
Special Report

For reprint orders, please contact: reprints@futuremedicine.com

Circular RNAs: new genetic tools in
melanoma
Jamal Hallajzadeh1, Elaheh Amirani2, Hamed Mirzaei**,2, Rana Shafabakhsh2, Seyyed M
Mirhashemi3, Mehran Sharifi4, Bahman Yousefi5, Mohammad A Mansournia6 & Zatollah
Asemi*,2

1Department of Biochemistry & Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of
Medical Sciences, Maragheh, Iran
2Research Center for Biochemistry & Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
3Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of
Medical Sciences, Qazvin, Iran
4Department of Hematology & Oncology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
5Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
6Department of Epidemiology & Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
*Author for correspondence: Tel.: +98 315 546 3378; Fax: +98 315 546 3377; asemi r@yahoo.com
**Author for correspondence: h.mirzaei2002@gmail.com

Melanoma is the most lethal form of skin cancer. New technologies have resulted in major advances in the
diagnosis and treatment of melanoma and other cancer types. Recently, some studies have investigated
the role of circular RNAs (circRNAs) in different cancers. CircRNAs are a member of long noncoding RNA
family mainly formed through back-splicing and have a closed loop structure. These molecules affect
several biological and oncogenic cascades in diverse ways via acting as microRNA sponge, interacting
with RNA-binding proteins and acting as a transcription regulator. In this review, we made an insight into
the impact of circRNA dysregulation in the melanoma tumorigenesis based on the presented evidences.
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Melanoma, the cancerous growth of melanocytes, is the most aggressive form of all skin cancers [1]. This cancer is
more common in men, with worse survival rate than women [2,3]. Recently, its incidence, morbidity and mortality
are increasing worldwide. The American Cancer Society estimated that in 2019 melanoma was the fourth most
common cancer in men and the fifth most common cancer in women [4]. There are multiple distinct categories of
melanocytic neoplasms which are different in cell of origin, role of ultraviolet radiation, clinical and histological
indications, mutation pattern, predisposing germ line alterations and sites of metastasis [5]. Based on the primary
site of neoplasm and morphologic aspects of the early growth phase, melanoma divided into four main types:
superficial spreading melanoma (50–75%), nodular melanoma (15–35%), lentigo malignant melanoma (5–15%)
and acrallentiginous melanoma (5–10%) [6,7].

Recent investigations and new technologies have resulted in major advances in the diagnosis and treatment of this
cancer. In addition to conventional therapies for melanoma such as surgical intervention and radiation therapy, other
treatment options including chemotherapy, immunotherapy, genetically targeted therapy and nanotechnology have
been used [8–10]. Although melanoma is treatable in its early stages, it is still a therapeutic challenge and advanced
malignant melanoma carries a poor prognosis. Patients with stages II and III have a 10-year survival rate of 77 and
69%, respectively [11]. One of the main problems in the treatment of melanoma is low response rate to the present
treatment modalities due to inherent resistance of melanoma cells to chemotherapeutic agents [12]. Melanoma arises
from a complex interaction between environmental and genetic factors. A well-established risk factor for melanoma
development is exposure to ultraviolet radiation, which induces cellular stress signaling, DNA damage and disrupts
DNA repair systems [13,14]. Multiple pathogenic mutations in melanoma affect genes involved in key signaling
pathways that control proliferation (mitogen-activated protein kinase [MAPK], NF1, NRAS, and BRAF) replicative
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lifespan (cell cycle [cyclin-dependent kinase inhibitor 2A {CDKN2A}], telomerase reverse transcriptase [TERT]),
metabolism and growth (KIT and PTEN), cell identity (AT-rich interaction domain 2 [ARID2]) and resistance to
apoptosis [TP53]) [15]. It has been showed that variants of some genes, in other words, microphthalmia-associated
transcription factor (MITF) and melanocortin 1 receptor (MC1R) result in a moderately elevated risk of melanoma
development [16]. In recent years, a great progress has been made in understanding the role of epigenetic mechanisms
involved in the regulation of gene expression including methylation, chromatin remodeling and modification and
the various functions of noncoding RNAs (ncRNAs) in melanoma pathogenesis [17].

A group of RNAs that could not encode any proteins are known as ncRNAs. Primarily, ncRNAs are regulators
of gene expression and exert their function at the post-transcriptional level. They also have a key role in epigenetic
control [18]. Increasing evidence suggest that different kinds of ncRNAs for example, microRNAs (miRNAs) and long
noncoding RNAs (lncRNAs) including circular RNAs (circRNAs) exert considerable impact on several molecular
mechanisms in a variety of diseases [19–22]. Following miRNAs and lncRNAs, circRNAs enrich the RNA world.
CircRNAs are a different class of endogenous ncRNAs family that mainly result from back-splicing, a noncanonical
form of alternative splicing [23]. In human cells, circRNAs comprise more than 10% of all transcripts [24]. Unlike
linear mRNAs, 5′ and 3′ ends in circRNAs have been bonded together, forming covalently closed-loop structures [25].
Recent findings have demonstrated the circRNAs as stable and endogenous species. They also found out that
circRNAs are extensive in mammalian cells. The circRNAs show tissue/cell/developmental stage-specific pattern
for expression [26]. CircRNAs have different lengths and these molecules are able to form from each site in the
genome [27]. CircRNAs can be classified into five groups based on their genomic proximity to the counterpart
gene. The first type is sense or exonic, which comes from a linear transcript on the same sequence and has the
ability to alternatively splice isoforms. The second type is intronic circRNAs deriving from an intron and the third
type is antisense formed when circRNAs overlap one or more exons on the opposite sequence. The next type is
intragenic or bidirectional which is produced when circRNA is transcribed from same gene locus of the linear
sequence. The last type is intergenic, formed when circRNAs are located between the genomic intervals of two
genes [28,29]. The exact function of most circRNAs remains largely unexplored, but some functional circRNAs
have identified to play an important role in regulating the genes by different mechanisms such as regulation
of splicing and transcription, sponging miRNAs and proteins. Hence, they are highlighted as a new class of
important regulators [30,31]. CircRNA–miRNA axis is involved in several cancer-related pathways such as apoptosis,
vascularization, invasion and metastasis [28,32]. Emerging studies showed that deregulation of circRNAs has been
implicated in the pathogenesis of multiple diseases, especially various cancers [33,34].

During these last years, our knowledge regarding the function of circRNAs in cancers has been expanded. Several
circRNAs such as cerebellar degeneration-related 1 (CDR1) antisense RNA (CDR1-AS) can bind to miRNA-7 in
different binding sites and inhibit its gene regulation [35–37]. In a study, Hanniford et al. investigated the role of
circRNA in the metastatic model of melanoma [37]. They indicated that the silencing of CDR1-AS, as an miR-7
regulator, could be used as a hallmark in the progression melanoma. LINC00632 as an lncRNA could lead to
CDR1-AS depletion that results in induction of invasion via miR-7-independent, IGF2BP3-mediated mechanism
both in vitro and in vivo. Their results indicated that the levels of CDR1-AS reflect cellular states related to distinct
therapeutic responses. These findings suggested CDR1-AS has functional, predictive and prognostic roles and it
plays a crucial function in metastasis [37].

MiR-7 can negatively regulate a variety of molecules and pathways involved in cancer such as cell growth,
proliferation and invasion and also it is considered as a promising target in cancer therapy [38]. Further, circRNAs
affect the cancer biogenesis by interacting with RNA-binding proteins and acting as a transcriptional regulator of
diverse proteins [39]. In addition, dysregulation of certain circRNAs may contribute to tumor metastasis by activating
epithelial–mesenchymal transition (EMT) process [40]. At this point, when it is established that melanoma is a
highly metastatic cancer with a poor prognosis and a high degree of resistance to medical treatment, increasing
studies have explored the role of epigenetic pathways in melanoma tumorigenesis and treatment. However, the role
of lncRNAs and miRNAs in melanoma has been reviewed in some details [41–43], a remaining question is about
the role of circRNAs in melanoma carcinogenesis. In this review, we summarize advance research regarding the
involvement of circRNA regulation and functions in melanoma.

Melanoma carcinogenesis: signaling pathways
Molecular studies have indicated that melanoma is a heterogeneous disease arising from different factors. Over
the past decade, many biological pathways, genetic alterations and epigenetic regulation affecting melanoma
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development have been identified [44,45]. MAPK is the pathway with the highest oncogenic and therapeutic
relevance for this disease. Activation of MAPK signaling by oncogenic mutations has been found in more than
80% of melanoma cases [46,47]. For instance, mutation in BRAF induces activation of MAPK-signaling cascade
and downstream protein kinases (MEK and ERK), which results in increased proliferation of melanoma cells
and oncogene activity [48]. Another remarkable pathway in melanoma development is mediated by MITF, which
controls the transcription of multiple genes, and a number of signaling molecules including PKC, cAMP, MEK
and Wnt/β-catenin. This transcription factor finally modifies multiple cellular processes including differentiation,
proliferation, survival and motility [49].

Nuclear factor-kB (NF-kB) as a transcription factor can induce and modulate the expression of many genes that
are engaged in the immune response. Recently, hyperactivity of NF-kB has reported in several cancers including
melanoma. These findings show that overactivation of NF-kB may be caused by upstream dysregulated signaling
pathways including PI3K/Akt/mTOR, NIK and Ras/Raf. All of them indicated the key function of NF-kB in
tumorigenesis [50]. Under normal condition, the above-mentioned pathways regulate the basic cell functions such
as cell cycle, survival and metabolism. In melanoma, genetic alterations and other factors lead to the constitutive
activation of these pathways and loss of cellular homeostasis [51]. Moreover, some of these cascades such as
Ras/Raf, PI3K/Akt/mTOR, Wnt/β-catenin and several others are implicated in the promotion of EMT by which
melanocytes lose their epithelial characteristics and acquire mesenchymal phenotypes [52]. In addition, altered
expression of miRNAs has been associated with the development of melanoma [53]. Diverse miRNAs can disrupt
or facilitate many processes in melanoma carcinogenesis including cellular proliferation (miR-31, miR-375, miR-
376c, miR-196b), apoptosis (miR-21, miR-15b, miR-182, miR-1246), tumor suppressor p53 signaling (miR-18b,
miR-34a), invasion (miR-182, miR-211, miR-196a, miR-143-3p) and EMT (miR-205, miR-211) [53,54].

CircRNAs & cancer
There are many different circRNAs that are expressed in cancer tissues. Previously, through microarray analysis
and RNA sequencing technologies, the abnormal expression of a wide variety of circRNAs in different kinds
of carcinomas such as lung cancer [55], gastric cancer [56], osteosarcoma [57], hepatocellular carcinoma [58] and
retinoblastoma [59] and several other types of tumors has been indicated. Due to identification of a large number
of circRNAs associated with cancer, the clinical significance of circRNAs and their roles in cancer diagnosis setting
and prognosis evaluation get more attention. Using miRNA-binding sites, many circRNAs show miRNA sponging
features. MiRNA sponge prevents the regulatory effect of miRNAs on downstream target genes. This feature may
either promote cancer progression or suppress tumorigenesis depending on the expression of miRNA targets [32,60].
For instance, CDR1-AS, one of the most studied circRNAs, which is also known as ciRS-7, sponges miR-7
and thus suppresses its activity [36,61]. MiR-7 is involved in various cancer-associated signaling cascades through
downregulation of the expression of epidermal growth factor receptor (EGFR) and downstream protein kinases
including ERK, Akt, STAT3 [62,63], mammalian target of rapamycin (mTOR) [64], Raf-1 proto-oncogene [65], cyclin-
dependent kinase 1 (CDK1) [66], p21-activated kinase-1 (PAK1) [67] and focal adhesion kinase (FAK) [68] which are
key oncogenic factors. In melanoma cells, it was found that miRNA-7 was downregulated and reestablishment of its
expression could reverse drug resistance to BRAF inhibitors, markedly decrease the expressions of EGFR, insulin-
like growth factor-1 receptor (IGF-1R) and CRAF and further suppress the activation of MAPK and PI3K/AKT
pathway [69]. CircRNAs deriving from homeodomain-interacting protein kinase (HIPK) loci are another group
of important circRNAs that modulate cellular proliferation and viability mainly by sponging multiple miRNAs
specifically miRNA-124 [70]. Appropriate activity of miR-124 is implicated for the inhibition of cell invasion and
cancer metastasis in lung adenocarcinoma [71], osteosarcoma [72] and breast cancer [73]. In addition, by sponging
miRNAs, certain circRNAs promote the EMT signaling pathway that plays a key role in cancer progression and
other adult pathologies through lowering of E-cadherin and increasing N-cadherin and vimentin [74]. Interaction
between circRNAs and RNA-binding protein such as Quaking (QKI) protein, Argonaute (AGO) and Muscleblind
(MBL) leading to the formation of RNA–protein complex is another mechanism by which some circRNAs can
affect tumorigenesis process [75]. Moreover, several circRNAs can enhance the expression of their precursor genes
that may suppress or promote cancer progression [76].

Roles of circRNAs in melanoma development & progression
Advances in RNA-sequencing techniques and bioinformatics tools have provided the possibility for discovery of
various circRNAs and their roles in melanoma. One study identified 9300 different circRNAs in conjunctival
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Figure 1. Various factors related to circular RNAs and their impact on the development of melanoma. The main
suggested mechanism by which circRNAs involved in melanoma included miRNA sponging, which finally controls
several key cellular processes and regulate tumor proliferation, invasion, migration and metabolism.
circRNA: Circular RNA; miRNA: MicroRNA.

melanoma tissues compared with adjacent normal tissues [77]. Bian et al. [78] reported that FOXM1 exons are able to
produce the Circ 0025039. The upregulation of this circRNA is associated with some melanoma-related processes
including inducing the cell growth, glucose metabolism and invasion via regulating CDK4 and sponging miR-198.
In a melanoma xenograft model, silencing of this circRNA decreased the tumor volumes and weight. Additionally,
increased miR-198 expression and decreased CDK4 were also observed in melanoma. Another upregulated circRNA
is CircMTUS1, which may serve as an oncogene by binding to hsa-miR-622 and hsa-miR-1208 to regulate several
tumor-related pathways, including those promotes cell proliferation in conjunctival melanoma. Recent findings
showed that this circRNA might promote tumor progression through regulating MAPK pathway and Wnt/β-
catenin cascade. Further investigation indicated that silencing of circMTUS1 suppressed melanoma proliferation
in vitro and in vivo [77]. In addition, it was demonstrated that in oral mucosal melanoma, hsa circ 0005320,
hsa circ 0067531 and hsa circ 0008042 were significantly upregulated in primary tumor and metastatic lymph
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Table 1. List of circular RNAs that are involved in the melanoma.
CircRNA Type of melanoma Expression change Function Possible mechanism Ref.

circMTUS1 Conjunctival melanoma
tissues and cell lines

Up Promote tumor
proliferation

Sponging hsa-miR-622
and hsa-miR-1208

[77]

hsa circ 0025039 Malignant melanoma
tissues and cell lines

Up Promote cell
proliferation, colony
formation ability, and
invasion and glucose
metabolism.

Sponging miR-198
regulation of CDK4
expression

[78]

hsa circ 0005320 Oral mucosal melanoma
tissues

Up GTPase activity, GTP
binding, septin complex.

Targeting a series of
miRNA
(predicted by
bioinformatics databases)

[79]

hsa circ 0067531 Oral mucosal melanoma
tissues

Up Activation of MAPK
activity, ATP binding

Targeting miR-328-5p
(predicted by
bioinformatics databases)

[79]

hsa circ 0008042 Oral mucosal melanoma
tissues

Up Translation repressor
activity

– [79]

hsa circ 0000869 Oral mucosal melanoma
tissues

Down Regulation of G-protein
coupled receptor protein
signaling pathway

Targeting miR-328-5p
(predicted by
bioinformatics databases)

[79]

hsa circ 0000853 Oral mucosal melanoma Down NF-kB signaling pathway – [79]

circRNA 0084043 Malignant melanoma
tissues and cell lines

Up Cell proliferation,
invasion and migration

Sponging miR-153-3p and
upregulating Snail
expression

[81]

circ0000082 and
circ0016418

Low- and high-metastatic
melanoma cell line:
WM35, WM451

Up Proliferation and invasion
of the WM451

Targeting a series of
miRNA
(predicted by
bioinformatics databases)

[80]

circ0023988, circ0008157
and circ0030388

Low- and-high metastatic
melanoma cell line:
WM35, WM451

Down Proliferation and invasion
of the WM35 cells

Targeting a series of
miRNA
(predicted by
bioinformatics databases)

[80]

The roles of circRNAs in the cellular processes. CircRNAs are able to regulate tumor proliferation, invasion, migration and metabolism that are involved in melanoma pathogenesis.
CircRNA: Circular RNA.

nodes compared with paired adjacent normal tissues and nonmetastatic lymph nodes, whereas the expression
of hsa circ 0000869 and hsa circ 0000853 were downregulated relatively. Gene Ontology and pathway analyses
indicated that these identified circRNAs might play important roles in protein modification, protein binding and
cellular metabolism in this cancer [79]. Circ0000082 and circ0016418 overexpressed in high- and low-metastatic cell
lines of melanoma. In addition, a downregulation of circ0023988, circ0008157 and circ0030388 was also detected.
Recent evidence revealed that knockdown of circ0023988, circ0008157 or circ0030388 remarkably increased the
WM35 cell’s propagation and invasion. Besides, the invasion and proliferation was inhibited by silencing the
circ0016418 and circ0000082 in WM451 cells [80]. Moreover, it is has been reported that circRNA 0084043
remarkably overexpressed in melanoma and may play a sponge role for miR-153-3p for Snail upregulation, thereby,
raised the invasion, propagation and migration of melanoma. Knocking down the circRNA 0084043 notably
reduced the tumor growth between day 12 and day 21 in the melanoma xenograft model compared with the
control group.

Also, expression of MMP2 (invasion markers), Ki-67 (proliferation-related) and Snail protein was reduced,
while E-cadherin (a marker related to epithelial cells) was increased in circRNA 0084043 silent group [81]. The
above-mentioned studies suggested that circRNAs might exert important carcinogenic roles in melanoma.

Prognostic value of circRNAs in melanoma
Several factors including increased thickness, ulceration and mitotic rate are strong independent predictors of survival
in patients with stage I/II melanoma [82]. Diver molecular markers have been recently examined for their prognostic
values in melanoma. Although a small number of studies have investigated the relationship between circRNAs and
clinical pathological characteristics of melanoma, important findings have been obtained. Hsa circ 0025039 is
a circRNA, which its expression strongly associated with the pathological node status, metastasis and various
clinical stages. Furthermore, melanoma subjects with hsa circ 0025039 overexpression showed smaller survival
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time comparing those with underexpressed has circ 0025039. This data show that overexpression of this circRNA
is associated with a poor prognosis [78]. Another important circRNA in this regard is circRNA 0084043. Evidence
indicated high expression of this molecule in malignant melanoma patients. The expression of circRNA 0084043
is strongly related to various pathological stages including clinical stage of the disease, while it is not associated with
others, for example, age, family history, sex and ulcer. The upregulation of this molecule could be related to poorer
survival. Moreover, various analysis revealed that upregulation of circRNA 0084043 is an independent risk factor
of overall survival for melanoma patients [81]. These findings proposed that along with other factors, circRNAs
could be an important factor in determining the survival of patients with melanoma.

Conclusion
Evidence indicated that the expression of circRNAs altered during melanoma development, which suggests that
circRNAs could play profound roles in this cancer. Some studies proposed various mechanisms for circRNA function
in melanoma (Figure 1 & Table 1). The main suggested mechanism by which circRNAs involved in melanoma
included miRNA sponging, which finally controls several key cellular processes and regulate tumor proliferation,
invasion, migration and metabolism. Collectively, this evidence highlights the importance of circRNAs as new tools
in biomedical applications for management of melanoma.

Future perspective
Nowadays, there is an essential need to identify novel biomarkers with superior diagnostic and prognostic per-
formance compared with traditional parameters for management of different cancers specially melanoma. Given
the abundance of circRNAs, their high stability and tissue-specific expression patterns, these molecules potentially
can be used as promising biomarkers in the future. Certain circRNAs also represent to be associated with clinical
pathological characteristics of melanoma. However, more efforts are warranted to elucidate the exact functions of
circRNAs and their mechanism of action in melanoma.

Executive summary

• Melanoma is a prevalent disease with increasing incidence that is associated with various health public problems
across the world.

• A variety of genetics and epigenetic mechanisms are involved in melanoma pathogenesis.
• Circular RNAs are epigenetic signals which could influence the spread, invasiveness and chemoresistance of

melanoma cells.
• Various studies indicated that circular RNAs could be used as prognostic, diagnostic and therapeutic biomarkers

in the treatment of melanoma.
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