationship
between command behavior and hypercall sequences in
detail. Also, we conducted several experiments to further
investigate the execution overhead of management com-
mands in UVBond. To make it easier to serialize hypercall
automata, we have developed an automaton converter. In

addition, we added related work and made our contribu-
tion clearer.
The organization of this paper is as follows. The

next sections describe the abuse of VM management by
untrusted cloud operators and various systems related
to UVBond. Then, we propose UVBond for strongly
binding users to their VMs and explains the implemen-
tation details. Next, the paper shows our experimental
results with UVBond. Finally, we conclude this paper and
describe future work.

VMmanagement in semi-trusted clouds
In IaaS clouds, users manage their VMs via the man-
agement server, which is part of the cloud management
system. A user first sends a management command with
a VM name and other parameters to the management
server. Then the server communicates with the agent run-
ning in one of the compute nodes and the agent executes
privileged operations to the virtualized system, especially
the hypervisor. Hereafter, we regard the agents in compute
nodes as part of themanagement server. Themanagement
server often runs in a privileged VM called the manage-
ment VM. For example, the management server can boot
new VMs, shut down running VMs, and migrate VMs to
other hosts. Through the management server, users can
log in VMs using out-of-band remote management, which
enables indirectly managing VMs via their virtual serial
and graphical consoles.
The management server is managed by cloud operators,

but not all the operators are trusted in semi-trusted clouds
[1–4, 6–8]. Semi-trusted clouds are provided by reputable
cloud providers and are basically trusted. However, since
they hire many operators for daily management, it is dif-
ficult to guarantee that all of the operators are trusted. In
fact, it is reported that 28% of cybercrimes are caused by
insiders [9]. Malicious system administrators attack sys-
tems actively. As a real example, a site reliability engineer
in Google violated user’s privacy [13]. In addition, curi-
ous but honest system administrators may eavesdrop on
attractive information that they can easily obtain from
VMs. It is revealed that 35% of system administrators
have accessed sensitive information without authoriza-
tion [10]. Therefore, many commercial systems assume
the existence of untrusted operators. For example, Oracle
Database provides two types of administrative privileges:
SYSDBA for full administration and SYSOPER for basic
operations [14]. IBM Domino can restrict access privi-
leges to eight types of administrators [15].
Such untrusted cloud operators can abuse the manage-

ment server or its privileges and attack users’ VMs. This is
because the binding of remote users to their VMs is weak.
First, cloud operators can execute arbitrary management
commands to VMs. For example, they can send magic
system requests to VMs, which emulates pressing magic

Inokuchi and Kourai Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:3 Page 3 of 22

SysRq keys. The magic SysRq key is a key combination
for the user to perform various low-level commands to
the operating system. Then they can show all the register
values, which may contain sensitive information, to their
serial consoles. Using a technique called VM introspec-
tion (VMI) [16], cloud operators can access the memory
and disks of VMs from the outside of the VMs. Then
they can analyze memory data and disk data and monitor
the internal data of the operating system and the file sys-
tem. If untrusted cloud operators abuse this mechanism,
they can eavesdrop on sensitive information, e.g., crypto-
graphic keys, in the memory and disks of VMs. Similarly,
they can tamper with the memory and disks. In addition,
they can eavesdrop on and tamper with console input and
output of out-of-band remote management.
Second, cloud operators can redirect users’ manage-

ment commands to their malicious VMs. We call this
attack the VM redirection attack. This attack is a kind of
man-in-the-middle attack. Untrusted cloud operators can
alter the communication between remote users and the
hypervisor. As illustrated in Fig. 1, the VM redirection
attack changes a VM accessed by a user in the man-
agement server. To eavesdrop on sensitive information,
cloud operators create a malicious VM in which malware
is installed and execute user’s command to the VM. For
example, they can steal login passwords in out-of-band
remote management by using a malicious login program
or a key logger. Since these malicious activities are done
inside VMs, they are difficult to prevent even if console
input and output are encrypted between remote users and
the hypervisor [17, 18].
In addition, the VM redirection attack can be mounted

for preventing VMI-based monitoring systems from
detecting malicious activities in VMs. If cloud operators
prepare a VM with a legitimate memory image, monitor-
ing systems are fooled as normal even when their target
VMs have been compromised. To mount the VM redi-
rection attack to a cloud management system such as
OpenStack [19], cloud operators can modify the source
code of a cloud management system so that the speci-
fied operations are redirected to the specified VMs. This
is easy because they have the privilege of updating and
restarting a cloud management system.

Related work
Secure VMmanagement on trusted hypervisors
Self-Service Cloud (SSC) [4, 20] can prevent cloud oper-
ators from illegally accessing users’ VMs. For each user,
it provides a dedicated management VM called Udom0,
which is not interfered by cloud operators. Since each
user’s VMs can be managed only via his Udom0, cloud
operators cannot eavesdrop on or tamper with the VMs.
The disk integrity of Udom0 is verified with vTPM, which
runs in a domain builder called domB. The user accesses
Udom0 using a management server called a dashboard
through an SSL channel, which is securely established at
the boot time of Udom0. User’s VMs are securely created
via domB.
However, the TCB of SSC is quite large because it

includes not only the hypervisor and hardware but also
several privileged VMs such as Udom0, domB, and a dash-
board VM. Udom0 is not a system-level TCB but a client-
level one, whose compromise affects user’s VMs. Udom0
is protected by the trusted hypervisor, but information
leakage and tampering can occur if the system inside
Udom0 is compromised by exploiting its vulnerabilities.
Similarly, the systems inside domB and a dashboard VM
can be compromised. The system including the operat-
ing system in such privileged VMs has a much larger
attack surface than the hypervisor. The TCB of UVBond
is smaller because it does not include any privileged VMs.
As such, the disaggregation of the management VM

can minimize the privilege of cloud operators. SSC splits
the management VM into system-wide Sdom0 and user-
specific Udom0. Disaggregated Xen [21] moves com-
plex VM-building functionality to another VM called
DomB, as done in SSC. Furthermore, Xoar [22] breaks
the management VM into many single-purpose compo-
nents called service VMs. Compared with the original
management VM, such service VMs need less privilege
and can limit necessary hypercalls. If cloud operators are
permitted to manage only the minimal number of service
VMs, the ability of executing management commands can
be restricted. However, the management server needs to
be managed by cloud operators and to execute various
management commands to users’ VMs. To minimize the
privilege of the management VM, MyCloud [5] runs the

Fig. 1 The VM redirection attack

Inokuchi and Kourai Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:3 Page 4 of 22

management VM in the less-privilegedmode and removes
it from the TCB. Then the hypervisor controls access from
the management VM to users’ VMs. Permitted access can
be configured by users.
Secure Runtime Environment [2, 23] and VMCrypt [24]

prevent information leakage from the memory of VMs
to cloud operators. These systems encrypt the mem-
ory of VMs only when cloud operators access it from
the management VM, while the systems do not when
the VMs themselves access its memory. This memory
encryption is done in the trusted hypervisor. Since VM
migration, suspension, and resumption do basically not
need to understand data structure inside the memory
of VMs, these systems can support such management
commands securely. One drawback is that even legiti-
mate users cannot introspect the memory of their VMs
using VMI. RemoteTrans [6] enables users to securely
introspect their VMs from trusted remote hosts. Remote
clients communicate with the trusted hypervisor using
encryption and obtain memory data, disk blocks, and net-
work packets of their VMs. However, RemoteTrans cannot
prevent the VM redirection attack in remote VMI. It is
not guaranteed that VMs specified by users are actually
introspected.
FBCrypt [17] and SCCrypt [18] prevent cloud oper-

ators from eavesdropping on console input and out-
put of out-of-band remote management using VNC and
SSH, respectively. A remote client encrypts input data
and then the trusted hypervisor decrypts it transpar-
ently when a VM attempts to obtain the data from a
virtual keyboard or serial device. When a VM attempts
to write output data to a virtual video or serial device,
the hypervisor encrypts it and then the remote client
decrypts it. FBCrypt can also detect tampering with
input data using message authentication code. However,
these systems cannot also prevent the VM redirection
attack.
Weatherman [25] intercepts management commands at

the authorization proxy and relays it to the management
server only if no security is violated. Therefore, untrusted
cloud operators can modify the commands at either the
proxy or the management server unless we assume that
these are trusted. In addition, we need to assume that
compute nodes running the hypervisor are trusted. Open-
Stack Congress [26] simulates a new policy and enforces
it after its impact is verified. It also requires that both
the Congress component, the management server, and
compute nodes need to be trusted.

Secure VMmanagement on untrusted hypervisors
HypSec [27] partitions the hypervisor into the trusted
corevisor and the untrusted hostvisor to protect the con-
fidentiality and integrity of VM data in a small TCB.
At the boot time of a VM, the corevisor checks the

signature of a VM image using user’s public key. The sig-
nature and key have to be stored in secure storage such
as ARM TrustZone and TPM in advance. This enables
only pre-registered user’s VMs to be booted. However,
the signature changes after the VM image is modified
by the execution of the VM. In clouds, it is not realis-
tic to calculate a new signature from a large VM image
and send the VM image with the signature whenever a
VM is booted. The issue of a hypercall is first trapped
by the corevisor and then delegated to the hostvisor. At
this time, the corevisor can check the target VM of the
hypercall, but HypSec does not provide any mechanism to
prevent untrusted operators from maliciously executing
hypercalls.
HA-VMSI [28] protects VMs even from a compromised

hypervisor by running a trusted security monitor in the
ARM TrustZone secure world. Like HypSec, the secu-
rity monitor checks the hash value of a VM image at the
boot time. After the verification, it returns a VM identi-
fier, which is used for interaction between the hypervisor
and the security monitor. The VM identifier is similar to
our VM descriptor, which is returned to a remote user.
However, HA-VMSI just provides isolation of VM’s mem-
ory against an untrusted hypervisor and cannot control
the execution of management commands. In addition, it
requires ARM CPUs with the TrustZone feature, which
are not yet widely used in clouds.
Fidelius [29] protects VMs from hardware-level mem-

ory eavesdropping using AMD SEV. SEV enables each VM
to selectively encrypt the memory against an untrusted
hypervisor. To address several security issues of SEV,
Fidelius provides a software-based extension to SEV and
introduces an isolated context with non-bypassable mem-
ory protection to manage critical resources. This isolated
context is built in the same privilege level as the hyper-
visor. Besides, Intel SGX can be used to securely exe-
cute programs in enclaves on an untrusted hypervisor
[30]. It enables remote clients to establish secure con-
nections with enclaves using remote attestation. However,
enclaves cannot execute management commands because
they prohibit privileged operations such as the issue of
hypercalls.
Nested virtualization [31] has been also used to achieve

secure VMmanagement. It is a technique for enabling the
entire virtualized system to be run in a VM. Using this
technique, the hypervisor can be excluded from the TCB.
CloudVisor [3] securely controls access to the memory of
users’ VMs in the trusted security monitor running below
the untrusted hypervisor. Cloud operators inside the vir-
tualized system cannot access the memory using VMI.
Like the above systems [2, 23, 24], CloudVisor securely
encrypts the memory when users’ VMs are migrated.
However, the overhead of nested virtualization is not
small.

Inokuchi and Kourai Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:3 Page 5 of 22

VSBypass [8] enables secure out-of-band remote man-
agement outside the virtualized system to prevent infor-
mation leakage to cloud operators. It runs the entire virtu-
alized system in an outer VM and processes I/O requests
of out-of-band remote management outside the VM. To
identify users’ VMs running in the virtualized system from
the outside, each VM securely registers a VM tag to the
outer trusted hypervisor and the remote user specifies the
tag to manage his VM. This can prevent the VM redirec-
tion attack inside the virtualized system, but it is necessary
that remote users securely obtain information on VM tags
randomly generated in VMs.

Secure disk encryption
Several techniques for secure disk encryption have been
proposed. SSC [4] enables users to encrypt the disks of
VMs using special VMs called service domains (SDs).
Each user can run his own SDs, while cloud operators
cannot interfere with user’s SDs. Like Udom0, SDs are
also a client-level TCB and are protected by the trusted
hypervisor. However, once the systems inside SDs are
compromised, disk data is leaked or tampered with.
BitVisor [32] can encrypt the disk of a VM using a

parapass-through driver in the trusted hypervisor. The
hypervisor intercepts only minimum hardware access
needed for disk encryption, while the other access passes
through the hypervisor. The driver for the ATA host con-
troller supports not only PIO but also DMA transfers
by using shadow DMA descriptors and shadow buffers.
UVBond can also support DMA transfers using the same
technique. Unlike UVBond, BitVisor supports only fully
virtualized operating systems and cannot use para-virtual
disk drivers in a VM.
CloudVisor [3] encrypts the disks of VMs in the secu-

rity monitor using nested virtualization. It intercepts I/O
requests of VMs and encrypts or decrypts data. In addi-
tion, CloudVisor checks the integrity of the disks. It pro-
vides necessary hash data to the security monitor via the
management VM. Using the hash data, it is guaranteed
that VMs are booted properly with the disk images spec-
ified by users. As pointed out in the above, the large
overhead of nested virtualization is often critical for disk
performance.

System-call automata
System-call automata [33] are used for intrusion detec-
tion systems (IDSes). Such IDSes detect intrusion on the
basis of a sequence of system calls issued by a process.
They trace the program execution in advance and record
normal behavior as a system-call automaton, which is a
whitelist. If a process issues a system call that is not
accepted by the automaton, the IDSes detect abnormal
behavior. A hypercall automaton used in UVBond is an
application to the hypervisor.

UVBond
Threat model
We assume that only the hypervisor and hardware are
the TCB. To trust hardware, we assume that cloud
providers themselves are trusted. This assumption is
widely accepted [1–4, 6–8] because bad reputations are
critical for them. The trustworthiness of the hypervisor
can be confirmed by various techniques. For example,
remote attestation with TPM guarantees that the hyper-
visor is booted correctly. Security checks with the sys-
tem management mode (SMM) [34–36] and AMD SVM
[37] can detect attacks against the hypervisor at run-
time. Also, event-driven monitoring with same-privilege
isolation [38] can be used to detect attacks.
We do not trust cloud operators or privileged compo-

nents managed by them. Since cloud providers hire many
operators, it is difficult to trusted all of them in large-
scale clouds. Such privileged components include the
management server and agents in compute nodes. Since
they are often run in a privileged VM, e.g., the man-
agement VM, we do not trust the entire privileged VM
running on top of the hypervisor.We assume that the priv-
ileged VM can be abused by untrusted cloud operators.
For example, cloud operators can compromise not only
the management server but also the operating system and
device emulators running for user’s VMs in the privileged
VM. Since they can take the root access in the privileged
VM, they can issue arbitrary hypercalls to the hypervi-
sor to perform VM management. However, we assume
that cloud operators can legitimately access the hypervi-
sor using only the hypercall interface. We mainly consider
untrusted cloud operators as insiders, but outside attack-
ers can be regarded as insiders after they intrude into
clouds and take high privileges.
There is a broad attack surface in virtualized systems

[39, 40] and IaaS clouds [41], but this paper focuses on
weak binding of remote users to their VMs in clouds. Due
to this problem, untrusted cloud operators can execute
malicious commands to users’ VMs and redirect manage-
ment commands to malicious VMs. Therefore, we need
to combine UVBond with other security mechanisms to
prevent complex attacks beyond the simple execution of
management commands. For example, indirect informa-
tion leakage and tampering after command execution and
attacks against device emulators in the privileged VM
need to be protected by other mechanisms. DoS attacks
against command execution are also out of the scope of
this paper.

Overview of UVBond
When a new VM is created, UVBond securely binds its
user to the created VM. This is guaranteed by the fact
that only a user has a cryptographic key for the encrypted
disk of a VM. Unlike previous work [27, 28], UVBond

Inokuchi and Kourai Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:3 Page 6 of 22

does not verify the signature of a disk to avoid signature
re-calculation on every VM boot, but it relies on user’s
confirmation of the correct boot. After a VM is booted,
UVBond issues a VM descriptor to the user. Using this
descriptor, the user securely executes management com-
mands to his VM. To control the execution of manage-
ment commands only in the trusted hypervisor, UVBond
uses hypercall automata as a whitelist, which accept only
the sequences of hypercalls issued by users’ commands.
As long as a hypercall sequence is not rejected, UVBond
permits user’s access to the VM corresponding to a VM
descriptor.

Strong binding of users to VMs
UVBond strongly binds users to their VMs via encrypted
disks of the VMs. It uses disk encryption performed in
the trusted hypervisor, instead of traditional disk encryp-
tion inside each VM. First, a user securely shares his disk
encryption key with the hypervisor at the boot time of
his VM. Then the hypervisor associates the key with the
VM. Using the registered disk encryption key, UVBond
boots the VM by decrypting its encrypted disk inside the
hypervisor, as illustrated in Fig. 2. Since the VM cannot
be correctly booted using the other virtual disks that do
not correspond to the key, it is guaranteed that user’s own
VM is certainly booted. Note that cloud operators can still
boot their VMwith amalicious disk and its encryption key
as user’s VM. To prevent this attack, UVBond enables the
user to confirm that his disk encryption key is correctly
registered.
After the boot of user’s VM, UVBond issues a VM

descriptor to the user. The descriptor is associated with
the VM inside the hypervisor. It is encrypted by the hyper-
visor and is sent to the user. The user specifies the descrip-
tor when he executes management commands to his VM.
On the basis of the descriptor, the hypervisor determines
whether hypercalls can be issued to the VM correspond-
ing to the descriptor. Using the descriptor, UVBond can
prevent cloud operators from accessing users’ VMs. Only
the user that has the descriptor is permitted to access his

VM. As illustrated in Fig. 3, UVBond can also prevent
the VM redirection attack, which forces a user to access
a malicious VM. A user can always access the VM that
matches the descriptor.
UVBond can prevent direct information leakage and

tampering by the execution of management commands.
However, it needs to be combined with other security
mechanisms to prevent indirect attacks after command
execution. This is because the access control with hyper-
calls is not sufficient for such indirect attacks. For VMI,
only a user can map the memory of his VM onto a process
using hypercalls, but cloud operators can access the pro-
cess memory illegally. Therefore it is necessary to obtain
memory data of a VM from the trusted hypervisor in
an encrypted form and inspect it at remote hosts using
RemoteTrans [6]. Note that cloud operators cannot intro-
spect the disk of a VM because the disk is encrypted
in UVBond. For out-of-band remote management, cloud
operators can eavesdrop on and tamper with console
input and output via virtual devices of VMs without issu-
ing hypercalls. FBCrypt [17] and SCCrypt [18] should be
used to encrypt the data between the remote user and the
hypervisor. As a result, cloud operators can obtain only
encrypted data from virtual devices. Since UVBond pre-
vents the registration of that encryption key from being
redirected to a malicious VM, cloud operators cannot
obtain decrypted data even inside that VM.

Hypercall automaton
A VM descriptor should be able to control the execution
of each management command separately, but this is not
easy. UVBond assumes that only one management server
is shared among all the users and cloud operators, as a tra-
ditional system architecture. If each command is exactly
equivalent to one hypercall, a user can pass a pair of a
command and a VM descriptor to the hypervisor. Then
the hypervisor can securely execute the hypercall to the
VM corresponding to the descriptor. However, each com-
mand usually consists of a set of hypercalls and the other
tasks that cannot be executed inside the hypervisor. Since

Fig. 2 Booting a VM using an encrypted disk

Inokuchi and Kourai Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:3 Page 7 of 22

Fig. 3 Command execution with a VM descriptor

the hypervisor can recognize only hypercalls, it is difficult
to securely associate a VM descriptor with the execution
of each command.
To bridge this semantic gap, UVBond identifies each

management command by a sequence of hypercalls. For
each command, it creates a finite state automaton as a
whitelist to accept all the sequences of hypercalls issued
by the command in advance. This is called a hypercall
automaton. In general, each state in a hypercall automaton
has multiple transitions. For example, one command can
have different hypercall sequences for different parame-
ters or in different execution environment. Therefore its
hypercall automaton can be created as illustrated in Fig. 4.
Note that the input is a hypercall and, if any, its subdi-
vided operation. When a user accesses his VM, he sends
a hypercall automaton as well as the corresponding com-
mand and a VMdescriptor. The hypervisor permits access
to the VM corresponding to the descriptor as long as a
hypercall sequence issued by the command is not rejected
by the hypercall automaton. If UVBond rejects a hypercall
sequence, it returns an “operation not permitted” error to
the last hypercall issued by the management command.
The command should handle that error as if the user had
no sufficient privilege. Note that the abilities of legiti-
mate users are not constrained basically because hypercall
automata do not prevent legitimate operations.
We assume that the developers of management systems

such as OpenStack identify the hypercall sequences of all

the management commands. The hypercall sequence for
each management command is collected by running the
command with various parameters in various conditions.
For example, developers execute commands for both fully
virtualized and para-virtualized VMs. This can construct
a hypercall sequence including various execution paths.
Even if a hypercall sequence is accepted by the spec-

ified hypercall automaton, the management command
intended by a user is not always executed. Cloud opera-
tors might be able to execute another command whose
hypercall sequence is accepted by the hypercall automaton
but whose behavior is different. However, commands that
generate the same hypercall sequence essentially access a
VM in the same manner because a VM can be managed
only via hypercalls. Even if an executed command is differ-
ent from one specified by the user, those commands can
be considered as the same in terms of VM management.
It may be still possible for attackers to specially craft mali-
cious commands with legitimate hypercall sequences, but
hypercall automata at least can make it more difficult to
execute malicious commands and raise the bar for attacks.
Using hypercall automata, UVBond can permit some of

the management commands even to cloud operators. If
only a user has to manage his VMs completely, his bur-
den would become too large. For example, it would be
desirable that cloud operators can migrate VMs when the
host running the VMs is maintained. To allow cloud oper-
ators to execute management commands without a VM

Fig. 4 An example of a hypercall automaton

Inokuchi and Kourai Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:3 Page 8 of 22

descriptor, a user registers the corresponding hypercall
automata to his VMs in advance. While the commands
corresponding to the registered hypercall automata are
executed, even cloud operators can access the specified
VMs. Users can determine permitted commands at their
discretion and take a trade-off between ease of man-
agement and security. As such, cloud operators have
more abilities than previous work [4] although hypercall
automata can restrict the abilities of cloud operators.

Implementation
We have implemented UVBond in Xen 4.4.0 [11]. In Xen,
the management server runs in a privileged VM called
Dom0 and cloud operators manage users’ VMs in Dom0.
We have ported AES and RSA in wolfSSL [42] to use them
in the hypervisor. We have also developed a management
client for UVBond using OpenSSL.
UVBond can be implemented in the other Type-I hyper-

visors, but it is not easy to implement in Type-II hypervi-
sor such as KVM [43]. In KVM, for example, management
commands are executed on top of the host operating
system providing the hypervisor functions. To use the
hypervisor functions, they access the KVM device pro-
vided by the host operating system, instead of hypercalls.
In addition, we need to trust the entire host operating
system, whose TCB is much larger than the hypervisor.

Overview of secure VMmanagement
When a new VM is created, an AES key for disk encryp-
tion is created and the disk image of the VM is encrypted
using the key in the management client. The encrypted
disk image is uploaded to a cloud and is stored in Dom0
as usual.
Whenever the VM is booted, the management client

generates an AES session key and encrypts it and the disk
encryption key using the RSA public key of the hypervi-
sor. The public key is obtained from a trusted key server
or in the form of a digital certificate from the manage-
ment server. Then the management client sends the boot
command with the encrypted keys to Dom0. The man-
agement server in Dom0 issues a new hypercall for key
registration and passes the encrypted keys to the hyper-
visor. The hypervisor decrypts the passed keys using its
own RSA private key and registers the decrypted keys to
a being booted VM. Cloud operators cannot decrypt the
keys.
According to the boot command, the management

server boots a VM with the encrypted disk specified by
the user.When the VM accesses its virtual disk, the hyper-
visor intercepts that access and then decrypts data to be
read or encrypts data to be written using the registered
disk encryption key. At the same time, the management
client checks the correctness of the keys registered to the
hypervisor.

After the boot of the VM, the management server issues
a new hypercall and obtains a VM descriptor for the
VM from the hypervisor. This descriptor is encrypted
with the registered session key. The management server
sends the encrypted descriptor back to the client and then
the client decrypts it using the session key. To execute
a management command, the client encrypts a pair of
this descriptor and the hypercall automaton correspond-
ing to the command using the session key and sends the
encrypted pair to the server. After the management server
completes executing the command, it obtains the result of
transitions encrypted by the session key from the hypervi-
sor and returns it to the client. The keys used by UVBond
are listed in Table 1.

Encryption of para-virtualized disk I/O
To access virtual disks of VMs, paravirtual disk drivers
are often used. This is because the disk performance is
largely improved, compared with using fully virtualized
disk drivers. Although Xen supports both para-virtualized
and fully virtualized operating systems, Linux uses the
paravirtual disk driver by default even in full virtual-
ization. Therefore, the hypervisor has to support disk
encryption in para-virtualization. However, this is not
easy because the hypervisor cannot trap all accesses to
virtual disks.

Traditional disk I/O
Xen uses the split device model, as illustrated in Fig 5.
The paravirtual disk driver consists of the front-end driver
called blkfront running in a VM and the back-end driver
called blkback running in Dom0. These drivers share the
memory region used for a ring buffer called an I/O ring.
They communicate with each other using the I/O ring and
a signaling mechanism called an event channel. When a
VM performs disk I/O, the blkfront driver writes a request
to the I/O ring and sends an event to the blkback driver via
the event channel. When the blkback driver receives that
event, it obtains the request from the I/O ring and accesses
the disk image of the VM. Upon disk read, it reads data
from the disk image and writes the data to the specified

Table 1 The keys used by UVBond

Key Created
by

Stored in Purpose

Disk encryption
key

User Client Encrypt a virtual disk

Session key Client Client Encrypt a VM descriptor, a
hypercall automaton, and
a command result

Public key Provider Key
server

Encrypt a disk encryption
key and a session key

Private key Provider Hypervisor Decrypt a disk encryption
key and a session key

Inokuchi and Kourai Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:3 Page 9 of 22

Fig. 5 Xen’s split device model

memory page in the VM. Upon disk write, it reads data
from the specified memory page in the VM and writes the
data to the disk image. Then the blkback driver writes a
response to the I/O ring and sends an event to the blkfront
driver in the VM.
To share memory pages between Dom0 and a VM, a

mechanism called a grant table is used in Xen. A VM first
registers pages that it intends to share to its grant table.
These pages are called grant pages. A grant reference is
assigned to each grant page andDom0 canmap and access
a grant page by specifying that grant reference. The grant
reference of the page used for the I/O ring is passed from
the blkfront driver to the blkback driver via the database
called XenStore in Dom0. For grant pages used for the
buffer of disk I/O, their grant references are passed via
requests written to the I/O ring.

Duplication of grant pages
To prevent untrusted cloud operators in Dom0 from
eavesdropping on data in grant pages after decryption and
before encryption by the hypervisor, UVBond duplicates
grant pages used for the I/O buffer, as depicted in Fig. 6.
For each grant page, it provides an unencrypted page to a
VM and an encrypted page to Dom0. A page provided to a
VM is called a guest grant page and one provided to Dom0
is called a shadow grant page. Data in a guest grant page is
encrypted and written to the corresponding shadow grant
page, while that in a shadow grant page is decrypted and
written to the corresponding guest grant page.
UVBond also duplicates the grant page used for the I/O

ring but does not encrypt its shadow one. The I/O ring
provided to a VM is called a guest I/O ring, whereas that
provided to Dom0 is called a shadow I/O ring. This dupli-
cation is used only for synchronization between the guest
and shadow I/O rings. The hypervisor copies a request
from the guest I/O ring to the shadow one after it com-
pletes encrypting data in guest grant pages. Conversely,

the hypervisor copies a response from the shadow I/O
ring to the guest one after it completes decrypting data in
shadow grant pages.
For compatibility with the original Xen, UVBond

enables Dom0 to access a shadow grant page using the
grant reference of the corresponding guest grant page. For
a VM, it associates a grant reference with a guest grant
page as usual. For Dom0, in contrast, it associates the same
grant reference with the shadow grant page. Therefore,
when Dom0 attempts to map a guest grant page passed
from a VM, its shadow grant page is mapped instead.
Similarly, when Dom0 attempts to unmap the guest grant
page, its shadow grant page is unmapped. This gives an
illusion to Dom0 as if Dom0 can access a guest grant page.

Disk I/O in UVBond
To perform encryption and decryption of disk I/O, the
hypervisor identifies the page used for the I/O ring and
creates a shadow I/O ring at the boot time of a VM.
For this purpose, it analyzes the communication between
a VM and Dom0. The blkfront driver in a VM regis-
ters the grant reference of the page used for the I/O
ring to XenStore on initialization. For this registration,
it writes a request to a ring buffer called the XenStore
ring and sends an event to XenStore. UVBond intercepts
that event in the hypervisor and obtains the grant ref-
erence for the I/O ring. The information on the page
used for the XenStore ring is passed to the hypervisor
at the boot time of a VM. After the hypervisor creates a
shadow I/O ring, it copies the guest I/O ring to the shadow
one. In addition, it obtains information on the event
channel used by the blkfront driver from the request to
XenStore.
When the blkfront driver sends a request to the blk-

back driver, the hypervisor encrypts the requested data
using the disk encryption key if the request is for disk
write. Since the hypercall for sending an event is called at

Inokuchi and Kourai Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:3 Page 10 of 22

Fig. 6 The duplication of grant pages

that time, the hypercall analyzes the request written to the
guest I/O ring. It creates a shadow grant page if there is no
such a page corresponding to the grant reference included
in the request. Then the hypervisor encrypts data stored
in the guest grant page and writes it to the shadow grant
page. Finally, it copies the request to the shadow I/O ring.
On the other hand, when the blkback driver sends a

response to the blkfront driver, the hypervisor decrypts
the returned data if the response is for disk read. Since
the response includes no grant reference, the hypervisor
saves the corresponding request in advance and obtains a
grant reference from it. Then the hypervisor decrypts data
in the shadow grant page that corresponds to the grant
reference and writes it to the guest grant page. Finally, it
copies the response to the guest I/O ring. When the guest
grant page is released in a VM, the hypervisor releases the
shadow one as well.

Using AES-NI in the hypervisor
We have ported the AES functions with AES-NI from
wolfSSL, but special treatment was required to use AES-
NI in the hypervisor. AES-NI is a CPU instruction set
for AES to improve the performance of encryption and
decryption. It needs to use XMM registers, which causes a
hardware exception in the hypervisor. This is because the
hypervisor in Xen defers the restoration of the XMM reg-
isters on CPU scheduling. When the hypervisor accesses
one of the XMM registers and an exception occurs, it
restores the XMM registers.
To prevent this exception, UVBond clears the TS bit in

the CR0 register just before using AES-NI. This bit is set
to cause an exception when XMM registers are accessed.
At the same time, UVBond saves the XMMregisters. After
the use of AES-NI, it restores the XMM registers.

Encryption of fully virtualized disk I/O
UVBond supports not only para-virtualized but also fully
virtualized disk I/O. Even for the operating systems using

paravirtual disk drivers, fully virtualized disk I/O is used
during the execution of BIOS, which is used before boot-
ing the operating system. When BIOS performs disk read
by 512-byte data using the IN instruction, the hypervi-
sor emulates that instruction. The read of 512-byte data
causes two traps to the hypervisor when BIOS executes
the IN instruction for the first 4-byte data and the repeat
of the instruction for the remaining 508-byte data. Since
the block length of AES is 16 bytes, UVBond decrypts 512-
byte data as a whole on the latter trap. Currently, UVBond
supports only programmable I/O (PIO).

Confirming registered keys
UVBond confirms that the disk encryption key and the
session key registered to the hypervisor are user’s when
it returns a VM descriptor to the user. When the man-
agement server issues the hypercall for obtaining the VM
descriptor for a started VM, the hypervisor appends the
disk encryption key to the VM descriptor and encrypts
them using the session key. While the management client
receives the encrypted data, it decrypts the data using its
own session key. If the disk encryption key is extracted
correctly, the user can confirm that both the keys regis-
tered to the hypervisor are the same as user’s.

Confirming encrypted disks
UVBond confirms that the used encrypted disk and the
registered disk encryption key match correctly when a
VM is booted. For this purpose, UVBond checks the boot
sector of the disk. The boot sector is always read on
a VM boot and a pre-defined magic number is stored
in it. If the hypervisor cannot obtain that magic num-
ber after the decryption of the boot sector, UVBond
can automatically detect illegal replacement of the entire
encrypted disk.
To completely guarantee that an encrypted disk is user’s,

it is necessary to check the integrity of the entire disk, e.g.,
using a Merkle hash tree [44]. However, it is not realistic

Inokuchi and Kourai Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:3 Page 11 of 22

to store hash data in the hypervisor because extra hash
data is needed in addition to the original disk data and
the size of hash data becomes large. For example, 4 GB of
hash data is needed for 1 TB of disk if we use a 256-bit
hash value for 4-KB data.Without such integrity checking,
users can confirm that correct encrypted disks are used if
a VM is booted correctly. In practice, it is difficult formali-
cious cloud operators to create one encrypted disk image
by combining correct and malicious data. As proposed in
CloudVisor [3], it is possible to cache only a small amount
of hash data inside the hypervisor. This is our future work.

Secure execution of management commands
Serialization of hypercall automata
When a user executes a management command to his
VM, the management client sends an encrypted pair of
a VM descriptor and a hypercall automaton as well as a
command and a target VM name to the server. Since a
hypercall automaton is a directed graph, UVBond rep-
resents it as one-dimensional array to make encryption
and network transfers easy and efficient, as illustrated in
Fig. 7. This array consists of a set of state information, each
of which is a pair of an input for transiting to that state
and the states to which the automaton can transit from
that state. A state is represented as an array index and
each input is a hypercall number and, if any, the number
of its subdivided operation. For example, the domctl and
sysctl hypercalls need to specify an operation because they
are collective hypercalls and provide various functions.
Note that this array format assumes that any transitions
to each state are caused only by the same hypercall. This
is because the management commands for which we have
created hypercall automata had only such state transi-
tions. If this condition is not satisfied, we can divide one
state into multiple.
In the example of Fig. 7, array elements with indexes

0 and 1 mean two transitions from state 0 to 1 and 2,

respectively. The number of transitions is determined by
-1 stored in an element with index 2. The former transi-
tion occurs when the hypercall with the number stored
in an element with index 3 is issued. The latter transition
occurs when the hypercall with the number stored in an
element with index 6 is issued and its operation is equal to
the number stored in an element with index 7. Similarly,
an element with index 4 means one transition from state
1 to 2, while one with index 8 means one transition from
state 2 to 3. The latter transition occurs when the hyper-
call number is the value stored in an element with index
10 and its operation number is that stored in an element
with index 11.
To make it easier to convert a hypercall automaton to

such an array, we have developed an automaton converter.
Using the converter, users can input state information
with one input and multiple transitions. For each state,
they are asked a hypercall number and, if any, an opera-
tion number as an input and state numbers as destinations
of transitions, except for the initial state. The input is not
asked for the initial state, while the transition should be -
1 for the final states. The automaton converter generates
an array for a hypercall automaton from the inputted state
information. Thanks to the converter, users do not care
about index numbers used in the array. The current con-
verter provides only a simple interface and it is our future
work to provide a domain-specific language for defining a
hypercall automaton.
The management server translates the received VM

name into the ID of a running VM and passes it and the
received pair to the hypervisor before the execution of
the specified management command. First, the hypervi-
sor decrypts the pair using the session key registered to
the specified VM. Then, it compares the decrypted VM
descriptor with that registered to the VM. If these are
the same, the hypervisor registers the decrypted hyper-
call automaton to the VM. Otherwise, it considers that

Fig. 7 The serialization of a hypercall automaton

Inokuchi and Kourai Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:3 Page 12 of 22

as illegal access or corruption by attacks and returns an
“operation not permitted” error encrypted by the session
key. To prevent replay attacks, amonotonic counter can be
used between the management client and the hypervisor.

Validity check with hypercall automata
Using the registered hypercall automaton, UVBond
checks the validity of issued hypercalls while the com-
mand is executed.When a hypercall is issued, the hypervi-
sor examines the states to which the automaton can transit
from the current state. The current state is pointed by
the index of the array for the hypercall automaton. If the
issued hypercall is a possible input, the hypervisor updates
the current index and transits to the next state. Then it
permits the execution of the hypercall. If the hypercall is
not permitted in the hypercall automaton, UVBond con-
siders the issue of that hypercall as illegal and denies the
execution. When the execution of the management com-
mand is completed, the management server obtains the
status of the hypercall automaton from the hypervisor
and returns it to the management client. The status is
whether the hypercall sequence is accepted or not and is
encrypted by the hypervisor. The management client can
know whether the command is completed or not.
To distinguish hypercalls issued simultaneously by vari-

ous management commands, UVBond applies the hyper-
call automaton only to the process that registers it. Since
the hypervisor cannot identify processes of the operat-
ing system, UVBond uses the value of the CR3 register,
as proposed in [45]. In this register, the physical address
of the page directory of a process is stored and is unique
to each process. When the hypervisor registers a hyper-
call automaton to a VM, it associates the current value of
this register with the hypercall automaton. When a hyper-
call is issued, the hypervisor searches for the hypercall

automaton on the basis of the value of the CR3 register
and uses it, as illustrated in Fig. 8.

Secure VM resumption andmigration
UVBond enables users to continue to securely manage
their VMs after suspended VMs are resumed. VM sus-
pension saves the states of a VM to a disk, while VM
resumption restores them. UponVM resumption, the user
registers the disk encryption key of the target VM to the
hypervisor again. At this time, cloud operators could reg-
ister their key and resume the VM with their malicious
disk. To prevent this attack, the hypervisor encrypts the
CPU state of the VM using the disk encryption key on
VM suspension, as illustrated in Fig. 9. Then, it decrypts
the state using a newly registered key on VM resumption.
If a malicious key is registered, the CPU state cannot be
restored correctly and the VM cannot be restarted. Note
that the user registers a new session key and receives a
new VM descriptor.
For VM migration, UVBond enables VMs to be

migrated without explicit key re-registration by users.
Unlike VM resumption, a user cannot manually register
his disk encryption key to the hypervisor at the
destination host because he can send the migration
command only to the source host. At the source host,
UVBond obtains the disk encryption key and the session
key from the hypervisor and transfers them to the des-
tination host, as illustrated in Fig. 10. These keys are
encrypted by the public key of the destination hypervi-
sor. To use such a public key by specifying an IP address,
UVBond registers pairs of an IP address and a public
key to the hypervisor in advance. At the destination host,
UVBond automatically registers the disk encryption key
and the session key to the hypervisor again. These keys are
decrypted by the private key of that hypervisor. Malicious

Fig. 8 Binding hypercall automata to management commands

Inokuchi and Kourai Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:3 Page 13 of 22

Fig. 9 Secure VM resumption using encrypted CPU state. a Suspension. b Resumption

replacement of the keys is prevented by the same mech-
anism as VM resumption. Note that the user can use the
same VM descriptor before VMmigration.

Experiments
We conducted experiments to confirm the effectiveness
of UVBond. We used a PC with an Intel Xeon E3-1290 v2
processor, 8 GB of memory, and 1 TB of HDD. For a VM,
we assigned two virtual CPUs, 1 GB ofmemory, and 20GB
of virtual disk. We used Xen 4.4.0 modified for UVBond
and ran Linux 3.16 in Dom0 and Linux 3.13 in a VM. For
comparison, we used vanilla Xenwithoutmodification. As
a client host or a destination host of VM migration, we
used a PC with the same spec and software as the above.
These two hosts were connected with Gigabit Ethernet.

Creation of hypercall automata
To confirm that hypercall automata can be described
for management commands, we have created various
hypercall automata. First, we injected code for logging
hypercalls into libxc, which is a core library provided by

Xen. Then, we executed various commands with vari-
ous parameters using Xen’s xl tool and collected hypercall
sequences. Using these hypercall sequences, we created
hypercall automaton. This is not so difficult task because
most of the commands always issued the same hypercall
sequences even when we executed them with different
parameters. Fig. 11 shows part of the created hypercall
automata and Table 2 lists the used hypercalls.
Figure 11a shows the hypercall automaton for the pause

command, which temporarily stops the execution of a
VM. It first issues eight xen_version hypercalls. The xl tool
always issues these hypercalls before issuing command-
specific hypercalls. These hypercalls are used for execut-
ing different operations. Next, the command can issue
the sysctl hypercall with the getdomaininfolist operation,
which is hereafter denoted by sysctl [getdomaininfolist].
This hypercall is used to convert a VM name to its ID. It
is always issued when a VM is specified by name. If the
ID is directly specified, this hypercall is skipped. Finally,
the command issues the domctl [pausedomain] hypercall,
which stops all the virtual CPUs of the specified VM.

Fig. 10 Secure VM migration with keys

Inokuchi and Kourai Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:3 Page 14 of 22

Fig. 11 Various hypercall automata

Inokuchi and Kourai Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:3 Page 15 of 22

Table 2 The summary of the hypercalls used in Fig. 11

Hypercall Description of operations

xen_version version and extraversion (get the version number), compile_info (get compile information), capabilities (get supported interfaces),
changeset (get the changeset), platform_parameters (get platform-specific parameters), pagesize (get the page size), and
commandline (get command-line options)

sysctl getdomaininfolist (get information on VMs) and physinfo (get information on virtual hardware)

domctl pausedomain (stop the execution of a VM), unpausedomain (restart a paused VM), destroydomain (terminate a VM), max_mem
(set the maximummemory size), get_address_size (get the address size), getdomaininfo (get information on a VM), gethvmcontext
(get information on a fully virtualized VM), getvcpuinfo (get the state of virtual CPUs), gettscinfo (get timestamp counters), and
getpageframeinfo3 (get page types)

hvm_op get_param (get the parameters used for a fully virtualized VM)

memory_op get_sharing_freed_pages (get the number of pages released by memory sharing), get_sharing_shared_pages (get the number of
shared pages), set_pod_target (set the number of pages used for population-on-demand), maximum_ram_page (get themaximum
number of pages), maximum_gpfn (get the maximum guest PFN), and machphys_mfn_list (get the list of MFNs)

mmu_update map the memory of a VM

Figure 11b shows the hypercall automaton of the
unpause command, which restarts executing a stopped
VM. The first eight xen_version hypercalls and the fol-
lowing one sysctl hypercall are folded because they are
the same as those used for the pause command. After
issuing these hypercalls, the command issues the sysctl
[getdomaininfolist] hypercall. This hypercall returns a
VM type of full virtualization or para-virtualization. If the
VM is fully virtualized, the command resumes the device
model of the VM. Finally, the command issues the domctl
[unpausedomain] hypercall and wakes up the VM.
Figure 11c shows the hypercall automaton for the shut-

down command, which sends a shutdown signal to a
VM. The first ten hypercalls are the same as those in the
unpause command. This command executes the hvm_op
[get_param] hypercall and obtains callback IRQ used for
a para-virtualized interrupt mechanism. The parameter
obtained by the get_param operation can be also specified
in the hypercall automaton, but the current implementa-
tion does not support operation parameters. If the VM
can accept a shutdown signal, the hypervisor writes a
shutdown request to XenStore running in Dom0. Since
XenStore can be accessed without issuing any hypercalls,
the hypervisor automaton does not include any transition
for that. This may result in the same hypercall automaton
for several commands. For example, UVBond cannot dis-
tinguish hypercall sequences for the shutdown and reboot
commands. The difference between these two commands
is only the value written to XenStore. We can extend
hypercall automata so as to include access to XenStore
because UVBond can securely monitor the communica-
tion with XenStore in the hypervisor.
Figure 11d shows the hypercall automaton for the

destroy command, which terminates a VM without shut-
down. This command issues two sysctl [getdomainin-
folist] hypercalls. The first one is used to check the exis-
tence of the specified VM and the second one is used to
obtain a VM type. Then, the command stops the VMusing

the sysctl [pausedomain] hypercall. After that, it issues
several sysctl [getdomaininfolist] hypercalls, depending
on the number of virtual devices of the VM. Finally, the
command destroys the VM using the domctl [destroydo-
main] hypercall.
Figure 11e shows the hypercall automaton for themem-

set command, which changes the memory size of a VM.
This hypercall automaton accommodates two hypercall
sequences. When this command is executed to Dom0 for
the first time after the boot, it issues the sysctl [getdo-
maininfolist] hypercall to obtain the current and maxi-
mum memory sizes and write them to XenStore. After
that, it issues the sysctl [physinfo] hypercall and twomem-
ory_op hypercalls to confirm that physical information
of the VM can be obtained. These hypercalls are not
issued when the command is executed to Dom0 later or
to regular VMs. Then, the command issues the domctl
[max_mem] hypercall and changes the memory size of the
VM.
Figure 11f shows part of the hypercall automaton for

the save command, which saves the state of a VM to
a disk. The hypercall automaton in this figure is used
for a helper program invoked by the command and sup-
ports only fully virtualized VMs. The command issues
several hypercalls, invokes the helper, and then issues
hypercalls for VM destruction. The last step is the same
as the destroy command. The helper issues three mem-
ory_op hypercalls to obtain the memory size of the VM,
the size of physical memory actually allocated to the
VM, and the list of physical memory pages. Then, it
saves memory contents with page types obtained by issu-
ing many mmu_update and domctl [getpageframeinfo3]
hypercalls. The state of CPUs is saved by the same num-
ber of domctl [getvcpuinfo] hypercalls as virtual CPUs.
In addition, timestamp counters are saved by issuing the
domctl [gettscinfo] hypercall. The state specific to a fully
virtualized VM is saved by the hvm_op [get_param] and
domctl [gethvmcontext] hypercalls.

Inokuchi and Kourai Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:3 Page 16 of 22

Security evaluation
We examined that a VM could be booted with a virtual
disk only when we used the corresponding disk encryp-
tion key. When we registered a correct key to the hyper-
visor, the VM could be booted normally. However, using
an incorrect key, the VM could not read the boot loader
from its disk because disk data was not decrypted cor-
rectly. This means that malicious cloud operators cannot
boot users’ VMs.
After a VM is booted correctly, we examined that

UVBond could detect the execution of illegal commands
by using VM descriptors and hypercall automata. We
used six management commands of the xl tool: pause,
unpause,mem-set, shutdown, destroy, and save. We exe-
cuted these commands to a target VM with the correct
VM descriptor and hypercall automata. As a result, we
confirmed that these commands could be normally exe-
cuted. As illegal execution, we executed these commands
to a different VM that did not correspond to the specified
VM descriptor. In addition, we executed a different com-
mand that did not match the specified hypercall automa-
ton to the correct VM. In either case, we could detect the
illegal execution of management commands.
Next, we examined that a VM could be resumed only

with a correct disk encryption key. When we registered a
correct key to the hypervisor, the VM could be restarted
normally. However, using an incorrect key, the resumed
VM stopped soon because its CPU state could not be
restored correctly. This means that malicious cloud oper-
ators cannot resume users’ VMs with a malicious disk and
its encryption key.
Similarly, we examined that VM migration could suc-

ceed only with a transferred disk encryption key. When
the source host transferred a correct key to the destina-
tion, a migrated VM was restarted correctly. However,
when we discarded the transferred key and registered an
incorrect key to the hypervisor at the destination host, we
could not access a migrated VM due to the same reason as
the failure on VM resumption.
In addition, we examined that a VM could be intro-

spected only by its user. For this experiment, we have
developed a simple command for introspecting the ker-
nel version stored in VM’s memory using the libxc library
in Xen. Specifically, this VMI command translates the
virtual address of the linux_banner variable in the ker-
nel into a physical address and obtains the string of the
kernel version. It first checks that the specified VM is
fully virtualized using the domctl [getdomaininfo] hyper-
call. If so, it obtains the value of the CR3 register, which
points to the page directory, using the domctl [gethvm-
context_partial] hypercall. Then the command walks the
page tables by mapping VM’s memory using multiple
mmu_update hypercalls. Finally, it accesses the mem-
ory specified by the obtained physical address. For this

command, we have also created a hypercall automaton.
When we specified both the correct VM descriptor and
hypercall automaton, this command could show the ker-
nel version. With either an incorrect VM descriptor or
an incorrect hypercall automaton, however, it failed to be
executed.
We also examined that the virtual serial console of a

VM could be used by its user. The console command in
the xl tool does not use an identifiable sequence of hyper-
calls because it just accesses the virtual serial device in the
device emulator running in Dom0. Fortunately, SCCrypt
[18] registers a key for encrypting a virtual serial con-
sole to the hypervisor using a new hypercall. Using this
hypercall, we could create a hypercall automaton for the
management command used for SCCrypt. Since it was
not easy to port SCCrypt, we have added only the hyper-
call for SCCrypt to the hypervisor. When we specified
both the correct VM descriptor and hypercall automaton,
we could register an encryption key for SCCrypt success-
fully. However, the hypercall denied that registration if we
used either an incorrect VM descriptor or an incorrect
hypercall automaton.

Performance of hypercalls
To clarify the overhead per hypercall execution, we have
developed two simple commands executing only one
hypercall, domctl [pausedomain] or domctl [unpause-
domain]. For these commands, we created hypercall
automata, each of which includes only two states and
one transition. Then, we executed these commands in
Dom0 and measured the execution time. Figure 12 shows
the execution time of the commands in UVBond and
vanilla Xen. For both commands, the overhead was about

Fig. 12 The execution time of only one hypercall

Inokuchi and Kourai Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:3 Page 17 of 22

Fig. 13 The execution time of management commands (local). a Short-time. b Long-time

0.6 ms. This mainly came from the registration of a
hypercall automaton, including encryption and encoding.
The registered hypercall automaton was checked when a
hypercall was issued, but the execution time of a hypercall
was almost not affected.

Performance of management commands
To examine the execution overhead of real commands,
we executed the above six management commands of
the xl tool. For the mem-set command, we measured
the time of the first and second execution because the
hypercall sequences for them were different. Figure 13
shows the execution time when we executed management
commands by invoking the xl tool from the management
server in Dom0. For short-time commands, the over-
head of UVBond was 1.9–2.6 ms and became larger than
that for the two simple commands used in the previous
subsection. Since the registration of a hypercall automa-
ton was done only once for each command, the root

cause of this overhead was that the size of a hypercall
automaton became larger and the number of issued hyper-
calls increased. For long-time commands, the overhead of
UVBond was negligible because the registration time of a
hypercall automaton and the execution time of hypercalls
were relatively short, compared with the total execution
time of the commands.
To examine the overhead when remote users executed

management commands to their VMs, we remotely exe-
cuted the above six management commands. In this
experiment, a remote client sent a management command
with a VM descriptor and a hypercall automaton to the
management server. Figure 14 shows the remote execu-
tion time. The execution time increased by 37–40 ms in
any commands due to network communication. The over-
head of UVBond was 1.6 ms at maximum. Compared with
the total execution time of the commands, this was rela-
tively small. The root cause of this overhead was the same
as that of the above local command execution.

Fig. 14 The execution time of management commands (remote). a Short-time. b Long-time

Inokuchi and Kourai Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:3 Page 18 of 22

Fig. 15 The boot time of a VM

Performance of VM boot
We examined the boot time of a VM to confirm the over-
head of UVBond. For comparison, we used UVBond with
AES-NI disabled. We measured the time from when we
executed the create command for creating a VM until the
system was booted in the VM. Since the page cache in
Dom0 affected the disk performance of the VM largely, we
measured the time both when we cleared the page cache
before booting the VM and when we booted the VM again
with the page cache kept.
As shown in Fig. 15, the boot time in UVBond was 6

seconds longer than that in vanilla Xen without depend-
ing on the page cache. This is because the booting process
of the operating system conflicted with the decryption of
the virtual disk. Figure 16 shows the CPU utilization of
Dom0 and the VM during the boot. The VM read 258MB
of data from the disk, while it wrote only 5 MB of data.
Since read data was decrypted by the hypercall issued by

Fig. 17 The resumption time of a VM

Dom0, the CPU utilization of Dom0 increased by 16 per-
cent point on average. Compared with when we disabled
AES-NI, it was shown that AES-NI made the boot only 1
second faster.

Performance of VM resumption andmigration
We examined the performance of resuming a VM sus-
pended by the save command. We measured the time
from when we executed the restore command until it was
completed. As shown in Fig. 17, the resumption time in
UVBond was almost the same as that in the traditional
system. UVBond was slightly faster than the traditional
system, but the variance was relatively large and therefore
the difference was within the margin of error. This means
that the overhead of the decryption of the CPU state was
negligible, compared with a long resumption time.

Fig. 16 The CPU utilization during VM boot. a UVBond. b vanilla

Inokuchi and Kourai Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:3 Page 19 of 22

Fig. 18Migration performance. aMigration time. b Downtime

Next, we examined the performance of migrating a
VM using UVBond. We measured the migration time,
which was the time from when we executed the migrate
command until it was completed. As shown in Fig. 18a,
the migration time in UVBond was 1.4 seconds longer
than vanilla Xen because UVBond had to transfer the
disk encryption key and the session key and encrypt and
decrypt the CPU state. The encryption of the CPU state
needed 0.2 seconds. Also, we measured the downtime,
which was the time from when the VMwas stopped at the
source host until it was resumed at the destination host.
As shown in Fig. 18b, the downtime in UVBond became
only 50 ms longer.

Performance of disk I/O
We examined the disk I/O performance using the fio
benchmark [46]. In addition to UVBond with or with-
out AES-NI and vanilla Xen, we used the system using
Linux dm-crypt [47] inside a VM. dm-crypt encrypts and

decrypts disks in the operating system of a VM. For dm-
crypt, we used AES-ECB as the encryptionmethod, which
was the same as that of UVBond. We measured read and
write performance of sequential and random access.
Figure 19 shows the throughput and the latency when

a VM used a virtual disk on a local disk. Compared with
vanilla Xen, the throughput in UVBond degraded only by
3 to 10% and the latency increased only by 0.8 to 1.3 ms
thanks to AES-NI. Unlike the experiment of VM boot,
the performance did not degrade largely because the CPU
utilization was not so high.
Without AES-NI, the throughput degradation was 45%

and the latency increase was 6.5 ms at maximum. The
throughput in UVBond was comparable to or even bet-
ter than that in dm-crypt, while the latency was slightly
longer.
Figure 20 shows the throughput and the latency when

a VM used a virtual disk on NFS. This configuration is
often used when a VM is migrated. The performance

Fig. 19 The performance of file access (local disk). a Throughput. b Latency

Inokuchi and Kourai Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:3 Page 20 of 22

Fig. 20 The performance of file access (NFS). a Throughput. b Latency

degradation in UVBond was similar to that when using a
local disk. The throughput degraded by 1.6 to 6.6%, while
the latency increased by 0 to 0.7 ms.

Conclusion
This paper proposed UVBond for providing strong user
binding to their VMs. UVBond enables only a user to boot
his VM by decrypting its encrypted disk inside the trusted
hypervisor. Then it issues a VM descriptor for securely
identifying that VM. To bridge the semantic gap between
high-level management commands and low-level hyper-
calls, UVBond uses hypercall automata and accepts only
the sequences of hypercalls issued by user’s commands.
Using UVBond, untrusted cloud operators cannot exe-
cute arbitrary commands to user’s VMs or redirect user’s
commands to their malicious VMs.We have implemented
UVBond in Xen and created various hypercall automata.
Then we confirmed that a VM descriptor and hypercall
automata prevented insider attacks and that the overhead
was negligible in remote VMmanagement.
One of our future work is to extend hypercall automata

so as to include access to XenStore in Xen. Since man-
agement commands can access XenStore without hyper-
calls, UVBond needs to restrict accepted commands more
strictly. It is not difficult to incorporate XenStore access
into hypercall automata because UVBond already mon-
itors it. In addition, we need to include the parameters
of hypercalls in hypercall automata. In the current imple-
mentation, generic hypercalls such as domctl and sysctl
consider only the first parameter used for specifying a
subdivided operation. To prevent the Iago attack [48],
we need to extend our implementation so as to consider
more parameters. Also, it is necessary for one hyper-
call automaton to accept hypercall sequences issued by
a group of multiple processes. This is because several
management commands invoke external programs.

Another direction is to apply UVBond to large cloud
management systems such as OpenStack. To support
UVBond in such systems, we have to extract usedmanage-
ment commands and create their hypercall automata. If
there are management commands executed across multi-
ple compute nodes, we need to extend hypercall automata
so as to accept a sequence of hypercalls issued by multiple
hypervisors. Also, we need to modify the Web inter-
face and API so as to send VM descriptors and hypercall
automata as well as commands. In addition, it is interest-
ing to apply UVBond to not only VMs but also containers.
We would need to use system-call automata instead of
hypercall automata because containers are managed with
system calls.

Abbreviations
IaaS: Infrastructure-as-a-service; IDS: Intrusion detection systems; PIO:
Programmable input and output; SD: Service domain; SMM: System
management mode; SSC: Self-service cloud; TCB: Trusted computing base; VM:
Virtual machines; VMI: Virtual machine introspection

Acknowledgements
Not applicable.

Authors’ contributions
KI implemented the system and conducted experiments. KK conducted the
research, designed the system, and wrote the manuscript. Both authors read
and approved the manuscript.

Funding
The research results have been achieved by the “Resilient Edge Cloud
Designed Network (19304),” the Commissioned Research of National Institute
of Information and Communications Technology (NICT), Japan.

Availability of data andmaterials
The dataset supporting the conclusions of this article is available in the OSF
repository at https://osf.io/dx9ve/.

Competing interests
The authors declare that they have no competing interests.

Received: 27 April 2019 Accepted: 8 January 2020

https://osf.io/dx9ve/

Inokuchi and Kourai Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:3 Page 21 of 22

References
1. Santos N, Gummadi KP, Rodrigues R (2009) Towards Trusted Cloud

Computing. In: Proceedings of Workshop on Hot Topics in Cloud
Computing. USENIX Association, CA, USA

2. Li C, Raghunathan A, Jha NK (2010) Secure Virtual Machine Execution
under an Untrusted Management OS. In: Proceedings of IEEE
International Conference on Cloud Computing. pp 172–179. https://doi.
org/10.1109/cloud.2010.29

3. Zhang F, Chen J, Chen H, Zang B (2011) CloudVisor: Retrofitting
Protection of Virtual Machines in Multi-tenant Cloud with Nested
Virtualization. In: Proceedings of ACM Symposium on Operating Systems
Principles. pp 203–216. https://doi.org/10.1145/2043556.2043576

4. Butt S, Lagar-Cavilla HA, Srivastava A, Ganapathy V (2012) Self-service
Cloud Computing. In: Proceedings of ACM Conference on Computer and
Communications Security. pp 253–264. https://doi.org/10.1145/2382196.
2382226

5. Li M, Zang W, Bai K, Yu M, Liu P (2013) MyCloud: Supporting
User-configured Privacy Protection in Cloud Computing. In: Proceedings
of the 29th Annual Computer Security Applications Conference.
pp 59–68. https://doi.org/10.1145/2523649.2523680

6. Kourai K, Juda K (2016) Secure Offloading of Legacy IDSes Using Remote
VM Introspection in Semi-trusted Clouds. In: Proceedings of IEEE
International Conference on Cloud Computing. pp 43–50. https://doi.
org/10.1109/cloud.2016.0016

7. Miyama S, Kourai K (2017) Secure IDS Offloading with Nested
Virtualization and Deep VM Introspection. In: Proceedings of European
Symposium on Research in Computer Security. pp 305–323. https://doi.
org/10.1007/978-3-319-66399-9_17

8. Futagami S, Unoki T, Kourai K (2018) Secure Out-of-band Remote
Management of Virtual Machines with Transparent Passthrough. In:
Proceedings of the 2018 Annual Computer Security Applications
Conference. pp 430–440. https://doi.org/10.1145/3274694.3274749

9. PricewaterhouseCoopers (2014) US Cybercrime: Rising Risks. Reduced
Readiness: Key Findings from the 2014 US State of Cybercrime Survey.
http://www.pwc.com/us/en/increasing-iteffectiveness/publications/
assets/2014-us-state-of-cybercrime.pdf. Accessed 11 Jan 2020

10. CyberArk Software (2009) Trust, Security & Passwords Survey. https://
www.cyberark.com/press/global-security-survey-findsinsider-snooping-
rise/. Accessed 11 Jan 2020

11. Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt
I, Warfield A (2003) Xen and the Art of Virtualization. In: Proceedings of
Symposium on Operating Systems Principles. pp 164–177. https://doi.
org/10.1145/1165389.945462

12. Inokuchi K, Kourai K (2018) UVBond: Strong User Binding to VMs for
Secure Remote Management in Semi-Trusted Clouds. In: Proceedings of
IEEE/ACM International Conference on Utility and Cloud Computing.
pp 213–222. https://doi.org/10.1109/UCC.2018.00030

13. TechSpot News (2010) Google Fired Employees for Breaching User
Privacy. http://www.techspot.com/news/40280-google-fired-
employees-for-breaching-user-privacy.html. Accessed 27 Apr 2019

14. Oracle Corporation (2019) Oracle Database 2 Day DBA. https://docs.
oracle.com/en/database/oracle/oracle-database/19/admqs/
administering-user-accounts-and-security.html. Accessed 22 Nov 2019

15. IBM Corporation (2018) IBM Domino 10.0.1 Documentation. https://www.
ibm.com/support/knowledgecenter/SSKTMJ_10.0.1/admin/conf_
restrictingadministratoraccess_t.html. Accessed 22 Nov 2019

16. Garfinkel T, Rosenblum M (2003) A Virtual Machine Introspection Based
Architecture for Intrusion Detection. In: Proceedings of Network and
Distributed Systems Security Symposium. Internet Society, VA, USA.
pp 191–206

17. Egawa T, Nishimura N, Kourai K (2012) Dependable and Secure Remote
Management in IaaS Clouds. In: Proceedings of International Conference
on Cloud Computing Technology and Science. pp 411–418. https://doi.
org/10.1109/cloudcom.2012.6427597

18. Kourai K, Kajiwara T (2015) Secure Out-of-band Remote Management
Using Encrypted Virtual Serial Consoles in IaaS Clouds. In: Proceedings of
International Conference on Trust, Security and Privacy in Computing and
Communications. pp 443–450. https://doi.org/10.1109/Trustcom.2015.
405

19. The OpenStack Project OpenStack Open Source Cloud Computing
Software. https://www.openstack.org/. Accessed 27 Apr 2019

20. Butt S, Ganapathy V, Srivastava A (2014) On the Control Plane of a
Self-service Cloud Platform. In: Proceedings of Symposium on Cloud
Computing. https://doi.org/10.1145/2670979.2670989

21. Murray D, Milos G, Hand S (2008) Improving Xen Security through
Disaggregation. In: Proceeedings of the 4th ACM International
Conference on Virtual Execution Environments. pp 151–160. https://doi.
org/10.1145/1346256.1346278

22. Colp P, Nanavati M, Zhu J, Aiello W, Coker G, Deegan T, Loscocco P,
Warfield A (2011) Breaking Up is Hard to Do: Security and Functionality in
a Commodity Hypervisor. In: Proceeedings of the 23rd ACM Symposium
on Operating Systems Principles. pp 189–202. https://doi.org/10.1145/
2043556.2043575

23. Li C, Raghunathan A, Jha NK (2012) A Trusted Virtual Machine in an
Untrusted Management Environment. IEEE Trans Serv Comput
5(4):472–483. https://doi.org/10.1109/TSC.2011.30

24. Tadokoro H, Kourai K, Chiba S (2012) Preventing Information Leakage
from Virtual Machines’ Memory in IaaS Clouds. IPSJ Online Trans
5:156–166. https://doi.org/10.2197/ipsjtrans.5.156

25. Bleikertz S, Vogel C, Groß T, Mödersheim S (2015) Proactive Security
Analysis of Changes in Virtualized Infrastructures. In: Proceedings of the
31st Annual Computer Security Applications Conference. pp 51–60.
https://doi.org/10.1145/2818000.2818034

26. OpenStack Project OpenStack Docs: Welcome to Congress. https://docs.
openstack.org/congress/. Accessed 22 Nov 2019

27. Li S, Koh J, Nieh J (2019) Protecting Cloud Virtual Machines from
Hypervisor and Host Operating System Exploits. In: Proceedings of the
28th USENIX Security Symposium. USENIX Association, CA, USA.
pp 1357–1374

28. Zhu M, Tu B, Wei W, Meng D (2017) HA-VMSI: A Lightweight Virtual
Machine Isolation Approach with Commodity Hardware for ARM. In:
Proceedings of the 13th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments. pp 242–256. https://doi.org/10.1145/
3050748.3050767

29. Wu Y, Liu Y, Liu R, Chen H, Zang B, Guan H (2018) Comprehensive VM
Protection Against Untrusted Hypervisor Through Retrofitted AMD
Memory Encryption. In: Proceedings of 2018 IEEE International
Symposium on High Performance Computer Architecture. pp 441–453.
https://doi.org/10.1109/hpca.2018.00045

30. Baumann A, Peinado M, Hunt G (2014) Shielding Applications from an
Untrusted Cloud with Haven. In: Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation.
pp 267–283. https://doi.org/10.1145/2799647

31. Ben-Yehuda M, Day MD, Dubitzky Z, Factor M, Har’El N, Gordon A, Liguori
A, Wasserman O, Yassour B-A (2010) The Turtles Project: Design and
Implementation of Nested Virtualization. In: Proceedings of USENIX
Symposium on Operating Systems Design and Implementation. USENIX
Association, CA, USA. pp 423–436

32. Shinagawa T, Eiraku H, Tanimoto K, Omote K, Hasegawa S, Horie T, Hirano
M, Kourai K, Oyama Y, Kawai E, Kono K, Chiba S, Shinjo Y, Kato K (2009)
BitVisor: A Thin Hypervisor for Enforcing I/O Device Security. In:
Proceedings of International Conference on Virtual Execution
Environments. pp 121–130. https://doi.org/10.1145/1508293.1508311

33. Hofmeyr S, Forrest S, Somayaji A (1998) Intrusion Detection Using
Sequences of System Calls. Comput Secur 6:151–180. IOS Press, https://
doi.org/10.3233/JCS-980109

34. Rutkowska J, Wojtczuk R (2008) Preventing and Detecting Xen Hypervisor
Subversions. Black Hat, USA

35. Wang J, Stavrou A, Ghosh A (2010) HyperCheck: A Hardware-assisted
Integrity Monitor. In: Proceedings of International Symposium on Recent
Advances in Intrusion Detection. pp 158–177. https://doi.org/10.1007/
978-3-642-15512-3_9

36. Azab A, Ning P, Wang Z, Jiang X, Zhang X, Skalsky N (2010) HyperSentry:
Enabling Stealthy In-context Measurement of Hypervisor Integrity. In:
Proceedings of ACM Conference on Computer and Communications
Security. pp 38–49. https://doi.org/10.1145/1866307.1866313

37. McCune J, Parno B, Perrig A, Reiter M, Isozaki H (2008) Flicker: An
Execution Infrastructure for TCB Minimization. In: Proceedings of
European Conference on Computer Systems. pp 315–328. https://doi.
org/10.1145/1352592.1352625

38. Deng L, Liu P, Xu J, Chen P, Zeng Q (2017) Dancing with Wolves: Towards
Practical Event-driven VMMMonitoring. In: Proceedings of the 13th ACM

https://doi.org/10.1109/cloud.2010.29
https://doi.org/10.1109/cloud.2010.29
https://doi.org/10.1145/2043556.2043576
https://doi.org/10.1145/2382196.2382226
https://doi.org/10.1145/2382196.2382226
https://doi.org/10.1145/2523649.2523680
https://doi.org/10.1109/cloud.2016.0016
https://doi.org/10.1109/cloud.2016.0016
https://doi.org/10.1007/978-3-319-66399-9_17
https://doi.org/10.1007/978-3-319-66399-9_17
https://doi.org/10.1145/3274694.3274749
http://www.pwc.com/us/en/increasing-iteffectiveness/publications/assets/2014-us-state-of-cybercrime.pdf
http://www.pwc.com/us/en/increasing-iteffectiveness/publications/assets/2014-us-state-of-cybercrime.pdf
https://www.cyberark.com/press/global-security-survey-findsinsider-snooping-rise/
https://www.cyberark.com/press/global-security-survey-findsinsider-snooping-rise/
https://www.cyberark.com/press/global-security-survey-findsinsider-snooping-rise/
https://doi.org/10.1145/1165389.945462
https://doi.org/10.1145/1165389.945462
https://doi.org/10.1109/UCC.2018.00030
http://www.techspot.com/news/40280-google-fired-employees-for-breaching-user-privacy.html
http://www.techspot.com/news/40280-google-fired-employees-for-breaching-user-privacy.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/admqs/administering-user-accounts-and-security.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/admqs/administering-user-accounts-and-security.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/admqs/administering-user-accounts-and-security.html
https://www.ibm.com/support/knowledgecenter/SSKTMJ_10.0.1/admin/conf_restrictingadministratoraccess_t.html
https://www.ibm.com/support/knowledgecenter/SSKTMJ_10.0.1/admin/conf_restrictingadministratoraccess_t.html
https://www.ibm.com/support/knowledgecenter/SSKTMJ_10.0.1/admin/conf_restrictingadministratoraccess_t.html
https://doi.org/10.1109/cloudcom.2012.6427597
https://doi.org/10.1109/cloudcom.2012.6427597
https://doi.org/10.1109/Trustcom.2015.405
https://doi.org/10.1109/Trustcom.2015.405
https://www.openstack.org/
https://doi.org/10.1145/2670979.2670989
https://doi.org/10.1145/1346256.1346278
https://doi.org/10.1145/1346256.1346278
https://doi.org/10.1145/2043556.2043575
https://doi.org/10.1145/2043556.2043575
https://doi.org/10.1109/TSC.2011.30
https://doi.org/10.2197/ipsjtrans.5.156
https://doi.org/10.1145/2818000.2818034
https://docs.openstack.org/congress/
https://docs.openstack.org/congress/
https://doi.org/10.1145/3050748.3050767
https://doi.org/10.1145/3050748.3050767
https://doi.org/10.1109/hpca.2018.00045
https://doi.org/10.1145/2799647
https://doi.org/10.1145/1508293.1508311
https://doi.org/10.3233/JCS-980109
https://doi.org/10.3233/JCS-980109
https://doi.org/10.1007/978-3-642-15512-3_9
https://doi.org/10.1007/978-3-642-15512-3_9
https://doi.org/10.1145/1866307.1866313
https://doi.org/10.1145/1352592.1352625
https://doi.org/10.1145/1352592.1352625

Inokuchi and Kourai Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:3 Page 22 of 22

SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments. pp 83–96. https://doi.org/10.1145/3050748.3050750

39. Sgandurra D, Lupu E (2016) Evolution of Attacks, Threat Models, and
Solutions for Virtualized Systems. ACM Comput Surv 48(3). https://doi.
org/10.1145/2856126

40. Patil R, Modi C (2019) An Exhaustive Survey on Security Concerns and
Solutions at Different Components of Virtualization. ACM Comput Surv
52(1). https://doi.org/10.1145/3287306

41. Huang W, Ganjali A, Kim B, Oh S, Lie D (2015) The State of Public
Infrastructure-as-a-Service Cloud Security. ACM Computing Surv 47(4).
https://doi.org/10.1145/2767181

42. wolfSSL Inc. wolfSSL Embedded SSL/TLS Library. https://www.wolfssl.
com/. Accessed 27 Apr 2019

43. Red Hat Inc. Kernel Based Virtual Machine. http://www.linux-kvm.org/.
Accessed 22 Nov 2019

44. Merkle R (1980) Protocols for Public Key Cryptosystems. In: Proceedings of
IEEE Symposium on Research in Security and Privacy. https://doi.org/10.
1109/sp.1980.10006

45. Jones S, Arpaci-Dusseau A, Arpaci-Dusseau R (2006) Antfarm: Tracking
Processes in a Virtual Machine Environment. In: Proceedings of USENIX
Annual Technical Conference. USENIX Association, CA, USA

46. Axboe J fio: Flexible I/O Tester. https://github.com/axboe/fio. Accessed
27 Apr 2019

47. Broz̆ M dm-crypt: Linux Kernel Device-mapper Crypto Target. https://
gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt. Accessed 27 Apr 2019

48. Checkoway S, Shacham H (2013) Iago Attacks: Why the System Call API is
a Bad Untrusted RPC Interface. In: Proceedings of the 18th International
Conference on Architectural Support for Programming Languages and
Operating Systems. pp 253–264. https://doi.org/10.1145/2451116.
2451145

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1145/3050748.3050750
https://doi.org/10.1145/2856126
https://doi.org/10.1145/2856126
https://doi.org/10.1145/3287306
https://doi.org/10.1145/2767181
https://www.wolfssl.com/
https://www.wolfssl.com/
http://www.linux-kvm.org/
https://doi.org/10.1109/sp.1980.10006
https://doi.org/10.1109/sp.1980.10006
https://github.com/axboe/fio
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt
https://doi.org/10.1145/2451116.2451145
https://doi.org/10.1145/2451116.2451145

	Abstract
	Keywords

	Introduction
	VM management in semi-trusted clouds
	Related work
	Secure VM management on trusted hypervisors
	Secure VM management on untrusted hypervisors
	Secure disk encryption
	System-call automata

	UVBond
	Threat model
	Overview of UVBond
	Strong binding of users to VMs
	Hypercall automaton

	Implementation
	Overview of secure VM management
	Encryption of para-virtualized disk I/O
	Traditional disk I/O
	Duplication of grant pages
	Disk I/O in UVBond
	Using AES-NI in the hypervisor

	Encryption of fully virtualized disk I/O
	Confirming registered keys
	Confirming encrypted disks
	Secure execution of management commands
	Serialization of hypercall automata
	Validity check with hypercall automata

	Secure VM resumption and migration

	Experiments
	Creation of hypercall automata
	Security evaluation
	Performance of hypercalls
	Performance of management commands
	Performance of VM boot
	Performance of VM resumption and migration
	Performance of disk I/O

	Conclusion
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

