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16 ABSTRACT: Representation of dust sources remains a key challenge in 

17 quantifying the dust cycle and its environmental and climatic impacts. Direct 

18 measurements of dust fluxes from different landform types are useful in 

19 understanding the nature of dust emission and characterizing the dynamics of 

20 soil erodibility. In this study we used the PI-SWERL® instrument over a 

21 seasonal cycle to quantify the potential for PM10 (particles with diameter ≤10 

22 μm) emission from several typical landform types across the Tengger Desert 

23 and Mu Us Sandy Land, northern China. Our results indicate sparse 

24 grasslands and coppice dunes showed relatively high emission potentials, with 

25 emitted fluxes ranging from 10-1 to 101 mg m-2 s-1. These values were up to five 

26 times those emitted from sand dunes, and 1-2 orders of magnitude greater 

27 than the emissions from dry lake beds, stone pavements and dense 

28 grasslands. Generally, PM10 emission fluxes were seen to peak in the spring 

29 months, with significant reductions in summer and autumn (by up to 95%), and 

30 in winter (by up to 98%). Variations in soil moisture were likely a primary 

31 controlling factor responsible for this seasonality in PM10 emission. Our data 

32 provide a relative quantification of differences in dust emission potential from 

33 several key landform types. Such data allow for the evaluation of current dust 

34 source schemes proposed by prior researchers. Moreover, our data will allow 

35 improvements in properly characterizing the erodibility of dust source regions 

36 and hence refine the parameterization of dust emission in climate models.

37 KEYWORDS: PM10; dust emission; northern China; seasonality; PI-SWERL
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38 Introduction

39 Dust is a major component of atmospheric global aerosol loading and can 

40 exert profound climatic and environmental impacts. Once airborne, dust 

41 particles can affect the climate system not only through direct radiative forcing 

42 (e.g. Tegen et al., 1996; Evan et al., 2009; Kok et al., 2017), and interaction 

43 with clouds (e.g. Yin and Chen, 2007; Karydis et al., 2017), but also through 

44 participating in biogeochemical cycles within terrestrial (e.g. Okin et al., 2004; 

45 Mahowald et al., 2008) and marine ecosystems (e.g. Jickells et al., 2005; 

46 Mahowald et al., 2018) upon deposition. At source, the loss of nutrients and 

47 fine particles due to dust emission may result in soil degradation (e.g. Bielders 

48 et al., 2002; Katra et al., 2016). Also, dust storms significantly affect regional 

49 air quality and human health (e.g. Kellogg and Griffin, 2006; Middleton, 2017). 

50 However, the magnitude of global dust emissions remains uncertain, varying 

51 from ~500 Tg yr-1 to ~4000 Tg yr-1 among different models for PM10 (e.g. 

52 Zender et al., 2003a; Cakmur et al., 2006; Huneeus et al., 2011; Albani et al., 

53 2014; Kok et al., 2017). A key challenge of dust emission estimates is the 

54 representation of dust sources in terms of the spatial and temporal dynamics 

55 of soil erodibility (Zender et al., 2003b; Cakmur et al., 2006; Kok et al., 2014).

56 Soil erodibility is highly variable in space and time, depending on soil 

57 properties, land surface characteristics and environmental conditions (e.g. 

58 Shao, 2008; Webb and Strong, 2011). Given insufficient information on soil 

59 properties worldwide, many models typically employ source functions to help 
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60 account for spatial variations in erodibility through sediment supply (e.g. 

61 Ginoux et al., 2001; Zender et al., 2003b), surface reflectance (Grini et al., 

62 2005) or surface morphology (Koven and Fung, 2008). However, differing 

63 approaches to determining soil erodibility tend to reveal different areas as 

64 prime dust sources. Such variations in identifying source areas transfers 

65 further uncertainty into the estimates of global dust emission (Zender et al., 

66 2003b; Grini et al., 2005; Cakmur et al., 2006). Moreover, these time-invariant 

67 source functions cannot account for temporal variations in soil erodibility 

68 (Zender and Kwon, 2005; Webb and Mcgowan, 2009; Wu et al., 2016). At 

69 monthly or seasonal scales, soil erodibility is primarily controlled by sediment 

70 availability (rather than sediment supply), which is highly sensitive to dynamic 

71 changes in soil moisture and vegetation conditions (Zender and Kwon, 2005).

72 To address this issue, Bullard et al. (2011) developed a conceptual 

73 geomorphic scheme to represent the dynamics of natural dust sources through 

74 relating dust emission to geomorphology and sedimentology. This scheme has 

75 been evaluated at several active dust sources using satellite remote sensing 

76 data (e.g. Bullard et al., 2011; Lee et al., 2012; Baddock et al., 2016; von Holdt 

77 et al., 2019). Given the increasingly important role of human impact on soil 

78 erodibility, several studies have used satellite-based dust indicators allied with 

79 land cover maps to attribute dust emission to natural or anthropogenic sources 

80 (Lee et al., 2012; Ginoux et al., 2012; Parajuli et al., 2014). A recent example 

81 has combined hydrological processes and geomorphic signatures to 

Page 4 of 65

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 
5 / 47

82 collectively represent the geomorphic controls on dust sources (Parajuli and 

83 Zender, 2017). While satellite remote sensing is instrumental in identifying the 

84 spatial distribution of dust sources, there remain some uncertainties and 

85 inaccuracies related to the dust detection algorithms, overpass time, cloud 

86 effects and image/signal interpretation (e.g. Baddock et al., 2009; Brindley et 

87 al., 2012; Ashpole and Washington, 2013; Parajuli and Zender, 2017).

88 Where possible, it is advantageous to collect in-situ measurements of dust 

89 emission from typical landform types as dust emission is a small-scale and 

90 stochastic process (Bullard, 2010; Shao et al., 2011). This would enable us to 

91 better characterize the dust emission processes and to improve the dust 

92 parameterizations in climate models, a requirement for proper examination of 

93 the impact of past and future climate change on aerosol loading in the 

94 atmosphere (Mahowald et al., 2006; Bullard, 2010; Kok et al., 2018).

95 In the present study we used a miniaturized wind shear system, the 

96 Portable In-Situ Wind ERosion Lab (PI-SWERL), which generates a certain 

97 shear stress on the ground surface and allows multiple tests in a short time 

98 (Etyemezian et al., 2007; Sweeney et al., 2008). The PI-SWERL has been 

99 used to examine the propensity of various landform types for PM10 emission, 

100 such as sand dunes (e.g. Cui et al., 2015; Sweeney et al., 2016), dry lake beds 

101 (e.g. King et al., 2011; Sweeney et al., 2011), fluvial surfaces (e.g. Sankey et 

102 al., 2011; von Holdt et al., 2017) and grasslands (e.g. Munkhtsetseg et al., 

103 2016, 2017). These studies have provided insights into the physical processes 
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104 of dust emission and its dependency on soil characteristics (Bryant, 2013). 

105 However, similar quantitative data from northern China are scarce. While 

106 several approaches have been used to examine the geomorphic controls on 

107 dust sources in northern China, such as particle size and geochemical 

108 analyses of surface samples (e.g. Wang et al., 2005, 2008), field passive sand 

109 traps (Wang et al., 2015) and laboratory wind tunnel measurements (Wang et 

110 al., 2017), relatively little attention has focused on the seasonal heterogeneity 

111 in dust emissions. Following our pilot work (Cui et al., 2015; Sweeney et al., 

112 2016), we used the PI-SWERL to directly measure the PM10 emissions from 

113 several landform types during different seasons in the Tengger Desert and Mu 

114 Us Sandy Land, northern China. These two deserts are located in the 

115 transition zone between the northwestern arid deserts, the eastern semi-arid 

116 grasslands and the southwest cold mountainous regions of China, which are 

117 subjected to both climate change and human activity (Wang et al., 2008; Lu et 

118 al., 2013). Here, the present study aims to examine (1) the PM10 emission 

119 potential of several typical landform types; (2) the seasonal variability of PM10 

120 emission; and (3) the implications for using PI-SWERL experimental data to 

121 characterize the importance of specific landform types in contributing to 

122 regional/global dust.
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124 Methodology

125 Study area

126 The Tengger Desert and Mu Us Sandy Land, with an area of 45,800 km2 and 

127 39,000 km2 respectively (Figure 1), are important dust sources in China (Wang 

128 et al., 2004; Zhang et al., 2003). A high frequency of dust storms has been 

129 reported from nearby meteorological stations during the period from 1981 to 

130 2010, reaching up to 18 days year-1 in Minqin (Figure 1b). Strong winds (>17 m 

131 s-1) occur frequently in spring and early summer amounting to between 4 and 

132 40 days each year. The mean annual precipitation (MAP) ranges from 100 to 

133 210 mm in the Tengger Desert and 260 to 420 mm in the Mu Us Sandy Land, 

134 mainly falling in summer (CMDC, 2012). Many landform types and distinct 

135 geomorphological units coexist in these two deserts (Figure 1). The Tengger 

136 Desert is dominated by mobile dunes (with vegetation cover less than 5%), 

137 while many parts of the Mu Us Sandy Land have been fixed or semi-fixed by 

138 vegetation in response to varying climate conditions (Mason et al., 2008; Xu et 

139 al., 2015).

140

141 Figure 1. Geomorphological settings of northern China (a) and study area (b). 

142 The upper map is extracted from the Land Use Map of China (RESDC, 2015) 

143 to show the spatial distribution of deserts (Wang Y et al., 2005). Descriptions of 

144 the land use classification system are detailed in Table S1. The boundaries of 

145 the Tengger Desert and Mu Us Sandy Land are derived from Zhu et al. (2013). 
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146 The numbers indicate major deserts and sandy lands: 1-Taklimakan, 

147 2-Gurbantunggut, 3-Kumutage, 4-Gonghe, 5-Badain Jaran, 6-Tengger (the 

148 study area), 7-Ulan Buh, 8-Hobq, 9-Mu Us (the study area), 10-Otindag, 

149 11-Horqin, 12-Songnen, 13-Hulunbeier.

150

151 Potential dust emissions were measured using the PI-SWERL at 341 sites 

152 (771 individual measurements) across the study area during April-May (spring, 

153 hereinafter AM), July-August (summer, hereinafter JA), October-early 

154 November (autumn, hereinafter ON) and late November-December (winter, 

155 hereinafter ND) between 2015 and 2016 (Table 1 and Figure 2). It is important 

156 to point out that while the repeat tests were not always carried out at precisely 

157 the same location in different seasons, the soil textural and surface 

158 characteristics of the tested landform types at each site were the same, hence 

159 the data obtained during different seasons can be appropriately compared.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

160 The selected sites included several typical landform types in the desert area 

161 including sparse grasslands, coppice dunes, sand dunes, interdunes, wadis, 

162 dry lake beds, stone pavements and dense grasslands (Figure 3). As it is 

163 recognized that wind erosion is reasonably effectively inhibited with vegetation 

164 cover above ~15-20% (e.g. Wiggs et al., 1995; Lancaster and Bass, 1998; 

165 Kimura et al. 2009), moderate grasslands were not differentiated from dense 

166 grasslands (Table 1). Surface sediment samples (the top 2-3 cm of the soil 

167 layer) were collected for standard analysis of gravimetric water content and 
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168 particle size analysis with a Malvern Mastersizer 2000 (with a resolution of 

169 0.02 to 2000 μm) using the treatment method proposed by Lu and An (1998). 

170 Each sample was pretreated with hydrogen peroxide (H2O2) and hydrochloric 

171 acid (HCl) to remove organic matter and carbonates. After over-night standing, 

172 samples were further dispersed with sodium metaphosphotate ((NaPO3)6) 

173 under ultrasonic treatment for 10 minutes prior to analysis with the Mastersizer 

174 2000. In addition, the soil textural properties of test sites were analyzed using 

175 the classification system of the United States Department of Agriculture 

176 (USDA) , based on the percentage contents of clay (<2 μm), silt (2-50 μm) and 

177 sand (50-2000 μm) (See the XLS file in supplementary material).

178

179 Figure 2. Location of test sites. Image of the study area is obtained from 

180 Google Earth (http://earth.google.com/). More information on the test sites is 

181 presented in the XLS file in the supplementary material.

182

183 Figure 3. Landform types and surface crusts tested with the PI-SWERL. Types: 

184 (a) sparse grassland, (b) coppice dune >2 m height, (c) coppice dune < 2 m 

185 height, (d) dune, (e) wadi, (f) dry lake, (g) stone pavement, and (h) dense 

186 grassland. Crust: (i) ephemeral crust, (j) silt-clay crust with cracks, (k) salt crust, 

187 and (l) biological crust.

188

189
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190 PI-SWERL measurements

191 A miniature version of the PI-SWERL was used in the present study, which has 

192 been described in detail in Etyemezian et al. (2014). Briefly, the miniature 

193 PI-SWERL is an enclosed cylindrical chamber (D=30 cm, H=20 cm) that 

194 generates variable shear stresses on the ground surface using a rotating 

195 annular blade in close proximity to the surface. The PM10 concentration is 

196 measured by a nephelometer (DustTrak II model 8530) using a light scattering 

197 technique (Etyemezian et al., 2007; Sweeney et al., 2008) and sand 

198 movement is detected by optical gate sensors (OGS) mounted on the side of 

199 the chamber (Etyemezian et al., 2014). The OGS value (<7 counts per second) 

200 is regarded as background noise, indicating little to no saltation. A 20 s moving 

201 average of OGS values was used to minimize noise of the saltation data 

202 (Sweeney and Mason, 2013). Given potential damage caused to the 

203 instrument by vegetation (with height greater than 7 cm), the PI-SWERL was 

204 placed within bare patches for coppice dunes. For surfaces covered with short 

205 grass (< 3 cm) and gravel, the PI-SWERL was directly placed atop these 

206 elements.

207 At each site a ramp test, where the revolutions per minute (RPM) is 

208 linearly increased to simulate the effects of increasing wind, was first 

209 conducted to detect the threshold friction velocity (u*t) for PM10 emission. The 

210 threshold was determined as the point at which the PM10 concentration began 

211 to increase consistently (similar in manner to the identification of a saltation 
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212 threshold by Roney and White, 2004). The value of u*t was calculated from the 

213 recorded RPM of the PI-SWERL using an equation based on surface 

214 properties:

215

216 Where C1 and C2 are constants and α is a calibration parameter based on 

217 surface roughness. The values of α applied in this study are presented in 

218 Table S2, as advised by Etyemezian et al. (2014) and Sweeney et al. (2016). 

219 The potential error in estimating u*t associated with an incorrect selection of 

220 alpha (Δα=0.04) ranges from 7% to 20% for the typical threshold RPM range of 

221 1000 to 3000. This is discussed in detail by Etyemezian et al. (2014).

222 Several hybrid tests were then performed, and each hybrid test consisted 

223 of three to four ramp tests and step tests. These step tests, where a target 

224 RPM was sustained for a given period before being increased to a new value, 

225 were used to measure the amount of emitted PM10 at specific values of u* 

226 (Etyemezian et al., 2007). A total of three steps (with target RPMs of 2000, 

227 3000 and 4000) were applied during each hybrid test. An additional RPM of 

228 5000 was conducted for experiments in winter when surfaces were less 

229 erodible and on surfaces covered with roughness elements in any season. The 

230 emission flux during each step was calculated using the following equation 

231 proposed by Etyemezian et al. (2007):

232

233

(1)2 /4
* 1U ( )     C
eff RPM C RPM

,

0
,

, ,

( )

( )

 


 


end i

begin i
i

end i begin i eff

C F t
E

t t A
(2)
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234 Where C is the PM10 concentration (mg m-3), F is the blower flow rate for fresh 

235 air (m3 s-1), Aeff is the effective area underneath the annular blade, with a 

236 constant value of 0.035 m2 (Etyemezian et al., 2014), t is test time (s) at the 

237 beginning (tbegin,i) and ending (tend,i) of each step level, i and t0 is nephelometer 

238 sampling time.

239

240 Results

241 Characteristics of PM10 emission

242 As shown in Figure 4, PM10 concentration and saltation increased readily with 

243 increasing friction velocity (ramp tests, see light-colored segments), while their 

244 behaviors differed at test sites when the u* was held constant (step tests, see 

245 dark-colored segments). According to differences in the temporal behavior of 

246 the data during the tests, PM10 emissions were categorized into four types:

247 (1) Sustained dust emission with strong saltation (Figure 4a). Saltation 

248 was active and sustained at high values of u*. Where u* remains constant, 

249 PM10 concentration is maintained at a relatively high level and is facilitated by 

250 consistently strong saltation.

251 (2) Moderate dust emission with decreasing saltation over time (Figure 

252 4b). Similar to Type 1, but the difference was that PM10 concentrations 

253 reduced considerably following a peak in saltation at high and constant u*. The 

254 reduction in saltation and PM10 concentrations were likely related to variations 

255 in soil strength or moisture that limited the availability of loose erodible material 
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256 after an initial period of strong erosion.

257 (3) Intermittent dust emission with little to no saltation (Figure 4c). In this 

258 case, saltation was of low intensity and sporadic. PM10 concentration rapidly 

259 decayed to the background level at a constant u*. We interpret this as resulting 

260 from intermittent erosion by aerodynamic lift on supply-limited surfaces 

261 (Macpherson et al., 2008).

262 (4) Enhanced dust emission with moderate or strong saltation (Figure 4d). 

263 This type was common over disturbed surfaces. In contrast to Type 3, PM10 

264 concentration increased markedly and maintained a high level at high u* after 

265 disturbance. Here, dust emissions may originate from both aerodynamic lift 

266 and saltation since the availability of fine particles has been augmented by 

267 disturbance (Macpherson et al., 2008).

268

269 Figure 4. Four types of emission characteristics during PI-SWERL tests: (a) 

270 sustained dust emission with strong saltation; (b) moderate dust emission with 

271 decreasing saltation over time; (c) intermittent dust emission with little to no 

272 saltation; and (d) enhanced dust emission with moderate or strong saltation. 

273 Note that the OGS saltation and PM10 concentration axis on the right hand side 

274 in (c) is on a different scale. The pink lines are OGS saltation. The light red 

275 (blue) lines denote the changes of PM10 concentration (saltation, a 20 s 

276 moving average) at ramp tests. The dark red and blue lines represent their 

277 behaviors at step tests.
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278 Analysis was undertaken to relate the measured emission characteristics 

279 with landform types and to explore how emission characteristics changed at a 

280 seasonal scale (Table 2). PM10 emissions from sparse grasslands, coppice 

281 dunes, interdunes, and dunes were mainly categorized as Type 1 emissions, 

282 although Type 2 emissions were evident on these landform types during ON 

283 (autumn) and ND (winter), especially for coppice dunes and interdunes. By 

284 contrast, Type 1 and Type 3 emissions were commonly found in wadis during 

285 all seasons, depending on the presence/absence of gravel and crust. Dry lake 

286 beds, stone pavements and dense grasslands were characterized by 

287 intermittent and low emissions in all seasons (Type 3 emissions). However, 

288 once these surfaces were disturbed, the emission potential was greatly 

289 enhanced (Type 1 and Type 4 emissions) in particular during AM (spring). The 

290 impact of disturbance appeared to be less significant in other seasons.

291

292 Seasonal variabilities of erosion thresholds and emission fluxes

293 Figure 5 illustrates the seasonal variations in erosion thresholds and PM10 

294 fluxes of different landform types. In AM (spring), the geometric mean values 

295 of u*t were relatively low over sparse grasslands, coppice dunes, interdunes, 

296 dunes and wadis, ranging from 0.30 to 0.40 m s-1. By contrast, the threshold 

297 values were much larger over dry lake beds, stone pavements (~0.60 m s-1), 

298 and dense grasslands (~0.50 m s-1) due to the presence of crust and 

299 roughness elements (e.g. vegetation and gravel). However, once disturbed, 
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300 the value of u*t decreased by up to 54%. A substantial increase of up to 49% in 

301 the threshold values for PM10 emission was found during JA (summer). 

302 Erosion thresholds generally exhibited a second nadir for most landform types 

303 during ON (autumn), except for dry lake beds and dense grasslands due to 

304 their high moisture content (2.7% ±2.5% and 9.3% ± 4.3% respectively). In ND 

305 (winter), the increases in erosion thresholds were more pronounced, especially 

306 for dry lake beds, stone pavements and dense grasslands (by up to 170%). 

307 Even disturbed, the threshold values for PM10 emissions on dry lake beds, 

308 stone pavements and dense grasslands were still high and almost double that 

309 of AM (spring), probably resulting from the exposure of underlying moist soils 

310 after disturbance. In general, u*t was low in spring and relatively high in winter. 

311 The different landform types can be ranked in descending order of u*t: (1) 

312 stone pavements and dense grasslands (geometric mean: ~0.72 m s-1); (2) dry 

313 lake beds (~0.66 m s-1); (3) sparse grasslands, coppice dunes, interdunes and 

314 dunes (~0.38-0.42 m s-1); (4) disturbed surfaces (0.31 m s-1). This ranking is 

315 consistent with that of Gillette et al. (1980) (i.e. disturbed surfaces < sand 

316 dunes < dry lake beds < stone pavements). Moreover, our data suggest that 

317 seasonal variations in u*t appeared to be more pronounced for dry lake beds, 

318 stone pavements, and dense grasslands.

319 In addition to u*t, seasonal variability was also found in the PM10 emission 

320 flux (Figure 5), with similar trends evident at different values of applied u* 

321 (Figure S1). PM10 emission fluxes were seen to generally be highest in AM 
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322 (spring) and lowest in ND (winter) for most landform types except for wadis. 

323 While no clear seasonal trend was observed for wadi sites, PM10 emission was 

324 the lowest in JA (summer), which was probably due to the protective effects of 

325 surface crusting and soil aggregation (Figure 3i). For most landform types, the 

326 emission fluxes substantially decreased in JA (summer) and ON (autumn). For 

327 example, the PM10 fluxes emitted from sparse grasslands declined by about 

328 80% and 60% in JA and ON respectively, with marked declines also evident for 

329 dry lake beds (by around 95%). In ND (winter), the decreases in emission 

330 fluxes were more considerable, within the range of 87% to 98%. As expected, 

331 PM10 emission fluxes were negatively correlated with u*t (Figure S2 and Table 

332 3). Also noticeable from Figure 5 is that PM10 emissions from disturbed 

333 surfaces, sparse grasslands, and coppice dunes were relatively high, with a 

334 range of 10-1 to 101 mg m-2 s-1. These values were up to five times the amount 

335 emitted from wadis, dunes and interdunes (~10-1-100 mg m-2 s-1), and 1-2 

336 orders of magnitude greater than dry lake beds, stone pavements and dense 

337 grasslands (~10-2 to 10-1 mg m-2 s-1).

338

339 Figure 5. Geometric means and standard deviations of erosion thresholds and 

340 PM10 emission fluxes at u*= 0.55 m s-1 from different landform types during 

341 April-May (AM), July-August (JA), October-early November (ON) and late 

342 November-December (ND). DS-disturbed surfaces, SG-sparse grassland, 

343 CD-coppice dune, ID-interdune, D-dune, W-wadi, DL-dry lake, SP-stone 
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344 pavement, DG-dense grassland.

345

346 Seasonal variations in soil moisture

347 Figure 6a shows the temporal changes in soil moisture content for the 

348 landform types. Overall, soil moisture contents were low in AM (spring) and JA 

349 (summer), and increased substantially in ON (autumn) and ND (winter). The 

350 general trend in soil moisture was in accord with the ratio of precipitation to 

351 evapotranspiration during test periods (Figure S3), which was derived from the 

352 monthly high-resolution (0.5°×0.5°) gridded dataset produced by the Climatic 

353 Research Unit (Harris et al., 2014). From the geomorphic perspective, 

354 moisture contents of dense grasslands and dry lake beds exhibited 

355 pronounced seasonal variations; whereas the moisture content values of other 

356 landform types were within a fairly narrow range across the four seasons. For 

357 example, the geometric mean moisture content of dense grasslands increased 

358 from 0.33% in AM (spring) to 7.5% and 11.8% in ON (autumn) and ND (winter) 

359 respectively. These values were around five times those of dry lake beds, and 

360 ten to fifty times greater than the moisture contents of other landform types. 

361 The high moisture contents of dense grasslands and dry lake beds may be 

362 related to the fine-textured soils (Table S3) and hygroscopic clay/saline 

363 minerals, which were able to absorb and retain water following precipitation 

364 (e.g. Williams et al., 1983; Pan and Wang, 2009).

365
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366 Figure 6. Temporal variabilities in (a) soil moisture and (b) the relationship with 

367 PM10 flux at u*= 0.55 m s-1 for different landform types. SG-sparse grassland; 

368 CD-coppice dune; ID-Interdune; D-dune; W-wadi; DL-dry lake; SP-stone 

369 pavement; DG-dense grassland. Features in b denote experimental data 

370 obtained from different landform types (by symbol shape) in different test 

371 periods (by symbol color, with the same legend in a). The inset in (b) shows 

372 data with gravimetric water content less than 1% (the left part of the dashed 

373 line).

374

375 Discussion

376 Moisture effects on PM10 emission

377 A negative relationship was found between PM10 flux and soil moisture content 

378 (Figure 6b). It seems that no significant emissions occurred when gravimetric 

379 moisture content exceeded 1%. This value is slightly lower than the proposed 

380 threshold value for dust suppression by previous studies, which ranges from 

381 2% to 7% (Funk et al., 2008; Madden et al., 2010; Abulaiti et al., 2014; 

382 Munkhtsetseg et al., 2016).

383 Soil moisture characteristics show a strong relationship with landform type 

384 (Figure 6a) being controlled by the intrinsic soil properties such as soil texture, 

385 mineral composition and organic matter content (e.g. Williams et al., 1983; 

386 Zobeck, 1991). To explore the effect of moisture on the seasonality of PM10 

387 emission, we analyzed the correlations between u*t, PM10 fluxes and soil 

388 moisture across all sites and seasons grouped by landform type (Table 3). 
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389 Overall, u*t was positively correlated with soil moisture content, while PM10 flux 

390 was negatively correlated with moisture content. This finding is in accord with 

391 the concept of increasing moisture content enhancing the interparticle 

392 cohesion and efficiently inhibiting wind erosion (e.g. Chepil, 1956; 

393 Mckenna-Neuman and Nickling, 1989). Specifically, PM10 fluxes from dense 

394 grasslands, dry lake beds and stone pavements showed statistically strong 

395 negative correlations with moisture content (Table 3). Significant, albeit 

396 moderate, negative correlations were also found for coppice dunes and dunes.

397 Besides soil moisture, vegetation change, soil aggregation and surface 

398 crusting can also exert strong effects on dust emission by controlling the 

399 availability of loose erodible material at the monthly and seasonal scales (e.g. 

400 Zobeck, 1991; Webb and Strong, 2011). Since most of our sites were sparsely 

401 vegetated or vegetation-free, changing vegetation cover was unlikely to be the 

402 main factor responsible for the seasonality of PM10 emission. Moreover, it has 

403 long been recognized that moisture availability (e.g. alternating wetting and 

404 drying, freeze-thaw cycles) plays an important role in modulating aggregate 

405 stability and crust dynamics (e.g. Amézketa, 1999; Oztas and Fayetorbay, 

406 2003; Nield et al., 2016). We therefore suggest that soil moisture was likely the 

407 primary factor controlling dust emission at our test sites over a seasonal scale. 

408 Attempts to better represent soil moisture and moisture-related effects on 

409 sediment supply availability may therefore be a key and worthwhile endeavor 

410 in improving large-scale simulations of dust cycle (Darmenova et al., 2009; 
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411 Haustein et al., 2015; Klose et al., 2019).

412

413 Landform type and dust emission potential

414 Characterization of the relative emissivity of different landform types is an 

415 important step forward for regional/global erodibility mapping and prescribing 

416 dust sources in regional/global models (Bullard et al., 2011; Parajuli and 

417 Zender, 2017). Owing to its small size and portability, the PI-SWERL offers 

418 great advantages in measuring small-scale variability in dust emission 

419 (Sweeney et al., 2011, von Holdt et al, 2019). Our results demonstrate the 

420 spatial and temporal heterogeneity in the characteristics and potential of PM10 

421 emission (Figure 4 and Figure 5). Variations in emissions between and within 

422 landform types likely result from changes in the availability of loose erodible 

423 material, which is sensitive to soil texture, moisture content and roughness 

424 elements (Bullard et al., 2011; Webb and Strong, 2011). For example, sparse 

425 grasslands and coppice dunes have relatively high proportions of clay and silt 

426 (~2.8%-4.2%), and thereby produce sustained and high-magnitude emissions 

427 facilitated by strong saltation (Figure 4a). In contrast, sand dunes are unlikely 

428 to be high emitters of PM10 because they generally lack fine particles (mostly 

429 less than 2% in our study). However, it should be noted that a significant 

430 proportion of fines can be generated in dune systems by removal of iron oxides 

431 and clay coatings from the surfaces of sand grains during continuous saltation 

432 (e.g. Bullard et al., 2004; Bullard and White, 2005; Swet et al., 2019). 
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433 Finer-textured stone pavements and dense grasslands are characterized by 

434 emissions that attenuate over time (Figure 4c), as the sediment availability is 

435 limited due to soil aggregation and the sheltering effects of gravel and 

436 vegetation. The formation of surface crusts effectively reduces the emission 

437 potential of dry lake beds. Consequently, these surfaces are likely intermittent 

438 and low-magnitude emitters unless the supply limitation is alleviated by 

439 mechanical disturbances to the protective crusts. Additionally, seasonal 

440 variations in emissions appear to be more pronounced for these supply-limited 

441 surfaces, which may be related to large changes in moisture content (Figure 

442 6).

443 Taking into account the measured PM10 emissions at specific friction 

444 velocities as applied by the PI-SWERL, the different tested landform types can 

445 be ranked by their propensity for emission : (1) disturbed surfaces; (2) sparse 

446 grasslands and coppice dunes; (3) wadis; (4) interdunes and dunes; (5) dry 

447 lake beds, stone pavements and dense grasslands. This ranking is consistent 

448 with PM10 emission rates measured by passive sand traps on specific 

449 landforms in other regions of China (coppice dunes > dunes > stony surfaces > 

450 grasslands; Wang et al., 2015) and in wind tunnel experiments (wadis/river 

451 beds > lakebeds > gobi; Wang et al., 2017).

452 Quantitative comparisons were made by linking the results presented here 

453 with our earlier study in July-August 2013 (Cui et al., 2015; Sweeney et al., 

454 2016) and with other PI-SWERL experiments in the Mojave Desert in summer 
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455 months (Sweeney et al., 2011) and in the Salton Sea (Sweeney et al., 2008, 

456 2011; King et al., 2011). All these emissions were measured at the same 

457 friction velocity (u*=0.55 m s-1) and on a variety of landform types. Figure 7 

458 illustrates the heterogeneity of emissions between and within different desert 

459 regions. Note that emission fluxes for coppice dunes were separated from 

460 those of dunes in the Mojave Desert experiments, which had been displayed 

461 together in Sweeney et al. (2011). Large variations are commonly found within 

462 the emission fluxes of individual landform types, with a span of one to three 

463 orders of magnitude. Compared to our earlier study (Cui et al., 2015; Sweeney 

464 et al., 2016), the present study appears to have a wider range of emission 

465 fluxes, which may be due to seasonal heterogeneity in PM10 emission that was 

466 not investigated in the earlier work. Coppice dunes and dunes exhibited a wide 

467 span of emission fluxes in our studies, and the highest emissions were around 

468 one order of magnitude greater than those measured in the Mojave Desert 

469 (Sweeney et al., 2011). The PM10 emissions from wadis in our work show 

470 agreement with those in the Salton Sea and emission fluxes from alluvial fans 

471 in the Mojave Desert. However, the highest emissions from those surfaces are 

472 one order of magnitude less than the value from dry ephemeral washes in the 

473 Mojave Desert. In contrast with the other two regions, emission fluxes 

474 measured from dry lake beds in our studies are within a fairly narrow range. 

475 This may be a consequence of the protection afforded by surface crusts 

476 against wind erosion, and/or an artifact of the relatively limited number of 
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477 replicate tests on dry lake sites in our work. In general, coppice dunes and 

478 wadis are shown to be large emitters in both regions, while stone pavements 

479 are less emissive. Emissions from dry lake beds are highly variable and 

480 sensitive to crust type and strength, sand supply and groundwater level (e.g. 

481 Cahill et al., 1996; Reynolds et al., 2007; Sweeney et al., 2011). In comparison 

482 to previously measured data, our results demonstrate the importance of field 

483 data collected over a wide temporal range, which can provide insights into the 

484 seasonal and annual erodibility dynamics in potential dust source regions.

485

486 Figure 7. Box plot comparing PM10 fluxes from different landform types 

487 measured in the present study with other published PI-SWERL data at u*=0.55 

488 m s-1. The whiskers and boxes, from top to bottom, denote the 90th, 75th, 

489 median, 25th percentiles and 10th percentiles. Top and bottom dots represent 

490 maximum and minimum values. The white triangles in boxes denote the 

491 geometric means. Landform types: CD-coppice dune, W-wadi, D-dune, DL-dry 

492 lake, SP-stone pavement. Mojave-fan denotes distal alluvial fan. Dry lake sites 

493 in the Mojave Desert and the Salton Sea are classified into subgroups based 

494 on crust types (e.g. silt-clay and salt) and location (i.e. margin). Published data 

495 are from the Mojave Desert (Macpherson et al., 2008; Sweeney et al., 2011) 

496 and the Salton Sea, USA (Sweeney et al., 2008, 2011; King et al., 2011) as 

497 well as our prior study in China (Cui et al., 2015; Sweeney et al., 2016).

498
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499 The identified emission potentials of landform types in this work broadly 

500 concur with the preferential dust source (PDS) scheme proposed by Bullard et 

501 al. (2011), which highlights the importance of sediment availability in 

502 controlling dust emission. Our measured data presented here, quantifying the 

503 seasonality of emissions, could provide information for characterizing the 

504 temporal behavior of identified preferential sources in this conceptual scheme. 

505 To develop our data further, we also compared our results to the sediment 

506 supply map (SSM) and land surface map (LSM) proposed by Parajuli and 

507 Zender (2017). The SSM values and LSM categories were extracted from the 

508 raster files based on the coordinates of our test sites. According to the LSM, a 

509 large proportion of sites were classified as stabilized sand deposits, bedrock 

510 and bedrock with sediment, which appeared to contradict our field 

511 observations (Figure S4). As demonstrated by Parajuli and Zender (2017), 

512 some inherent errors exist in the LSM classification, which might introduce 

513 errors in the interpretation of erodibility for specific surface types. The SSM 

514 was developed to represent global landscape-scale erodibility by integrating 

515 surface reflectance data into the geomorphic erodibility map of Zender et al. 

516 (2003b) (Parajuli and Zender, 2017). As suggested by Parajuli and Zender 

517 (2017), land surfaces that have high SSM values are considered as high 

518 emitting surfaces. However, no clear correlation was found between our 

519 measured fluxes and extracted SSM values (Figure 8). For instance, sparse 

520 grasslands and coppice dunes were identified as high emitters by the 
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521 PI-SWERL, but they were likely classified as low-emissive surfaces according 

522 to the SSM values (geometric means: ~0.19). In contrast, dry lake beds and 

523 stone pavements had relatively high SSM values (geometric means: ~0.26), 

524 but exhibited low emission potentials as evidenced from the PI-SWERL data. 

525 Similar disagreements between the SSM and observational data were also 

526 found in the Namib Desert by von Holdt et al. (2019). In this context, 

527 incorporation of field measurements is a clear priority in order to reliably 

528 represent the relationship between landform type and dust emission potential 

529 when using dust source schemes such as those of Parajuli and Zender (2017) 

530 and Bullard et al. (2011).

531

532 Figure 8. Box plot comparing measured PM10 fluxes at u*= 0.55 m s-1 from 

533 different landform types across all seasons and corresponding values from the 

534 sediment supply map (SSM) of Parajuli and Zender (2017). The whiskers and 

535 boxes, from top to bottom, denote the 95th, 75th, median, 25th percentiles and 

536 5th percentiles. Top and bottom dots/triangles represent the maximum and 

537 minimum values. The white circles with dots in boxes denote the geometric 

538 means. Landform types: SG-sparse grassland, CD-coppice dune, ID-interdune, 

539 D-dune, W-Wadi, DL-dry lake, SP-stone pavement, DG-dense grassland.

540

541

542
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543 Conclusion

544 A better representation of dust sources is critical to quantifying the dust cycle 

545 and its impacts on climate and the environment. In this study, the PI-SWERL 

546 was used to investigate the emission potential of different landform types in 

547 northern China, and to examine the relationship between geomorphology and 

548 dust emission over a seasonal cycle.

549 For most landform types, PM10 emissions were the highest in spring, and 

550 the lowest in winter. Sparse grasslands and coppice dunes were large emitters 

551 in all seasons, whereas dry lake beds, stone pavements and dense grasslands 

552 were characterized by low-magnitude emissions. Moreover, seasonal 

553 variations in erosion thresholds and emission potentials were more 

554 pronounced on dry lake beds, stone pavements and dense grasslands. This is 

555 likely due to the greater dynamic changes in soil moisture content that 

556 effectively limit the supply of sediment available for erosion.

557 Comparisons with the PDS and SSM schemes demonstrate the 

558 importance of field measurements in capturing the spatial and temporal 

559 heterogeneity in dust emissions from different landform types. High-quality 

560 field data are useful in characterizing the erodibility of dust source regions and 

561 in constraining or validating dust models. Since the PI-SWERL is not directly 

562 related to natural wind conditions and unlikely to account for significant 

563 vegetation effects, additional data regarding aerodynamic roughness length, 

564 plant morphology and geometry are needed to build a more robust field 

565 dataset.

566
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923 Table 1. Test locations.

Number of sites (PI-SWERL tests)

Typea Main characteristics Apr.-May. 

(spring)

Jul.-Aug. 

(summer)

Oct.-early Nov. 

(autumn)

Late Nov.-Dec. 

(winter)
total

Sparse grassland
Herbaceous canopy cover between 

5% and 20%
13(28) 11 (23) 7 (19) 10 (23) 41 (93)

Coppice dune Vegetated sand dunes 33 (67) 21 (42) 18 (47) 19 (38) 91 (194)

Interdune

Gently sloping areas between 

dunes, with vegetation cover less 

than 5%

10 (20) 9(18) 7 (20) 6 (12) 32 (70)

Dune Sand dunes, no vegetation 23 (79) 16 (36) 25 (67) 22 (44) 86 (226)

Wadi Relics of river channels 9 (18) 5 (12) 3 (8) 2 (4) 19 (42)
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Dry lake Flat-bottomed, often with salt crusts 3 (6) 3 (7) 5 (10) 2 (5) 13 (28)

Stone pavement
Low angle surfaces covered with 

gravel
3 (6) 6 (12) 3 (6) 2 (4) 14 (28)

Dense grasslandb
Herbaceous canopy cover greater 

than 20%
6 (12) 2 (4) 4 (8) 6 (12) 18 (36)

Disturbed surfacec
Disturbance exerted to surface 

roughness
8 (16) 8 (16) 7 (14) 4 (8) 27 (54)

924 aModified after the classification system of the National Land Use Map (RESDC, 2015), as shown in the Table S1.

925 bModerate grass (with canopy cover between 20% and 50%) and dense grass (with canopy cover greater than 50%) are categorized 

926 into dense grassland.

927 cDisturbance includes 1) breaking down salt crusts or spreading a layer of sand on top of silt-clay crusts for dry lake beds, 2) removal 

928 of gravel from stone pavements, 3) scraping the grass from moderate to dense grasslands.

929
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930 Table 2. Number of test sites categorized by four types of emission characteristics.

Apr.-May. (spring) Jul.-Aug. (summer) Oct.-early Nov. (autumn) Late Nov.-Dec. (winter)b

Type 

1

Type 

2

Type 

3

Type 

4

Type 

1

Type 

2

Type 

3

Type 

4

Type 

1

Type 

2

Type 

3

Type 

4

Type 

1

Type 

2

Type 

3

Type 

4

SG 12 1a 11 7 7 3

CD 29 4 18 3 11 7 8 10

ID 9 1 7 1 1a 4 3 2 4

D 20 3 14 2 14 11 13 8

W 7 2 2 3 3 2

DL 3 1 2 1 4

SP 3 6 3

DG 6 2 4 2

DS 2 6 4 2 1 1 2 1 2 2 2 2

931 aSG-sparse grassland, CD-coppice dune, ID-interdune, D-dune, W-wadi, DL-dry lake, SP-stone pavement, DG-dense grassland.

932 bThe surface is partly with crust and/or soil aggregation.

933 cSome sites with PM10 fluxes less than 0.01 mg m-2 s-1 in Late Nov.-Dec. are not presented.

934
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935 Table 3. Spearman rank correlation coefficients between erosion thresholds, emission fluxes and soil moisture for different landform 

936 types.

wt% H2O -u*t wt% H2O -Flux1 wt% H2O -Flux2 wt% H2O -Flux3

Sparse grassland 0.139 -0.018 -0.055 -0.236

Coppice dune 0.236* -0.237* -0.321** -0.392**

Interdune 0.195 -0.115 -0.172 -0.270

Dune 0.121 -0.148 -0.353** -0.438**

Wadi 0.466 -0.037 -0.119 -0.286

Dry lake 0.478 -0.725** -0.808** -0.753**

Stone pavement 0.171 -0.187 -0.473 -0.597*

Dense grassland 0.726** -0.376 -0.568* -0.807**

937 **Significance level (two-tailed test) below 0.01; * Significance level (two-tailed test) below 0.05.

938 aFlux1, Flux2 and Flux3 denote PM10 emission flux at u*= 0.39, 0.55 and 0.69 respectively.
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Figure 1. Geomorphological settings of northern China (a) and study area (b). The upper map is extracted 
from the Land Use Map of China (RESDC, 2015) to show the spatial distribution of deserts (Wang Y et al., 
2005). Descriptions of the land use classification system are detailed in Table S1. The boundaries of the 
Tengger Desert and Mu Us Sandy Land are derived from Zhu et al. (2013). The numbers indicate major 
deserts and sandy lands: 1-Taklimakan, 2-Gurbantunggut, 3-Kumutage, 4-Gonghe, 5-Badain Jaran, 6-
Tengger (the study area), 7-Ulan Buh, 8-Hobq, 9-Mu Us (the study area), 10-Otindag, 11-Horqin, 12-

Songnen, 13-Hulunbeier. 
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Figure 2. Location of test sites. Image of the study area is obtained from Google Earth 
(http://earth.google.com/). More information on the test sites is presented in the XLS file in the 

supplementary material. 
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Figure 3. Landform types and surface crusts tested with the PI-SWERL. Types: (a) sparse grassland, (b) 
coppice dune >2 m height, (c) coppice dune < 2 m height, (d) dune, (e) wadi, (f) dry lake, (g) stone 

pavement, and (h) dense grassland. Crust: (i) ephemeral crust, (j) silt-clay crust with cracks, (k) salt crust, 
and (l) biological crust. 

217x160mm (150 x 150 DPI) 
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Figure 4. Four types of emission characteristics during PI-SWERL tests: (a) sustained dust emission with 
strong saltation; (b) moderate dust emission with decreasing saltation over time; (c) intermittent dust 

emission with little to no saltation; and (d) enhanced dust emission with moderate or strong saltation. Note 
that the OGS saltation and PM10 concentration axis on the right hand side in (c) is on a different scale. The 
pink lines are OGS saltation. The light red (blue) lines denote the changes of PM10 concentration (saltation, 
a 20 s moving average) at ramp tests. The dark red and blue lines represent their behaviors at step tests. 
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Figure 5. Geometric means and standard deviations of erosion thresholds and PM10 emission fluxes at u*= 
0.55 m s-1 from different landform types during April-May (AM), July-August (JA), October-early November 
(ON) and late November-December (ND). DS-disturbed surfaces, SG-sparse grassland, CD-coppice dune, 

ID-interdune, D-dune, W-wadi, DL-dry lake, SP-stone pavement, DG-dense grassland. 
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Figure 6. Temporal variabilities in (a) soil moisture and (b) the relationship with PM10 flux at u*= 0.55 m s-
1 for different landform types. SG-sparse grassland; CD-coppice dune; ID-Interdune; D-dune; W-wadi; DL-
dry lake; SP-stone pavement; DG-dense grassland. Features in b denote experimental data obtained from 
different landform types (by symbol shape) in different test periods (by symbol color, with the same legend 
in a). The inset in (b) shows data with gravimetric water content less than 1% (the left part of the dashed 

line). 
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Figure 7. Box plot comparing PM10 fluxes from different landform types measured in the present study with 
other published PI-SWERL data at u*=0.55 m s-1. The whiskers and boxes, from top to bottom, denote the 
90th, 75th, median, 25th percentiles and 10th percentiles. Top and bottom dots represent maximum and 
minimum values. The white triangles in boxes denote the geometric means. Landform types: CD-coppice 
dune, W-wadi, D-dune, DL-dry lake, SP-stone pavement. Mojave-fan denotes distal alluvial fan. Dry lake 

sites in the Mojave Desert and the Salton Sea are classified into subgroups based on crust types (e.g. silt-
clay and salt) and location (i.e. margin). Published data are from the Mojave Desert (Macpherson et al., 

2008; Sweeney et al., 2011) and the Salton Sea, USA (Sweeney et al., 2008, 2011; King et al., 2011) as 
well as our prior study in China (Cui et al., 2015; Sweeney et al., 2016). 
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Figure 8. Box plot comparing measured PM10 fluxes at u*= 0.55 m s-1 from different landform types across 
all seasons and corresponding values from the sediment supply map (SSM) of Parajuli and Zender (2017). 

The whiskers and boxes, from top to bottom, denote the 95th, 75th, median, 25th percentiles and 5th 
percentiles. Top and bottom dots/triangles represent the maximum and minimum values. The white circles 
with dots in boxes denote the geometric means. Landform types: SG-sparse grassland, CD-coppice dune, 

ID-interdune, D-dune, W-Wadi, DL-dry lake, SP-stone pavement, DG-dense grassland. 
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Table S1. The land use classification system, modified after Liu et al., 2005.

1st level classes 2nd level classesa

Code Name Code Name Descriptions

1 Cropland – –

Cultivated lands for crops. Including: mature cultivated land, newly 

cultivated land, fallow and shifting cultivated land; intercropping land such 

as crop-fruiter, crop-mulberry, and crop-forest land in which a crop is a 

dominant species; bottomland and beach that cultivated for at least 3 

years.

2 Woodland – – Lands growing trees including arbor, shrub, bamboo and for forestry use.

3 Grassland – –

Lands covered by herbaceous plants with coverage greater than 5%, 

including shrub rangeland and mixed rangeland with the coverage of 

shrub canopies less than 10%.

31 Dense grass Grassland with canopy coverage greater than 50%.

32 Moderate grass Grassland with canopy coverage between 20% and 50%.

33 Sparse grass Grassland with canopy cover between 5% and 20%.
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aThe 2nd classes of the cropland, woodland, water body and build-up land are not present.

4 Water body – –
Lands covered by natural water bodies or lands with facilities for irrigation 

and water reservation.

5 Built-up land – –
Lands used for urban and rural settlements, factories and transportation 

facilities.

6 Unused land – – Lands that are not put into practical use or difficult to use.

61 Sandy land Sandy land covered with less than 5% vegetation cover.

62 Gobi Gravel covered land with less than 5% vegetation cover.

63 Salina Lands with salina accumulation and sparse vegetation.

64 Swampland
Lands with a permanent mixture of water and herbaceous or woody 

vegetation that cover extensive areas.

65 Bare soil Bare exposed soil with less than 5% vegetation cover.

66 Bare rock Bare exposed rock with less than 5% vegetation cover.

67 Others Other lands such as alpine desert and tundra.
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Table S2. The values of α applied in this study.

Type α

Sparse grassland 0.90

Coppice dune, interdune, dune, dry wash 0.96-0.90a

Dry lake 0.98 (silt-clay crusted) or 0.86 

(salt crusted)

Stone pavement 0.86

Dense grassland 0.84

Disturbed surface 0.98

aBased on the negative relationship with the grain size. For example, a value 

of 0.96 was applied for those with mean grain size (Md) within 100-200 μm. 

The value of α decreased by 0.02 with the span of the Md increasing 100 μm.
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Table S3. Soil textural characteristics of test sites.

Type Sand Loamy sand Sandy loam

Sparse grassland 90% 10%

Coppice dune, 

interdunea, dune
100%

Wadi 88% 6% 6%

Dry lake 77% 8% 8%

Stone pavement 31% 23% 46%

Dense grassland 50% 39% 11%

aTwo interdune sites that were covered with crust were classified as sandy 

loam and loam. These results were not presented in this table.
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For Peer Review

Figure S1. Geometric means and standard deviations of PM10 fluxes for 

different landform types during April-May (AM), July-August (JA), 

October-early November (ON) and late November-December (ND).
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For Peer Review

Figure S2. Regression analysis of the relationship between PM10 flux at 

u*=0.55 m s-1 and u*t for all sites in AM (red), JA (yellow), ON (green), and ND 

(blue). DS-disturbed surfaces, SG-sparse grassland, CD-coppice dune, 

ID-interdune, D-dune, W-wadi, DL-dry lake, SP-stone pavement, DG-dense 

grassland.
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Figure S3. Spatial distribution of the ratio of precipitation to evapotranspiration 

during test periods (0.5°×0.5°), derived from the monthly high-resolution 

gridded dataset produced by the Climatic Research Unit.
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Figure S4. The land surface classification of all test sites according to the land 

surface map of Parajuli and Zender (2017). Categories in the legend were 

rearranged in descending order of site counts. SG-sparse grassland, 

CD-coppice dune, ID-interdune, D-dune, W-wadi, DL-dry lake, SP-stone 

pavement, DG-dense grassland.
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