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Resistant microorganisms such as Pseudomonas aeruginosa grow by developing biofilms in hospitals. We
aimed to investigate the biofilm formation and the frequencies of biofilm-related genes and their associations
with antibiotic resistance pattern in P. aeruginosa isolated from Iranians’ clinical samples. This review was
performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines. We conducted a systematic literature search in scientific databases using medical subject heading
terms, including ‘‘Pseudomonas aeruginosa,’’ ‘‘biofilm formation,’’ ‘‘biofilm-related genes,’’ ‘‘antibiotic re-
sistance,’’ and ‘‘prevalence,’’ to obtain related articles published from 1st January, 2000, to 30th March, 2019.
The studies reporting the prevalence of biofilm formation, the frequencies of biofilm-related genes, and the
antibiotic resistance pattern in P. aeruginosa retrieved from Iranian patients were included. Meta-analysis was
performed using the Comprehensive Meta-Analysis software. The pooled rate of biofilm formation was cal-
culated as 86.5% (95% confidence interval [CI]: 79–91.6). The combined frequencies of strong, moderate, and
weak biofilms were 51% (95% CI: 37.4–64.4), 29.2% (95% CI: 20.9–39.1), and 25.4% (95% CI: 11.5–47.2),
respectively. The pooled prevalence of laslR, algD, algU, ppyR, and pelF genes were 93.6% (95% CI: 88.1–
96.6), 91.4% (95% CI: 80.8–96.4), 89.3% (95% CI: 85.2–92.3), 98.7% (95% CI: 96.5–99.6), and 93% (95% CI:
82.7–97.3), respectively. The highest combined antibiotic resistance rates of P. aeruginosa isolates were against
piperacillin/tazobactam (90%). This study showed that biofilm formation was higher in multidrug-resistant
(MDR) P. aeruginosa than non-MDRs. A significant correlation was observed between biofilm formation and
antibiotic resistance in 50% of studies included in this review.
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Introduction

Pseudomonas aeruginosa is a Gram-negative oppor-
tunistic microorganism causing serious infections in

debilitated patients, including those with cystic fibrosis,
AIDS, and chronic diseases, as well as burn patients and
those hospitalized in intensive care unit (ICU).1 Moreover,
P. aeruginosa can lead to a broad spectrum of the urinary
tract, burn wound, blood circulation, and respiratory tract
infections.2,3

P. aeruginosa infection is a common nosocomial infec-
tion with high mortality and morbidity rates, especially
among immunocompromised4 and patients with burn
wounds.5 Extensive use of systemic antibiotics as well as

surgical debridement have increased the risk of infections
caused by Gram-negative bacteria such as P. aeruginosa.6 A
variety of antimicrobial mechanisms such as the expression
of efflux pumps, suppression of enzyme production, and
biofilm formation have rendered the treatment of bacterial
infections problematic.7 Thus, it is important to employ
appropriate antibiotics to reduce mortality and hospitaliza-
tion rates, as well as the economic burden associated with
resistant Gram-negative bacterial infections.8

The antibiotic-resistant bacterial strains are mainly de-
veloped due to the inappropriate use of antibiotics leading to
the propagation of antimicrobial mechanisms among bac-
teria.9 Multidrug-resistant (MDR) P. aeruginosa infections
are major health care concerns in today’s world.10,11 There
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are limited effective antibiotics against MDR P. aeruginosa
leading to longer hospital stays and costs, as well as higher
mortality and morbidity rates.12

P. aeruginosa can cause either chronic or acute infections
depending on the host’s health status and the life cycle
adopted by the microorganism in the host’s body.13 The
pooled prevalence of MDR P. aeruginosa has been esti-
mated to be 58% in Iran,14 constituting 10–20% of all
nosocomial infections.15

Many bacteria, including P. aeruginosa, produce biofilms
to survive in the host’s body and harsh environments.16

Biofilm formation allows cumulative bacterial growth by
adhering to surfaces through self-secreted matrix extracel-
lular polymeric substance (EPS). The EPS contains poly-
saccharides, proteins, and nucleic acids allowing the
organism to thrive in difficult conditions such as undesirable
pH, humidity, and temperature, as well as in exposition with
antimicrobial agents.17

Biofilm formation is a complex phenomenon involving
several internal signaling pathways and the expression of
multiple biofilm-related genes such as pel, psl, and alg.18

The difference between planktonic and biofilm persistence
reduces the metabolic activity of biofilms, inactivates anti-
microbial agents, and suppresses the expression of specific
enzymes.19,20

Several genes are involved in biofilm formation by
P. aeruginosa. The pslA gene encodes an exopolysaccharide
involved in biofilm structure. Also, alginate is another
polysaccharide encoded by algD, algU, and algA genes
participating in the structure of biofilms and enhancing the
adherence capability of P. aeruginosa.21 Besides, psl, pel,
and ppyR genes encode other exopolysaccharides involved
in biofilm formation.22 Biofilms are structurally catego-
rized into weak, moderate, or potent, each presenting vari-
able capabilities to protect bacteria against antimicrobial
agents.23

The induction of virulence factors (such as type III en-
zyme secretion systems) and decreased permeability of
bacterial membranes during biofilm formation confer re-
sistance to bacteria against different classes of antibiot-
ics.24,25 So, biofilm formation allows P. aeruginosa to create
chronic infections and persist in harsh environments such as
hospitals.26,27 Acknowledging the relationship between
bacterial genotype and biofilm phenotype can help to ef-
fectively control severe infections caused by biofilm form-
ing in P. aeruginosa strains.16

Regarding the significant role of P. aeruginosa in
hospital-acquired infections and the lack of a comprehensive
study on this issue, we aimed to investigate the combined
prevalence of biofilm formation, biofilm subgroups (i.e.,
potent, moderate, and weak), antibiotic resistance pattern,
the combined prevalence of biofilm-related genes, and the
association between biofilm formation and antibiotic resis-
tance in P. aeruginosa strains isolated from Iranian patients.

Materials and Methods

The present meta-analysis was performed according to
the guidelines of the Meta-analysis of Observational Studies
in Epidemiology (MOOSE) and Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA)
(Supplementary Data).

We conducted a systematic literature search in Web of
Science, Cochrane Library, Scopus, PubMed, and Google
Scholar databases using the following medical subject
heading terms: Pseudomonas aeruginosa, biofilm formation,
biofilm-related genes, antibiotic resistance, and prevalence.
The combinational search was conducted applying the fol-
lowing strategy (in the MEDLINE for example): ‘‘((Biofilm
formation) OR Biofilm production) AND Pseudomonas
aeruginosa) AND Prevalence) AND Iran)).’’ Studies pub-
lished between 1st January, 2000, and 30th March, 2019,
were retrieved. The articles reporting the prevalence of
biofilm formation, the frequencies of biofilm-related genes,
and the antibiotic resistance pattern of P. aeruginosa in
Iranian patients were included. The references of all included
studies were also checked for finding additional records.

Eligibility criteria

The major inclusion criteria included reporting the rate of
biofilm formation, the prevalence of biofilm-related genes,
and the antibiotic resistance pattern in P. aeruginosa iso-
lated from Iranian patients’ samples. Also, only studies in
which the standard microtiter plate test had been used as the
biofilm formation assay were included.28 In this technique,
the P. aeruginosa isolates were grown at 37�C overnight in
Mueller Hinton Broth (MHB) containing 0.25% glucose.
The cultures were diluted 1:100 in MHB medium. Sterile
96-well microtiter plates were inoculated with 125mL of the
bacterial suspension and incubated for 24 hours at 37�C
without agitation. The wells were washed with 300mL dis-
tilled water in triplicate and dried at room temperature. All
wells were stained with 125mL of 0.1% crystal violet so-
lution for 10 minutes. Then, wells were washed thrice with
distilled water. The wells were destained with 125mL of
30% acetic acid solution. Finally, the optical density (OD)
of each sample was measured at 570 nm by a spectropho-
tometer (Smart Spec plus Spectrophotometer Bio-RAD).
The experiment was repeated in triplicate and the mean
value of OD was calculated. Based on the optical density
index (ODi) of the samples and on the mean of the OD of
the negative control (ODc), the biofilm was classified as
strong (4 · ODc < ODi), mod (2 · ODc < ODi £4 · ODc),
weak (ODc < ODi £2 · ODc), and nonproducer of biofilm
(ODi < ODc).

Also, for determining the antibiotic resistance rate, the
studies should have used one of the standard susceptibility
tests such as Broth dilution (either Macrobroth or Micro-
broth dilution) and disk diffusion methods according to the
Clinical and Laboratory Standards Institute (CLSI).29

Reviews, editorials, congress and meeting abstracts, lit-
eratures in languages other than English, case reports, and
letters to editors were excluded. Articles without full text,
duplicate reports, and studies with unclear and missing data
were also omitted.

Screening

Duplicates were initially identified and eliminated after
entering all the recognized studies into a self-created data-
base. After that, the articles were assessed by two reviewers
(H.K.M. and M.H.F.) by screening titles, abstracts, topics,
and finally full texts. At each level, the reviewers indepen-
dently screened the articles and finally merged their
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conclusions. Discrepancies were resolved by discussion
before finalizing the records for the next level. In case of
disagreements, a third assessor (A.K.) was assigned to make
a decision. Finally, the studies were assessed for eligibility
before the final selection.

Quality assessment

Methodological quality assessment of the studies was
performed using a checklist for necessary items as outlined
in the Critical Appraisal Skills Programmed checklists. For
each article, a series of critical questions was asked. If the
pertinent data were presented, the question was scored
‘‘yes.’’ If there was any doubt or no information in the
study, that question was marked as ‘‘no’’ or ‘‘can’t tell.’’
The studies were given a total rate of either ‘‘strong,’’
‘‘moderate,’’ or ‘‘weak,’’ based on the number of questions
scored ‘‘yes.’’30 Finally, weak studies were removed from
the study. Overall, the employed scoring system for quality
assessment of quantitative (i.e., cross-sectional surveys)
included 10 questions. The scores were categorized as
weak (0–4), moderate (6–8), and strong (>8)31 (Supple-
mentary Table S1).

Data extraction

A data extraction form was designed to extract the
relevant characteristics of each study. The extracted in-
formation included the first authors’ names, time of the
study, year of publication, location, sample size, biofilm
formation rate, the correlation between biofilm formation
and antibiotic resistance, and the type of biofilm (i.e.,
potent, moderate, and weak). Two of the authors (A.K. and
K.M.) extracted the data.

Data analysis and statistical methods

Meta-analysis was performed using the Comprehensive
Meta-Analysis software (Version 3.3.070). The rate of bio-
film formation was calculated with 95% CI. The heteroge-
neity was assessed by the Cochrane Q and I2 tests.
Considering the heterogeneity indices, the random-effects
model was used to calculate the pooled frequencies. Sub-
group analyses were conducted based on the type of biofilm,
biofilm-related genes, and antibiotic resistance rate. Quan-
titative Egger weighted regression test and Funnel plot were
used to investigate publication bias. p-value of <0.05 was
considered the statistical significance threshold.

FIG. 1. Conceptual model of study search and selection.
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Results

Study inclusion criteria and characteristics
of the eligible studies

A total of 612 studies were retrieved and 34 full texts were
reviewed. Twenty studies met our inclusion criteria (Fig. 1).

The finally included studies covered different regions of
Iran, but most of them had been performed in Tehran.
Overall, the biofilm formation rate varied from 43.5% to
99.5% in P. aeruginosa isolates from Iranian patients
(Fig. 2, Table 1).

Overall effects

Heterogeneity analysis. The heterogeneity indices among
the included studies were as Q2 = 206.3, I2 = 90.7, and t = 3
( p = 0.006). According to the observed heterogeneity indi-
ces, the random-effects model was used to combine the
frequencies of biofilm formation.

Biofilm prevalence. The pooled rate of biofilm formation
was calculated as 86.5% (95% CI: 79–91.6, Table 2).

The publication bias was evaluated using the Funnel plot
(Fig. 3). Egger’s linear regression test was used to fur-
ther reveal any publication bias and possible asymmetri-
cal data distribution in the selected studies. No publication
bias was observed according to Egger’s linear regression
test ( p = 0.00). Subgroup analysis based on the type of
biofilm showed that the combined rates of potent, moder-
ate, and weak biofilms were 51% (95% CI: 37.4–64.4),
29.2% (95% CI: 20.9–39.1), and 25.4% (95% CI: 11.5–
47.2), respectively. On the other hand, 51%, 29.2%, and
25.4% of P. aeruginosa isolates were potent, moderate,
and weak biofilm producers.

Biofilm-related genes. The pooled prevalence of laslR,
algD, algU, ppyR, and pelF genes was 93.6% (95% CI:
88.1–96.6), 91.4% (95% CI: 80.8–96.4), 89.3% (95% CI:
85.2–92.3), 98.7% (95% CI: 96.5–99.6), and 93% (95%

FIG. 2. Forest plot of the meta-analysis of prevalence of biofilm formation in Pseudomonas aeruginosa isolated from
clinical samples. In the forest plot (a graphical display), the X-axis forms the effect size scale, plotted on the top of the plot.
Each row, except the bottom one, represents a study’s effect size estimate in the form of a point and a (95%) CI. This is the
statistically correct way of representing the results of a single study, namely as an estimate of an interval in which the
‘‘true’’ effect (in the population) will most probably lie. Remember it is assumed that every study in the meta-analysis is a
study of a complete probability sample of a specified population. If this assumption is not met in a study, no inference can be
made from the ‘‘sample’’ to a population and hence, comparing the observed effect size with observations in other studies is
not meaningful. The point estimate is represented in the forest plot by a smaller or a larger bullet. The relative size of these
bullets represents a study’s weight in the generation of the meta-analytic result. The plot presented in this figure is fictitious
and constructed for illustration purposes: if CIs are entirely on the positive side of zero, in traditional terminology, these
studies show a statistically significant positive effect. If CIs are entirely on the negative side of zero, in traditional
terminology, these studies show a statistically significant negative effect. If CIs include zero, in traditional terminology,
these studies show an effect that is not statistically significant. CI, confidence interval.
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CI: 82.7–97.3), respectively. The frequencies of other
biofilm-related genes have been demonstrated in Table 2.
The combined prevalence of MDR P. aeruginosa isolates
was obtained as 66.9% (95% CI: 42–84.9). As shown in
Table 3, the highest pooled rates of antibiotic resistance

were against piperacillin/tazobactam, gatifloxacin, cef-
triaxone, and carbenicillin with rates of 90% (95% CI:
98–99.9), 87.2% (95% CI: 75–93.9), 80.9% (95% CI:
53.3–94), and 80.5% (95% CI: 32.4–97.3), respectively.
Also, the lowest antibiotic resistance rates were against

Table 1. Characteristics of Included Studies in This Review

First author
Time

of study
Publication

(year) Location
Sample

size
Biofilm

rate

Correlation
between biofilm

and AB resistance

Biofilm type, n (%)

Strong Moderate Weak

Jabalameli63 2010 2012 Tehran 96 93 (97.9) No reported 46 (49.46) 25 (26.88) 22 (23.65)
Hemati48 2012–2013 2014 Tehran 140 122 (87.1) Yes 79 (64.75) 30 (24.59) 13 (10.65)
Heydari64 2011 2015 Tehran 62 27 (43.5) No 18 (66.7) — 9 (33.3)
Corehtash65 2013 2015 Tehran 144 133 (92.4) Yes — — —
Ghadaksaz66 2010–2012 2015 Tehran 104 53 (51) No — — —
Azimi67 2013–2014 2016 Tabriz 160 139 (87) No reported 110 (79.13) 18 (12.94) 11 (7.91)
Banar23 2013–2014 2016 Tehran 57 55 (96.5) No 17 (30.9) 26 (47.3) 12 (21.8)
Tabatabaei68 — 2017 — 50 35 (70) Yes 35 (100) — —
Saffari69 2014–2015 2017 Tehran 92 92 (99.5) Yes — 11 (12) 81 (88)
Valadbeigi70 2015 2017 Ilam 18 12 (66.7) Yes — — —
Asadpour71 — 2018 Rasht 90 61 (67.8) Yes — —
Dolatabadi72 — 2018 Tehran 50 50 (99.5) No reported 17 (33.33) 33 (66.66)
Gholamrezazadeh73 2015 2018 Kerman 28 19 (68) Yes 8 (42.1) 7 (36.84) 4 (21.05)
Heidari74 2016–2017 2018 Shiraz 56 56 (99.5) No reported — — —
Karami75 2016–2017 2018 Hamadan 58 55 (94.8) Yes — — —
Nasirmoghadas76 2015 2018 Isfahan 100 93 (93) No 4 (4.3) 22 (23.65) 67 (72.04)
Pournajaf21 2016–2017 2018 Tehran 143 112 (78.3) No reported 64 (57.1) 31 (27.6) 17 (15.2)
Satarian77 2008–2009 2018 Tehran 33 16 (48.5) Yes — — —
Shokri78 2013–2014 2018 Isfahan 80 76 (95) No reported — — —
Bahador79 2017 2019 Bandar

Abbas
75 74 (98.7) Yes 45 (60) 26 (34.3) 3 (4.3)

In this method, the sample size and event rate (prevalence) were used to calculate the combined biofilm produced. The rate of biofilm
formation was calculated with 95% CI through random-effects model. p-value of <0.05 was considered the statistical significance
threshold.

CI, confidence interval.

Table 2. Overall Effects of Subgroup Analysis in Pseudomonas aeruginosa Isolated

from Clinical Samples of Iranian Patients

Subgroups
No. of
studies

Heterogeneity test Egger’s test Random model

Prevalence
(95% CI) (%) Z p Q p I2 T p

MDR 66.9 (42–84.9) 1.34 0.00 284.8 0.00 96.1 0.81 0.43
Overall effect (biofilm) 20 86.5 (79–91.6) 6.8 0.00 206.3 0.00 90.7 3 0.006
Biofilm types

Strong 11 51 (37.4–64.4) 0.13 0.00 108.9 0.00 90.8 0.85 0.41
Moderate 10 29.2 (20.9–39.1) 0.12 0.00 67.9 0.00 86.7 0.5 0.6
Weak 10 25.4 (11.5–47.2) 2.8 0.00 214 0.00 95.8 0.8 0.4

Genes related to biofilm formation
rhlIR 1 83.6 (76.5–88.8) 7.1 1.00 0.00 0.00 0.00 — —
lasIR 1 93.6 (88.1–96.6) 7.7 1.00 0.00 0.00 0.00 — —
pslA 5 77.3 (59.8–88.7) 2.8 0.00 45.4 0.4 91.2 0.9 0.00
pelA 3 51.8 (45.9–57.6) 0.2 0.51 3.7 0.00 46.5 0.4 0.71
algD 7 91.4 (80.8–96.4) 5 0.00 42.8 0.00 86 2.4 0.05
algL 3 70.2 (64.6–75.3) 6.5 0.46 1.5 0.00 0.00 1.3 0.40
algU 4 89.3 (85.2–92.3) 11.2 0.17 4.9 0.00 38.9 4.9 0.03
lasB 2 55.9 (11.7–92.4) 0.20 0.8 33.7 0.00 97 — —
ppyR 3 98.7 (96.5–99.6) 8 0.9 0.10 0.00 0.00 0.17 0.00
pslD 1 54.4 (41.5–66.1) 0.6 1 0.00 0.00 0.00 — —
pelF 1 93 (82.7–97.3) 4.9 1 0.00 0.00 0.00 — —

Biofilm formation was calculated using Comprehensive Meta-Analysis software as presented in Table 1. The heterogeneity was assessed
by the Cochrane Q and I2 tests. Considering the heterogeneity indices, the random-effects model was used to calculate the pooled
frequencies. Usually, I2 value <50% suggests significant heterogeneity in the reported effect sizes. Also, Egger’s linear regression test was
used to further reveal any publication bias and possible asymmetrical data distribution in the selected studies.

MDR, multidrug resistant.
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colistin, polymyxin B, and tigecycline with rates of 2.4%
(95% CI: 0.3–16.6), 3.1% (95% CI: 0.5–16.6), and 5%
(95% CI: 0.3–48.3), respectively. A correlation was ob-
served between biofilm formation and antibiotic resis-
tance in 10 out of 20 included studies in this review.

Discussion

Our study showed that the rate of biofilm formation by
P. aeruginosa isolates from Iranian patients varied from
43.5% to 99.5% in different locations of Iran. Overall, the
pooled ratio of biofilm formation was calculated as 86.5%.

FIG. 3. Funnel plot of meta-analysis on the biofilm formation rate in Pseudomonas aeruginosa isolated from clinical samples.
A funnel plot is a scatterplot study precision. It is used primarily as a visual assistance for discovering bias or systematic
heterogeneity. A symmetric inverted funnel shape arises from a ‘‘well-behaved’’ data set, in which publication bias is unlikely.
An asymmetric funnel indicates a relationship between publication bias and study precision. This suggests the possibility of either
publication bias or a systematic difference between studies of higher and lower precision (typically ‘‘small study effects’’).

Table 3. Subgroups Analysis for Antibiotic Resistance in Pseudomonas aeruginosa Isolated

from Clinical Samples

Subgroups
No. of
studies

Heterogeneity test Egger’s test Random model

Prevalence
(95% CI) (%) Z p Q p I2 T p

Imipenem 15 48.1 (31.3–65.3) 0.21 0.00 314.9 0.00 95.5 1.4 0.18
Ciprofloxacin 15 49.3 (33.8–65) 0.08 0.00 295.8 0.00 95.2 0.02 0.98
Gentamicin 15 53.4 (36.3–69.7) 0.38 0.00 340.7 0.00 95.8 0.40 0.69
Amikacin 16 47.2 (31–64) 0.32 0.00 361.2 0.00 95.8 0.27 0.78
Ceftriaxone 4 80.9 (53.3–94) 2.1 0.00 31.4 0.00 90.4 1.7 0.22
Ceftazidime 15 54.6 (39.8–68.6) 0.6 0.00 297.3 0.00 95.2 0.05 0.95
Cefepime 8 63 (34.8–84.5) 0.34 0.00 0.90 0.00 204.1 0.39 0.70
Piperacillin/tazobactam 2 90 (98–99.9) 0.97 0.00 19.2 0.00 94.8 — —
Levofloxacin 4 46.9 (7.9–90.6) 0.10 0.00 126.5 0.00 97.6 0.02 0.98
Aztreonam 11 51.3 (30.7–71.5) 0.11 0.00 271.1 0.00 96.3 2.7 0.02
Piperacillin 10 33.1 (16.6–55.2) 1.5 0.00 248.3 0.00 96.3 2.3 0.04
Tobramycin 8 64.4 (38.3–84.1) 1 0.00 161.5 0.00 95.6 0.1 0.90
Ticarcillin 4 38.2 (8.3–80.8) 0.49 0.00 73.3 0.00 95.9 0.4 0.7
Polymyxin B 6 3.1 (0.5–16.6) 3.6 0.00 49.6 0.00 89.9 2.7 0.05
Tigecycline 2 5 (0.3–48.3) 2 0.00 4.2 0.03 76.4 — —
Colistin 7 2.4 (0.3–16.6) 3.4 0.00 74.3 0.00 91.9 4.9 0.008
Meropenem 9 62.7 (44.2–78.2) 1.35 0.00 132.9 0.00 93.9 0.81 0.49
Carbenicillin 2 80.5 (32.4–97.3) 1.29 0.00 26.2 0.00 96.1 — —
Piperacillin/tazobactam 7 47 (15.4–81.4) 0.14 0.00 118.3 0.00 94.9 1.1 0.31
Trimethoprim-sulfamethoxazole 2 87.9 (67.1–97.1) 2.5 0.00 9.8 0.002 89.8 — —
Tetracycline 2 72.6 (7.2–98.9) 0.53 0.00 54.3 0.00 98.1 — —
Norfloxacin 3 13.4 (9.7–18.2) 9.9 0.00 0.002 0.00 0.00
Gatifloxacin 2 87.2 (75–93.9) 4.5 0.00 3.9 0.00 74.9 — —
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In comparison, Abidi et al. reported that most of P. aeru-
ginosa isolates from contact lenses of Karachi-Pakistan
patients could form biofilms, in which the biolfilm produc-
tion was significantly higher than MDR.32 In a study by
Senturk et al. in Turkey, 78% of P. aeruginosa isolates from
patients with urinary tract infection produced biofilm.33 In
comparison with our study, several studies have also ob-
served lower rates of biofilm formation by P. aeruginosa,
including Prince et al. in the United States (28.6%)34 and
Kádár et al. in Hungary (23.3%).35 In another report by Hou
et al. in China, none of 29 P. aeruginosa isolates recovered
from the Ophthalmology ward-produced biofilm.36

Several intracellular signaling pathways are involved in
the induction of transcription factors that activate biofilm-
related genes.37 In our study, the pooled frequencies of
lasIR, algD, algU, ppyR, and pelF genes were 93.6%,
91.4%, 89.3%, 98.7%, and 93%, respectively. In the study
of Hou et al. in which no P. aeruginosa isolate produced
biofilm, 31% of the isolates expressed the pslA gene.31

Zaranza et al. reported the prevalence of algD gene as 39%
in Brazil.38 Another study conducted by Stehling et al. in
Brazil reported the prevalence of algD and algU genes as
100% and 25%, respectively.39 Mitov et al. in Bulgaria
described that algD and lasB genes were expressed in 91.1%
and 100% of P. aeruginosa isolates, respectively.40 Also,
Wolska and Szweda found that the algD gene was expressed
in 93.5% of P. aeruginosa isolates.41

Biofilm formation is one of the several mechanisms par-
ticipating in antibiotic resistance of P. aeruginosa. In our
study, the combined prevalence of MDR P. aeruginosa was
reported as 66.9%, of which the highest pooled antibiotic
resistance was against piperacillin/tazobactam with a resis-
tant rate of 90%. In addition, the lowest resistance rate was
observed against colistin (2.4%). Gill et al. demonstrated that
50% of P. aeruginosa isolates from ICU were MDR with the
maximum and minimum resistance rates against aminogly-
cosides (88%) and monobactams (2%), respectively.42 The
findings of Khan et al. from Pakistan showed that 30% of
P. aeruginosa strains were MDR with the highest resistance
rate against cefuroxime and cefixime (each with 100%) and
the lowest resistance rate against amikacin (10%).43 Gomila
et al. in their study in a public hospital in Spain demonstrated
that 21.4% of P. aeruginosa isolates were MDR.44 In the
recent study, maximum resistance was observed against
ceftazidime and cefepime (nearly 90%), while all of the
isolates were sensitive to colistin.44 Du et al. further reported
the highest resistance rate against ampicillin and chloram-
phenicol (100%) and the lowest against ceftazidime (38%).45

The European Antimicrobial Resistance Surveillance Net-
work (EARS-Net) in 2015 reported an increasing trend for
resistance against piperacillin/tazobactam during 2011–2015,
with the highest resistance related to piperacillin/tazobactam
(36.1%) and levofloxacin (36.6%), and the lowest (1%) was
against colistin in European hospitals. Similarly, resistance
to piperacillin/tazobactam, levofloxacin, and colistin was
reported as 27.1%, 29.5%, and 1.1%, respectively in the U.S.
hospitals.46,47 Overall, our findings were in accordance with
previous reports showing relatively low resistance of
P. aeruginosa strains against colistin. Therefore, this anti-
biotic can be appropriate to treat hospital infections caused
by P. aeruginosa, especially in patients with the weak im-
mune systems such as patients in the burn unit.

A correlation was found between biofilm formation and an-
tibiotic resistance in 10 out of 20 studies included in this review.
This observation indicates that biofilm formation increases the
resistance rate and facilitates the chronicity of the infection. In
some of these studies, it was reported that biofilms may directly
confer resistance against specific antibiotics. In accordance,
Banar et al. also noticed that although some P. aeruginosa
strains were resistant to ceftazidime in biofilm form, they were
susceptible to this antibiotic in the planktonic form.23 Also,
Hemati et al. reported a significant correlation between biofilm
formation and the minimum inhibitory concentration (MIC)
values of ceftazidime, meropenem, and amikacin.48 MIC is the
lowest concentration of a chemical, usually a drug, which pre-
vents visible growth of a bacterium or bacteria.49 Out of studies
reviewed here, six observed higher rates of biofilm formation,
especially the potent subtype, among MDR P. aeruginosa
strains. Similarly, Zaranza et al. reported that biofilm formation
protected bacteria against the host’s immune system and anti-
biotics.38 Others also showed that biofilm formation reduced the
efficacy of administrated antibiotics.50–52

This study showed that biofilm formation was higher in
MDR than non-MDR P. aeruginosa strains. Generally, a
significant correlation was observed between biofilm for-
mation and antibiotic resistance in P. aeruginosa retrieved
from Iranian patients’ clinical samples. Some studies did not
highlight a correlation between biofilm formation and anti-
biotic resistance, suggesting the involvement of other re-
sistance mechanisms such as efflux pumps, altered outer
membrane permeability, toxin/antitoxin systems, and the
expression of b-lactam resistance genes.53 The increasing
use of antibiotics and rising numbers of invasive procedures,
together with the enhancement of intrinsic and acquired
resistance mechanisms of P. aeruginosa, cause the evolution
of MDR strains of P. aeruginosa in clinical centers.54 The
intrinsic resistance comprises reductions in membrane per-
meability, efflux mechanism pumping the antimicrobial
agents outside the cell wall, and production of inactivation
enzymes.55 Mutational changes or the acquisition of resis-
tance mechanisms through horizontal gene transfer during
chemotherapy are the routine ways of acquired resistance.56

Biofilm formation can enhance antibiotic resistance in
P. aeruginosa, which in turn leads to the chronicity and diffi-
culty in the treatment of the infection, as well as longer hospital
stay and higher therapeutic costs, especially in immunocom-
promised patients.57 Persistence of infection and the emergence
of resistance during antibiotic therapy have been shown to
negatively affect patient outcomes. Carmeli and et al. showed
that emergence of resistance (at least a fourfold increase in MIC
compared to baseline) had significant effects on both mortality
and length of hospital stay.58 Also, Centers for Disease Control
and Prevention (CDC) reported that emergence of resistance
was related to an average adjusted increase of about 6 days in
the length of hospital stay. Briefly, patients who suffered from
infection with MDR isolates of P. aeruginosa usually have
increased mortality and morbidity.59

This review from Iran is helping in knowing the antibiotic
resistance pattern and consequently prescribing the suitable
antimicrobial agents for the treatment of infection caused by
P. aueroginosa in clinical settings. Also, data obtained re-
garding the combined prevalence of biofilm-related genes,
and the association between biofilm formation and antibiotic
resistance, can provide us with comprehensive information
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in this area. Certainly, the information, in this case, can help
us to take preventive measures.

It has been suggested that using effective antimicrobial
agents such as plant extracts along with antibiotics can in-
crease their efficacy by generating a synergistic effect.60

Also, applying complementary pharmaceuticals alongside
with antibiotics is recommended in patients with MDR
P. aeruginosa infections to induce virulence genes and
reinforce therapeutics’ efficacies.61

Incorporating unpublished data was not possible in this
review, which was the main limitation of our study. Also, in
cases of missing data, we did not contact the authors of
studies for further clarity.

In conclusion, this study showed that biofilm formation
was higher in MDR P. aeruginosa than non-MDRs. Also, a
significant correlation was observed between biofilm for-
mation and antibiotic resistance. Regarding the multifaceted
etiology of antibiotic resistance and a steady increase in its
prevalence and spread worldwide, more frequent outbreaks
of infections resulting from MDR isolates are expected.62

Therefore, using multitargeted and combinational thera-
pies (i.e. antimicrobial agents such as plant extracts along
with antibiotics) is useful to increase the efficacy of drugs
by generating synergistic effects against pathogens.
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