
448 Vol. 7, No. 5 / May 2020 / Optica Research Article

Experimental quantum homodyne tomography via
machine learning
E. S. Tiunov,1,2,† V. V. Tiunova (Vyborova),1,† A. E. Ulanov,1 A. I. Lvovsky,1,3,* AND
A. K. Fedorov1,2,4

1RussianQuantumCenter, Skolkovo,Moscow 143025, Russia
2Moscow Institute of Physics and Technology, Dolgoprudny,MoscowRegion 141700, Russia
3Department of Physics, University of Oxford, OxfordOX1 3PG, UK
4e-mail: akf@rqc.ru
*Corresponding author: alex.lvovsky@physics.ox.ac.uk

Received 3 February 2020; revised 29 March 2020; accepted 10 April 2020 (Doc. ID 389482); published 6 May 2020

Complete characterization of states and processes that occur within quantum devices is crucial for understanding and
testing their potential to outperform classical technologies for communications and computing. However, solving this
task with current state-of-the-art techniques becomes unwieldy for large and complex quantum systems. Here we realize
and experimentally demonstrate a method for complete characterization of a quantum harmonic oscillator based on an
artificial neural network known as the restricted Boltzmann machine. We apply the method to optical homodyne tomog-
raphy and show it to allow full estimation of quantum states based on a smaller amount of experimental data compared
to state-of-the-art methods. We link this advantage to reduced overfitting. Although our experiment is in the optical
domain, our method provides a way of exploring quantum resources in a broad class of large-scale physical systems, such
as superconducting circuits, atomic and molecular ensembles, and optomechanical systems. © 2020 Optical Society of

America under the terms of the OSA Open Access Publishing Agreement
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1. INTRODUCTION

Exploiting the full potential of quantum technologies involves
the challenge of “quantum volume”: keeping a high degree of
control over a complex many-body quantum system in spite of its
growing size [1]. This important challenge concerns, in particular,
methods for complete characterization of quantum states and
processes. Quantum state tomography (QST), the reconstruction
of quantum states from measurement statistics in multiple bases
[2,3], is routinely performed in quantum physics experiments of
various nature. Nevertheless, because the number of parameters
describing a state of a quantum system grows exponentially with its
size, tomography becomes increasingly demanding in application
to large-scale quantum systems that are now engineered in experi-
ments with ultracold atoms [4–7], ions [8–10], superconducting
devices [11], and quantum light [12].

This problem manifests itself in two aspects. First, full quantum
tomography of multi-dimensional quantum systems requires large
portions of data, which are typically difficult to acquire experimen-
tally. Second, even if such data are available, they are quite difficult
to process with reasonable computational resources. Fortunately, it
often happens that the physical setting being studied imposes cer-
tain a priori restrictions on the quantum states that can be prepared
in it. As a result, the states can be described using a set of parameters
that grows polynomially, rather than exponentially, with the size
of the system. This observation gave rise to alternative approaches

such as permutationally invariant tomography [13], quantum
compressed sensing [14], and tensor networks [15–17]. Each of
these approaches makes particular assumptions about the physical
restrictions imposed upon the state in question.

In the absence of knowledge about the physics of the system,
one can use a universal approach based on generative artificial neu-
ral networks. Generally, neural networks are known to be capable
of finding the best fit to arbitrarily complex data patterns with a
limited number of parameters available [18]. In the context of
quantum physics, this capability has been exploited in the context
of neural networks known as the restricted Boltzmann machine
(RBM). Such a neural net is proven to be a universal approximator
for any discrete distribution [19]. RBMs are capable to encode
the information about exponentially many terms of a quantum
state in a polynomial number of units [20]. This feature makes
RBMs attractive for a variety of quantum variational optimization
problems [21], which require finding a quantum state that best
satisfies a certain criterion. Examples of such problems, in addition
to quantum tomography [22], include searching ground states of
Hamiltonians in quantum chemistry tasks [23], investigating ten-
sor network states [24] and topological states [25], and simulating
open quantum many-body systems [26–30].

In the original theoretical proposal [22], RBM-based QST has
been applied to simulated pure states of interacting many-qubit
systems. A subsequent work [31] has generalized this approach
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to mixed states and applied it to perform QST of a two-qubit
system associated with a polarization-entangled photon pair. Very
recently, the method was used in application to an experimen-
tal Rydberg-atom simulator with eight and nine atoms, using a
pure-state, constant-phase approximation and measurements in
a single basis [32]. Neural network techniques in the context of
QST were also employed, albeit in a very different setting, to pre-
process the data, thereby reducing the effect of state preparation
and measurement errors [33].

However, all existing work on the subject has been applied
to sets of natural qubits, such as fermion spins. This excludes
a large class of “continuous-variable” physical systems whose
Hamiltonian is identical to that of the harmonic oscillator. These
include light, superconducting cavities, atomic and molecular
ensembles, and optomechanical arrangements. Many of these
systems are promising candidates for quantum information
processing [34,35] and hence the challenge of quantum volume
applies to them to the full extent. This necessitates the extension of
neural-network QST methods to these systems.

Here we fill this gap by applying the RBM to homodyne
tomography of optical states, in which measurements of electro-
magnetic field quadratures at various phases are performed to
reconstruct the state of light in a given mode [2]. We verify our
method on experimental data for the cases of optical Schrödinger’s
cat states and arbitrary Fock-state superpositions up to the two-
photon level, where we obtain a high quality of quantum state
reconstruction. We perform the universality test for our method
via the reconstruction of randomly generated states. We also
consider the application of our methods to other relevant quan-
tum states, such as Gottesman–Kitaev–Preskill states [36] and
squeezed-displaced vacuum. The approach generally outperforms
standard maximum-likelihood-based methods [37], which, as
we demonstrate, is deeply linked with reduced overfitting. To
our knowledge, this is the first application of neural networks in a
continuous-variable quantum setting.

2. NEURAL NETWORK TOMOGRAPHY

An RBM is a neural net containing two layers, visible and hid-
den, with all-to-all connections between the neurons in different
layers and none inside each layer [hence the term “restricted”; see
Fig. 1(a)]. The neurons can take on binary values {0,1}. Any set of
neuron values, defined by binary vectors v and h, is associated with
the Boltzmann probability

p(v, h)=
1

Z
e−E (v,h), (1)

where Z is the partition function, and E (v, h) is the Ising-type
energy functional

E (v, h)=−vT Ŵh− aTv− bTh, (2)

where Ŵ , a, b are the network parameters: weights and
biases, respectively. The conventional RBM is trained to find
the parameter set that maximizes the product of marginal
distributions,

p(v)=
∑

h

p(v, h), (3)

over the training set {v}, i.e.,
∏
{v} p(v). The RBM trained in this

way will produce similarly low energy values for test inputs that are
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Fig. 1. Architecture of restricted Boltzmann machines for classical pat-
tern recognition tasks (a) and quantum tomography (b).

similar to elements of the training set, which is useful for pattern
recognition [38]. Furthermore, by sampling high-probability
visible layer vectors, one can use the RBM as a generative neural
network [39].

In the classical case, the data (such as the pattern to be recog-
nized) are fed to the RBM through the visible layer. Doing so for
quantum tomography would be unimaginable because there are
infinitely many quantum states and even more possible measure-
ment data sets. On the other hand, we can take advantage of our a
priori knowledge of the connection between quantum states and
the measurement probabilities associated with different bases.

These important differences dictate a different way that RBMs
can be applied for quantum optimization problems. Here we uti-
lize the RBMs to define an Ansatz expression for the quantum state
|9〉, which we wish to reconstruct. The neural network parameters
are then used as the variational parameters of that Ansatz. We cal-
culate the likelihood function (probability of having acquired the
present experimental data set given |9〉) using the knowledge of
quantum mechanics, and optimize the parameters, and therefore
|9〉, to maximize that likelihood. The visible layer no longer plays
the role of the container for the data, but only serves to index the
basis of the Hilbert space: each possible configuration v of the
visible layer is associated with one and only one basis element |v〉.

The Carleo and Troyer Ansatz [20], which we utilize here, uses
two RBMs of identical architectures [Fig. 1(b)], with the parameter
sets λ= {Ŵλ, aλ, bλ} and µ= {Ŵµ, aµ, bµ} to express, respec-
tively, the amplitudes and phases of the state’s decomposition into
this basis:

|9〉 =
∑

v

√
pve iφv/2|v〉, (4)

where

pv =
1

Zλ

∑
h

e−Eλ(v,h), φv = log
∑

h

e−Eµ(v,h), (5)

and E λ,µ are defined by Eq. (2) for the two corresponding RBMs.
We note that the partition function Z is present only in the expres-
sion for the amplitudes, but not phases, because the phases have no
normalization requirement. The logarithm is included in the phase
for mathematical convenience.

In optical homodyne tomography, the basis traditionally used
for state reconstruction is the Fock basis, bounded from above
by some cut-off photon number Nph. Because an RBM with the
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visible layer of size m can represent a Hilbert space of dimension
2m , the natural choice is to construct the reconstruction basis from
photon number states {|0〉, . . . , |Nph= 2m

− 1〉}. The basis is
then encoded in the visible layer in a straightforward fashion, for
example, for m = 2,

|0〉→

(
0
0

)
|1〉→

(
0
1

)
|2〉→

(
1
0

)
|3〉→

(
1
1

)
.

The tomography experiment consists of measuring the continuous
electromagnetic field quadrature samples X on multiple copies of
the state |9〉 at various phases θ . The log-likelihood functional is
then as follows:

4=
∑

j

log〈θ j , X j |ρ̂|θ j , X j 〉, (6)

where ρ̂ = |9〉〈9| is the density matrix, and j enumerates mea-
surement outcomes. This is a differentiable function of the RBM
parameters, defined through Eqs. (2), (4), and (5). These parame-
ters can therefore be optimized using gradient descent to maximize
the log-likelihood.

A general quantum tomography method must be able to work
with not only pure states, but also with mixed ones. The method
above is readily generalized to mixed states by means of purifica-
tion: introducing an ancillary “environment” Hilbert space, whose
dimension is equal to that of the Hilbert space of interest. The
mixed state that needs to be reconstructed can then be written as a
partial trace:

ρ̂ =TrE (|9SE〉〈9SE|) , (7)

where the pure state |9SE〉 is a vector of the tensor product Hilbert
space comprising the system and the environment and can be
reconstructed from the experimental data as described above (see
Supplement 1 for details). We note that, although the dimension
of the tensor product space is the square of the dimension of the
system, the number of visible units needed to represent that space is
only twice as large as that for the system alone.

We emphasize again the difference between the RBM approach
to state reconstruction and the conventional quantum expectation-
maximization (MaxLik) technique [37,40]. In both cases, we
optimize the parameters of the state to maximize the likelihood
functional (6). However, in the standard approach, all elements
of the density matrix are being optimized, which corresponds to
the number of parameters equal to the dimension of the Hilbert
space squared. Within the RBM Ansatz, on the other hand, the
number of parameters is on the scale of the product of the num-
ber of visible and hidden units, i.e., scales logarithmically with
the Hilbert space dimension. As discussed previously, this is of
great advantage when this dimension is large. Although reducing
the number of parameters does restrict the set of states that can
be expressed by the RBM Ansatz, we found it to be sufficient to
adequately represent the states observed in homodyne tomography
experiments.

We test our approach on two sets of experimental data. The
first set corresponds to an optical analog of Schrödinger’s cat,
i.e., the superposition of two opposite-amplitude coherent
states. The data have been taken from the experiment [41] and
correspond to the cat state of amplitude α = 1.85 squeezed
by 3 dB along the quadrature axis. The second data set was

Fig. 2. Experimentally reconstructed Wigner functions and density matrices for optical Schrödinger’s cats (a), (b) and engineered Fock superpositions
up to the two-photon level (c), (d) using neural network quantum tomography (a), (c) and MaxLik (b) ,(d). The relative fidelity of the two reconstructed
states is about 0.998 in both cases after efficiency correction.

https://doi.org/10.6084/m9.figshare.12120891
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obtained in an experiment on engineering arbitrary superposi-
tions of Fock states a0|0〉 + a1|1〉 + a2|2〉 with the amplitude
ratio a0 : a1 : a2 ∼−0.76 : 0.49 : 0.42 [42]. We compare our
reconstruction results with the standard iterative MaxLik algo-
rithm with efficiency correction. For both methods, we obtain
Wigner functions and density matrices of the reconstructed states
(Fig. 2).

For the reconstruction of the cat state, we used the cutoff
photon number of Nph = 7 (i.e., m = 3), which corresponds to
the amplitude and phase RBMs containing 2m = 6 visible units
each. Additionally, each RBM contained eight hidden units. The
reconstruction featured correction for 62% detection efficiency
(see Supplement 1). For the Fock state superposition, each RBM
had four visible units, four hidden units, Nph = 3 (m = 2), and
efficiency correction of 55%. As we see in Fig. 2, both methods
resulted in similar reconstructed states, with the relative fidelity
about 0.998 in both cases. In Supplement 1, we present the recon-
struction from the same experimental data but without efficiency
correction.

3. EFFECTS OF OVERFITTING

Our next goal is to compare the performance of the RBM approach
to MaxLik. Using bona fide experimental data is suboptimal for
this purpose because it is not known what “true” state they cor-
respond to, and hence we cannot tell which method gives better
reconstruction.

Therefore we generate a simulated quadrature data set corre-
sponding to the Schrödinger’s cat states |α〉 − | − α〉 with α = 4,
reconstruct the state from this set and compare it to the original.
The RBM reconstruction was performed without assuming the
state to be pure, using an RBM with 10 visible units (m = 5) and
three hidden units. The cut-off point was at 31 photons both for
RBM and MaxLik. The motivation for choosing this relatively
large Hilbert space is to explore the case in which the number
parameters optimized by the RBM is much less than MaxLik.

Figure 3(a) shows the photon statistics of the state reconstructed
using the two methods. Theoretically, we expect this state to show
Poisson statistics for odd photon numbers, but zero probability for

(a)

(b)

(c)

Fig. 3. Reconstruction of the cat state |α〉 − | − α〉withα = 4 from bootstrapped data. (a) Photon statistics for the state reconstructed from 800 quadra-
tures using MaxLik (right) and RBMs (left). (b) Reconstruction fidelity as a function of number of quadrature measurements. Each point is averaged over
multiple datasets of the same size. Shaded regions show the standard deviation. (c) Cross-validation log-likelihood difference (see text). Higher values corre-
spond to more significant overfitting.

https://doi.org/10.6084/m9.figshare.12120891
https://doi.org/10.6084/m9.figshare.12120891
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(a) (b)

Fig. 4. Reconstruction of random states. (a) Reconstruction fidelity as a function of number of quadrature measurements. Each point is averaged over
multiple states, with a single quadrature dataset generated for each state. Shaded regions show the standard deviation. (b) Differences between RBM and
MaxLik fidelities for individual random states.

even photon numbers. We see that the state reconstructed using
RBMs largely follows this rule, whereas the MaxLik reconstructed
state has significant nonzero statistics for even photon numbers.
In Fig. 3(b), we plot the fidelity of the reconstructed state with the
original one as a function of the data set size and observe that RBM
performs significantly better. For example, the RBM reconstructs
the state from 1000 quadrature samples with the same fidelity of
98.5% as does MaxLik from 5000 samples. This is of value because
complex quantum state engineering experiments typically produce
desired states at very low rates [41], so the usage of RBM can greatly
reduce the data collection effort.

The improved performance of the RBM approach for a
smaller amount of experimental data is likely associated with
lower overfitting [20]. Indeed, the number of parameters in
MaxLik is, as discussed, 322

− 1= 1023, whereas for RBM, it
is 2× (10× 3+ 10+ 3)= 86. In order to demonstrate that
overfitting is indeed the cause of poorer performance of MaxLik,
we implement the following cross-validation test. We generate
multiple quadrature data sets of the same size and reconstruct the
state from one of them. Then we calculate the log-likelihood (6)
for the data from each set with respect to the reconstructed state.
If overfitting plays a significant role in the reconstruction, the
likelihood of the “native” data set (from which the state was recon-
structed) is expected to be significantly higher than for other sets.
We plot the mean difference of the log-likelihoods for the “native”
and “non-native” data sets in Fig. 3(c) and observe this difference
to be much higher for MaxLik than for RBM. This confirms our
hypothesis.

To test the generality of our conclusions, we applied RBM
reconstruction to three states of different nature: Gottesman–
Kitaev–Preskill [36], squeezed-displaced vacuum, and random
states (see Supplement 1). We observed the same results as for the
cat state. This corroborates our hypothesis that the likely reason
for RBM’s superiority to MaxLik is that the former method is less
prone to overfitting.

As a further test, we applied RBM and MaxLik reconstruction
to a set of 20 random superpositions of Fock states from zero to
31 photons. To generate these superpositions, a Gaussian random
number generator with zero mean and unit variance was used to
generate the real and imaginary amplitudes of each Fock compo-
nent, and the resulting states were subsequently normalized to
unity. The performance of the reconstruction (with Nph = 31) is
shown in Fig. 4, demonstrating the advantage of RBM-based QST
for a great majority of states.

4. DISCUSSION AND OUTLOOK

As with any tomography method, a technique for estimating the
state reconstruction precision is needed. The standard approach
to this task is bootstrapping—that is, generating multiple sim-
ulated quadrature sample sets from the reconstructed state and
reconstructing a state from each of these sets. The variance of these
“secondary” states with respect to the originally reconstructed one
gives an estimate for the statistical uncertainty of the reconstruc-
tion. This approach, as well as more advanced error estimation
methods [43,44], can be successfully applied to RBM tomography.

A related question is the number of hidden units in the RBM.
On one hand, increasing this hyperparameter improves the recon-
struction quality because of the better expressive capacity of the
neural network. On the other hand, it increases the computation
complexity. The compromise depends on the specific state being
reconstructed. For example, the squeezed-displaced vacuum state,
whose wave function is Gaussian and does not have multiple fine
features, required less hidden units than the cat and Gottesman–
Kitaev–Preskill states. For all states we tested, the reconstruction
quality improvement saturated for the number of hidden units
being similar to or less than the number of visible units.

Our results demonstrate that the neural network QST approach
is a promising way of characterizing the states observed in optical
experiments. We found this method to be capable of reliable state
reconstruction and much less prone to overfitting compared to
the standard MaxLik approach. However, the full capability of our
method is expected to be unveiled for very large Hilbert spaces, to
which traditional methods become inapplicable. Therefore the
natural next step would be to implement a complex multimode
entangled state and apply RBM for its reconstruction. Promising
sources of such states are multimode parametric oscillators, which
have seen rapid development in recent years [45,46].

As stated earlier, the complexity of the QST problem, as well
as the number of required measurements, grows exponentially
with the system size. The RBM Ansatz appears to circumvent this
issue, as the number of RBM parameters is polynomial with respect
to the system size. The price to pay is that it may not be possible
to efficiently describe all states with this Ansatz. In the discrete-
variable domain, there exists a known class of physically interesting
quantum states that carry no efficient RBM description [47]. It
is important to undertake a similar study for continuous-variable
systems to understand the application range of this method—in
particular, to which extent it can be used in the multimode case.

https://doi.org/10.6084/m9.figshare.12120891
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To proceed in the direction of large systems, we will also need to
change the strategy of RBM training. Presently, our evaluation of
the likelihood function relies on exhaustive summation of ampli-
tudes for all elements of the Hilbert space basis (see Supplement 1).
However, such a summation will be impossible in large Hilbert
spaces. Instead, we will have to rely on approximate methods of
RBM training such as contrastive divergence [48] or Gibbs sam-
pling [49] to select the basis elements with largest amplitudes.
Alternative neural network architectures should also be explored.
In particular, it would be interesting to look for ways to utilize
forward-propagating neural networks, rather than RBMs, for QST
[50]. Such neural networks are more common in modern machine
learning because their training is much more straightforward.

Our approach can be generalized to broader classes of physical
problems. First, in addition to light, it is applicable to any physical
system that can be mapped to a harmonic oscillator, such as atomic
ensembles [51] and nanomechanics [52]. Second, we reiterate
that the neural-network-based QST studied here belongs to a
larger class of problems in which one looks for a quantum state
that best satisfies a certain criterion. A particularly promising field
of research, in our opinion, is complex phenomena in condensed
matter systems, such as many-body localization, and describing
exotic phase transitions. Approaches based on machine learning
constitute a new and promising way of tackling them.
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