
Efficient Migration of Large-Memory VMs Using
Private Virtual Memory

著者 Muraoka Yuji, Kourai Kenichi
journal or
publication title

Advances in Intelligent Systems and Computing

volume 1035
page range 380-389
year 2019-08-15
その他のタイトル Efficient Migration of Large-memory VMs Using

Private Virtual Memory
URL http://hdl.handle.net/10228/00007851

doi: https://doi.org/10.1007/978-3-030-29035-1_37

Efficient Migration of Large-memory VMs
Using Private Virtual Memory

Yuji Muraoka and Kenichi Kourai

Abstract Recently, Infrastructure-as-a-Service clouds provide virtual machines (VMs)
with a large amount of memory. Such large-memory VMs can be migrated to other
hosts on host maintenance, but it is costly to always preserve hosts with sufficient
free memory as the destination of VM migration. Using virtual memory in desti-
nation hosts is a possible solution, but the performance of VM migration largely
degrades because traditional general-purpose virtual memory causes frequent pag-
ing during the migration. This paper proposes VMemDirect, which achieves efficient
migration of large-memory VMs using private virtual memory. VMemDirect cre-
ates private swap space for each VM on fast NVMe SSDs. Then it transfers likely
accessed memory data to physical memory and the other data to the private swap
space directly. This direct memory transfer can completely avoid paging during VM
migration. We have implemented VMemDirect in KVM and showed that the per-
formance of VM migration and the migrated VM was improved dramatically.

1 Introduction

As Infrastructure-as-a-Service (IaaS) clouds are widely used, they also provide VMs
with a large amount of memory. For example, Amazon EC2 provides VMs with 12
TB of memory and plans those with 24 TB of memory in 2019. Such large-memory
VMs are used for big data processing. When a host running a VM is maintained,
the execution of the VM can be continued by migrating the VM to another host in
advance. VM migration transfers the state of a VM, e.g., virtual CPUs and memory

Yuji Muraoka
Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, Japan, e-mail: mu-
rayu@ksl.ci.kyutech.ac.jp

Kenichi Kourai
Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, Japan, e-mail:
kourai@ksl.ci.kyutech.ac.jp

via the network and restarts the VM at the destination host. If the memory of the
VM is updated during the transfer, VM migration retransfers the updated memory
data. As such, VM migration requires free memory that can accommodate the entire
memory of a VM in a destination host. However, it is costly to always preserve such
hosts as the destination of VM migration, particularly, for large-memory VMs. If
VM migration is not possible, VMs have to be stopped during host maintenance.

One possible solution is to use virtual memory in a destination host. Virtual mem-
ory enables part of the memory of a VM to be stored in secondary storage and per-
forms paging. When a VM requires memory data in the storage, the data is paged
in from the storage to physical memory. In exchange for this, unnecessary memory
data in physical memory is paged out to the storage. However, traditional general-
purpose virtual memory is incompatible with VM migration. Since frequent paging
occurs during VM migration, the performance of VM migration degrades largely.
After the migration, the execution performance of the VM is also largely affected
by paging because necessary memory data is often paged out.

This paper proposes VMemDirect for efficient migration of large-memory VMs
using private virtual memory. VMemDirect creates private swap space for each VM
on fast NVMe SSDs, which are becoming rapidly inexpensive, and integrates private
virtual memory with VM migration. It directly transfers memory data of a VM to
either physical memory or private swap space in a destination host. Since this direct
memory transfer does not cause any paging during VM migration, the performance
degradation can be avoided. VMemDirect also predicts future memory access of
a VM and locates likely accessed memory data in physical memory as much as
possible. Therefore, the execution performance of the VM can be preserved after
the migration.

We have implemented VMemDirect in KVM to achieve efficient VM migra-
tion using private virtual memory. Private swap space is created using a special file
called a sparse file to enable direct memory transfer to the swap space. Upon VM
migration, VMemDirect determines the destination of memory data according to the
memory access history of a VM and directly transfers the data to the same location
even on retransfers. After VM migration, it performs paging using the userfaultfd
mechanism in Linux. Our experimental results show that VMemDirect could reduce
the migration time and the downtime and improve the performance of the migrated
VM dramatically.

The organization of this paper is as follows. Sect. 2 describes issues on VM mi-
gration using traditional virtual memory. Sect. 3 proposes VMemDirect for efficient
VM migration using private virtual memory and Sect. 4 explains its implementa-
tion. Sect. 5 shows experimental results. Sect. 6 discusses related work and Sect. 7
concludes this paper.

VM core

memory memory

swap

space

source host destination host

transfer

paging

process

VM core

Fig. 1 VM migration using virtual memory.

2 Migration of Large-memory VMs

Even if a destination host does not have sufficient free memory, VM migration is
possible by using virtual memory, as illustrated in Fig. 1. Using virtual memory,
VM migration can transparently store part of the memory of a VM in swap space on
secondary storage and use a necessary amount of memory. When the VM requires
memory data in the swap space, a page-in is performed and the data is moved to
physical memory. In exchange for this, a page-out is performed and memory data
unlikely accessed in physical memory is moved to the swap space. Since the perfor-
mance of storage is much lower than that of memory, the execution performance of
the VM degrades. Fortunately, using recent NVMe SSDs can reduce this overhead.

However, traditional general-purpose virtual memory is incompatible with VM
migration. VM migration first transfers the entire memory data of a VM to physical
memory in the destination host. After the physical memory becomes full, the follow-
ing transfers always cause page-outs from physical memory to swap space because
transferred memory data has to be first stored in physical memory. This large num-
ber of page-outs lead to the increase in migration time. Also, retransfers of updated
memory data cause paging. If the memory data to be updated exists in swap space,
VM migration has to first page in that memory data to physical memory and then
update it. At the same time, page-outs are necessary because physical memory is
already full. For large-memory VMs, the first memory transfers take a long time
and therefore the amount of memory data updated during the transfer increases.

In the final phase of VM migration, the downtime of the VM increases if paging
occurs frequently. This is because the final phase stops the VM and transfers the
rest of the state consistently. In particular, if the memory of virtualization software
is managed by the same virtual memory as the memory of VMs, as in KVM, it is
often paged out during VM migration. At the destination host, virtual devices pro-
vided by virtualization software are not used until the final phase of VM migration.
Therefore, the memory for them is unlikely accessed data, which is a target of page-
outs. When the state of virtual devices is restored, page-ins occur frequently. After
VM migration, frequently updated memory data is often stored in physical memory.
However, memory data that are just read frequently can be stored in swap space.
Since such data is transferred only once, it is often paged out by following memory
transfers. This can lead to frequent paging after the VM is resumed at the destination
host.

VM core

memory

source host destination host

transfer

process

swap

space

memory

private

swap space

paging

VM core

Fig. 2 VM migration using private virtual memory in VMemDirect.

To counteract these problems, split migration [9, 8] has been proposed using
multiple destination hosts. Split migration divides the memory of a VM and trans-
fers the memory fragments to multiple smaller hosts. It transfers the state of vir-
tual CPUs and devices and likely accessed memory data to a main host and the
other memory data to sub-hosts. If the VM requires memory data in sub-hosts af-
ter VM migration, the data is transferred to the main host by remote paging. Since
no paging occurs during VM migration, split migration can improve the migration
performance. Also, it can increase the execution performance of the migrated VM
because necessary memory data is transferred to the main host in advance. However,
split migration is more costly than VM migration using virtual memory. It requires
small but multiple sub-hosts and, for efficient remote paging, high-speed network
such as InfiniBand [6, 5]. In addition, migrated VMs are subject to host and network
failures.

3 VMemDirect

For efficient migration of large-memory VMs, this paper proposes VMemDirect us-
ing private virtual memory and the technology of split migration. Fig. 2 illustrates
VM migration in VMemDirect. VMemDirect creates private swap space for each
VM on fast NVMe SSDs in a destination host and integrates private virtual memory
with VM migration. Since recent NVMe SSDs are becoming more inexpensive, the
cost can be lower than using multiple sub-hosts and expensive high-speed network
as in split migration. In addition, the execution of VMs are not affected by host or
network failures after VM migration.

Since private virtual memory targets only the memory of a VM, VMemDirect
can prevent performance degradation due to paging of the memory of virtualization
software itself. During memory transfers in VM migration, the memory of virtu-
alization software is not paged out at the destination host. When a VM is created,
VMemDirect creates private swap space on an NVMe SSD with the same size as
the memory of the VM. This swap space is optimized for the memory of the VM.
Memory areas in the VM correspond to blocks in the swap space. Memory data of

the VM is stored in blocks in the swap space only when it does not exist in physical
memory. The other blocks do not have actual data in the swap space.

Upon VM migration, VMemDirect directly transfers memory data to either phys-
ical memory or private swap space, instead of relying on paging of traditional virtual
memory. At the source host, VMemDirect determines locations where each mem-
ory data is stored at the destination host when it starts VM migration. The locations
are not changed during VM migration and VMemDirect retransfers memory data to
the same location. This direct memory transfer can prevent paging from occurring
during VM migration. No data in physical memory is paged out, while no mem-
ory data in private swap space is paged in. When VMemDirect retransfers memory
data, it directly updates data in physical memory or private swap space. Since the
structure of private swap space is designed for this direct access, it is easy to find
the corresponding blocks.

The locations of memory data in the destination host are determined on the basis
of the memory access history of a VM. VMemDirect transfers likely accessed mem-
ory data to physical memory and the other data to private swap space. This increases
the probability that retransferred memory data is stored in physical memory. As a
result, the overhead due to overwriting data in private swap space can be reduced.
Unlike VM migration using traditional virtual memory, not only frequently updated
memory data but also frequently read data is stored in physical memory. Therefore,
the occurrence of paging can be suppressed after the VM is resumed.

4 Implementation

We have implemented VMemDirect in KVM using QEMU-KVM 2.4.1 and Linux
4.11. QEMU-KVM is virtualization software that runs on top of Linux.

4.1 Swap File for Private Swap Space

For private swap space, VMemDirect creates a swap file with the same size as the
memory of a VM using a sparse file. A sparse file can contain blocks that have no
actual data, which are called holes. Using this swap file, it can make one-to-one
relation between memory areas of the VM and blocks of the swap file. Memory
data of the VM is stored in either physical memory or the swap file (Fig. 3). When
it is paged in to physical memory, VMemDirect makes the corresponding block of
the swap file a hole to reduce storage usage. To create a hole, it writes a metadata
standing for an empty block to storage.

VMemDirect accesses the swap file using direct I/O so that the page cache is not
allocated for the file blocks. Direct I/O enables data to be directly read from and
written to storage without storing it in the page cache managed by the operating
system. In VMemDirect, most of the physical memory is used to store memory

VM memory

swap file

physical memory

page in page out

holememory data

Fig. 3 The memory management of a VM using private swap space.

data of a VM. If the page cache were created for paged-out data, traditional virtual
memory would have to page out data in physical memory. To use the bandwidth
of NVMe SSDs as much as possible, VMemDirect accesses the swap file by the
chunk larger than the 4-KB page. In the current implementation, VMemDirect uses
256-page chunks.

4.2 Direct Memory Transfer

To manage the locations where memory data is transferred on VM migration,
VMemDirect creates a location bitmap. This bitmap allocates one bit for each 4-
KB page and the value is determined according to the memory access history of a
VM. The memory access history is obtained as described in the previous work [9, 8].
When memory data is transferred to the swap file, VMemDirect sets 1 to the corre-
sponding bit in the bitmap. Otherwise, it sets 0 to the bitmap. VMemDirect transfers
memory data of each page with the value of the corresponding bit. At the destina-
tion host, VMemDirect stores received memory data in either physical memory or
the swap file according to the specified location.

To write memory data to the swap file by the chunk larger than the page,
VMemDirect temporarily stores received memory data in a buffer on physical mem-
ory. When the buffer becomes full, VMemDirect writes data to storage at once.
Since memory data is transferred sequentially in the first phase of VM migration,
VMemDirect can write buffered data to contiguous blocks in the swap file. In con-
trast, received memory data is not contiguous when memory data is retransferred.
For such data, VMemDirect writes data to the swap file by the page.

4.3 Paging for Private Virtual Memory

VMemDirect achieves paging for private virtual memory using the userfaultfd
mechanism in Linux. After VM migration, it registers the entire memory of the

VM to userfaultfd. When the VM accesses a non-existent memory page and a page
fault occurs, that event is notified to QEMU-KVM by userfaultfd. Next, VMemDi-
rect reads memory data from the block corresponding to the faulting address in the
swap file. Then, it writes the data to the corresponding memory page of the VM. In
addition, it performs the same operations for the other pages in the same chunk. At
the same time, it removes these blocks in the swap file and makes the blocks holes
to complete page-ins.

At the same time, VMemDirect selects a chunk including the most unlikely ac-
cessed memory pages to perform page-outs. It writes the data of the selected pages
to the corresponding blocks in the swap file and removes the mapping of the pages.
To obtain the memory data and remove the mapping atomically, we used the exten-
sion of userfaultfd, which is developed for remote paging [8]. To manage the lo-
cations of memory data for these page-outs, VMemDirect creates a location bitmap
in the destination host as well as the source host of VM migration. The bits are set
when VMemDirect receives memory data from the source host. When a page-in
occurs, the corresponding bit is set to 0. For a page-out, that is set to 1.

5 Experiments

We conducted several experiments to examine the performance of VM migration
and a migrated VM in VMemDirect. For comparison, we examined the performance
for ideal VM migration with sufficient memory and naive VM migration with tra-
ditional virtual memory. We used 1 TB of Samsung NVMe SSD 970 PRO as swap
space. For the source and destination hosts, we used two PCs with an Intel Xeon
E3-1226 v3 processor and 16 GB of memory. These PCs were connected using 10
Gigabit Ethernet. We ran Linux 4.11 as the host operating system and QEMU-KVM
2.4.1 as virtualization software. We used a VM with one virtual CPU and 12 GB of
memory. When using traditional virtual memory, we adjusted the size of free mem-
ory to 6 GB, which was the half of the memory size of the VM.

5.1 Migration Performance

To examine migration performance, we first measured the time needed for VM mi-
gration. Fig. 4(a) shows the migration time. Compared with the ideal migration, the
migration time increased by 1.6 times in the naive migration. For VMemDirect, in
contrast, the migration time was almost the same as the ideal migration.

Next, we measured the downtime during VM migration. As shown in Fig. 4(b),
the naive migration suffered from 1.2 seconds longer downtime than the ideal mi-
gration. The root cause was that many page-ins occurred when virtual devices were
resumed in the final phase. In contrast, VMemDirect reduced the downtime by 6
ms. This is because QEMU-KVM could not accurately estimate the downtime in

0

5

10

15

20

25

m
ig

ra
tio

n
tim

e
(s

ec
)

ideal
VMemDirect
naive

(a) Migration time

0.0

0.5

1.0

1.5

2.0

2.5

do
w

nt
im

e
(s

ec
)

ideal
VMemDirect
naive

(b) Downtime

Fig. 4 The comparisons of migration performance.

VMemDirect. QEMU-KVM enters the final phase when it is estimated that the rest
of the memory data will be transferred in 300 ms. In VMemDirect, the final memory
transfers were completed earlier than the estimation because only a smaller amount
of memory data was transferred to the slow swap space than during the estimation.

5.2 Performance of Private Virtual Memory

To examine the performance of private virtual memory, we ran in-memory database
called memcached [4] in a VM and measured the performance using the memaslap
benchmark. We allocated 5 GB of memory to memcached and ran the benchmark
before and after VM migration. Fig. 5 shows the comparison of the transactions per
second after VM migration. VMemDirect achieved 39 times higher performance
on average than after the naive migration. Compared with after the ideal migration,
the performance in VMemDirect was 11% lower on average in a stable state and
largely fluctuated. This is because paging sometimes occurred and the performance
degraded by that paging. The reason why the performance was much lower during
the first 45 seconds is that paging occurs frequently. This is probably due to the
implementation issue of the memory access history.

6 Related Work

vMotion provides two different migration methods in terms of swap space [2].
Unshared-swap vMotion uses different swap spaces between the source and destina-
tion hosts and transfers memory data stored in swap space to the destination host. In
contrast, shared-swap vMotion stores a swap file in shared storage and transfers no
memory data in swap space. To support paging during VM migration, the destina-
tion host uses temporary swap space and integrates that swap space into shared one

0 30 60 90 120 150 180
elapsed time (sec)

0

10

20

30

40

50

60

T
P

S
 (

ko
ps

/s
)

ideal
VMemDirect
naive

Fig. 5 The memcached performance in a migrated VM.

after the migration. This migration method can be more efficient than VMemDirect,
but network paging is always necessary.

Like shared-swap vMotion, Agile live migration [3] locates swap space for each
VM in the network. It pages out memory data except for the current working set
aggressively. Upon VM migration, it transfers no memory data in the swap space but
only data in the working-set memory. This method can further improve migration
performance, but the paging overhead is much larger because most of the data is
paged out.

FlashVM [7] is virtual memory using paging based on SSDs. It pages out more
memory pages at once than when using HDDs. Since random reads of SSDs are fast,
FlashVM prefetches more useful pages to reduce page faults. In addition, it adjusts
the rate of writeback to SSDs to reduce the latency of page faults. This prefetching
technique can improve the performance of private virtual memory in VMemDirect.

Swap space using SSDs and ExpEther has been proposed [10]. ExpEther extends
PCI Express using Ethernet and enables SSDs to be used without the limitation of
physical locations. High-speed communication using DMA is performed between
local memory and remote SSDs. Paging with this swap space can extend computer
memory. Using this system, VMemDirect can use remote SSDs as private swap
space flexibly.

VSwapper [1] improves the performance of VMs using virtual memory. It moni-
tors storage I/O and prevents unmodified pages from being written to swap space on
page-outs. Also, it stores data written to paged-out pages in a temporal buffer and
prevents data from being read from swap space if the entire page is written. These
optimizations achieve 10 times performance improvement. They can be also applied
to private virtual memory in VMemDirect.

7 Conclusion

This paper proposed VMemDirect for achieving efficient VM migration by coop-
erating with private virtual memory. VMemDirect creates private swap space for

each VM on fast NVMe SSDs. It directly transfers likely accessed memory data to
physical memory and the other data to the private swap space. After VM migra-
tion, VMemDirect performs paging between physical memory and the private swap
space for the memory of each VM. Our experimental results show that VMemDirect
could improve the performance of VM migration and a migrated VM dramatically,
compared with VM migration using traditional virtual memory.

One of our future work is to evaluate the performance of VMemDirect using
VMs with various numbers of virtual CPUs, various amounts of memory, and vari-
ous applications. Another direction is to clarify trade-offs between using high-speed
network and NVMe SSDs for VM migration. We will compare various performance
of VMemDirect with that of S-memV with split migration and remote paging [9, 8]
when we run various applications in VMs. In addition, we are planning to sup-
port N-to-one migration [9] in VMemDirect. The original N-to-one migration inte-
grates memory data across multiple hosts into one large host. Similarly, VMemDi-
rect needs to efficiently transfer memory data in both physical memory and private
swap space to one host.

Acknowledgements The research results have been achieved by the “Resilient Edge Cloud De-
signed Network (19304),” the Commissioned Research of National Institute of Information and
Communications Technology (NICT), Japan.

References

1. Amit, N., Tsafrir, D., Schuster, A.: VSwapper: A Memory Swapper for Virtualized Environ-
ments. In: Proc. ACM Int. Conf. Architectural Support for Programming Languages and
Operating Systems, pp. 349–366 (2014)

2. Banerjee, I., Moltmann, P., Tati, K., Venkatasubramanian, R.: VMware ESX Memory Re-
source Management: Swap. VMware Technical Journal 3(1), 48–56 (2014)

3. Deshpande, U., Chan, D., Guh, T., Edouard, J., Gopalan, K., Bila, N.: Agile Live Migration of
Virtual Machines. In: Proc. IEEE Int. Parallel and Distributed Processing Symp. (2016)

4. Fitzpatrick, B.: memcached – A Distributed Memory Object Caching System.
http://memcached.org/

5. Gu, J., Lee, Y., Zhang, Y., Chowdhury, M., Shin, K.: Efficient Memory Disaggregation with
Infiniswap. In: Proc. USENIX Symp. Networked Systems Design and Implementation (2017)

6. Liang, S., Noronha, R., Panda, D.: Swapping to Remote Memory over InfiniBand: An Ap-
proach using a High Performance Network Block Device. In: Proc. IEEE Cluster Computing
(2005)

7. Saxena, M., Swift, M.: FlashVM: Virtual Memory Management on Flash. In: Proc. USENIX
Annual Technical Conf. (2010)

8. Suetake, M., Kashiwagi, T., Kizu, H., Kourai, K.: S-memV: Split Migration of Large-memory
Virtual Machines in IaaS Clouds. In: Proc. IEEE Int. Conf. Cloud Computing, pp. 285–293
(2018)

9. Suetake, M., Kizu, H., Kourai, K.: Split Migration of Large Memory Virtual Machines. In:
Proc. ACM SIGOPS Asia-Pacific Workshop of Systems (2016)

10. Suzuki, J., Baba, T., Hidaka, Y., Higuchi, J., Kami, N., Uchida, S., Takahashi, M., Sugawara,
T., Yoshikawa, T.: Adaptive Memory System over Ethernet. In: Proc. USENIX Workshop on
Hot Topics in Storage and File Systems (2010)

