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Abstract  

The lap joint testing is designed to investigate the adhesive strength under pure shear loading. 

However, actually pure shear testing is very difficult to be realized in the experiment because of 

the bend deformation during testing causing the peeling force appearing at the adhesive region. To 

reduce the bend effect, this paper focuses on the intensity of singular stress field (ISSF) at the interface 

end in order to minimize the ISSF for lap joints. The results show that the ISSF decreases with 

increasing the adherend thickness. The minimum ISSF is obtained when the adherend thickness is 

large enough with the small deformation angle defined at the interface end. Since the strength of 

double lap joint (DLJ) is sometimes about two times larger than the strength of single lap joint 



 

(SLJ), the equivalent strength condition is discussed by changing adherend thicknesses of DLJ and 

SLJ. It is found that the strength of SLJ with adherend thickness 1t =7mm is nearly equal to that of 

double lap joint with 1t =1.5mm prescribed in Japanese Industrial Standard. 
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Nomenclature 

C ,C  Constants defined as the ISSF ratio 
2 1, ,C K K     , 

2 1, ,C K K      

e  Distance from center point of the loading surface to loading point 

E  Young’s modulus 

G  Shear modulus 

L  Fixed boundary length in Fig.3 (a), (b) 

K  ISSF, Intensity of singular stress field  

cK  Critical value of ISSF, critical intensity of singular stress field 

1l  Adherend length in Fig. 3 (a), (b) 

2l  Adherend length 2 1 adl l l d    in Fig. 3 (a), (b) 

adl  Bondline length in Fig. 3 (a), (b) 

P  Load parameter /P W = ot =14.15N/mm 

r  Radial distance away from the corner point O in Fig.3 (a), (b) 

1t  Adherend thickness in Fig.3 (a), (b)  

adt  Bondline thickness in Fig.3 (a), (b) 

t  Adherend end thickness in Fig.3 (a), (b), t = 2 1t + adt  

 ,   Dundurs’ material composite parameters defined in equation (2)  

,ol or   Deformation angles at the interface corner O 

C  Deformation angle at the interface corner C   

  Singular index obtained from eigenequation (1) 



,  
y xy

   Tension and shear stress component near the interface end (see Fig. 3) 

o  Tension stress at both ends of single lap joint 

c  Adhesive strength  

ave
  Average shear stress at fracture 

  Poisson’s ratio 

W  Joint width 

 

1. Introduction 

Due to the lower cost, high fatigue resistance and availability, stuctural adhesive has been 

widely used in a variety of industrial fields, such as automobile industry[1-4], shipbuilding [5,6], 

aircraft and spacecraft structures [7]. Structural adhesive has been replacing welding, screw, 

bolt,etc. It has been reported that the adhesive strength can be sometimes equivalent to the strength 

of the adherend [1, 2]. Recently, the authors have shown that the adhesive strength is controlled by 

the intensity of the singular stress field (ISSF) at the interface end. As shown in Fig. 1 (a) ~ (b), the 

butt joint strength can be expressed as a constant value of the critical ISSF cK =const. [8]. Also, 

as shown in Fig.1 (c) ~(d) the lap joint strength can be expressed as cK =const. [9-13]. Similarly, 

the adhesive bonded stength was previously expressed as crH =const in [14, 15]. Since those 

previous studies indicated that the ISSF may control the adhesive strength [8-17], rational and 

practical ISSF methods can be used for evaluating the adhesive strength.  

The testing method for the adhesive strength of lap joints is prescribed in Japanese Industrial 

Standards (JIS) [18]. However, usually the lap joint strength is affected by the specimen 

configuration. As an example, Fig. 2 (a) shows that the critical average shear stress of the double 

lap joint strength is nearly twice larger than the one of the single lap joint strength [19, 20]. Fig. 2 

(b) shows that the critical average shear stress leading to the results in Fig. 1 (b) [21]. In Fig. 2 (b), 

among the specimens A20-15 ~ A50-15 having different bondline length adl , the critical average 

shear stress ave  decreases with increasing the adhesive length. Therefore, Fig. 2 (b) shows the 

adhesive strength cannot be expressed as ave  = const.  



 

The single lap joint testing was originally intended to be conducted under pure shear loading, 

but actually the pure shear testing is very difficult to be realized experimentally. Due to the bend 

deformation during testing, the peeling force is always generated to prevent pure shear testing at 

the adhesive region. Since this peeling force is corresponding to the ISSF at the interface end, this 

study focuses on how to minimize the ISSF for single lap joint. Then, the effect of the specimen 

geometry on the ISSF will be discussed by considering the previous experimental studies [21]. 

Since the strength of double lap joint is usually much larger than the strength of single lap joint [19, 

20], the equivalent conditions for the single and double lap joints will be also discussed in this 

paper. 

 

 

(a) Butt joint model [8]  (c) Single lap joint model [9-13] 

 
 

(b) Adhesive strength of butt joint [8]  (d) Adhesive strength of single lap joint [9-13] 

 

Fig. 1 Adhesive strength expressed as a constant value of the critical ISSF 
cK

=const  



 

 

(a) Critical average shear stress obtained by single lap joint 

(SLJ) and double lap joint (DLJ) when the adherend is S45C 

and the adhesive is epoxy [19, 20] 

(b) Critical average shear stress experimentally obtained 

leading to the results in Fig.1(b) by varying bondline 

dimensions adl =20-50mm and adt =0.15-0.90mm when 

the adherend is aluminum alloy and the adhesive is 

epoxy [21] 

 

Fig. 2. Adhesive strength expressed as an average shear stress 

2. Lap joint modelling and mesh-independent technique to calculate the ISSF 

In this section, the ISSF method to evaluate lap joint strength will be explained. The 

mesh-independent techniques to calculate the ISSF can be found in [9-13]. The singular stress field 

for lap joints is characterized by the singular index  , which can be determined from eigenequation 

(1) [22-24].  As shown in Appendix A, Equation (1) has two real roots for most of the material 

combinations.

 

 

     

     

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2

4sin sin 4 sin sin 4 sin
2 2

1 3
2 cos 2 sin cos sin sin 0

2 2 2

 
          

 
      

      
          

      

    
         

    

.

 

 
(1) 

 
 

Here,   and  are Dundurs’ parameters [25] defined by Poisson’s ratio   and shear modulus 

G (m =1 is for adhesive, m =2 is for adherend).  
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Since the previous studies showed that the adhesive strength can be expressed as a constant 

value of the ISSF in 2D modelling [8-13], this study will discuss the effect of the specimen 



 

geometry on the ISSF. Table 1 shows the elastic parameters of the adherend and adhesive for the 

specimen used by Park et al [21]. Figure 3 shows two types of lap joint modelling by extending the 

specimen used in [21] with fixed bondline length adl =25mm, fixed bondline thickness adl =25mm 

under the load parameter /P W = ot =14.15N/mm. Here, the load parameter /P W = ot

=14.15N/mm is corresponding to tensile stress o =1MPa in Park’s specimen having the dimension t

= 2 1t + adt = (27+0.15) = 14.15mm and W =25mm [21]. The total length of the specimen in Fig.3 is 

225mm with d =10mm. In Fig. 3 (a), the adherend thickness 1t  
and fixed boundary length L  

are mainly changed. In Fig. 3 (b), the tensile direction is mainly changed with the distance e .   

 

 

Table 1 Material properties of adherend and adhesive. 

Materials 
Young’s modulus 

E [GPa] 

Poisson’s 

ratio   
    1  

2  

Adherend Aluminum alloy 6061- T6 68.9 0.3 
-0.8699 -0.06642 0.6062 0.9989 

Adhesive Epoxy resin 4.2 0.45 

 

 

 

(a) Lap joint model where the adherend thickness 1t  
and fixed boundary length L are 

mainly changed with fixed dimensions adl =25mm and adt =0.15mm under /P W = ot

=14.15N/mm  

 

(b) Lap joint model where the tensile direction is mainly changed with fixed dimensions adl

=25mm and adt =0.15mm under /P W =14.15N/mm   



 

Fig. 3 Analysis model and boundary condition 

The stresses y
 
and xy

 
around the interface end can be expressed as follows. The notation 

r  denotes the radial distance away from the corner singular point O. 
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1 2 1
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2 1, ,C K K     , 
2 1, ,C K K     . 

(3) 

   Here, 
1,K  and 

2,K   denote the ISSFs. The previous studies showed that the ratios 

2 1, ,C K K      and 
2 1, ,C K K      are almost constants except for extreme adhesive 

geometry [8-13]. The effects of 2

2

1

,K r 

 

 and 2

2

1

,K r 

 

 in Eq. (3) may be very small since 2

≈1. Also it is known that 
1,K   and 

1,K   are expressed by a single ISSF parameter [9-13], and 

therefore, both ISSFs in Eq. (3) can be controlled by 
1,K  alone.  

In this study, the reference solution is denoted by 
1

*

,K 
 and the unknown solution is denoted 

by 
1,K  . Then, FEM stresses obtained by the finite element method (FEM) are denoted by 

*

0,FEMy  for the reference solution and 0,FEMy  for unknown problem. Thus, from Eq. (3), the 

relation between 
1 1

*

, ,K K   
 and *

0,FEM 0,FEMy y  can be expressed as follows. 

If the reference ISSF 
1

*

,K 
 is available,  

1,K   can be obtained from the FEM stress ratio by 

applying the same mesh pattern to the reference problem [8-13]. In Eq.(4), the reference solution 

1

*

,K 
 can be obtained by using the Reciprocal Work Contour Integral Method (RWCIM). The detail 

information of the calculation process and the exact value of the reference solution 
1

*

,K 
were 

presented in [13]. Then, 
1,K   can be obtained from the FEM stress ratio by applying the same mesh 

pattern to the reference problem.  

Table 2 shows the singular indexes 1 , 2  for several material combinations considered in [26, 

27] including stainless steel SUS304, aluminum alloy A7075, silicon and IC substrate FR-4.5 as the 

adherends with resin as the adhesive. It is found that the weaker singular index 2 =0.9914~0.9999≈1, 

which is close to no singularity as 2 =1.  

1

1

, 0,FEM

* *

, 0,FEM

y

y

K

K

 

 




  (4) 



 

Table 2 Singular indexes for single lap joint with different material combinations. 

 Material 
Young’s modulus 

E [GPa] 

Poisson’s 

ratio   1  
2  

Adherend 

SUS304(stainless steel) 206 0.3 0.6568 0.9999 

A7075(aluminum alloys) 71 0.33 0.6489 0.9995 

Silicon 166 0.26 0.6552 0.9999 

FR-4.5(IC substrate) 15.34 0.15 0.6020 0.9914 

Adhesive Resin 2.74 0.38   

 

Figure 4 shows 2  values on ( , ) map for all material combinations. In Fig. 4, open circles 

(○) denote the results for several metals-resin combinations. All metal-resin combinations are in the 

range 1E = 108.4 – 206 GPa, 
1  = 0.249 – 0.300, 2E = 0.037 – 3.6 GPa, 2  = 0.294 – 0.498. Then, 

it is seen that all open circle marks are in the range 2 = 0.99-1. Since always 2 ≈1, the present 

method may be useful for evaluating all metal-resin lap joints. 

 

 

 

Fig.4 Values of singular index
2 on ( ,  ) map. 

Fig. 5 shows an example of FEM mesh around the interface end. The linear elastic analyses are 

performed under the plane strain condition by using the software MSC Marc. The element types 

chosen are quad 4 and quad 8. Here, 8-node elements are used in the vicinity of the interface end, 



4-node elements are used in other regions. The minimize element size around the corner mine
 
is 

3
-12

mm. Note that the mesh-independent technique used in this study 4-node element is enough and 

8-node element is not necessary since the FEM error can be eliminated by using the FEM ratio. 

However, 8-node elements are more convenient to obtain the reference solution by calculating the path 

integrals in RWCIM [9-13].
 

 

 

Fig. 5 Mesh pattern around the interface end. 

As shown in Fig.6, the bend deformation can be described by focusing on the deformation angle C  

at the interface end C. The detail information for the deformation angle C  is indicated in Appendix B. 

In this study, the deformation angle C  at the interface end C is determined from Point C and Point D 

with distance l . Table 3 shows the effect of l  on C  by varying the minimum mesh size mine  

by taking an example of 1t =7mm, L =50mm and 2l =90mm. Due to the singular stress field around 

the interface end, the C  value varies depending on l . In Table 3 it is seen that C  is insensitive to 

minimum mesh size mine . Therefore, in this study, the maximum value of C  is used to discuss the 

bend deformation. The l  value giving the maximum C  is depending on the interface end shape 

and material combination. In Table 3, the maximum value of C  appears at 
31/ 3l   independent 

of the minimum mesh size mine . The reason why C  has a peak value near l =0 is explained in 

Appendix B. 

 

   



 

 

 

  Fig.6 Deformation near the interface end. 

 

Table 3 Deformation angle 
C with varying 

mine and l  

l [mm] C  

mine =1/3
11

mm 
mine =1/3

8
 mm 

mine =1/3
5
 mm 

1/3
4
 0.0186 0.0188 0.0187 

1/3
3
 0.0194 0.0194 0.0194 

1/3
2
 0.0188 0.0188 0.0188 

1/3 0.0162 0.0162 0.0162 

 

In lap joint specimens experimentally used, adhesive fillets may exist at the bonded ends as shown 

in Fig.7 (a). In this study, the local geometry as shown in Fig.5 has been assumed. If the local geometry 

is changed by the fillet, the singular stress field and the singular index are changed. Then, the adhesive 

strength evaluation becomes difficult. FEM analysis has shown that the stress concentration may 

decrease at the interface end by introducing the fillets [28]. However, Arai and Kobayashi [29] have 

shown that the debonding of the fillet occurs when the load is smaller than the final fracture. They have 

concluded that the specimens with and without fillet in Fig.7 (a), (b) have nearly the same strength. 

Similarly, Campilho, Moura and Domingues have analyzed the effect of the fillet geometries on the 

strength [30]. They have reported that the modelling validity is confirmed experimentally and the 

strength in Fig.7(a) is just slightly larger than the strength in Fig.7(b). Since those previous studies 

show that the fillet effect in Fig. 7 (a) is not very large, the authors think that the ISSF modelling as 

shown in Fig.7 (b) can be applied to other adhesive geometries including fillet. This might be 

analogous to continuing use of the SIFs (Stress Intensity Factors) in crack problems even though the 

small scale yielding is violated.  

 



  

(a) With fillet (adhesive geometry in experiments) (b) Without fillet (analysis model in this study) 

 

Fig. 7 Fillet at bonded edge 

3. Pure shear testing to minimize ISSF and bend effect 

 In this section, the most suitable lap joint testing is investigated to minimize bend effect in 

terms of the ISSF under the same magnitude of load /P W =14.15N/mm ( o = 1MP when t  = 

14.15mm). In simulation process, the fixed boundary length L  and the adherend thickness 1t  in 

Fig.3 (a) and loading direction in Fig.3 (b) will be changed under fixed adl =25mm and adt =0.15mm. 

The effects of bondline length adl  and bondline thickness adt  were studied previously [9-13] 

(see Appendix C). The material combination is also fixed as shown in Table 1 since the ISSF should 

be compared under the same singular index 1  
and 2 .  

First, a special case is considered as shown in Fig. 8 to obtain the minimum value of ISSF 
1,K  =

,minK . In Fig.8 (a), 1t  
is changed when the adherends are fixed along the whole boundary ( L = 1l  or 

2l  in Fig.3 (a)) for the fixed dimensions of adl  =25mm and adt  =0.15mm under the load /P W = 

ot =14.15N/mm. Note that appropriate dimensionless expression for Fig.8 is difficult since the lap 

joint in Fig.3 has a complicated form. For butt joint specimen in Fig.1 (a), the dimensionless factors to 

control the ISSF have been clarified in the recent study [31].  In Fig. 8, with increasing adherend 

thickness 1t , the 
1,K   decreases initially and then slightly increases, and finally becomes almost 

constant when 1t  
is large enough. The minimum ISSF 11-

,min 0.0422 MPa mK 

    can be obtained 

when 1t =13mm.  

Fig. 8 (b) shows the minimum deformation angle C  = ,minC . With increasing the adherend 

thickness 1t , the deformation angle C  first decreases, then increases slightly and finally 

becomes constant when 1t  
is large enough. The minimum angle ,minC =0.0042 degree can be 

obtained when 1t =13mm.  

 



 

 

(a) ISSF 
1,K 
               (b) Deformation angle 

C  

  

Fig. 8 Effect of adherend thickness 
1t  when L = the whole boundaries (= 1l  or 2l ) for fixed dimensions adl =25mm and

adt =0.15mm in Fig.3 (a) under /P W = ot =14.15N/mm 

Fig. 9 (a) shows the results for fixed boundary length L =50mm, 80mm, 90mm. Here, the 

notation JIS* denotes the results of JIS K6850 prescribing the adherend thickness 1t =1.5mm and 

L =50mm. The dashed line shows the minimum ISSF
 
value 11-

,min 0.0422 MPa mK 

   . With 

increasing 1t , the ISSF 
1,K   

decreases and becomes constant when 1t  is large enough. When 

1t  25mm, the effect of L  can be ignored. The value 1

1 1

1-

, 1.5mm| 0.2270 MPa mtK 

     of JIS 

K6850 is 5 times larger than the value of ,minK . The value of Park’s specimen [21] 

1

1 1

1-

, 7mm| 0.1010 MPa mtK 

     is still more than twice larger than 11-

,min 0.0422 MPa mK 

   . The 

results show that the specimen [21] is much better than the JIS to obtain the adhesive strength, but 

still insufficient to obtain 11-λ

,min 0.0422 MPa mK   . An international standard ASTM D5656 

specifies the adhesive adherend thickness 9.53mm for pure shear strength characterization. Fig. 9 

shows that adherend thickness 1t =9.53mm is much better than the one of JIS specimens, but still 

insufficient to obtain the minimum ISSF. 

Fig.9 (b) shows the results of deformation angle C  when L =50mm since in most of the 

previous experiments L  50mm. Fig.9 (b) shows C  decreases rapidly and then become 

constant with increasing 1t . The minimum C  expressed as the dashed line can be obtained 

when 1t  is large enough. The value 
1 1.5mm|C t  =0.1834 degree of JIS specimen is about 40 



times larger than the minimum angle ,minC . The value 
1 7mm|C t  =0.0193 degree of Park [21] is 

about 4 times larger than that the minimum angle ,minC . It is seen that the specimen in [21] is 

much better than the JIS, but insufficient to obtain the minimum value ,minC =0.0042 degree. 

 

   

(a) ISSF 
1,K 
                                  (b) Deformation angle 

C  

Fig.9 Effects of adherend thickness 
1t  

when L = 50, 80, 90mm for fixed dimensions adl =25mm and adt =0.15mm in 

Fi.3 (a) under /P W = ot =14.15N/mm (JIS*: JIS K6850 prescribes specimen when 
1t =1.5mm, L =50mm) 

 

Fig. 10 (a) shows the effect of adherend length 2l  
on the ISSF 

1,K  when 1t =7mm and L = 

50mm in Fig.3 (a). Only in Fig.10, the total specimen length is changed as 145~335mm by 

changing 2l  but in other Figures the total length is always fixed as 225mm. The dashed line 

shows the minimum
 

value 11-λ

,min 0.0422 MPa mK    when 1t = 53mm. When 1t =7mm, with 

increasing adherend length 2l , the ISSF 
1,K   

increases. However, when 1t =53mm, the 
1,K   

is almost constant. In other words, the effect of adherend length 2l  can be ignored when 1t  is 

large enough. This is because the large adherend thickness may eliminate bending effect since the 

adherend becomes rigid enough. It may be concluded that 
1,K  can be minimized by using small 

2l  and large 1t . 

Fig. 10 (b) shows the results of deformation angle C  
when 1t =7mm. The dashed line shows the 

minimum value ,minC =0.0042degree when 1t =53mm. With increasing 2l , C  increases for 1t

=7mm, but C  is almost constant for 1t =53mm. When 1t  is large enough, the minimum ,minC



 

=0.0042 degree can be obtained easily since the effect of 2l  on C  can be ignored.  

 

    

(a) ISSF 
1,K 
                                  (b) Deformation angle 

C  

  

Fig. 10 Effects of adherend length 
2l on 

1,K  when 1t =7, 53 mm and L = 50mm in Fig.3 (a) under fixed adl

=25mm, adt =0.15mm and /P W = ot =14.15N/mm (In Fig.10, the total length of the specimen is changed as 

145~335mm, in other Figures the total length is always fixed as 225mm 

As mentioned in Section 2, the previous study showed C  and C  in Eq. (3) are almost constant 

independent of adhesive geometry. In a similar way, Fig.11 shows the effect of adherend geometry 

on C  and C . In Fig. 11, C  and C  values are indicated by varying adl =10~50mm, adt

=0.15~0.9mm, 1t =5~53mm, 2l =50~145mm, L =50~90mm in Fig.3 (a). From Fig.11, we have 

C =-5.0595±0.5467, C =0.2304±0.0249. The variations of C  and C  are small except for 

the cases of small adherend thickness. For example, for small adherend thickness 1t =1.5 and 1t =3mm, 

we have 
1 1.5mm|tC  =-9.8942, 

1 3mm|tC  =-7.4799, 
1 1.5mm|tC  =0.4505, 

1 3mm|tC  =0.3406 even 

other geometries are the same as adl =25mm, adt =0.15mm, 
2l =90mm, L =50mm. This large 

discrepancy between small and large thickness specimens can be explained from the difference of 

the bend deformation.  



 

 

 

 

Fig. 11 (a) Results of C  for single lap joint with different specimen geometries, (b) Results of C  for single lap joint 

with different specimen geometries 

Fig. 12 (a) shows the relationship between the ISSF 
1,K   and the eccentric distance e  in Fig. 

3(b). It is found that the 
1,K   decreases with increasing the positive distance e . The effect of e  

on 
1,K   

becomes larger when the adherend thickness is smaller as 1t =7mm. When 1t =25mm, 

1,K   is almost constant independent of e .  

Fig.12 (b) shows the relationship between deformation angle C  and eccentric distance e  in 

Fig.3 (b). It is found that C  decreases with increasing e . The effect of e  on C  is significant 

when the adherend thickness is small when 1t =7mm. When 1t =25mm, C  is almost constant 



 

independent of e .  

 

 

 

(a) ISSF 
1,K 
                               (b) Deformation angle 

C  

 

Fig.12 Effects of distance e  when and adherend thickness 
1t =7, 13, 25 mm in Fig.3 (b) under fixed adl =25mm, adt

=0.15mm and /P W =14.15N/mm 

 

4.  Relationship between ISSF and deformation angle at the interface corner 

As shown in Fig.8~Fig.10 and Fig.12, similar variations can be seen for ISSF 
1,K  and 

deformation angle C . Fig. 13 shows the relation between 
1,K   and C  by using all results 

discussed in Section 3. As can be seen from Fig.13, 
1,K   

is controlled by C  uniquely and 

1,K   
decreases with decreasing C . In other words, 

1,K   variation can be explained by C  and 

similarly C  variation can be explained by 
1,K  .  As an example, when adherend thickness 1t

=1.5mm prescribed by JIS, both 
1,K   

and C  are very large. The minimum 
1,K  and C  can be 

obtained when the adherend thickness 1t  is large enough as 1t  25mm. It is seen that the bend effect 

is minimized when 1t  25mm. The reason why the minimum  
1, 0K    can be explained by 

0C   due to the local bend deformation at the interface end, which can be observed even for very 

large thickness. Therefore, the bend effect in single lap joint can be minimized when the adherend 



thickness is large enough.  

   
 

Fig.13 Unique relationship between 
1,K 
and 

C . 

5. How to obtain the adhesive strength for double lap joint by using single lap joint 

The experimental results show that the strength of double lap joint is about two times larger 

than the strength of single lap joint as shown in Fig.14 (a) [19]. However, the critical ISSF cK  is 

the same for the double and single lap joints as shown in Fig.14 (b). In this section, therefore, the 

equivalent strength conditions for the SLJ on the DLJ in Fig. 15 will be considered in terms of the 

ISSF 
1,K   

by varying the adherend thickness 1t . In addition, since end tabs are often used by 

bonding at the ends of experimental specimens to reduce bend effect when loaded, the influence of 

the tab on 
1,K   will be also considered. Here, the same material of the adherend is assumed for 

the tab. 

 

 

 

(a) Average shear strengths of SLJ and DLJ  (b) The critical ISSF 
cK

 of SLJ and DLJ 



 

 

Fig.14 Adhesive strength of single lap joint (SLJ) and double lap joint (DLJ) (Adherend: S45C, Adhesive: Epoxy 

B) 

 

 

(a) Single lap joint (without tab) 

 

 

(b) Single lap joint (with tab) 

 

 

(c) Double lap joint (without tab) 

 

 

(d) Double lap joint (with tab) 

 

Fig. 15 Analysis models of lap joints  



As shown in Fig.15 (a), (b) for the SLJ, both interface corners can be denoted as point “O1” 

because of the symmetry. However, as shown in Fig. 15 (c), (d) for the DLJ, since the ISSFs at the 

interface corners are different, they are denoted by corner “O1” and corner “O2”.  

Fig. 16 shows the results of ISSF 
1,K   

at interface corners O1 and O2. It is found that the 

1,K 
 
at corner O1 is larger than that at corner O2. The 

1,K 
 
for the specimen with tab is nearly 

equal to the 
1,K 

 
for the specimen without tab. Therefore, the fracture may occur at corner O1 

during testing. For this reason, the equivalent conditions of strength for single lap joint and double 

lap joint will be considered by using the 
1,K  at interface corner O1. 

 

 

 

 

Fig. 16 ISSF 
1,K 
 for double lap joint (see Fig. 15(c),(d)) 

Fig. 17 shows the ISSFs 
1,K   

at interface corner O1 by varying the adherend thicknesses 1t  

for both single and double lap joints. Both ISSFs decrease with increasing adherend thickness 1t . 

When 1t ≥25mm, both ISSFs become constant independent of 1t . In JIS, the adherend thickness is 

prescribed as 1t =1.5mm. The 
1,K   

of the SLJ with 1t =7mm is nearly equal to the
 1,K   

of the 

DLJ with 1t =1.5mm (JIS). Similarly, the 
1,K  of the SLJ is nearly equal to the 

1,K   of the 

DLJ when 1t ≥25mm. By using those geometries the same adhesive strength can be obtained for SLJ 

and DLJ. 



 

  

 

Fig. 17 Comparison of single lap joint (SLJ) and double lap joint (DLJ) 

When adherend thickness 1t ≥25mm, the minimum ISSF ,minK  can be obtained as 

11-

,min 0.0422 MPa mK 

   . Under this condition, the bend effect can be minimized. The reason why 

,min 0K   can be explained from slight local deformation observed at the interface end. The 

deformations of the lap joints in Fig. 17 without tab are shown in Fig. 18 where the deformation is 

magnified by 300 times. As can be seen from Fig. 18, when 1t =1.5mm, the bend deformation of 

the SLJ in Fig. 18 (a) is much large than the one of the DLJ in Fig. 18 (b). Instead, the bend 

deformation of SLJ with 1t =7mm in Fig. 18 (c) is nearly same as the bend deformation of DLJ with 

1t =1.5mm in Fig. 18 (b). When 1t ≥25mm, all lap joint deformations are nearly the same, and there 

is only the local bend deformations for Figs. 18 (e)~(h). 

 

  

(a) SLJ with 
1t =1.5mm (b) DLJ with 

1t =1.5mm 



  

(c) SLJ with 
1t =7mm (d) DLJ with 

1t =7mm 

  

(e) SLJ with 
1t =25mm (f) DLJ with 

1t =25mm 

  

(g) SLJ with 
1t =53mm (h) DLJ with 

1t =53mm 

 

Fig. 18 Local deformations at the interface end in Fig.15 (the deformation is magnified by 300 times). 

5. Conclusion 

The lap joint testing was originally designed to investigate the adhesive strength under pure 

shear loading. However, actually pure shear testing is very difficult to be realized in the 

experiment because of the bend deformation during testing causing the peeling force appearing at 



 

the adhesive region. To reduce the bend effect, this study focused on the ISSF at the interface end 

in order to minimize the ISSF for lap joints. The conclusions can be summarized in the following 

way. 

(1) The effect of specimen geometry was considered under the same adhesive geometry and the 

same magnitude of load. The ISSF 
1,K  decreases with increasing adherend thickness 1t  and 

the minimum 
1,K 

 
was obtained when the adherend thickness is large enough.   

(2) The single lap joint strength with the adherend thickness 1t  =7mm is nearly equal to that of 

double lap joint with 1t =1.5mm prescribed in JIS. When the adherend thickness is large enough 

as 1t  ≥25mm, the single and double lap joint strength is nearly equal the same. 

(3) The relationship between the ISSF 
1,K   

and deformation angle at the interface corner C  

was discussed. It was found that the ISSF 
1,K   

decreases with decreasing C , the minimum 

deformation angle can be obtained also when the adherend thickness 1t  is large enough. The 

variation of ISSF can be uniquely controlled from the deformation angle at the interface 

corner. In other words, the bend effect in lap joints can be minimized when the adherend 

thickness is large enough. 

(4) The single lap joint strength with the adherend thickness 1t =7mm is nearly equal to that of 

double lap joint with 1t =1.5mm prescribed in JIS. When the adherend thickness is large enough 

as 1t ≥25mm, the single and double lap joint strength is nearly equal the same.   

 

The previous study indicated that the ISSF is a promising method to predict and analyze the 

bonding-debonding behaviors [8-13]. The ISSF method shows good conformity with the experimental 

data as shown in Fig.1 (a), (b) and Fig. 14 (b). The final goal of this study is to establish a suitable pure 

shear testing method for adhesive strength by confirming the usefulness experimentally. The authors 

think that the experimental evidences to support the authors’ conclusions can be obtained in future 

studies since the theoretical background has been indicated in this paper. 
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Appendix A: Singular index for lap joints 

Table A.1 shows singular index for lap joints  within a range of 0 Re( ) 1  , where the 

underlined figure indicate the multiple root, the bold figure indicate the complex root, the standard 

style figure indicate the real root. The eigenequation (A.1) has real root, multiple real root or complex 

root depending on ( except for no root at ( = (-1, -0.5). Two real roots appear in most of the 

material combinations.  

     

     

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2
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2 2
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Table A.1 Singular index for lap joints  ( 0 Re( ) 1  ). [ underlined figure indicate multiple root, bold figure 

indicate complex root, standard style figure indicate real root] 
  0.5    0.4    0.3    0.2    0.1    0   0.1   0.2   0.3   0.4   0.5   

-1 Non 0.807313 0.720529 0.664609 0.624659 0.594612      

-0.9  
0.800102 0.713270 0.657967 0.618663 0.589223 

     
0.997323 0.998666 0.999111 0.999333 0.999467 

-0.8  
0.794890 0.706604 0.651598 0.612819 0.583934 

     
0.988598 0.994363 0.996246 0.997185 0.997748 

-0.7   
0.700535 0.645489 0.607116 0.578738 

     
0.986584 0.991068 0.993300 0.994638 

-0.6   
0.695095 0.639636 0.601547 0.573629 0.552526 

    
0.974790 0.983193 0.987375 0.989886 0.991563 

-0.5   
0.690364 0.634041 0.596104 0.568599 0.548004 

    
0.958485 0.972217 0.979070 0.983201 0.985967 

-0.4   
0.686483 0.628716 0.590782 0.563645 0.543552 

    
0.937298 0.957761 0.968020 0.974246 0.978436 

-0.3   
0.683711 0.623685 0.585580 0.558760 0.539167 

    
0.911000 0.939524 0.953867 0.962655 0.968617 

-0.2   
0.682542 0.618989 0.580497 0.553941 0.534851 0.521047 

   
0.879395 0.917337 0.936302 0.948055 0.956113 0.961997 

-0.1    
0.614698 0.575537 0.549184 0.530605 0.517475 

   
0.891188 0.915116 0.930101 0.940505 0.948184 

0    
0.610930 0.570707 0.544484 0.526433 0.514038 

   
0.861179 0.890238 0.908529 0.921385 0.930994 

0.1    
0.607894 0.566022 0.539838 0.526433 0.514038 

   
0.827429 0.861739 0.883194 0.921385 0.930994 

0.2    
0.606003 0.561511 0.535243 0.518343 0.507703 0.501847 

  
0.789888 0.829796 0.854095 0.871335 0.884461 0.894894 

0.3     
0.557223 0.530697 0.514455 0.504921 0.500526 

  
0.794628 0.821357 0.840068 0.854257 0.865522 

0.4     0.553253 0.526195 0.510710 0.502536 0.500000   



 

0.756400 0.785186 0.804636 0.819026 0.830167 

0.5     
0.549802 0.521736 0.507168 0.500757 0.500737 

  
0.715108 0.745794 0.765131 0.778569 0.788128 

0.6     
0.547386 0.517317 0.503944 0.500000 0.503736 

  
0.670322 0.703330 0.721601 0.732578 0.738354 

0.7      
0.512937 0.501301 0.501267 0.511773 

  
0.657821 0.673870 0.680168 0.678146 

0.8      
0.508591 0.500000 0.508067 0.544319 0.570579 

±0.0645534i 
 

0.609106 0.621093 0.617814 0.588069 

0.9      
0.504280 0.504147 0.532822 

±0.0339893i 

0.534652 

±0.072084i 

0.537138 

±0.108448i 
 

0.556769 0.558811 

1      0.500000 
0.500000 

±0.0319377i 

0.500000 

±0.0645318i 

0.500000 

±0.0985231i 

0.500000 

±0.134852i 

0.500000 

±0.174850i 

 

Appendix B: How to describe the bend deformation of the lap joints 

In Appendix B, the bend deformation of the lap joints is presented. Assume that the total length of 

the specimen is 225mm, the adhesive length adl =25mm, adhesive thickness adt =0.15mm, fixed 

boundary length L =50mm, adherend length 2l =90mm and P =14.15N. 

Fig. B.1 (a) shows displacements  1yu x ,  2yu x  in the y- direction along the interfaces 1x  

and 2x  when the adherend thickness 1t =7mm. As shown in Fig. B.1, displacement  1yu x
 
is 

skew-symmetric at the centre of the adhesive. Fig. B.1(b) shows the details at the interface end. As 

can be seen from Fig. B.1(b), small difference 0.000078mm can be seen at the interface end 

between  1yu x ,  2yu x .  

  

(a) Displacement  1yu x in the range 
1x = -100~25 and 

Displacement  2yu x in the range 
2x =0~150    

(b) Details at the interface ends in Fig.B.1(a) 

 

Fig. B.1 Displacements  1yu x ,  2yu x  in the y-direction along the two interfaces 
1x  

and 
2x . 



Fig. B.2 defines several angles to describe the bend deformation. In order to obtain a deformation 

angle, two target points are considered. Here, l  means the distance between the two target points. 

For the deformation angle ol  at the interface corner O, the two target points O and A are used. For 

the deformation angle or  at the interface corner O, the two target points O and B are used. For the 

deformation angle C  at the interface corner C, two target points C and D are used. The deformation 

angles ol , or , C  can be defined as follows. 

arctan( )B O
or

B O

y y

x x






, arctan( )O A

ol

O A

y y

x x






 , arctan( )C D

C

C D

y y

x x






 (B.1) 

Here, nx  and ( O, A,B,C,D)ny n   are the coordinates of points O, A, B, C, D. 

 

 

Fig.B.2 Deformation near the interface corner. 

Fig. B.3(a) shows the results of deformation angles at corner O by varying distances l  for 1t

=7mm. It is found that both values of ol  and or  increase with increasing l , and the difference 

between ol  and or
 
increases with decreasing l . Therefore, it is not easy to obtain the maximum 

deformation angle at interface corner O. Fig.B.3(b) shows the results of deformation angle C  by 

varying distances l  for 1t =7mm. It is seen that the value of C  initially increases and then 

decreases with increasing l . When the target point D approaches the interface end C beyond a certain 

limit distance, the increment of (x
C
 - x

D
) becomes larger than the increment of (y

C
 - y

D
) because the 

interface end C is on a free surface. This is the reason why C  becomes smaller when l  

approaches zero as shown in Fig.B.3 (b). As an example shown in Table 3, the maximum C  can be 

obtained when 
31/ 3l  mm independent of element sizes.  

 



 

  

(a) corner O (b) corner C 

 

Fig.B.3 Deformation angle at interface corner edge. 

Fig.B.4 shows the relationship between deformation angles ol , or  and C . It is found that 

the C - ol  relation and C - or
 
relation are almost linear, and the slope of the lines are nearly 

the same. Therefore, in this study, the deformation angle is considered by using the maximum C  at 

corner C. 

  

 

Fig.B.4 Relationship between 
ol , 

or  and C  

Appendix C: Effects of the bondline length and bondline thickness on the ISSF 

In this study, under the fixed bondline dimensions adl =25mm, adt =0.15mm, the most 

suitable testing conditions are investigated by changing L  and 1t . The effects of bondline length 

adl  and bondline thickness adt  on ISSF were studied previously [9-13], the results in [9-13] are 



presented as follows. In [9-13], the specimen used by Park was analyzed. The total length of the 

specimen is 225mm with adherend thickness 1t =7mm and d =10mm, the adherend lengths are in 

the range 77.5 – 97.5mm. 

Figure C.1 (a) shows the effect of the bondline length adl  under /P W =14.15N/mm [9-13]. 

It is seen that ISSF 
1,K   

decreases with increasing adl
 when adl ≥15mm. Figure C.1 (b) shows 

the effect of the bondline thickness adt  [9-13]. The solid line and dashed line denote the values of 

1,K   for adl  = 25mm and 30mm, respectively. It is found that 
1,K   

is insensitive to adt . 

 

    

 (a)                                             (b) 

Fig. C.1 (a) Relationship between ISSF 
1,K   

and bondline length adl ;      (b) Relationship between ISSF 
1,K   

and bondline thickness adt  [9-13] 
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