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ABSTRACT: 

Aliphatic polydithiourethanes (PDTU)s were successfully synthesized from diisothiocyanates 

and dithiols having a different value of carbon atom number. The thermal properties and 

hydrogen bonding behavior of PDTUs were studied in detail by using differential scanning 

calorimetry (DSC), thermal gravity analysis (TGA), temperature dependence nuclear magnetic 

resonance (NMR), Fourier transform infrared-attenuated total reflection (FTIR-ATR), and 

density functional theory (DFT) and semi-empirical molecular orbital (PM3) methods. In this 

Page 1 of 27

ACS Paragon Plus Environment

Submitted to Macromolecules

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



2

work, we demonstrated that the thermal decomposition of PDTUs happened from the cleavage of 

C-S bond of the dithiocarbamate moiety in the main-chain, and also the active isothiocyanate and 

thiol groups were reprepared in the terminal of decomposed polymer (i.e. oligomer). 

Furthermore, we found that the thermal de-polymerization of PDTUs and the re-polymerization 

of dithiourethane oligomers at room temperature proceeded repeatedly a few times.

1. Introduction

In the modern world supported by a variety of polymer materials, the reutilization and recycling 

of degraded and damaged polymers are one of the important challenges. During the first decade 

of this century, a lot of researchers have been interested in the self-healing and reprocessable 

polymers,1-2 which are known as the intelligent materials such as response to external stimulus,3 

molecular recognition,4 and shape memory,5 in not only academic but also industrial fields. The 

self-healing polymers are classified broadly into the healing behavior of extrinsic and intrinsic 

mechanisms.6 In the case of intrinsic self-healing process, the polymers exhibit the self-healing 

behavior based on the reversible chemical bond systems, which are divided into the non-covalent 

and covalent bonds.6 The self-healing based on the non-covalent bond system was provided with 

the molecular interaction such as hydrogen bonds,7-8 electronic and ionic interactions,9-10 - 

interactions.11 In particular, polyurethanes and polyureas can be applied as the self-healing and 

shape-memory materials, because the hydrogen bonding fashions can be tailored to the 

requirement by designing the molecular structure.12-13 On the other hand, the Diels-Alder 

reaction14 and bond exchange reaction of disulfide15 and ester moieties16-18 are applied as the 

intrinsic self-healing materials based on the dynamic covalent bond chemistry19-21. Particularly, 
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3

the Diels-Alder reaction between furan and maleimide components has been widely utilized to 

prepare the reversible cross-linked polymers.22 In the case of a covalent bond system, 

polyurethanes and polyureas have been also applied as the reprocessable polymers, which give 

rise to the bond exchange reaction of carbamate and carbamide moieties, respectively, by the 

external stimulus such as high temperature and an addition of catalysts.23-25 Several research 

groups have demonstrated that poly(urethane-urea) network derived from a hindered amine 

exhibited self-healing and shape-memory behaviors in a wide temperature range because the 

bond exchange reaction of the hindered urea derivatives happened under ambient temperature 

and catalyst-free conditions.26-29 Hence, polyurethanes and polyureas are attractive as the 

reprocessable materials from both perspectives of the molecular interaction due to hydrogen 

bonding and the dynamic covalent bonds due to bond exchange reaction. However, there are two 

requirements in this system.30 First, the bulky substituents on the urea moieties are required to 

destabilize the urea bonds, which is one of the most stable chemical bonds against further 

reactions. Second, the reaction rate of isocyanates and hindered amines have to be more rapid 

than the degradation rate of isocyanates due to hydrolysis. Based on the previous research results, 

we hypothesized that the isothiocyanate-thiol system was suitable as the reprocessable materials, 

because the addition reaction of isothiocyanates and thiols, which are stable compounds in 

aqueous solution at room temperature,31-32 successfully proceeded with an amine catalyst at 

25 °C and the produced dithiocarbamate moiety was readily dissociated by the external 

stimulus.33 Accordingly, we have demonstrated that polyaddition of various diisothiocyanates 

and dithiols was achieved with triethylamine in DMF at 25 °C to obtain the corresponding 

polydithiourethanes (PDTU)s in higher yield and molecular weight.34 Recently, polythioureas are 

featured because the hydrogen bonding of their polymers is fairly weak and dynamic. 
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4

Yanagisawa and coworkers have demonstrated that poly(ether-thiourea) exhibited self-healing 

behavior at ambient temperature because of the less-ordered hydrogen bonding in the amorphous 

polymer matrices.35 Moreover, Wagner and Mioskowski et al. have reported the synthesis 

procedure of N,N’-substituted thioureas by thermolytic cleavage of dithiocarbamate bonds in 

solid-state.36 Therefore, we have studied about the de-polymerization of aliphatic PDTUs based 

on the thermal decomposition and the re-polymerization of the decomposed polymers at room 

temperature to discover the reversible nature of addition and dissociation reaction of the aliphatic 

diisothiocyanates and dithiols.

2. Experimental section

2.1 Materials.

1,3-propanedithiol, 1,6-hexanedithiol, 1,10-decanedithiol, 1,12-diaminododecane, 1,6-

hexanediol, hexyl mercaptan, and hexamethylene diisocyanate were purchased from Tokyo 

Chemical Industry (Tokyo, Japan). 1,3-propane diisothiocyanate and hexamethylene 

diisothiocyanate were supplied from Nippon Terpene Chemicals, Inc. (Tokyo, Japan). 

Triethylamine (TEA), dibutyltin dilaurate (DBTL), and 1-[bis(dimethylamino)methylene]-1H-

benzotriazolium 3-oxide hexafluorophosphate (HBTU), N,N'-dicyclohexylcarbodiimide (DCC), 

carbon disulfide (CS2), and all solvents were purchased from Wako Pure Chemical Industries 

(Osaka, Japan).

2.2 Measurements.

NMR spectra were obtained using a JEOL ECS-400 spectrometer operating at 400 MHz for 1H 

and 100 MHz for 13C in chloroform-d (CDCl3) and N,N-dimethylformamide-d7 (DMF-d7) using 

Page 4 of 27

ACS Paragon Plus Environment

Submitted to Macromolecules

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

a tetramethyl silane (TMS) as an internal reference. FTIR spectra were recorded on a Thermo 

Scientific Nicolet iS10 spectrometer equipped with a Smart iTR diamond ATR sampling 

accessory in the range of 4000−650 cm-1. Gel permeation chromatography (GPC) was carried out 

on TOSOH HLC-8320 system equipped with two consecutive polystyrene gel columns [TSKgel 

guardcolumn SuperH-H (4.6 mmI.D. x 3.5 cm, 4 μm particle size) and TSKgel SuperHM-H (6.0 

mmI.D. x 15 cm, 3 and 5 μm particle sizes)] and refractive index and ultraviolet (254 nm) 

detectors  at 40 ºC. The system was operated in tetrahydrofuran (THF) as eluent at a flow rate of 

0.6 mL/min. Polystyrene standards were employed for calibration. Thermogravimetric analysis 

(TGA) was performed on a Seiko Instrument Inc. TG-DTA 6200 with 1.5 mg of samples in an 

aluminum pan under a 100 mL/min N2 flow at a heating rate of 10 °C/min. Differential scanning 

calorimetry (DSC) analysis was conducted from 0 to 150 °C for the first heating scan and from -

50 to 180 °C for the second heating scan on a Seiko Instrument Inc. DSC-6200R with 1.5 mg of 

samples in an aluminum pan under a 50 mL/min N2 flow at a heating rate of 10 °C/min. The 

second scan was selected to determine glass transition temperature (Tg) values. Geometry 

optimized structures for the model compounds was estimated by using DFT calculation with 

B3LYP/6-31G* and semi-empirical molecular orbital (PM3) methods (Wavefunction, Inc., 

Spartan’06 Windows version 1.1.0).37 These model compounds were optimized by combination 

of DFT and PM3 methods. First, the unit structures of model-1 and model-2 were optimized by 

DFT (B3LYP/6-31G*) calculation. Second, The conformation between the units based on 

molecular interaction estimated by semi-empirical molecular orbital calculation (PM3).

2.3 Monomer synthesis.
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6

Dodecamethylene diisothiocyanate38 and hexyl diisothiocyanate39 were synthesized according to 

the literatures. Procedures for monomer synthesis and characterizations of monomer were shown 

in supporting information.

2.4 Polymerization.

Polymerization of diisothiocyanates and dithiols were as shown in scheme 1.34 The results of 

polymerization were summarized in Table 1. Synthesis of polyurethane and polythiourethane 

was also shown in scheme S2.33 Typical procedures for polymerization, 1H and 13C NMR spectra, 

and FTIR-ATR spectra of the obtained polymers were shown in supporting information.

Scheme 1. Synthesis of polydithiourethanes from aliphatic dithiocyanates and dithiols.

Table 1. Synthesis of polydithiourethanes from 
aliphatic diisothiocyanates and dithiols.
Entry R1 R2 Yield a Mn

 b Mw/Mn
 b

(%) (kg/mol)
1 C3 C3 98 55 1.82
2 C3 C6 98 43 1.92
3 C3 C10 94 50 2.07
4 C6 C3 99 42 2.52
5 C6 C6 98 42 2.24
6 C6 C10 98 42 2.10
7 C12 C6 92 15 1.98

a Insoluble fraction in hexane/ethanol mix solvent 
and methanol. b Determined by GPC analysis (PSt, 
THF).
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7

2.5 Reversible reaction of model compound.

Hexyl isothiocyanate (287 mg) and hexyl mercaptan (237 mg) were mixed in bulk, and then 

triethylamine (21 mg) was added in the mixture. The mixture was held in an oven at 50 °C for 1 h. 

After cooling to room temperature, the crude product was held in an oven at 150 °C for 6 h. 

Before and after each step, the conversion of isothiocyanate group was estimated by FTIR-ATR 

method. The reversible reaction of model compound was repeated one more time.

2.6 De-polymerization and re-polymerization.

A solution of P(C6-C6) (Mn: 11,000 g/mol) in anhydrous DMF (1.0 mol/L) was stirred at 150 °C 

under a N2 atmosphere for 1 h. After cooling to room temperature, the mixture was stirred in the 

presence of triethylamine (11 mg) at 25 °C under a N2 atmosphere for 24 h. Before and after each 

step, Mn and Mw of polymer were estimated by GPC analysis. De-polymerization and re-

polymerization of P(C6-C6) were carried out five times.

3. Results and discussion

The decomposition temperature for 5% weight loss (Td5) observed by TGA, a glass transition 

(Tg), crystallization (Tc), and melting (Tm) temperatures observed by DSC, and chemical shift of 

the peak due to NH moiety (δNH) observed by NMR are summarized in Table 2.
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8

Table 2. Td5, Tg, Tc, Tm, and δNH of 
PDTUs
Polymer Td5

 a Tg
 b Tc

 b Tm
 b δNH c

(°C) (°C) (°C) (°C) (ppm)
C3-C3 200.0 36.7 - - 9.95
C3-C6 220.9 17.2 - - 9.87
C3-C10 222.2 8.8 - - 9.86
C6-C3 182.0 26.6 - - 9.91
C6-C6 206.9 16.8 - - 9.85
C6-C10 213.8 4.8 - - 9.83
C12-C6 190.3 -8.7 18.5 86.1 9.83

a Measured by TGA under flowing N2 gas. b 
Measured by DSC under flowing N2 gas. c 
Observed at 25 °C in DMF-d6 by NMR 

3.1 Thermal propertiy and hydrogen bonding behavior of aliphatic polydithiourethanes

Thermal properties of aliphatic PDTUs were observed by DSC analysis (Fig. 1). The Tg values of 

the polymers decreased with increasing value of the carbon atom number of diisothiocyanate and 

dithiol units in the main-chain (Table 2 and Fig. 1). Such behavior of Tg values suggests that the 

difference of the carbon atom number of diisothiocyanate and dithiol units in the main-chain 

affect the hydrogen bonding fashion between the polymer chains. In order to clarify the 

hydrogen bonding behavior of aliphatic PDTUs, 1H NMR spectra observed in DMF-d6. In the 

temperature dependence NMR spectra of P(C3-C3), the peak due to NH moiety of the polymers 

was shifted to a high magnetic field with increasing of temperature, although the other peaks 
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9

never exhibited any chemical shift (Fig. S9a). In the case of P(C6-C6), the temperature 

dependence NMR spectra exhibited similar behavior of the chemical shift to that of P(C3-C3), 

whereas the NH peak of P(C6-C6) was observed at high magnetic field compared to that of 

P(C3-C3) without depending on a temperature (Fig. S9b). The temperature dependence NMR 

spectra of P(C3-C3) and P(C6-C6) indicate that the chemical shift of NH peak exhibits a strength 

of hydrogen bonding between the polymer chains. Accordingly, the hydrogen bonding of P(C3-

C3) is stronger than that of P(C6-C6) because the NH peak due to a strong hydrogen bonding is 

observed at lower magnetic field.33 Moreover, the hydrogen bonding of the polymers containing 

C3-dithiol unit was stronger than that of the polymers containing C6- or C10-dithiol units, 

because the peak due to NH moiety of the former polymers was observed at low magnetic field 

compared to that of the latter polymers (Table 2 and Fig. S10). Therefore, the Tg values of the 

polymers containing C3-dithiol unit was significantly higher than that of the polymers containing 

C6- or C10-dithiol units. On the other hand, the NH peaks of the polymers containing C6- or 

C10-dithiol units exhibited almost same chemical shift even though the Tg values of the polymers 

containing C6-dithiol units were higher than that of the polymers containing C10-dithiol units 

(Table 2 and Fig. S10). These results mean that the Tg values of the polymers containing C6- or 

C10-dithiol units depend on the alkyl chain length (i.e. flexibility) in not only dithiol but also 

diisothiocyanate units because the hydrogen bonding of those polymers is fairly weak. The 

degree of polymerization also affects the hydrogen bonding behavior of the polymers, because 

the number of hydrogen bonding moieties in the polymer chain depends on the degree of 

polymerization and alkyl length of the monomer units. Actually, P(C3-C3) has higher molecular 

weight and shorter alkyl units than the other polymers, meaning P(C3-C3) have a higher number 

of hydrogen bonding units (Table 1, Entry 1). On the other hand, a number of hydrogen bonding 
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10

units of P(C12-C6) decreases compared to the other polymers because of the lowest molecular 

weight and the long alkyl chain in the monomer units (Table 1, Entry 7). Therefore, P(C3-C3) 

exhibited the highest Tg value and P(C12-C6) exhibited fairly lower Tg value. P(C12-C6) also 

exhibited the phase transition temperatures attributed to the crystallization and melting points 

due to the alkyl chain packing between the polymer chains.

Figure 1. (a) DSC curves of P(C3-C6), P(C6-C6), and P(C12-C6). (b) DSC curves of P(C3-C3), P(C3-C10), P(C6-
C3), and P(C6-C10).
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11

3.2 Thermal decomposition behavior of aliphatic polydithiourethanes

Thermal decomposition behaviors of the aliphatic PDTUs were observed by TGA measurement 

(Fig. 2). The Td5 values of polymers decreased with increasing value of the carbon atom number 

in the diisothiocyanate unit, and also increased with increasing value of the carbon atom number 

in the dithiol unit (Table 2). In order to clarify the thermal decomposition behaviors of aliphatic 

PDTUs, that of polyurethane (PU) and polythiourethane (PTU) containing the alkyl chain units, 

which were the same as P(C6-C6), were also observed by TGA measurement (Fig. 3a). The Td5 

values of PU and PTU, which were 281 °C and 244 °C, respectively, were higher than that of 

PDTU. The thermal stability of these polymers depends on strength of intermolecular hydrogen 

bonding.33 In fact, PU and PTU were insoluble in any organic solvents because of the strong 

hydrogen bonding between the polymer chains, whereas PDTU was readily soluble in polar 

organic solvents such as THF and DMF. More importantly, the bond energy can be directly 

related to thermal stability of these polymers.40 Fig. 3b and Fig. 3c show the FTIR-ATR spectra 

of polymers before and after annealing, respectively. The peaks due to carbonyl groups of 

carbamate moiety of PU and thiocarbamate moiety of PTU, and thiocarbonyl group of 

dithiocarbamate moiety of PDTU were observed at 1680 cm-1, 1635 cm-1, and 1495 cm-1, 

respectively, in the FTIR-ATR spectra of polymers before annealing (Fig. 3b). After annealing in 

bulk at 150 ºC for 12 h, the peaks due to diisothiocyanate group (–NCS) was observed around 

2100 cm-1 in the FTIR-ATR spectra of PDTU, whereas the FTIR-ATR spectra of PU and PTU 

never changed before and after annealing (Fig. 3c). These results indicate that the C-S bond of 

dithiocarbamate moiety is readily cleaved under a high-temperature condition because the bond 

energy of C-S bond is fairly lower than that of the C-O bond.33 Therefore, the thermal stability of 
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12

PDTUs depends on not only the intermolecular hydrogen bonding but also the bond energy of 

dithiocarbamate moiety. However, P(C3-C6) and P(C6-C3) exhibited the different Td5 values 

even though the polymers was constructed with the aliphatic units of the same carbon atom 

number in the main-chain. The model compounds of bisdithiocarbamate containing propane 

diisothiocyanate and propane dithiol units (model-1 and model-2, respectively) were optimized 

by combination of DFT and PM3 methods (Fig. 4). The optimized structures of model-1 and 

model-2 showed the twisted and parallel conformations of the propane moieties, respectively. 

The twisted conformation of model-1 can give rise to decreasing the bond energy of C-S bond 

(Fig. 5a). In contrast, the C-S bond of model-2 is more stable than model-1 because of the 

ordered structure of propane bisdithiocarbamate moiety (Fig. 5b). These results suggest that the 

C-S bond energy decreases with increasing alkyl length of diisothiocyanate moiety and increases 

with increasing alkyl length of dithiol moiety. Therefore, P(C3-C6) exhibited higher Td5 value 

compared to P(C6-C3).
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13

Figure 2. (a) TGA traces of P(C3-C6), P(C6-C6), and P(C12-C6). (b) TGA traces of P(C3-C3), P(C3-C10), P(C6-
C3), and P(C6-C10).
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Figure 3. (a) TGA traces, (b) FTIR-ATR spectra after purification, and (c) FTIR-ATR spectra after annealing in 
bulk at 150 ºC for 12 h of polyurethane (PU), polythiourethane (PTU), and polydithiourethane (PDTU).
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Figure 4. (a) The model compounds of bisdithiocarbamate containing propane diisothiocyanate unit. (b) The model 
compounds of bisdithiocarbamate containing propane dithiol units. 

Figure 5. The presumed models of hydrogen bond (di and dii) and C-S bond (Di and Dii) attributed to alkyl length of 
diisothiocyanate and dithiol units.

3.3 Reversible reaction of aliphatic dithiocarbamate. 

The isothiocyanate group dissociated after annealing of PDTU suggested a possibility of the 

thermal de-polymerization of PDTUs and the re-polymerization of the dissociated monomers. 
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The reversible reaction was confirmed by using dihexyl dithiocarbamate as the model compound 

(Fig. 6). First, hexyl isothiocyanate and hexyl mercaptan were reacted in the presence of TEA at 

50 °C. The reaction was completely achieved for 1 h, because the peak due to –NCS was never 

observed in FTIR-ATR spectra. Next, the retro-reaction of the obtained dihexyl dithiocarbamate 

was carried out at 150 °C. The conversion ratio of retro-reaction was approximately 20% for 6 h, 

although the peak due to –NCS was observed around 2100 cm-1 in the FTIR-ATR spectra. 

Additionally, the conversion was almost the same ratio even after the reaction for 24 h. This 

result suggests that the retro-reaction of dithiocarbamate derivatives and the reaction of a part of 

dissociated residues proceed simultaneously during annealing at 150 °C. Furthermore, the 

activity of dissociated isothiocyanate and thiol groups was also confirmed by the addition 

reaction of them. The FTIR-ATR spectra showed that the reaction of dissociated isothiocyanate 

and thiol was completely achieved in the presence of TEA at 50 °C for 1 h, because the peak due 

to –NCS was never observed as well as the first reaction. 
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Figure 6. (i) The reaction of isothiocyanate and mercaptan derivatives at 50 ºC for 1 h. (ii) The retro-reaction of 
aliphatic dithiocarbamate at 150 ºC for 6 h. (iii) The reaction of dissociated isothiocyanate and mercaptan 
derivatives at 50 ºC for 1 h

3.4 De-polymerization of PDTU and re-polymerization of dithiourethane oligmer. 

Based on the reversible reaction of the model compound, the de-polymerization of PDTU was 

carried out in DMF at 150 °C for 1 h (Fig. 7a), and then GPC and FTIR-ATR of the de-

polymerized PDTU were measured. After de-polymerization process, the Mn value estimated by 

GPC decreased from 11,000 g/mol to 1,400 g/mol and the peak due to –NCS was observed 

around 2100 cm-1 in the FTIR-ATR spectra (Fig.7b-ii and 7c-ii). Accordingly, the residue ratio 

of –NCS group estimated by FTIR-ATR was 29.7% (Table 3). The re-polymerization was also 

carried out with TEA in DMF at 25 °C for 24 h (Fig. 7a). After re-polymerization process, the 

Mn value increased from 1,400 g/mol to 8,600 g/mol and the peak due to –NCS group was 

Page 17 of 27

ACS Paragon Plus Environment

Submitted to Macromolecules

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



18

slightly observed around 2100 cm-1 in the FTIR-ATR spectra (Fig.7b-iii and 7c-iii). These results 

suggested that the dithiourethane oligomer was prepared via de-polymerization based on the 

thermal cleavage of C-S bond of PDTU, and active isothiocyanate and thiol groups were 

reprepared in the terminal of the obtained dithiourethane oligomer. The re-polymerization of the 

obtained oligomer was achieved incompletely because the Mn value of the resulting polymer was 

slightly less value compared to that of the original polymer and the –NCS moiety was not 

completely consumed via re-polymerization (Fig. 7 and Table 3). Furthermore, de-

polymerization of PDTU and re-polymerization of the dithiourethane oligomers proceeded 

repeatedly, although the Mn value of the re-polymerized polymer decreased with increasing 

repeated cycle number (Table 4). Therefore, these results proved that the reversible reaction 

happened even in the case of the polymer as well as the aliphatic dithiocarbamate derivative of 

the model compound.
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Figure 7. (a) De-polymerization of PDTU and re-polymerization dithiourethane oligomer. (b) GPC profiles and (c) 
FTIR-ATR spectra of (i) original PDTU, (ii) de-polymerized PDTU, and (iii) re-polymerized dithiourethane 
oligomer.
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Table 3. Mn, Mw/Mn, and residue ratio of –NCS of 
(i) original PDTU, (ii) de-polymerized PDTU, and 
(iii) re-polymerized dithiourethane oligomer.
Polymer Mn

 (g/mol) a Mw/Mn
 a -NCS (%) b

(i) 11,000 2.44 0
(ii) 1,400 1.48 29.7
(iii) 8,600 2.10 5.4

a Determined by GPC analysis (PSt, THF). b 
Residue ratio of –NCS estimated by FTIR-ATR.

Table 4. Mn (Mw/Mn) values of de-polymerized PDTU and re-
polymerized dithiourethane oligomer during five cycles.a

De-polymerization Re-polymerzation -NCS
Mn (g/mol) [Mw/Mn]b Mn (g/mol) [Mw/Mn]b (%) c

Run1 1,400 [1.48] 8,600 [2.10] 5.43

Run2 1,100 [1.30] 7,500 [1.68] 7.42

Run3 1,100 [1.32] 6,200 [1.61] 9.34

Run4 1,200 [1.35] 5,100 [1.55] 11.4
Run5 1,100 [1.30] 4,900 [1.75] 11.6
a Initial Mn [Mw/Mn] value is 11,000 g/mol [2.44], b Determined 
by GPC analysis (PSt, THF). c Residue ratio of –NCS after re-
polymerization estimated by FTIR-ATR.

4. Conclusion

Thermal properties of the aliphatic PDTUs synthesized from diisothiocyanates and dithiols were 

studied in detail by using DSC, TGA, temperature dependence NMR, FTIR-ATR, and 

computational methods. The DSC curves and 1H NMR spectra indicated that the Tg values of 

PDTU s increased with decreasing value of the carbon atom number of diisothiocyanate and 

dithiol units, because the hydrogen bonding of polymers containing the diisothiocyanate and 

dithiol units of short alkyl chain was significantly strong compared to that of polymers 

containing the units of long alkyl chain. The TGA trace, FTIR-ATR, and DFT calculation also 

presumed that the thermal decomposition of PDTUs happened from the cleavage of C-S bond of 

dithiocarbamate moiety. Accordingly, the reversible reaction of isothiocyanate and thiol 
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derivatives was confirmed by using the aliphatic dithiourethane carbamate as the model 

compound. Furthermore, the reversible reaction happened even in the case of the polymer as well 

as the low molecular compound. PDTU afforded the dithiourethane oligomer via de-

polymerization based on the thermal cleavage of the C-S bond. The obtained dithiourethane 

oligomer also afforded PDTU via re-polymerization based on the addition reaction of the active 

isothiocyanate and thiol groups in the terminal, although the Mn value barely reached to the 

original polymer.
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