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Abstract 
Vaccine approaches that confer durable and high-level protection against malaria infection 

are urgently needed. Development of next-generation vaccines is partially hindered by a 

limited understanding of the mechanisms underlying protective immunity. In-depth 

characterization of such responses will be critical in identifying immune correlates and 

ultimately guiding the development of next-generation vaccine strategies. The aim of this 

thesis was to dramatically enhance the breadth and depth of phenotypic analysis from 

cellular immune responses induced by two malaria vaccine candidates that have 

demonstrated high-level protection against CHMI: the PfSPZ Vaccine and ChAd63/MVA 

ME-TRAP. Single cell gene expression analysis of antigen-specific CD4+ and CD8+ T 

lymphocytes following vaccination and/or CHMI revealed a number of important findings. 

First, PfSPZ-specific CD4+ T cells from vaccinated and protected subjects in a small cohort 

were enriched in IL21 gene expression compared to unprotected subjects prior to challenge. 

Average IL21 expression per-subject correlated with antibody responses against the 

immunodominant CS protein. Analysis of a larger independent cohort confirmed both of 

these findings and provided greater power to dissect this population of IL21+ CD4+ T cells. 

Interestingly, these data provided evidence for a class of Th1/TFH-like cells that could 

potentially provide help for both CD8+ T cells and humoral responses elicited by PfSPZ 

vaccination. Second, analysis of CD8+ T cells from subjects vaccinated with ChAd63/MVA 

ME-TRAP provided the opportunity to investigate cellular immune responses that are 

critical for clearance of infected hepatocytes. There was evidence for multifunctional use of 

effector molecules in TRAP-specific CD107a+CD8+ T cells and a broad transcriptional 

signature of monofunctional IFNG+ CD8+ T cells, which have been previously correlated 

with protection induced by viral vectors. Overall, data presented in this thesis demonstrate 

that single-cell transcriptional analysis is a powerful tool to expand the characterization of 

cellular immune responses and elucidate potential correlates of protection in Phase II 

clinical trials.  
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1. Introduction 

1.1 Malaria  

1.1.1 A global health threat  

 
At the turn of the 20th century, leaders from around the world declared malaria as 

one of the greatest public health threats to be tackled in the next 15 years (1). As the 

deadline for the Millennium Development Goals passes, malaria remains a 

significant killer of young children in Africa. The scientific community must take 

care to evaluate the progress and challenges ahead.  

 

In 2015, the World Health Organization estimated 214 million cases of malaria 

infection, resulting in over 400,000 deaths (2). Young children under the age of five 

and pregnant women shoulder the greatest burden of morbidity and mortality, 

constituting 90% of all malaria deaths (2). For countries that bear the brunt of 

disease, the economic and social costs of malaria are incalculable. Malaria infection 

prevents children from going to school, discourages international investment, and 

increases healthcare costs, draining over $10 billion dollars from Africa each year 

(3-5). Many organizations have put sustained pressure on world leaders for 

increased efforts to halt the spread of the disease. Notably, Bill and Melinda Gates 

renewed the call for eradication (6), invigorating countries to double global funding 

for malaria control within a decade (2, 7).While treatment expansion and 

transmission control have averted one million deaths over the past decade (8), a 

deficit of $5 billion dollars per year funding threatens sustainable results (7). 

Furthermore, the Ebola outbreak in West Africa highlighted the precarious nature of 
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malaria elimination in regions with inadequate health infrastructure (9). As 

transmission continues in 99 countries, placing 3.2 billion people at risk of infection 

(2), new tools for disease control are required.  

 

Malaria infection in humans is caused by five different species of the Apicomplexan 

parasite of the genus Plasmodium (10). Four of these pathogens- P. falciparum, P. 

vivax, P. malariae, and P. ovale- can all be spread from human to human, while P. 

knowlesi is limited to zoonotic transmission from forest macaque monkeys in 

Southeast Asia (11, 12). P. vivax has the widest geographical distribution, 

accounting for half of all malaria infections outside of Africa (2). As P. falciparum 

causes 80% of clinical infections and 90% of deaths (2), this pathogen constitutes 

the greatest public health challenge. Nonetheless, the global distribution of P. vivax 

coupled with need for adequate surveillance of emerging zoonotic P. knowlesi 

infections (13) should not be understated.  
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1.1.2 Life cycle of Plasmodium falciparum 

 

Multiple stages in human and mosquito hosts contribute to different antigenic targets 

and immunological responses (Figure 1.1) (10).  

 

Malaria infection in humans is transmitted via the bite of the female Anopheline 

mosquito. There are 400 different species of Anopheles, of which A. gambiae is the 

principal vector in heavily endemic regions (14). During a blood meal, tens to 

hundreds highly motile, haploid sporozoites are deposited into the skin of the host. 

While a fraction of sporozoites remain local in the dermis or are drained into the 

lymphatic system, the majority invade blood vessels and migrate to the liver within 

minutes (15). Within the liver sinusoids, these parasites transverse endothelial cells 

and liver-resident macrophages called Kupffer cells before hepatocyte invasion (16-

18). Asexual replication and maturation of the parasite occurs over 7-10 days, 

during which one sporozoite can expand into 40,000 merozoites per hepatocyte (10). 

Parasite-filled vesicles called merosomes then bud from host cells, before bursting 

and releasing thousands of merozoites into the peripheral circulation (19). It is 

important to note that the life cycle of P. falciparum diverges from P. vivax and P. 

ovale at the pre-erythrocytic stage. In the liver, P. vivax sporozoites can revert to 

dormant hypnozoites prior to maturation, accounting for relapses months after 

infection (20). The only drug family that can kill hypnozoites, 8-aminoquinolines, is 

toxic in humans deficient in glucose-6-phosphate dehydrogenase (G6PD), a 

common genetic mutation in malaria-endemic regions (21).   
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Figure 1.1 Life cycle of the malaria parasite P. falciparum 

Image taken from (22) that illustrates that life cycle of P. falciparum. Briefly, an 
infected female Anopheles mosquito injects sporozoites into the blood where they 
migrate to liver within minutes. Over 7-10 days in humans, sporozoites develop as 
exo-erythrocytic schizonts inside parasitophorous vacuoles within infected 
hepatocytes. Fully matured merozoites are then packaged as merosomes, which then 
erupt in the bloodstream and invade erythrocytes. During the asexual erythrocytic 
stages, symptoms of clinical malaria appear. The development of sexual forms 
called gametocytes and subsequent differentiation within the mosquito gut ensures 
transmission of P. falciparum.  
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Clinical presentation of malaria manifests during the erythrocytic stage. Merozoite 

invasion of erythrocytes drives remodeling of host intracellular structure to facilitate 

transport of P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the cell 

surface (23), a key mechanism of immune evasion (further discussed in section 

1.1.3). Over 48 hours, merozoites mature through ring, trophozoites and schizont 

stages, before replicated parasites ultimately burst from the erythrocyte (24). 

Synchronized invasion and rupture of erythrocytes coincide with the cyclical fevers 

and chills, a classical symptom of malaria (25, 26). After an unknown number of 

cycles, concurrent gametocytogenesis leads to the development of male and female 

pre-sexual stages (27). Cell-to-cell communication and/or stochastic activation of 

transcriptional switch may play a role in triggering differentiation of male and 

female gametocytes (28, 29).  

 

Upon ingestion of gametocytes during a blood meal, mature gametes fertilize in the 

midgut lumen, undergo sexual development into ookinetes, and transform into 

hundreds of sporozoites in the salivary gland, thus perpetuating the cycle of human 

disease (30). 

 

1.1.3 Pathogenesis  

 

Maturation of sporozoites during the pre-erythrocytic stages is clinically silent. The 

hallmark of malaria infection occurs during the blood-stage, classically 

characterized by cyclical fevers and chills that coincide with rupture of parasitized 

erythrocytes. Initial symptoms are very nonspecific: headache, fever, and myalgia, 

often leading to misdiagnosis of other common infections. Disease severity in areas 
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of high-transmission is highly-dependent on age, such that risk of death increases 

during the first six months of life and then gradually declines (31). The notable 

exception is primagrade women, as infection during the second and third trimesters 

is associated with an increased risk of low birth weight, stillbirth and maternal death 

(32). Severe malaria in children typically manifests as a combination of three 

overlapping symptoms: impaired consciousness (cerebral malaria), severe anemia 

and respiratory distress (acidosis). While the underlying mechanisms are still 

unclear, pathogenesis is hypothesized to be driven by host-parasite interactions and 

a dysregulated inflammatory immune response (33). 

 

Sequestration of parasitized erythrocytes is a key tactic of P. falciparum for evasion 

of the host immune system and plays an important role in disease severity. First 

shown in the autopsied brains of patients who died from cerebral malaria (34), 

adherence of parasitized erythrocytes to endothelial receptors has been demonstrated 

to the microvasculature bed of a wide range of organs. Sequestration prevents 

destruction of infected erythrocytes in the spleen, ultimately blocking blood vessels 

and impairing oxygen delivery to critical organs (acidosis) (33). The best-

characterized adhesion ligand is the highly polymorphic P. falciparum erythrocyte 

membrane protein 1 (PfEMP1), which is encoded by 60 antigenically distinct var 

genes (35-37). Antigenic variation allows the parasite to bind to a wide range of host 

receptors such as endothelial protein receptor C (EPCR) (38) with expression of 

certain var genes strongly associated with binding in the brain and placenta (39, 40). 

Furthermore, var gene silencing in response to immune pressure alters surface 

expression of antigenically distinct PfEMP1 variants, enabling evasion of the 

specific host immune responses (35, 41). While sequestration is clearly a risk factor 
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for severe malaria, many studies question a direct link between the two phenomena 

(33, 42-44). Recent studies have suggested that detection of P. falciparum histidine 

rich protein 2 (PfHRP2) approximates the total parasite biomass, accounting for 

circulating and sequestered parasites. Soluble PfHRP2 is higher in patients with 

severe vs. uncomplicated malaria and may serve as a better predictor of severe 

malaria (43, 44).  

 

While inflammatory responses may be protective during blood-stage malaria, 

excessive inflammation is hypothesized to contribute to severe malaria (45). 

Cytokines such as tumor necrosis factor (TNF-α), interleukin-6 (IL-6), and 

interferon-gamma (IFN-γ) and free oxygen radicals are greater in children with 

cerebral malaria and respiratory distress vs. uncomplicated malaria (46). Murine 

models of experimental cerebral malaria demonstrate a critical role of 

immunopathology (47), but the mechanism is likely more complicated in humans 

involving timing and a balanced regulatory response. Vascular endothelium 

dysfunction may form the link between sequestration and excessive inflammation in 

the pathogenesis of severe malaria. Inflammatory mediators combined with 

mechanical disruption of the blood flow caused by sequestered erythrocytes may 

cause vascular endothelium activation and impair barrier function, potentially 

leading to signal amplification of metabolic derangement and organ dysfunction 

(33).  However, more studies are necessary to fully unravel this mechanism for the 

development of adjunctive treatments tailored to specific severe malaria syndromes.    
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1.1.4 Current control measures 

 

Almost as old as malaria are interventions that aim to prevent death. Ancient 

civilizations around the world developed tools to ward off disease with varying 

degrees of success (48). While ancient Roman amulets inscribed with 

“Abracadabra” likely did little to stop death, ancient medicines from China form the 

basis of essential modern tools. Current control measures funded by Roll Back 

Malaria, the Global Fund to AIDS, Tuberculosis and Malaria, and the Bill and 

Melinda Gates Foundation are targeted at treating the disease in humans and 

limiting vector transmission (2, 49). In particular, three interventions have played a 

key role in averting 663 (542-735) million clinical cases over the past fifteen years: 

insecticide-treated bed nets (ITNs), indoor residual spraying (IRS), and antimalarial 

chemotherapy (Figure 1.2) (8).  
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Figure 1.2 The effect of control measures on malaria clinical cases between 
2000 and 2015. 

Image taken from (8). This graph depicts the estimated number of malaria clinical 
cases averted over fifteen years by three key interventions: insecticide-treated bed 
nets (ITN), artemisinin-based combination therapy (ACT), and indoor residual 
spraying (IRS). Note that ACT is intended to primarily prevent severe disease, 
rather than halt the spread of new infections.   
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One of the most cost-effective public health interventions against childhood deaths, 

ITNs were responsible for a 68% decrease in clinical cases between 2000 and 2015 

(8). The use of nets to prevent disease has been described since the 5th century BCE, 

when historian Herodotus documented how Egyptian fishermen slept under their 

nets at night to ward off insects (50). Modern widespread use swung into full force 

in the mid-1990s, following discovery of insecticide treatment of nets with 

pyrethroids to increase effectiveness. ITNs provide a two-hit punch by directly 

preventing infection of the person sleeping under the net and indirectly protecting 

others by suppressing community-wide transmission. Regional variations in 

transmission intensity and usage impact effectiveness (51, 52), but in some areas 

introduction of ITN reduced overall child mortality by 60% (53). Despite such 

promise, operational difficulties in achieving widespread appropriate use (2, 54) has 

contributed to the emergence of insecticide-resistant mosquitoes (55) and 

evolutionary shift of daytime biting (56). Furthermore, some studies have warned 

that decreased acquisition of naturally acquired immunity may shift burden of 

mortality to older children (57, 58). 

 

IRS provides an alternative strategy in tackling vector control, particularly in 

regions with unstable transmission (59). Spraying with dichloro-diphenyl-

trichlorethane (DDT) critically contributed to malaria elimination in Europe and 

North America in the 20th century (60). However, IRS currently face similar 

problems as ITNs with growing insecticide resistance coupled with low 

implementation (2). 
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Prompt treatment of clinical malaria cases is critical in the prevention of severe 

disease and deaths. Other uses of malaria chemotherapy include intermittent 

preventative therapy (IPT) for routine treatment of pregnant women and children 

regardless of infection status (61-63) and continuous prophylaxis for non-immune 

travelers (64). Quinine, first extracted from the bark of the cinchona tree in 1820 

(48), served as the foundation for the synthetically derivative compound, 

chloroquine. Once heavily deployed around the word, chloroquine soon became 

obsolete following the spread of drug-resistant parasites (65). Consequently, the 

WHO recommends artemisinin-based combination therapies (ACT) as the front-line 

therapy against malaria (2, 66, 67). Unfortunately, the distribution of counterfeit 

drugs (68) and widespread availability of artemisinin monotherapies (69) has likely 

contributed to the emergence of artemisinin resistance characterized by reduced 

susceptibility of ring-stage parasites (70-72). No new antimalarial drug classes will 

be available for clinical use in the near future.  
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1.2 Human immune system 

1.2.1 Innate immunity 

 

The innate immune system provides a first-line defense against a wide range of 

pathogens (73). While innate immunity is limited to only acting in a non-specific 

manner, rapid and broad responses halt the initial spread of infection and ultimately 

shape the adaptive immune system to best target the pathogen (74). The epithelium 

provides the first physical barrier against invading pathogens by trapping microbes 

in mucus and secreting antimicrobial peptides to include defensins, cathelicidins, 

and histatins (75). The complement system encompasses serum and membrane 

proteins that form three closely interlinked activation pathways: the classical, lectin, 

and alternative pathways. Pathogen recognition occurs via antigen-antibody 

complexes, surface carbohydrates and direct pathogen surface, respectively and 

ultimately results in phagocytosis by opsonization, cell lysis, and inflammation (76). 

Innate immune cells such as macrophages, neutrophils, and monocytes play a 

critical role in the removal of invading pathogens (77). Recognition of pathogen 

associated molecular patterns (PAMP) occurs via pattern recognition receptors 

(PRR) such toll-like receptors (TLRs) and nod-like receptors (NODs). Activated 

macrophages internalize and kill pathogens via phagocytosis-mediated oxidative 

burst, while also secreting chemoattractants to recruit other leukocytes. The innate 

immune system also includes NK and γδ T cells that kill infected cells via perforin 

and granzymes (78, 79), in addition to basophils, eosinophils, and mast cells that 

amplify the inflammatory response via the release of histidine (80).   
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1.2.2 Adaptive immunity  

 

Innate immunity activates the adaptive immune system to generate long-term 

specific responses that respond more rapidly and in greater magnitude upon 

reinfection. The adaptive immune system is fundamentally based on the clonal 

expansion of somatically mutated, antigen-specific T and B lymphocytes that 

compose cellular and humoral immunity, respectively. Specialized antigen-

presenting cells (APCs) called dendritic cells (DCs) link innate and adaptive 

immunity. While B cells and macrophages can also function as professional APCs, 

DCs are necessary to prime naïve T cells (81, 82).   

 

1.2.2.1 Cellular immunity 

 

Cellular immunity is composed of T lymphocytes expressing T cell receptors 

(TCRs) that recognize peptide fragments bound to major histocompatibility complex 

(MHC) molecules on the surface of APCs. T cells are broadly divided into two 

classes based on surface expression of co-receptors that broadly reflect ontogeny, 

phenotype and function: CD4+ and CD8+ T cells. CD4+ T cells recognize 

endogenous antigen presented on MHC class II molecules of the surface of APCs in 

the presence of costimulatory molecules including CD40 and CD80/CD86 (83). 

Antigens are engulfed by professional APCs in phagosomes, degraded into smaller 

peptide fragments and then loaded onto MHC class II molecules in endosomal 

compartments before trafficking to the cell surface (84). Upon antigen recognition, 

naïve CD4+ T cells expand and differentiate into different effectors with specialized 

functions tailored to combat a specific type of pathogen. CD4+ T cell subsets are 
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often categorized based on the differential expression of cytokines, transcription 

factors, and surface molecules (85). Effector CD4+ T cells are classically divided 

into Th1 and Th2 cells that recognize intracellular and extracellular pathogens, 

respectively (86). However, recent studies have defined many more subsets to 

include Th17, T regulatory cells (Tregs), and T follicular helper cells (TFH) (87). 

Often analogized as the arm of the adaptive immune system, CD4+ T cells control 

the proliferation of CD8+ T cells and maturation of antibodies.   

 

By contrast, cytolytic CD8+ T cells recognize peptides from endogenous peptides 

presented on MHC class I molecules, which are expressed on all nucleated cells 

(73). Following cross presentation of antigen from endosomes or the direct infection 

of an APC, peptide fragments are translocated to the endoplasmic reticulum via 

chaperone proteins and loaded onto MHC class I molecules prior to transportation to 

the cell surface (84). IL-2 produced autologously or from CD4+ T cells as well as 

proinflamatory cytokines such as IL-12 drive clonal expansion and differentiation of 

CD8+ T cells (88). The main function of effector CD8+ T cells is to induce apoptosis 

in infected cells via cytotoxic proteins such perforin and granzymes stored in lytic 

granules or Fas-Fas ligand interactions that activate downstream caspases. Secretion 

of IFN-γ and TNF-α can mediate killing and also play an important indirect role by 

increasing expression of MHC class I molecules on the surface of infected cells, 

recruiting macrophages to the site of infection, and amplifying further cytokine 

production. Following acute infection, a subset of CD4+ and CD8+ T cells 

differentiate into long-term memory cells that reside in secondary lymph nodes and 

peripheral tissues. Central, effector and resident memory T cells facilitate 

immunosurveliance of the body and respond faster upon reinfection (89).    
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1.2.2.2 Humoral immunity 

 

Humoral immunity is composed of B cells whose main function is to produce 

antibodies against soluble antigens (73). Membrane-bound BCR and secreted 

antibodies are composed of paired heavy and light chains, the latter of which form 

either lambda or kappa chains. B cells initially recognize soluble antigen via 

membrane-bound BCR. Exogenous antigen is then internalized, processed and 

presented on the surface as a peptide-MHC class II molecule complex. Upon 

binding with the complementary antigen-specific CD4+ T cell, B cells proliferate 

and secrete soluble immunoglobulins (Ig). Mature B cells initially secrete IgM and 

IgD, weakly binding antigen based on germ-line sequences. Upon activation, B-

CD4+ T cell interactions in histological structures called germinal centers drive 

affinity maturation and somatic hypermutation (90). Class switching promotes 

secretion of IgG, IgA, or IgE, isotypes with specialized functions and tissue-homing 

properties. A subset of mature B cells differentiates into long-lived plasma cells that 

migrate to the bone marrow and maintain humoral immunity (91, 92). Antibodies 

also mediate non-neutralizing functions via the Fc receptor to enhance phagocytosis 

by neutrophils and macrophages through opsonization, promote antibody-dependent 

cellular cytotoxicity by NK cells, and activate the complement system.  

 

1.2.3 Acquisition of naturally acquired immunity 

 

While the mechanisms underlying the immune response to malaria have not been 

fully elucidated, individuals living in endemic-regions develop naturally acquired 
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immunity (NAI), largely in an age-dependent manner (Figure 1.3) (31). Infants 

younger than six months rarely exhibit clinical disease, likely due to maternal IgG 

antibodies acquired in utero and/or IgA found in breast milk (93, 94). Afterwards, 

children under the age of five are at the greatest risk of severe disease and death. 

Following repeated exposure, children develop partial immunity against mortality 

and severe disease, ultimately acquiring the ability to control high-density 

parasitemia. Sterilizing immunity is never fully achieved. Continuous parasitemia is 

ubiquitous among asymptomatic adults in endemic regions, with the notable 

exception of women during their first and second pregnancies. The distribution of 

severe disease and death is directly affected by transmission intensity, such that the 

greater the number of infectious mosquito bites received per person per unit of time 

(entomological inoculation rate) is, the earlier acquisition of NAI (31, 95). The risk 

of severe disease is also shaped by the evolution of certain populations to select for 

genetic mutations that protect against mortality, such as those that cause sickle cell 

disease, thalassemia and Duffy-negative phenotype (96).  

 
Sero-epidemiologcal studies consistently suggest acquired immunity is primarily 

directed against blood stage (97). Although sporozoite-specific antibodies against 

immunodominant circumsporozoite protein (CSP) are detected in the sera of 

individuals from endemic regions, passive transfer fails to protect against malaria 

(98, 99). Furthermore, T cell responses against pre-erythrocytic antigens 

thrombospondin -related adhesion protein (TRAP) and liver-stage antigen (LSA) are 

very low and greatly vary among populations (100).  
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Figure 1.3 Distribution of naturally acquired immunity (NAI)  

Image taken from (101). In malaria-endemic regions, individuals gradually develop 
NAI against severe disease, clinical disease, and high-density parasitemia. Severe 
malaria is restricted to children under five years of age, whereas asymptomatic 
infection is nearly ubiquitous among adults.  
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Passive transfer of purified IgG from malaria-immune adults to children with severe 

disease led to dramatic reduction in parasitemia and resolution of fever (102, 103), 

suggesting a critical role for humoral immunity against blood-stage parasites. The 

gradual acquisition of a repertoire of specific antibodies against polymorphic variant 

specific antigens (VSAs) on the surface of infected erythrocytes is hypothesized to 

play a critical role in NAI. Protective antibodies could block invasion of merozoites 

into erythrocytes, aid ADCC-mediated killing by T cells or enhance phagocytosis by 

macrophages. The most extensively studied VSA is PfEMP1. Of the 60 clonal 

variants, a restricted subset of PfEMP1 variants is hypothesized to be the critical 

target of NAI against severe disease and death (104). Furthermore, increased 

susceptibility of severe disease among primagrade women is associated with 

PfEMP1 variants that bind to unique host receptors in the placenta, exploiting a gap 

in malaria immunity (40). Other merozoites surface antigens such as apical 

membrane antigen 1 (AMA1) and merozoite surface protein 1 (MSP1) may also 

serve as key immune targets of humoral immunity. More recently, high levels of 

antibodies against P. falciparum reticulocyte-binding homologue 5 (PfRh5) have 

been associated with protection. PfRh5 is particularly unique because it is highly 

conserved and necessary for parasite invasion of erythrocytes (105). Unfortunately, 

acquisition of protective humoral immunity may be hampered by disturbances in 

peripheral B cell homeostasis (97). Dysregulation of BAFF-R expression on B cells 

may contribute to short-lived antibody responses in children and the slow onset of 

NAI (97, 106, 107).  
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1.3 Vaccine development   

1.3.1 Aim of malaria vaccines   

 

Despite remarkable progress achieved with vector control and prompt treatment, 

recent hurdles suggest that eradication of malaria will ultimately require a highly 

effective vaccine. Over the 20th century, vaccines have been critical in control of 

deadly diseases such as smallpox, polio, and measles (108). Arguably the most cost-

effective public health intervention, immunizations are estimated to save 2.5 million 

lives each year (109). Traditional vaccines often confer immunity through 

administration of attenuated whole pathogens or purified toxins. They 

predominantly function by inducing neutralizing antibodies against highly 

conserved antigens to mimic immunity acquired following natural infection (110). 

However, repeated exposure in the setting of malaria does not induce sterilizing 

immunity, suggesting that alternative approaches to vaccine development are 

necessary.  

  

The Malaria Vaccine Technology Roadmap lays out key goals and strategies for the 

development of a product that would substantially reduce malaria-related morbidity 

and mortality and enable eradication of P. falciparum (111). An ideal vaccine would 

prevent clinical disease in children under five and pregnant women, as well interrupt 

transmission. Short-term travelers and military personal would also benefit from 

vaccine-elicited immunity. Ideally, a vaccine regimen would fit within the schedule 

set up by the World Health Organization Expanded Program on Immunization 

(WHO EPI). By 2030, the public health community aims to develop a malaria 
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vaccine for at-risk group in endemic region that reduces risk of clinical disease by 

75%. There is currently no licensed vaccine that is widely deployed.  

   

Malaria vaccine strategies are traditionally classified based on the stage of the 

parasite’s lifecycle that it targets (112).  

 

Pre-erythrocytic vaccines aim to induce antibodies that block sporozoite invasion of 

the liver and/or cellular immunity that kill infected hepatocytes (113). Intervening at 

this stage would eliminate or dramatically reduce the load of infectious merozoites 

that erupt from hepatocytes, decreasing the risk of clinical or severe disease. The 

most clinically advanced malaria candidate, RTS,S/AS01, along with many other 

platforms in Phase I/II trials target the pre-erythrocytic stage (114-117). 

 

Blood-stage vaccines target antigens that coat free merozoites or are expressed on 

the surface of parasitized erythrocytes (118). These strategies typically aim to 

induce antibodies that could block invasion of erythrocytes or enhance clearance of 

infected erythrocytes, thereby reducing the density of parasitemia and risk of severe 

disease. Unfortunately, development with polymorphic antigens AMA1 and MSP1 

has been generally slow with successful induction of durable antibodies and strain-

specific protection, but limited evidence of efficacy against clinical disease (119, 

120). However, recent preclinical studies demonstrate that the highly conserved 

PfRh5 antigen can induce cross-strain neutralizing antibodies (105, 121) and protect 

non-human primates (122). This platform is currently being evaluated in humans. 
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Transmission blocking vaccines would not prevent disease in the vaccinated 

individual but aim to protect the community as a whole, by interrupting the 

development of sexual stages (123). Potential targets include gametocytes in the 

bloodstream or gametes, zygotes and ookinetes within the gut of the mosquito host. 

Currents efforts focused on the Pfs25 antigen aim to demonstrate that vaccine-

elicited antibodies in humans can reduce mosquito infections (124, 125).   

  

There are a number of obstacles that have impeded development of a malaria 

vaccine. First, the size and plasticity of the P. falciparum genome coupled with 

mitotic replication in humans ensures that the parasite can mutate quickly under 

selective pressure, creating multiple antigenic targets (126, 127). Second, 

differential expression of antigens throughout the complex parasitic lifecycle means 

that different components of the immune system are required to recognize 

intracellular and extracellular targets (128). Third, a complete understanding of 

protective immunity against malaria is hampered by the fact that NAI is not 

sterilizing (31), indicating the vaccine-elicited immunity will have to surpass that 

induced by nature. For these reasons, a multi-stage, multi-antigen vaccine that 

induces humoral and cellular immunity will be likely to be required for eradication. 
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1.3.2 Identifying protective mechanisms and targets in pre-erythrocytic immunity 

 

The pre-erythrocytic stage is an attractive vaccine target. Interruption of parasite 

maturation at this stage can prevent clinical disease in the vaccinated individual, as 

well as transmission. Furthermore, the number of sporozoites and infected 

hepatocytes is substantially lower than the number of blood-stage merozoites, 

reducing the number of targets that must be cleared by vaccine-elicited immunity in 

order to prevent disease. However, the mechanisms underlying pre-erythrocytic 

immunity are not completely understood, as NAI fails to protect at this stage. The 

scientific rationale of a pre-erythrocytic vaccine is based on observations that the 

administration of irradiated Anopheles mosquitoes carrying sporozoites confers 

sterile protection in mice and humans (129-131). Radiation-attenuated sporozoites 

(RAS) are infectious and arrest during development in the liver before the on-set of 

blood-stage infection. These groundbreaking papers spearheaded decades of 

research aimed at dissecting the mechanism of protection induced by pre-

erythrocytic immunity (Figure 1.4). 
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Figure 1.4 Hypothesized mechanisms of cell-mediated immunity in liver-stage 
infection 

Image adapted from (132). Hepatocyte invasion of sporozoite triggers many 
functions of adaptive immunity. Recognition of parasite peptide-MHC class I 
complex on infected hepatocytes triggers cytokine secretion of antigen-specific 
CD8+ T cells. IFN-γ can induce the nitric oxide (NO) pathway inside hepatocytes 
and inhibit parasite development into merozoites. MHC class II recognition of 
antigen-presenting Kupffer cells can also activate IFN-γ production from CD4+ T 
cells, as well as mediate CD8+ T cell expansion, antibody maturation, regulatory 
activity, and direct cytolytic functions.  
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1.3.2.1 Antibodies 

 

Sporozoite-specific antibodies can function via three broad mechanisms: (1) block 

invasion of liver, (2) enhance opsonization of free sporozoites or infected 

hepatocytes, and (3) interfere with intrahepatic development of exoerythrocytic 

forms. Antibodies from RAS-immunized mice inhibit parasite replication in vitro 

(133) and passive transfer of immune sera confers partial protection against murine 

malaria (134, 135). RAS-elicited humoral immunity is predominantly directed 

against CSP, the immunodominant surface antigen that densely coats the sporozoite 

surface. CSP mediates several critical steps in the Plasmodium lifecycle, including 

motility to the mosquito salivary glands, migration to the liver in humans, and 

hepatocyte invasion (136). The highly conserved structure is composed of a central 

repeat domain that is flanked by a N-terminal region with a proteolytic cleavage site 

and C-terminal region containing a thrombospondin repeat (TSR) motif. The 

observation that monoclonal antibodies targeting the NANP repeat region directly 

correlated with protection in mice paved the way for vaccine platforms based on 

synthetic peptide and DNA recombination, (137), most notably RTS,S/AS01 

(discussed in further detail in section 1.4.1).  

  

How CSP-specific antibodies mediate sterile protection is unclear, but evidence 

exists for a number of mechanisms. First, intravital imaging in mice suggests that 

antibodies can block migration to the liver, by specifically halting sporozoite 

invasion of the dermal blood vessels (138). This could be potentially mediated by 

cross-linking essential actin-myosin motor machinery, causing paralysis of the 
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parasite. Second, antibody binding to the CSP N-terminal region blocks P. 

falciparum infection in vivo by inhibiting proteolytic cleavage (139), a necessary 

step for invasion. Third, opsonization and phagocytosis of P. berghei sporozoites by 

Kupffer cells are enhanced by CSP polyclonal antibodies (140, 141). Fourth, 

antibodies could inhibit traversal within the liver, specifically by inhibiting critical 

interactions between CSP and heparin sulfate proteoglycans (HSPGs) on the surface 

of hepatocytes (142). Finally, CSP antibodies can interfere with the intra-hepatic 

development even when sporozoite invasion is complete, as evidenced by the 

presence of abnormal trophozoites and schizonts in long-term culture (143). The 

contribution of all of these mechanisms is unknown. Antibodies to other targets such 

as TRAP and AMA1 have been shown to inhibit sporozoite invasion of hepatocytes 

in vitro, but these are less well studied (144-146). 

 

Overall, a pre-erythrocytic vaccine that elicits humoral immunity alone must 

overcome significant hurdles. CSP-specific antibodies in adults from malaria-

endemic regions do not predict resistance to infection (98), suggesting that vaccine-

elicited antibodies must be qualitatively and quantitatively distinct. Sporozoites 

remain in the bloodstream for less than an hour, and only one parasite is needed to 

reach the liver for the maturation of thousands of merozoites and the development of 

clinical disease.  

 

1.3.2.2 CD8+ T cells  

 

The protracted maturation of sporozoites over 7-10 days in the human liver provides 

an attractive vaccine target, requiring cellular immunity to recognize intrahepatic 
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parasites. Preclinical studies have demonstrated that CD8+ T cells that recognize 

parasite peptide-MHC class I complex molecules on hepatocytes are critical for 

sterile protection against malaria-liver-stage infection (147, 148). CD8+ T cell 

responses are necessary for RAS-mediated protection in multiple murine models and 

non-human primates (135, 149-152). Furthermore, CD8+ T cells directly correlate 

with protection elicited by subunit-based platforms in humans (153). However, 

whether they are sufficient is still debatable, and often varies based on the 

preclinical model and immunization strategy (149, 154, 155). Notably, RAS can 

elicit sterile immunity against P. berghei and P. yoelii in CD8-deficient BALB/C 

mice, where antibodies and CD4+ T cells mediate protection (155).  

 

Studies using CSP-specific transgenic sporozoites suggest that protective CD8+ T 

cell responses are primed in skin-draining lymph nodes associated with the site of 

infection (156). CD8+ T cells are hypothesized to migrate and potentially reside 

long-term in the liver. Further development of intrahepatic CD8+ effector T cells 

may be initiated by liver sinusoidal cells such as Kupffer cells that are able to cross-

present liver-stage antigens (157, 158). The phenotype of protective CD8+ T cells is 

unknown, but recent studies highlight an important role for effector memory cells 

(116, 152, 159) expressing liver-trafficking protein CXCR6 (160, 161).  

 

Following recognition of parasite peptide-MHC class I molecules, CD8+ T cell 

activation triggers a wealth of effector functions. It is hypothesized that IFN-γ 

secretion is critical for killing infected hepatocytes, as loss of IFN-γ via blocking 

antibodies or genetic manipulation ablates sterile immunity in mice (135, 149). 

Furthermore, sterile protection in humans elicited by subunit vaccines correlates 
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with CD8+ T cells producing IFN-γ, but not TNF-α or IL-2 (153). Such immunity 

could be driven by induction of nitric oxide (NO) that kills exoerythrocytic forms 

(162, 163), though IFN-γ derived from innate cells such as γδ or NK cells may also 

trigger this pathway (151, 154). CD8+ T cells with cytolytic activity have been 

isolated from RAS-immunized mice (164), however, the contribution of this 

mechanism in protection is unknown. Killing activity appears to require direct 

recognition of infected hepatocytes, as bystander activity does not demonstratively 

reduce liver burden (165). 

 

Multiple different liver-stage proteins have been identified as targets of cell-

mediated pre-erythrocytic immunity; however, no single antigen has been 

demonstrated to be associated with high-level sterile protection. While CSP is the 

immunodominant antigen for humoral immunity, CSP-specific responses constitute 

a minority of the CD8+ T cells population elicited by RAS in mice (166) and 

humans (116, 167). Furthermore, transgenic P. berghei sporozoites that do not 

express homologous CSP can induce sterile protection (168), suggesting an 

important role for non-CSP antigens. Identification of novel pre-erythrocytic antigen 

targets remains an area of active investigation (169-171). One hypothesis is that a 

repertoire of different antigenic determinants are involved in protection, instead of a 

single protective antigen (114, 167). For this reason, one vaccine approach is to 

target multiple epitopes, such as the recombinant immunogen composed of a 

multiple epitope (ME) string that contains CD4+ and CD8+ T cell epitopes from six 

antigens (LSA1, LSA3, CSP, STARP, Exp1 and TRAP) (172) fused to TRAP (ME-

TRAP; further discussed in section 1.4.3). An additional consideration is not the 

identity of the antigen but the duration of expression over the infection. Prolonged 
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antigen presentation appears to be critical in sterile immunity, as clearance of 

sporozoites with antimalarial drugs abrogated protection in mice (173). Parasite 

molecules are retained by the liver for months following infection, enhancing 

memory formation and expansion of CD8+ T cells (174).   

  

1.3.2.3 CD4+ T cells  

 

Less attention has been focused on the protective role of CD4+ T cells, despite the 

ability to enhance both humoral- and CD8+ T cell-mediated protection (175). Murine 

studies suggest that CD4+ T cells are required for RAS-elicited protection. Depletion 

of such cells during (but not following) immunization fails to protect against murine 

malaria infection (176-178), suggesting that such cells predominantly orchestrate the 

induction of effector functions. Preclinical findings are complicated by the fact that 

the requirement for CD4+ T cells depends on the pathogen species, murine model 

and immunization strategy (149).  In a few human studies, CD4+ T cells specific for 

pre-erythrocytic antigens correlate with vaccine-elicited protection (179) and natural 

infection (180). However, the mechanism of such protection is unclear.  

 

The inherent heterogeneity of CD4+ T cells allows for functional diversity in pre-

erythrocytic immunity. First, CD4+ T cells can mediate an indirect role by 

augmenting the expansion and survival of cytotoxic CD8+ T cells, likely through the 

induction of IL-2 or IL4 (177, 178). Indeed, effector memory CD8+ T cells 

immunized in the absence of CD4+ T cells were fully functional but greatly reduced, 

consistent with a high threshold for cell-mediated protection (152). 
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Second, secretion of IFN-γ by Th1 cells can have a direct effector role by enhancing 

killing of sporozoites by infected hepatocytes and macrophages via the NO pathway 

(155). Class II restricted immunity is largely dependent on production of IFN-γ 

(155). This is consistent with the observation that the addition of IL-2 or antibodies 

does not afford protection in mice depleted of CD4+ T cells prior to immunization 

(176). 

 

Third, CD4+ T cells with cytolytic activity may directly kill sporozoites 

phagocytized by liver-resident Kupffer cells. Passive transfer of CD4+ T cell clones 

producing perforin and granzymes confer a high degree of protective immunity 

(181) and eliminate hepatocytes in a MHC class II restricted manner in vitro (164, 

182). Moreover, CD4+ T cells expressing CD107a, a marker of degranulation, are 

associated with sterile immunity in human immunized with infectious mosquitoes 

under chloroquine chemoprophylaxis (179).  

 

Fourth, regulatory CD4+ T cells (Tregs) could potentially downregulate damaging 

host inflammatory responses in blood-stage malaria infection (183). Less 

information is known about the role of Tregs during pre-erythrocytic immunity, but 

depletion of Tregs appears to augment vaccine-induced responses against liver-stage 

malaria (184). At that same time, blood-stage infection may dampen naturally 

acquired pre-erythrocytic immunity (185) and facilitate parasite escape through the 

production of IL-10 (186).  

 

Finally, CD4+ TFH cells in germinal centers mediate production of high-affinity 

antibodies that reduce the liver burden by modulating the somatic hypermutation 
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and class switching (135). Very little information is known about the role of TFH in 

pre-erythrocytic immunity (175). However, passive transfer of sera from RAS-

immunized mice fails to confer reconstitute sterile protection in CD4-depleted mice 

(176), suggesting that other CD4-mediated humoral factors may be necessary. 

 

Overall, the contribution of all of these mechanisms in humans is unclear. It is likely 

that CD4+ T cells are critical for optimal CD8+ T cell and/or humoral immunity, 

such that the dose of sporozoite challenge and host genetics will dictate 

requirements for sterile immunity.  

  

1.3.3 Experimental human model  

 

Identification of the mechanism of protection against liver-stage immunity is a 

critical step in the development of a highly effective pre-erythrocytic vaccine. 

Studies of natural infection in humans are confounded by ongoing asymptomatic 

malaria infection, pre-existing immunity and co-infection. Furthermore, most studies 

are limited to the leukocytes from peripheral circulation, which do not account for 

tissue-resident T cells that likely play a critical role in liver (152, 167, 187). For 

these reasons, mechanistic studies have taken advantage of murine malaria infection 

models, including P. berghei, P. yoelii, and P. chabaudi (188-190). Non-human 

primates models such as P. falciparum infection in Aotus and P. knowlesi infection 

in Rhesus also allow for closer comparisons to the human immune system (189). 

While these models have provided insights into protective immunity, there are 

notable differences from humans, including the length of liver-stage infection and 

progression to blood-stage infection (189).  
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Exposure of human volunteers to the bites of infectious mosquitoes or 

administration of cryopreserved sporozoites has greatly accelerated the development 

of pre-erythrocytic malaria vaccines (22, 191, 192). Standardized as controlled 

human malaria infection (CHMI), these protocols are safe and have been used in 

individuals with varying degrees of previous malaria exposure (22, 193-195). While 

profiling of liver-resident cells is still difficult on a large scale, CHMI provides 

critical information about vaccine efficacy prior to large clinical trials.  
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1.4 Current status of pre-erythrocytic vaccine development  

1.4.1 RTS,S/AS01  

 

The RTS,S/AS01 is composed of the CSP C-terminal region plus 19 NANP central 

repeats fused to hepatitis B virus surface antigen to form a virus-like particle 

formulated with the liposome-like AS01 adjuvant. After receiving a positive 

scientific opinion from the European Medicines Agency in 2015, RTS,S/AS01 will 

likely become the first malaria vaccine deployed in endemic regions. However, 

efficacy against clinical and severe malaria in children is partial and wanes 

dramatically over time, even with boosting (117, 196-198).  In a large phase 3 trial 

including 11 sites across seven sub-Saharan African countries, vaccine efficacy 

against clinical malaria in children 5-17 months old was 50.4% (95% CI 45.8-

54.6%), one year after administration of the third dose. Overall efficacy in children 

who received the fourth “booster” dose declined to 36.3% (95% CI 31.8-40.5%) 

over four years. Furthermore, a long-term study demonstrated an increased 

incidence of malaria cases in children who were administered three doses of 

RTS,S/AS01 compared to the control group five years following vaccination (199). 

Long-term efficacy of children who received a fourth “booster” shot is unknown. 

More modest protection against clinical malaria is observed in infants 6 to 12 weeks 

of age approximately three years following administration of the first vaccine dose, 

even in those who received a fourth “booster” shot (vaccine efficacy = 25.9%, 95% 

CI 19.9–31.5) (200). 

 

 Immunization induces antibodies and CD4+ T cells that target the repeat region of 

CSP. Time to onset of parasitemia in unprotected children directly correlates with 
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anti-CS titers (117, 197), and IFN-γ-producing CD4+ T cells are associated with 

reduced risk of infection (201). If deployed, surveillance of efficacy in settings of 

high-intensity transmission (117) and genetic diversity of escape parasites (202) will 

be critical. 

 

 

1.4.2 Whole sporozoite vaccines 

 

The induction of sterile protection via the bites of irradiated mosquitoes carrying 

sporozoites has provided critical insights into the mechanisms of pre-erythrocytic 

immunity, but has not provided an immediate vaccination strategy. Clear logistic 

and regulatory hurdles have prevented deployment. Maintenance of large numbers 

of irradiated infectious mosquitoes in malaria-endemic regions would likely be 

insurmountable. Remarkably, SanariaTM developed the ability to generate aseptic, 

metabolically active, highly purified, radiation-attenuated sporozoites (PfSPZ 

Vaccine) that met regulatory standards in 2009 (203).  

 

Intravenous (IV) administration of the PfSPZ Vaccine is safe, strongly immunogenic 

and confers high-level protection against CHMI (116, 204, 205). Six out of nine 

subjects who received four doses of 1.35 x 105 PfSPZ, and six out of six subjects 

who received five doses were protected against homologous challenge 3 weeks after 

the final vaccination. One out of six nonvaccinated controls did not exhibit blood-

stage parasitemia. Interestingly, intramuscular (IM) or intradermal (ID) 

administration of the same dose ablates protection (167).  
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Immunization generated both anti-SPZ antibodies that block invasion of hepatocytes 

in vitro and robust cellular immunity (116). PfSPZ-specific CD4+ T cells are largely 

polyfunctional (IFN-γ+IL-2+TNF-α+) with a dose-dependent increase in frequency. 

Of note, fold-expansion of γδ T cells distinguished protected vs. unprotected 

vaccinees, consistent with long-term observations of individuals following infection 

and treatment (206). As discussed above, preclinical studies suggest that IFN-g 

secretion mediated by intrahepatic CD8+ T cells is critical in SPZ-elicited protection 

(135, 207). While the PfSPZ Vaccine elicited CD8+ T cell-derived IFN-g in blood 

and liver of NHPs (167), five out of twelve PfSPZ-vaccinated and protected humans 

had low to undetectable CD8+ T cell responses in the peripheral blood (116). One 

hypothesis for the observation of protection in the absence of antigen-specific CD8+ 

T cells is that these cells are sequestered in the liver without circulating. Liver-

resident CD8+ T cells are associated with administration of the PfSPZ Vaccine IV, 

but not ID or IM in NHPs (167). However, the inability to challenge Rhesus 

macaques with P. falciparum or phenotype liver cells from PfSPZ vaccinated 

individuals makes this a difficult hypothesis to test. Ongoing clinical trials across 

three different continents are addressing a number of essential questions: the safety, 

immunogenicity, and protective efficacy in a wide range of cohorts including semi-

immune adults, HIV-infected individuals, and infants; overall optimal dosage; the 

benefit of multiple immunizations vs. a truncated regimen; the duration of 

protection; breadth of protection against heterologous strains; and immunologic 

correlates of protection (204). 

 

Exposure of infectious non-irradiated mosquitoes under chloroquine prophylaxis 

(CPS) also induces a high-level of sterile protection in mice (208) and humans (179, 
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206, 209). This approach exposes the immune system to a broad array of pre-

erythrocytic as well as erythrocytic antigens to the immune system, as parasites fully 

mature to blood-stage merozoites to be cleared by chloroquine in bloodstream (210). 

In an early clinical trial, all ten subjects in the vaccine group were protected against 

CHMI, while all subjects in the control group exhibited blood-stage parasitemia 

(209). Two later years, four out of six re-challenged subjects were completely 

protected, suggesting durable PfSPZ-specific cellular immunity (206). CPS appears 

to elicit more efficient longer lasting protection than RAS and requires significantly 

fewer sporozoites (~45 vs. 1000 infectious mosquito bites), possibly because the 

PfSPZ Vaccine does not replicate in liver. In parallel experience to the PfSPZ 

Vaccine, IV (but not ID) administration of infectious nonirradiated cryopreserved 

PfSPZ under chloroquine prophylaxis (PfSPZ-CVac) induced high-level 

immunogenicity and protection (204, 211). 

 

Despite recent success in early clinical trials, deployability of the PfSPZ Vaccine or 

PfSPZ-CVac remains a critical challenge. First, sporozoites must be cryopreserved 

to remain viable and immunogenic, as heat killed sporozoites do not induce 

protective CD8+ T cell responses (135, 212). Deployment of a vaccine that requires 

long-term liquid nitrogen storage in sub-Saharan Africa is unprecedented, but there 

is some evidence to suggest that this approach would be as effective as standard cold 

chains (213). Furthermore, it is unclear whether IV administration or direct venous 

inoculation (DVI) is practical for mass deployment of a vaccine targeted towards 

children. Development of genetically attenuated parasites (GAP) designed to arrest 

at the late liver-stage is in early stages (214-216) and could address concerns about 

route. Intradermal administration of sporozoites lacking an essential gene encoding a 
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protein for fatty acid biosynthesis, but not RAS, provides sterilizing immunity 

against P.berghei (217). However, liquid nitrogen storage of a GAP-based vaccine 

would likely still be required.   

 

  



 53 

1.4.3 Viral vectored vaccines 

 

Given the critical nature of CD8+ T cells in protection against liver-stage malaria, 

induction of high-level responses will likely be a crucial component of an effective 

vaccine. Preclinical studies in mice and NHPs demonstrate that subunit platforms 

based on highly potent adenoviruses elicit CD8+ T cell responses of high magnitude 

(218, 219). Simian-based vectors such as chimpanzee-derived simian adenovirus 63 

(ChAd63) not only induce higher responses, but also address concerns that naturally 

acquired anti-vector immunity from human-derived viral vectors could diminish 

induced T cell responses (220). The recombinant vaccine insert ME-TRAP targeting 

liver-stage antigens elicits protective CD8+ T cell responses in mice (159, 221) and 

durable memory T cell responses in NHPs (222).  

 

Heterologous prime-boost immunization with ChAd63/MVA ME-TRAP is safe, 

immunogenic, and elicits protection in malaria-naïve individuals (153, 223). This 

immunization regimen induced a high proportion of cytokine-producing CD4+ and 

CD8+ T cells, predominantly directed towards TRAP rather than ME. While no 

protection was induced with ChAd63 alone, the MVA boost clearly improved 

protective efficacy: 3/14 volunteers were sterilely protected and 5/14 showed a two-

day delay in time to patent parasitemia, the latter representing a 95% reduction in 

liver parasite burden. Overall, ChAd63-MVA provided a total efficacy (delay plus 

sterile protection) of 58% (8/14), marking the first study to show statistically 

significant high-level protection induced by a prime-boost regimen. Analysis of 

immune responses revealed that CD8+ T cells secreting IFN-γ, but not IL-2 or TNF-

α, at time of challenge significantly correlated with protection, consistent with 
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previous studies assessing a similar construct in mice (221). Notably, antibodies 

targeting TRAP did not appear to play a role. Duration of protection is unclear. 

Three sterilely protected volunteers were rechallenged: one was sterilely protected 

again and two showed significant delay to patency. While inconclusive, these results 

encourage larger studies to appropriately assess durability of protective immunity.  

 

ChAd63/MVA vaccination induced greater immunogenicity and efficacy compared 

to DNA or fowlpox (FP9) priming with the same antigenic insert (224, 225). Only 

9/38 volunteers were protected with either regimen, the overwhelming majority of 

whom manifested as delay to patency. This study also demonstrated a substantial 

improvement over DNA/HuAd5 CSP/AMA1 vaccination, the first regimen to 

induce predominantly malaria-specific CD8+ vs. CD4+ T cell responses (226). The 

differential results of immunogenicity and efficacy may be caused by a number of 

reasons. First, pre-existing neutralizing antibody titers against the vector were low. 

Furthermore, they did not correlate with induced T cell responses, reducing earlier 

concerns of anti-vector immunity in human adenovirus vaccination. Second, simian 

adenoviruses induce predominantly CD8+ T cell responses that directly kill infected 

hepatocytes in vitro (227) compared to FP9 and DNA priming which induces 

primarily CD4+ T cell responses (224, 225). Third, differential innate immunity 

elicited by viral vectors may play a critical role in shaping vaccine-induced T cells 

(228, 229).  

 

Promising strategies tested in malaria-naïve individuals often fail to recapitulate 

high-level immunogenicity and efficacy when deployed in endemic regions (224, 

225, 230, 231). The role of immunosuppression caused by high parasitemia or 
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interference of naturally acquired T cells and/or antibodies in vector-induced 

immunity is unknown. Accordingly, a Phase IIb field study was designed to assess 

the protective efficacy of this regimen in adults with previous exposure (115). 

Kenyan male volunteers were given either ChAd63/MVA ME-TRAP or the rabies 

vaccine and monitored for eight weeks for malaria infection. All volunteers were 

given antimalarials after vaccination and prior to the PCR monitoring period in 

order to clear any residual parasites (232).  

 

Immunogenicity was very promising. Immune responses were biased toward IFN-γ+ 

CD8+ T cells and detected up to six months post vaccination, albeit a quarter of the 

peak. Similarities in the quantity and quality of T cell responses between exposed 

adults vs. malaria-naïve suggest that vaccination did not boost naturally acquired 

immunity (233). Interestingly, T cell responses were biased to a single TRAP 

peptide pool. Whether this reflects an enrichment of certain HLA alleles in the 

region or a mechanism of protection is unclear. Protective efficacy was more 

difficult to assess. An unexpected spike in rainfall curtailed transmission rates and 

decreased the overall number of infections, making it difficult to assess efficacy 

after the 2nd week. Cox-regression analysis suggests that the vaccination regimen 

reduced the risk of infection by 67% (95% CI 33%-88%), p=0.002 during the 8 

weeks of monitoring. Furthermore, risk of high parasitemia (>10 parasites/ml) was 

reduced by 82% (95% CI 46-94%), p=0.002. Once again a T cell correlate of 

vaccine efficacy was identified with this approach, in this case the ex vivo IFN-γ 

ELISPOT response to the immunodominant pool of TRAP peptides. Interestingly, 

efficacy here was higher than previously observed in malaria-naïve adults (153). It is 

unclear whether this reflects a lower challenge inoculum in the field, the extended 
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effect of atovaquone administered prior to the PCR monitoring period, or a 

synergistic effect of naturally acquired- and vaccine-elicited immunity. Future field 

studies will be necessary to answer these questions.  

 

Recombinant viral vectors offer a number of advantages over whole sporozoite-

based vaccines. First, the greater ease and cost of manufacture and storage compared 

to cryopreserved PfSPZ-based vaccines limits hurdles in deployment. Second, 

ChAd63/MVA ME-TRAP is administrated IM, instead of IV, likely requiring less 

infrastructure and easing delivery. Finally, there is a good safety profile among 

adults, children and infants, permitting incorporation into the EPI schedule. 

However, vaccine efficacy and durability of protection will likely need to be 

increased in order to demonstrate substantial reductions in clinical malaria among 

children in areas of high-intensity transmission. One approach could be 

administering ChAd63/MVA ME-TRAP in combination with RTS,S/AS01. Results 

from early phase I/IIa trials of this approach have been encouraging (234). 

Furthermore, addition of antigenic inserts such as PfRh5 could enhance humoral 

immunity against breakthrough merozoites, limiting blood-stage parasitemia.   
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1.5 Advances in single cell transcriptional analysis  

 

A number of immunological assays are standard in clinical trials for the assessment 

of vaccine immunogenicity and identification of immunological correlates of 

protection. In many clinical trials, analysis of cellular immunity is limited to 

detection of IFN-γ production alone by ex vivo ELISPOT (235, 236) or IFN-γ, IL-2, 

and TNF-α by multiparameter flow cytometry in response to restimulation with 

antigen of interest (237-240). Elucidation of protective cellular immunity against a 

multistage parasite composed of 5000 antigens may likely require technologies that 

allow assessment of number of parameters at the single-cell level.  

Highly multiplexed, single-cell transcriptomics technologies have the potential to 

unveil functional heterogeneity that may be masked by bulk analyses of seemingly 

homogenous populations (Figure 1.5) (241-243). Microfluidic chips from Fluidigm 

enable thousands of parallel real-time quantitative PCR (RT-qPCR) reactions of up 

to 96 samples or individual cells at a time (244). This technique has been used 

across a wide range of fields including neurology, developmental biology and 

cancer (245-249). Within immunology, dendritic cells (250, 251), CD4+ T cells 

(252-254), and CD8+ T cells (255, 256) in mice have been assessed. Recent analysis 

has described intra-population variance (256) and early fate determination (255) 

among vaccine-induced CD8+ T cells. However, these studies are often limited to 

transgenic or manipulated leukocytes in mice, which may not be predictive of higher 

animals. In humans, single-cell transcriptional analysis of HIV-specific CD4+ T cells 

from individuals on antiretroviral treatment has revealed the importance of TFH 

(252) and cytolytic phenotypes (253). In the context of human malaria infection, 

Fluidigm analysis of whole blood following P.vivax infection revealed subtle 
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changes between naïve and malaria-immune volunteers (257). However, single-cell 

gene expression analysis of malaria-specific T cells in the context of a protective 

vaccine in humans is lacking (258).  

 

 

 

 

Figure 1.5 Relative structure of data from single-cell analyses 

Image taken from (241). Major classes of single-cell technologies are plotted 
schematically in a three-dimensional data cube, reflecting the numbers of parameters 
assessed (x axis), the numbers of cells measured (y axis), and breadth of temporal 
resolution afforded (z axis). Overlapping regions highlight complementary 
technologies that could be used simultaneously.  
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Single cell RNA-sequencing (scRNA-Seq) is an important extension of 

transcriptomic technologies (259-261). In principle, scRNA-Seq allows unbiased 

profiling of mRNA without relying on previously described cellular markers and 

increasing the likelihood of discovery of novel phenotypes compared to RT-qPCR. 

This technology has already revealed heterogeneity among tumor cells (262) and 

pluripotent stem cells (263) that were masked by bulk measurements. However, 

methodologies are still immature for immunology (241, 264). First, lymphocytes 

inherently contain very little mRNA, such that many important transcripts with low 

expression do not meet the threshold for scRNA-seq. Second, it is still unclear how 

many cells are necessary to assess in order to account for variability within antigen-

specific T cells. Finally, data analysis tools are relatively underdeveloped, and 

typical computational approaches such as hierarchical clustering do not necessarily 

reveal biologically meaningful groups. 

 

Incorporation of additional single-cell technologies such as cytometry by time of 

flight technology (CyTOF, or mass cytometry) (265, 266) and multiplexed 

secretomes (267) will help corroborate transcriptomics findings with proteomic and 

functional data. Commercial development of the necessary reagents will help guide 

standardization of these emerging techniques.  
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1.6 Thesis aims and outline  

 

Vaccine approaches that confer durable and high-level protection are urgently 

needed, but development is partially hindered by a limited understanding of the 

mechanisms underlying protective immunity. An effective pre-erythrocytic vaccine 

will likely required cellular immunity with a broad range of effector functions. 

Remarkable progress in pre-erythrocytic vaccine development has depended upon 

strategies that exploit the plasticity of CD4+ T cells and induce potent CD8+ T cells 

that target liver-stage antigens. The relative contribution of known T cell functions 

as well as the identification of novel functions is unknown. In-depth characterization 

of immune responses that may play a role in protection is critical in evaluating next-

generation vaccine strategies. Elucidation of effector functions elicited by protective 

regimens could be used to optimize immunization schedules, design novel adjuvants 

that promote specific responses or predict protection outcome prior to malaria 

exposure.  
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1.6.1 Aims 

 

In this thesis, single-cell transcriptional analysis of malaria-specific T cells from a 

number of protective Phase I/IIa clinical trials was performed with the following 

goals: 

 

1. Optimize capture of live malaria-specific T cells and downstream gene 

expression analysis   

2. Evaluate the heterogeneity of the PfSPZ-specific CD4+ T cell response 

following immunization at the single cell level 

3. Assess the molecular signature of such responses induced by PfSPZ 

vaccination compared to CHMI alone in unvaccinated infection controls 

4. Compare the quantitative gene expression profiles of PfSPZ-specific CD4+ T 

cell responses from protected and non-protected subjects following 

vaccination 

5. Investigate quantitative gene expression profiles of TRAP-specific CD8+ T 

cells from subjects immunized with ChAd63/MVA ME-TRAP and who 

exhibited sterile protection, delayed to patent parasitemia or no protection 

following CHMI 

6. Explore transcriptional signatures of CD4+ vs. CD8+ T cell responses 

induced by a whole parasite vaccine vs. a subunit vaccine, respectively 
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1.6.2 Outline 

 

Chapter 2 describes the material and methods employed throughout this study.  

 

Chapter 3 describes optimization of CD154 capture assay, single cell gene 

expression acquisition with the Fluidigm platform, and initial data analysis.  

 

Chapter 4 describes Fluidigm results from VRC312, the first clinical trial to assess 

the efficacy of IV administration of PfSPZ Vaccine. 

 

Chapter 5 describes Fluidigm results from VRC314, a follow up study to assess 

durable protective efficacy of the PfSPZ Vaccine.  

 

Chapter 6 describes Fluidigm results from individuals immunized with 

ChAd63/MVA ME-TRAP over three clinical trials designed to assess 

immunogenecity and protection.  

 

Chapter 7 summarizes and discusses the results of this study and explores future 

directions.  
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2. Material and Methods 

2.1 Materials  

2.1.1 Reagents 

 
Reagent  Company  Cat. Number  
1000uL Pre Sterilized tips 
 

Rainin 
 

RT-L1000F 
 

10uL Pre Sterilized tips 
 

Rainin 
 

RT-L10F 
 

200uL Pre Sterilized tips 
 

Rainin 
 

RT-L200F 
 

20uL Pre Sterilized tips 
 

Rainin 
 

RT-L20F 
 

20X GE Sample Loading Reagent 
 

Fluidigm  100-7610 

2x Assay Loading Reagent 
 

Fluidigm 
 

85000736 
 

96-well U bottom plates  

 

VWR 
International  

734-0027  

 
96-well V bottom plates  

 

VWR 
International  

734-0029  

 
Anti-CD28  
 

BD Biosciences 340975 

Anti-CD49d 
 

BD Biosciences 340976 

BD CompBeads anti-mouse Ig, K 
 

BD Biosciences  51-90-900-1229 

Benzonase ® Nuclease  
 

Novagen  70664-3 

Bovine Serum Albumin (BSA) 
 

PAA Laboratories  K41-001 

Brefeldin A (GolgiPlugTM) 
 

BD Biosciences 555029 

Cayston Counting Buffer  
 

Sedna Scientific  3813 

Control Line Fluid Kit- 96.96 
 

Fluidigm  89000021 

Cytofix/CytopermTM fixation/permabilization kit  
 

BD Biosciences  555028 

Dimethyl suplohoxide (DMSO)  
 

Sigma-Aldrich D2650 

Easy-Peel Heat Sealing Foil, 85 mm x 135 mm Thermo Scientific AB-0745 



 65 

 
 

  

   
Ethanol  Sigma-Aldrich  32221 
Fetal Calf Serum (FCS) 
 

Sigma-Aldrich  F2442 

Fluidigm Dynamic Array 96.96 chips 
 

Fluidigm 
 

N/A 

Gene Expression Sample Loading Reagent 
 

Fluidigm 
 

85000735 
 

L-glutamine 
 

Sigma-Aldrich G7513 

LIVE/DEAD ® Fixable AquaBlue Dead Cell Stain 
 

Invitrogen  L34955 

Luecosep tubes  VWR 
International  

GRE122790UK 

MicroAmp Optical 96-Well Reaction Plate with 
Barcode 
 

Ambion/Applied 
Biosystems 
 

4306737 
 

Monensin (GolgiStopTM) 
 

BD Biosciences 554724 

Penicillin/streptomycin (100U penn/100 ug strep) 
 

Sigma-Aldrich  P0781 

Percoll  
 

Sigma-Aldrich P1664 

Phosphate Buffered Saline (PBS)  
 

Sigma-Aldrich D8537 

RPMI-1640 
 

Sigma-Aldrich R0883 

Sodium Azide (NaN3) Fluka Analytical  08591 
 

Staphylococcal enterotoxin B (SEB) Sigma-Aldrich S4881 
 

Superasein 
 

Life Tech 
 

AM2696 
 

Superscript III Platinum One-Step qRT-PCR kit 
 

Life Tech 
 

11732-088 
 

TaqMan Universal PCR Master Mix Life Tech 
 

4364338 
 

TempPlate semi-skirted 96-well PCR plate, natural 
 

USA Scientific  1402-9700  
 

UltraPureTM DEPC-Treated Water 
 

ThermoScientific  750023 

Virkon 
 

Fisher  HYG-205-230B 
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2.1.2 Buffers and solutions 

 
Buffer/Solution Components 
R10  RPMI 

Pen/Strep (0.1 mg/mL) 
L-glutamine (4mM) 
FCS (10%) 

FACS Buffer  PBS  
1% FCS   
0.1 NaN3 

 
 

2.1.3 Flow cytometric antibodies  

 
Marker Clone  Isotype  Company Cat. 

Number  
CD3 Cy7APC SP34-2 Mouse 

IgG1, λ 
BD 
Biosciences  

557757 

CD4 Cy55PE  S3.5 Mouse 
IgG1, κ 

Invitrogen  6629154 

CD8 BV570 RPA-T8 Mouse 
IgG1, κ 

Biolegend  301038 

CD27 Cy5PE 1A4CD27 Mouse 
IgG1, κ 

Beckman 
Coulter 

6607107 

CD45RO BV785 UCHL1 Mouse 
IgG2a, κ 

Biolegend  304234 

CD69 ECD  TP1.55.3 Mouse 
IgG1, κ 

Beckman 
Coulter 

6607110 

CD154 PE TRAP Mouse 
IgG1, κ 

BD 
Biosciences  

555700 

IFN-γ APC B27 Mouse 
IgG1, κ 

BD 
Biosciences 

554702 

IL2 PE MQ1-
17H12 

Rat IgG2a, 
κ 

Biolegend  500307 

TNF PE MAb11 Mouse 
IgG1, κ 

Biolegend  502909 

CD14 BV510 M5E2 Mouse 
IgG2a, κ 

Biolegend 301842 

CD19 BV510 HIB19 Mouse 
IgG1, κ 

Biolegend 302242 

CD107A BV421  H4A3 Mouse 
IgG1, κ 

BD 
Biosciences 

562623  
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2.1.4 Primers  

 
 

 
Assay Name ABI Taqman assay ID 

Common T Cell 
Markers 1 BAX Hs00180269_m1 

 2 BCL2 Hs99999018_m1 
 3 BCL6 Hs00277037_m1 
 4 BIRC3, CIAP2 Hs00154109_m1 
 5 CCR1 Hs00174298_m1 
 6 CCL3, MIP1a Hs00234142_m1 
 7 CCL5, RANTES Hs00174575_m1 
 8 CCR3 Hs00266213_s1 
 9 CCR4 Hs99999919_m1 
 10 CCR7 Hs99999080_m1 
 11 CCR8 Hs00174764_m1 
 12 CD27 Hs00154297_m1 
 13 CD28 Hs00174796_m1 
 14 CD40LG, CD154 Hs00163934_m1 
 15 CD48, BLAST Hs00152927_m1 
 16 CD69 Hs00934033_m1 
 17 CD84 Hs01547121_m1 
 18 CSF1, MCSF Hs00174164_m1 
 19 CSF2, GMCSF Hs00929873_m1 
 20 CTLA4 Hs03044418_m1 
 21 CXCL13, BLC Hs00757930_m1 
 22 CXCR3, MIGR Hs01847760_s1 
 23 CXCR4 Hs00237052_m1 
 24 CXCR5 Hs00540548_s1 
 25 DPP4, CD26 Hs00175210_m1 
 26 EOMES, TBR2 Hs00172872_m1 
 27 FAS Hs00531110_m1 
 28 FASLG, CD95LG Hs00181225_m1 
 29 FLIP Hs01116280_m1 
 30 FOXP1 Hs00212860_m1 
 31 FOXP3 Hs00203958_m1 
 32 GABPA Hs01022023_m1 
 33 GAPDH Hs99999905_m1 
 34 GATA3 Hs00231122_m1 
 35 GZMA, CTLA3 Hs00989184_m1 
 36 GZMB, CTLA1 Hs01554355_m1 
 37 HLADRA Hs00219575_m1 
 38 ICOS Hs00359999_m1 
 39 IFNg Hs00174143_m1 
 40 IL13 Hs99999038_m1 
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 41 IL16 Hs00189606_m1 
 42 IL2 Hs00174114_m1 
 43 IL21R Hs00222310_m1 
 44 IL2Ra, CD25 Hs00907777_m1 
 45 IL2RB Hs01081697_m1 
 46 IL3 Hs99999081_m1 
 47 IL4R Hs00166237_m1 
 48 IL6R, CD126 Hs00169842_m1 
 49 IL7R, CD127 Hs00233682_m1 
 50 IRF4 Hs01056533_m1 
 51 LEF1 Hs01547250_m1 
 52 LIF Hs00171455_m1 
 53 MAF Hs00193519_m1 
 54 MKI67, Ki67 Hs01032443_m1 
 55 MYC Hs00905030_m1 
 56 CXCR6 Hs00174843_m1 
 57 PD1 Hs00169472_m1 
 58 POU2AF1 Hs01573371_m1 
 59 PRDM1, Blimp1 Hs00153357_m1 
 60 PTPN6, SHP1 Hs00169359_m1 
 61 RORA Hs00536545_m1 
 62 RORC Rh02892670_m1 
 63 RUNX1 Hs00231079_m1 
 64 RUNX3 Hs00231709_m1 
 66 SH2D1A, LYP Hs00158978_m1 
 67 SLAMF1, CD150 Hs00234149_m1 
 68 CCR5 Hs00152917_m1 
 69 SOCS1 Hs00705164_s1 
 70 SOCS2 Hs00919620_m1 
 71 SOX5 Hs00753050_s1 
 72 STAT1 Hs01013996_m1 
 73 STAT3 Hs01047580_m1 
 74 STAT6 Hs00598625_m1 
 75 TBX21, TBET Hs00894392_m1 
 76 TCL1A Hs00951350_m1 
 77 TGFB1 Hs00998133_m1 
 78 TGFBR1 Hs00610318_m1 
 79 TIMP1 Hs99999139_m1 
 80 TIMP2 Hs00234278_m1 
 81 TNF, TNFa Hs00174128_m1 
 82 TNFRSF11A, RANK Hs00187192_m1 
 83 TNFRSF4, OX40 Hs00533968_m1 
 84 TNFSF10, TRAIL Hs00921974_m1 
 85 TNFSF13B, BAFF Hs00198106_m1 
 86 TNFSF14, LIGHT Hs00542477_m1 
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 87 TRAF2 Hs00184192_m1 
 88 TRAT1, TRIM Hs00179626_m1 
    

CD4+ T Cell-
Specific Markers    

 1 CCR6 Hs00171121_m1 
 2 CD4 Hs00181217_m1 
 3 IL10 Hs99999035_m1 
 4 IL17α Hs00174383_m1 
 5 IL21 Hs00222327_m1 
 6 IL4 Hs00174122_m1 
 7 IL5 Hs99999031_m1 
 8 TNFRSF9, CD137 Hs00155512_m1 
    

CD8+ T Cell- 
Specific Markers 1 CD8a Hs00233520_m1 

 2 GZMH Hs00277212_m1 
 3 GZMK Rh02841007_m1 
 4 GZMM Hs00193417_m1 
 5 KLRG1 Rh00929962_m1 
 6 LAMP2 Rh02841752_m1 
 7 NKG2D Rh01095630_m1 
 8 TNFSF8 Hs00174286_m1 

 
 

2.1.5 Electronic equipment 

 
Equipment Company Applicable Software 
BD LSRII  Flow 
Cytometer 

BD Biosciences  BD FACSDIVA + FlowJo 
v.9.7.5 

Biomark HD System Fluidigm Fluidigm Data Collection + 
Real-Time PCR Analysis 
Software 

IFC Controller HD Fluidigm  N/A 
BD FACs ARIA III 
Flow Sorter  

BD Biosciences BD FACsDIVA + FlowJo 
v.9.7.5 

CasyCounter  Scharfe System  N/A 
G Storm PCR Machine  Lab Tech N/A 
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2.2 Clinical Trials 

2.2.1 VRC312  

 
VRC 312 (ClinicalTrials.gov #NCT01441167) was approved by the Intramural 

Institutional Review Board (IRB) of the National Institute of Allergy and Infectious 

Diseases (NIAID). Immunized human specimens were collected under this protocol. 

Malaria-naïve human specimens (unexposed to Plasmodium falciparum) were 

obtained from fully anonymized donors and used under IRB (NIH, NIAID) 

exception.  

 

The clinical design of VRC312 has been previously discussed (116). Briefly, 

VRC312 was a phase 1, open-label, dose escalation trial to assess safety, 

immunogenicity and efficacy of the PfSPZ Vaccine administered by intravenous 

(IV) injection. The analysis described in this thesis is based on data from malaria-

naïve, healthy adults, 18-45 from the Greater Baltimore-Washington area who 

received 4 or 5 doses of the 1.35x105 PfSPZ Vaccine and unvaccinated infection 

controls. These subjects underwent controlled human malaria infection (CHMI) with 

Pf3D7, a clone derived from NF54 strain. CHMI was achieved three weeks after the 

final vaccination, and a re-challenge was administered in a selected group of 

subjects approximately four months later. Subjects were considered protected if 

daily thick blood smears were negative 28 days post-CHMI. Further details on the 

clinical protocol rationale and vaccination schedule are provided in Chapter 4. 
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2.2.2 VRC314 

 
VRC 314 (ClinicalTrials.gov #NCT02015091) was approved by the IRB of NIAID. 

Immunized human specimens were collected under this protocol. 

 

The clinical design of VRC314 has been previously discussed (205). Briefly, 

VRC314 was a multi-institution phase 1, open-label, dose escalation trial to assess 

safety, immunogenicity and efficacy of the PfSPZ Vaccine administered by IV or 

IM injection. The analysis described in this thesis is based on data from malaria-

naïve, healthy adults, 18-45 from the Greater Baltimore-Washington area who 

received three different vaccine regimens: four doses of 1.35x105 PfSPZ followed 

by a fifth dose of 4.5 x105 PfSPZ (Group 3), three doses of 2.7 x 105 PfSPZ (Group 

1) or four doses of 2.7 x 105 PfSPZ (Group 4 and 5). These subjects underwent 

CHMI with Pf3D7 at either 3 weeks (Groups 1,3,4) or 21-24 weeks (Group 5) 

following the final vaccination. Subjects were considered protected if daily thick 

blood smears were negative 28 days post-CHMI. Further details on the clinical 

protocol rationale and vaccination schedule are provided in Chapter 5. 
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2.2.3 MAL34  

 
MAL34 (ClinicalTrials.gov #NCT00890760) has been previously described (153). 

Briefly, MAL34 was a phase I/IIa sporozoite challenge trial to assess protection 

against malaria in healthy adults, 18-50 recruited from the United Kingdom who 

were vaccinated with ChAd63 ME/TRAP alone, and as a heterologous boost with 

MVA ME/TRAP. Of note, the trial was conducted in two parts (A and B). As 

immunogenicity data from both studies were not significantly different, the groups 

were combined and analyzed together. All study groups assessed under this protocol 

are described in Table 2.1. However, only subjects who were vaccinated with 

ChAd63/MVA ME-TRAP and assessed for short-term protection (Groups 1 and 5) 

were analyzed in this thesis.   

 

 
 

Table 2.1 MAL34 study design 

Table obtained from MAL034 Study Protocol. ChAd63 = ChAd63 ME/TRAP, 
MVA= MVA ME/TRAP, Ad+M = both vaccines mixed prior to administration. 
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2.2.4 VAC45 

 
VAC45 (ClinicalTrials.gov # NCT01623557) has been previously described (268). 

Briefly, VAC45 was a phase I/IIa sporozoite challenge trial to assess protection 

against malaria in healthy adults, 18-50 recruited from the United Kingdom who 

were vaccinated with ChAd63/MVA containing the ME-TRAP or CS insert.  

 

All study groups assessed under this protocol are described in Table 2.2. However, 

only subjects who were vaccinated with ChAd63/MVA ME-TRAP and assessed for 

short-term protection (Group 2) were analyzed in this thesis.   

 

Group  
Number  

No of 
volunteers 

Prime- Day 0 Boost- Day 56 CHMI 

1 15 ChAd63 CS  
5 x 1010 vp IM 

MVA CS  
2 x 108 pfu IM 

YES  

2 15 ChAd63 ME-TRAP  
5 x 1010 vp IM 

MVA ME-TRAP  
2 x 108 pfu IM 

YES 

3 6 - - YES 
 
 
Table 2.2 VAC45 study design 
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2.2.5 VAC52 

 
VAC52 (ClinicalTrials.gov # NCT01623557) has been previously reviewed (219). 

Briefly, VAC52 was a phase I/IIa sporozoite challenge trial to assess protection 

against malaria in healthy adults, 18-50 recruited from the United Kingdom who 

were vaccinated with ChAd63/MVA ME-TRAP combined with ChAd63/MVA CS 

or with ChAd63/MVA CS plus ChAd63/MVA AMA1. All study groups assessed 

under this protocol are described in Table 2.3. However, only subjects who were 

vaccinated with ChAd63/MVA CS/ME-TRAP and assessed for short-term 

protection (Group 1) were analyzed in this thesis.   

 
 

 
Group  
Number  

No of 
volunteers 

Prime- Day 0 Boost- Day 56 CHMI 

1 13 Mixture of ChAd63 ME-
TRAP/CS, each at 5x1010 
vp IM 
 

Mixture of MVA ME-
TRAP/CS, each at 2x108 
pfu IM 
 

YES  

2 13 Mixture of ChAd63 ME-
TRAP/CS/AMA-1, each 
at 5x1010 vp IM 
 

Mixture of MVA ME-
TRAP/CS/AMA-1, each at 
1.33x108 pfu IM 
 

YES 

3 6 - - YES 
 
 

Table 2.3 VAC52 study design 
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2.3 Clinical immunology 

2.3.1 Blood separation 

 
PBMCs were isolated by density-gradient centrifugation from EDTA anti-

coagulated whole blood as previously described (116, 153). All assessment of 

cellular immune responses using multi-parameter flow cytometry was done from 

PBMCs on cryopreserved samples at the completion of all studies. To thaw, PBMCs 

were immersed in a 37°C water bath for 90 seconds. Cells were then added drop-

wise to 15ml warm R10 in a falcon tube. Cells were centrifuged at 750xg for 5 

minutes and the pellet resuspended in complete RPMI (RPMI-1640 containing 2 

mM L-glutamine, 10% v/v heat-inactivated FCS, 100 U/mL penicillin, 100 µg 

streptomycin, 25 mM HEPES buffer, 0.1% v/v 2-mercapto-ethanol) containing 25 U 

/ mL Benzonase.  

 

2.3.2 PfCSP ELISA  

 
ELISA measurement of IgG against PfCSP has been previously described (116, 

205). Briefly, a recombinant Pf circumsporozoite protein (rPfCSPv2, lot#122006) 

expressed in Picha pastoris encoding Pf3D7 minus the first 48 amino acids was 

used. 96-well plates were coated overnight at 4°C with 2.0 µg rPfCSP/mL in 50 µL 

per well in coating buffer. Plates were then washed three times with 1x imidazole-

based wash solution containing 2 mM imidazole, 160 mM NaCl, 0.02% Tween-20, 

0.5 mM EDTA and blocked with 1% Bovine Serum Albumin (BSA) blocking buffer 

(KPL) containing 1% non-fat dry milk for 1 hour at 37°C. Plates were washed three 

times and serially diluted samples (in triplicates) were added and incubated at 37°C 

for 1 hour. After washing three times, peroxidase-labeled goat anti-human IgG 
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(KPL) was added at a dilution of 0.1 µg/mL and incubated at 37°C for 1 hour. After 

washing three times, ABTS peroxidase substrate was added for plate development, 

and the plates were incubated for 75 minutes at 22°C. The plates were read with a 

Spectramax Plus384 microplate reader (Molecular Devices) at 405 nm. The data 

were collected using Softmax Pro GXP v5. Data were fit to a 4-parameter sigmoidal 

curve, and the reciprocal serum dilution at which the optical density was 1.0 

(OD1.0) calculated.  
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2.4 Flow cytometry  

2.4.1 Intracellular staining of PfSPZ-specific T cells  

 
Thawed PBMCs were rested for 8 hours in complete RPMI, and plated in 200 µL of 

media at 1.5x106 cells per well in a 96-well V-bottom plate and stimulated for 17 

hours at 37°C with:  (a) PfSPZ Vaccine diluent (1% Human Serum Albumin); (b) 

1.5x105 viable, irradiated, aseptic, purified, cryopreserved PfSPZ from a single 

production lot; (c) 2x105 lysed, infected RBC consisting of >90% parasitemic late-

stage schizonts (PfRBC) from a single production lot; or (d) a single lot of donor-

matched uninfected erythrocytes (uRBC). For the last 5 hours of the stimulation, 10 

µg/mL Brefeldin A (BD) was added to the culture. A positive control sample from a 

subject vaccinated with 5 doses of 1.35x105 PfSPZ IV and negative malaria-naïve 

control were included for each day subjects were analyzed to determine the 

consistency of antigen stimulation. 

 

Following in vitro stimulation, cells were stained as previously described (116). 

Dead cells were identified by Aqua Live-Dead dye (Invitrogen) per manufacturer’s 

instructions. This was followed by 15 min surface staining at room temperature for 

CD3, CD4, CD8, CD27, and CD45RO. Cells were washed, fixed, and permeabilized 

using Cytofix/Cytoperm kit (BD) and stained intracellularly for IFN-γ, IL-2, TNFα. 

Cells were washed, fixed in 0.5% paraformaldehyde, and acquired on a modified 

LSR II (BD Biosciences). Flow cytometric data were analyzed using FlowJo. All 

antigen-specific cytokine frequencies are reported after background subtraction of 

identical gates from the same sample incubated with the control antigen stimulation 

(1% HSA). 
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2.4.2 TRAP peptide pools 

 
Crude 20-mer peptides overlapping by 10 amino acids spanning the length of the P. 

falciparum T9/96 sequence contained in the ME.TRAP vaccine insert were 

synthesized by Thermo Fisher Scientific (See Appendix for details). Peptides were 

reconstituted in DMSO at a concentration of 50-100mg/ml depending on solubility 

and stored at -80°C until use. A pool containing all 56 peptides spanning the T9/96 

strain of TRAP antigen (1µg/ml) was used for in vitro stimulation.  

 

2.4.3 Isolation of PfSPZ-specific CD4+ T cells 

 
PBMCs were stimulated with PfSPZ or 1% HSA as described above for only 14 

hours without BFA. CD154 PE (TRAP1) was added at the beginning of the 

stimulation. For optimization experiments only, 2µM monensin (BD Biosciences) 

were added for the last 5 hours. Surface staining was similar to described above, 

except without permeabilization and intracellular staining. This was followed by 

surface staining at room temperature for the remaining antibodies (including CD69) 

and AquaBlue.  

 
 

2.4.4 Isolation of TRAP-specific CD8+ T cells 

 
Thawed PBMCs were rested for 8 hours in complete RPMI and plated in 200 µL of 

media at 2x106 cells per well in a 96-well V-bottom plate, and stimulated for 18 

hours with either (1) TRAP peptide pools, anti-CD28 and anti-CD49d, all at 1 µg/ml 

or (2) anti-CD28 and anti-CD49d alone.  CD107a BV421 (H4A3) was added at the 

beginning of the stimulation. Brefeldin A or monensin was not added. Surface 

staining was similar to described above. Briefly, cells were surface stained with 
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CCR7 for 20 min.  This was followed by surface staining at room temperature for 

the remaining antibodies and AquaBlue.  

 

2.4.5 Single cell sorting 

 
After washes, 1-100 CD69+CD154+ CD4+ T cells or CD107a+CD8+ T cells were 

sorted on a 20-parameter FACSARIA Sorter, running FACSDiVa software to allow 

indexed sorting. 
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2.5 Acquisition of single cell gene expression 

2.5.1 Fluidigm  

 
Inventoried TaqMan gene-expression assays (20×, Life Technologies) were pooled 

to a final concentration of 0.2× for each of the 96 assays. Single or bulk antigen-

specific CD4+ T cells were sorted directly into 96-well PCR plates containing Cells 

Direct Reaction Mix (Invitrogen) and pooled gene expression assays (PreMix; See 

Table 2.4). Reverse transcription, cDNA synthesis, and sequence-specific 

amplification were performed using the Invitrogen Cells Direct Kit™ (Life 

Technologies), as previously described (Table 2.5) (244). High-throughput 

quantitative PCR was done on 96.96 Dynamic Arrays with the BioMark system 

(Fluidigm). Cycling threshold values were calculated with BioMark system 

software. 

 
 

PREMIX (1X) Single Cell Sample, 
1 well 

Sample 0  ul  
DEPC H2O 1.4 ul  
Cells Direct 2X Reaction Mix 5 ul  
Superscript III + Taq 1 ul  
0.2X Dilute TaqMan Assays (200nM) 2.5 ul 
Superasein  0.1 ul  
TOTAL (per well): 10 ul  

 
Table 2.4 Fluidigm premix for sorting  



 81 

 
Reverse Transcription 50°C for 15 

min 
 

Inactivation of RT enzyme 95°C 2 min  
1st Cycle 95°C 15sec 

60°C 4min 
 

Repeat 1st Cycle 17 
additional times 

 18 Pre-Amplification Cycles 

 
Table 2.5 Fluidigm pre-amplification 
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2.6 Data analysis  

 
Flow cytometry data were analyzed using FlowJo v9.8.5 (Tree Star). Statistical 

analysis was performed with Pestle v1.7 and SPICE v5.3 (M. Roederer) (269) and 

Prism 6 (GraphPad). Graphs were rendered in FlowJo, SPICE, and Prism.  

 

Single cell gene expression data were analyzed using JMP 11 (SAS) and R (R 

3.2.2). Model-based Analysis of Single-cell Transcriptomics (MAST) was use for 

filtering of failed reactions and statistical outliers and is available as an R package 

(http://www.github.com/ RGLab/MAST) (270).  Statistical significance for gene 

expression considered at p<0.001 and 2-fold change, unless noted otherwise.  
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3. Optimization of Single Cell Gene Expression 

Acquisition  

3.1 Introduction  

 

Immunization with irradiated SPZ is the gold standard for conferring high-level 

protection in mice and humans at the pre-erythrocytic stage of malaria infection 

(129-131). Protection in mice is multi-factorial and involves antibodies, CD4+ and 

CD8+ T cells. In humans immunized with irradiated PfSPZ, there has been limited 

characterization of PfSPZ-specific cell-mediated immunity. As such, there is an 

ongoing investigation of the magnitude, quality and phenotype of T cell responses 

elicited by PfSPZ Vaccine using a variety of technologies.  

 

Preclinical studies suggest that cellular immunity is required for attenuated SPZ-

induced protection against murine malaria (271). To date, multi-parameter flow 

cytometry has been used to characterize the phenotype, magnitude and quality of 

PfSPZ-specific T cell responses following vaccination or infection. To substantially 

expand the analysis of such responses, high-resolution, quantitative transcriptome 

analysis of PfSPZ-specific CD4+ T cells was performed using Fluidigm 96.96 

Dynamic Arrays. The aim of this chapter was to optimize the isolation of PfSPZ-

specific CD4+ T cells from vaccinated subjects and assess the Fluidigm platform for 

downstream bulk and single-cell gene expression analysis.  
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The VRC312 clinical trial was designed to assess the immunogenecity and efficacy 

of the PfSPZ Vaccine against malaria infection (116). Fifteen subjects were 

vaccinated with either four or five doses of 1.35x105 PfSPZ by the intravenous (IV) 

route. Three weeks following the final vaccination, all subjects underwent controlled 

human malaria infection (CHMI). Six out of nine subjects who received four doses 

were sterilely protected, six out of six who received five doses were sterilely 

protected. As the aim of this thesis was to identify immune correlates of protection, 

T cell responses at one week prior to challenge in samples from this trial will be 

examined and reported in subsequent chapters (Chapters 4 and 5). In this chapter, in 

order to optimize the assay without wasting precious samples, PBMCs isolated post-

challenge were analyzed.  
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3.2 Results  

3.2.1 Detection of antigen-specific T cell responses following intravenous 

administration of PfSPZ Vaccine  

 

Multi-parameter flow cytometry was first used to assess the frequency of antigen-

specific IFN-γ-producing T cells from a representative subject immunized with five 

doses of 1.35x105 PfSPZ Vaccine IV. Three weeks following the final vaccination, 

this subject was sterilely protected upon CHMI. One week prior to CHMI, this 

volunteer was bled, and PBMCs were subsequently isolated and cryopreserved. 

Antigen-specific T cells were assessed on thawed PBMCs by overnight 

restimulation with 1.5x105 cyropreserved irradiated sporozoites (PfSPZ) or 2.0x105 

P. falciparum-infected red blood cells (PfRBCs). The PfSPZ diluent (1% human 

serum albumin [HSA]) and mock-cultured uninfected RBCs (uRBCs) served as the 

respective controls. The memory phenotype of malaria-specific T cells was 

determined based on the differential expression of CD27 and CD45RO. IFN-γ is 

postulated to be important for protection elicited by this vaccine and other pre-

erythrocytic vaccines in humans (129, 135, 272), and thus served as an initial 

surrogate measure of immunogenecity in this study. 
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One week prior to CHMI, memory T cell responses were assessed (Figure 3.1). 

CD4+ T cells produced IFN-γ in response to PfSPZ and PfRBC stimulation in vitro. 

Antigen-specific memory CD8+ T cells were not detected in response to either 

stimulation (data not shown), consistent with published data (116).  

 

Given the potential role of CD4+ T cells in PfSPZ-elicited protective immunity and 

the significant increase in antigen-specific responses following vaccination, further 

phenotypic analysis of PfSPZ-specific CD4+ T cells was pursued.  

 

 

 

 

 

Figure 3.1 Detection of antigen-specific CD4+ T cells following PfSPZ Vaccine.  

PBMCs from an individual administered 1.35x105 PfSPZ Vaccine IV, three weeks 
following the final vaccination. PBMCs were stimulated for 17 hours with 1.5x105 
PfSPZ or 2.0x105 PfRBCs. The PfSPZ diluent (1% HSA) and uRBCs served as the 
respective controls.   
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3.2.2 Optimization of PfSPZ-specific CD4+ T cell isolation 

 

The first aim was to establish the capacity to detect the global malaria-specific CD4+ 

T cell response without altering the viability of responding cells. As such, the cell 

surface expression of CD154, a costimulatory maker expressed on activated but not 

resting CD4+ T cells following in vitro stimulation was assessed (273-276). 

Detection of CD154 on recently activated CD4+ T cells is particularly difficult due 

to rapid internalization of the marker upon surface expression. In this setting, 

detection is further complicated by the unique stimulation of PBMCs with an entire 

parasite (PfSPZ), unlike traditional assays that are restricted to a single peptide or 

protein. Preliminary studies sought to confirm de novo detection of CD154 on 

memory CD4+ T cells using a relatively simple protein stimulation. 

 

To define optimal conditions for capturing CD154+ CD4+ T cells, antigen-specific 

responses to cytomegalovirus (CMV) pp65 protein were assessed in a seropositive 

individual (Figure 3.2-A). Peak CD154 responses were detected 10 hours following 

in vitro stimulation in the presence of monensin, as described in previous studies 

(273, 274). Monensin likely inhibits acidification of endosomes containing the 

internalized CD154-antibody complex, preserving detection of the fluorochrome 

over a longer period of time. However, Golgi inhibitors can potentially affect 

detection of cellular mRNA via alterations in intracellular transport, precluding 

simultaneous use with downstream transcriptomic analysis. Thus, all experiments 

henceforth were performed in the absence of monensin. In this setting, the peak 

expression of CD154 on CMV-specific CD4+ T cells was detected 10 hours after 

stimulation, decreasing with a longer incubation time.  



 89 

 

It was hypothesized that optimal CD154 detection on PfSPZ-specific CD4+ T cells 

may require a longer period of stimulation, due to the fact the whole parasite must 

be processed by antigen presenting cells. To resolve this issue, PBMCs isolated 

three months post CHMI from a subject vaccinated with 1.35x105 PfSPZ IV and 

sterilely protected were stimulated with PfSPZ for various time periods. The peak 

expression of CD154 on PfSPZ-specific CD4+ T cells was detected 14 hours after 

stimulation (Figure 3.2-B).  

   

In order to minimize noise in the downstream mRNA expression assays, it was 

necessary to increase the purity of the antigen-specific T cells. To reduce frequency 

of background events from matched control samples (1% HSA), a gate was applied 

to encompass only CD69+CD154+ CD4 T cells for the purpose of identifying PfSPZ-

specific responses. Activation of T cells induced upregulation of CD69, which is 

then stably expressed on the cell surface for up to 48 hours (277). Dual expression 

of CD69 and CD154 clearly delineated a distinct population of PfSPZ-specific CD4+ 

T cells compared to control samples. Furthermore, the background CD154 response 

in the presence of 1% HSA or cell media did not increase significantly over time 

(Figure 3.2-C). CD154 responses did not increase in the presence of a CD40-

blocking antibody (Figure 3.2-D), as previously shown in murine studies (278). 

Therefore, PfSPZ-specific CD4 T cells were subsequently identified as 

CD69+CD154+ CD4+ T cells detected 14 hours after in vitro stimulation.   
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Figure 3.2 Optimization of PfSPZ-specific CD4+ T cell capture.  

(A) PBMCs from a malaria-naïve individual were stimulated with CMV pp65 
protein for various time periods in the presence or absence of monensin. CD154 
antibody was included in the beginning of the stimulation and monensin was added 
for the last 5 hours. (B) PBMCs from a malaria-naïve individual were incubated for 
various time periods with media alone or 1% HSA in the presence of CD154 
antibody. (C) PBMCs from an individual administered 1.35x105 PfSPZ Vaccine IV 
were restimulated in vitro with 1.5x105 PfSPZ in the presence of CD154 antibody 
for various time periods. (D) Same individual and stimulation in part (C) except 
with varying concentrations of CD40 blocking antibody.  
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3.2.3 Simultaneous detection of CD154 and CD69 for capture of broad PfSPZ-

specific CD4+ T cell response  

 

The second aim was to validate the ability of the assay to detect a predominant 

proportion of PfSPZ-specific, cytokine-producing CD4+ T cells. In principle, all 

recently activated CD4+ T cells express CD154 on the cell surface (276). The 

concordance of CD154 expression from activated CD4+ T cells and the production 

of IFN-γ, IL-2 and TNFα was determined. These are the most common cytokines 

used to characterize effector functions of CD4+ T cell responses to many vaccines 

based on their role in protection and the high sensitivity of detecting them. 

 

First, the proportion of CD69+CD154+ CD4+ T cells that produced any combination 

of IFN-γ, TNFα and IL-2 was estimated (Figure 3.3-A). Approximately 84% of 

PfSPZ-specific CD4+ T cells that produced any of the measured cytokines above 

background were CD69+CD154+. This confirmed that the assay detected a 

substantial proportion of the PfSPZ-specific CD4+ T cell response heretofore 

characterized by intracellular staining.  

 

Next, the limitations of the assay were determined. The coupled expression of CD69 

and CD154 on cells produced any of the measured cytokines was assessed. 

Expression of antigen-specific CD154 in the absence of CD69 was marginal (1.25 

vs. 11 fold-change of CD69+CD154- vs. CD69+CD154+ upon restimulation), 

confirming specificity of CD154 to mark recent activation. A notable proportion 

(25%) of cytokine-producing CD69+ CD4+ T cells did not express CD154. 

However, a similar proportion was also detected on cells from control samples.  
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Despite the stated benefits, there was an initial concern that sorting CD69+CD154+ 

CD4+ T cells would skew representation of the total PfSPZ-specific response. 

Comparison of CD69+ cytokine-producing cells that did or did not express CD154 

illustrated that the both groups were composed of a similar proportion of each 

possible phenotypic population measured in this assay (Figure 3.3-B). This suggests 

that CD69+CD154+ detection selects a representative subset of the total PfSPZ-

specific CD4+ T cell response.    

 

Finally, the benefits of this assay for enhanced detection of antigen-specific CD4+ T 

cells were described. Among CD69+CD154+ PfSPZ-specific CD4+ T cells, 

approximately 38% (range: 30-52%, n = 4 subjects) did not produce IFN-γ, IL-2 or 

TNFα (Figure 3.3-C).  
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Figure 3.3 Coordinate expression of CD154 with commonly measured 
cytokines.  

(A) PBMCs from a PfSPZ-vaccinated subject were stimulated with 1.5x105 PfSPZ 
for 14 hours. Monensin was added for the last five hours in order to assess 
expression of IFN-γ, IL2, and TNFα. (B) CD4+ T cell quality of CD154- vs. CD154+ 
populations. (C) Characterization of the CD69+CD154+ CD4+ T cell population as a 
function of IFN-γ, IL2, and TNFα expression. 
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3.2.4 High-resolution transcriptional analysis of virus- vs. PfSPZ-specific CD4+ T 

cells 

 

To further expand the analysis of CD69+CD154+ PfSPZ-specific CD4+ T cells, a 

technology platform that would increase the number of parameters available for 

measurement beyond those available by flow cytometry was investigated. In this 

regard, microfluidic chips from Fluidigm enable quantitative gene expression 

analysis of ~100 markers (246, 255, 256). This approach dramatically increases the 

breadth of phenotypic and functional analysis, even down to single-cell resolution.  

 

The sensitivity of the Fluidigm platform for small bulk mRNA measurements was 

evaluated. PBMCs were analyzed from sterilely protected subjects approximately 

six months following the final PfSPZ vaccination and CHMI (Figure 3.4-A). 

Antigen-specific responses were analyzed from PBMCs following in vitro 

stimulation with PfSPZ or a pool of antigenically distinct hemagglutinin (HA) 

purified proteins from various influenza virus strains circulating between 2005 and 

2011. This allowed a direct comparison of the gene expression profile of a parasite- 

and virus-specific CD4+ T cells within the same individual. In each subject, gene 

expression was analyzed from isolated pools of 25 CD69+CD154+ HA- and PfSPZ-

specific CD4+ T cells. CD69-CD154- memory CD4+ T cells served as an internal 

control (Figure 3.4-B).  

 

Thousands of parallel RT-PCR reactions enabled the quantitative measurement of 

mRNA expression for 96 genes. Selected genes included those that have been 

previously reported to play a role in vaccine-induced protection and influence 
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differentiation of diverse CD4+ T cell subsets such as Th1, Th2, TFH, Treg, and 

Th17 (279). This includes, but is not limited to cytokines, chemokines, and their 

receptors (280); canonical transcription factors (281); cytolytic enzymes (282, 283); 

and molecules associated with homing to the liver (160, 161, 284), a critical site for 

immune protection (163). All primers were previously qualified to ensure efficient 

linear amplification of input RNA, absence of primer competition for multiplexing 

capability, and low technical variation (i.e. high reproducibility of replicate samples) 

(244). Of the 96 genes measured in this study, 93 were significantly expressed above 

the limit of detection in 10% of the samples and were examined in downstream 

analysis.  

 

Principal-component analysis (PCA) was first used to visualize the expression data 

globally from total memory, influenza-specific and malaria-specific CD4+ T cells. 

PCA illustrated that cells with similar antigen-specificities clustered together within 

each of the three respective phenotypes, forming three distinct transcriptome profiles 

(Figure 3.4-C). Of note, unsupervised separation was driven by a common cellular 

phenotype across subjects, and not a subject-intrinsic transcriptional profile. 

Furthermore, unsupervised hierarchal two-way clustering revealed that the greatest 

separation among the samples was between the antigen-specific population (HA- 

and PfSPZ-specific combined) vs. the total memory population (Figure 3.4-D).  

 

Of 93 genes analyzed, 45 were differentially expressed between any of the three 

groups (p <0.0001). Of these, 73% (33/45) were commonly upregulated in HA- and 

PfSPZ-specific samples vs. total memory. The genes most significantly upregulated 
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between the antigen-specific vs. total memory samples were CD154, IFNG and IL2 

(Figure 3.4-E and F).  

 

The malaria vs. flu-specific transcriptional profile was then assessed. Twelve 

markers were significantly expressed in HA- vs. PfSPZ-specific CD4+ T cells or 

vice-versa (Figure 3.4-E and F; p<0.0001). The markers with the greatest order of 

fit for each cohort were assessed. Of interest, PfSPZ- but not HA-specific CD4+ T 

cells displayed significant upregulation of a canonical Th2 cytokine IL13 compared 

to total memory (285). GZMB and FAS, markers of cytolytic activity, were the genes 

most significantly upregulated in HA- vs. PfSPZ-specific CD4+ T cells. Of note, 

FAS was also enriched in PfSPZ-specific responses compared to the total memory 

population but to a lesser extent (p<0.01; Figure 3.4-E).  
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Figure 3.4 High-resolution transcriptional analysis of HA- vs. PfSPZ-specific 
CD4+ T cells  

(A) Subject immunization information. (B) CD154 sorting strategy for all subjects. 
(C) Principal components analysis, accounting for all gene components. (D) 
Unsupervised hierarchal clustering of all wells labeled by cohort. (E) Examples of 
“common” antigen-specific genes (top) and those enriched in HA-specific (bottom) 
or PfSPZ-specific CD4+ T cells. (F) List of all genes differentially expressed for 
each group (p<0.0001). ***p<0.0001, **p<0.001, *p<0.01  
 

Gene$Groups$$ Common$An-gen/specific$ Flu$ Malaria$

CD154&
IL2&&
IFNG&&
BIRC3&
IL21&
GAPDH&&
ICOS&
TNF&
CSF2&
TNFSF14&
TNFRSF4&
CD69&
FLIP&
RORC&
IL2R&
TNFRSF9&
IL2RB&

CXCR4*&
LIF&
CSF1&
TBET&
TGFB1&
IRF4&
RUNX1&
PD1&
IL21R&
CCR5&
MYC&
LEF1*&&
BAX&
CD48&
TIMP1&
TNFSF10&
&

GZMB&
FAS&
DPP4&
RUNX3&
PRDM1&
RORA&
&

IL13&
IL16*&
POUF2AF1&
FASLG&
CCR1&
HLADRA&
&

E.&

B.#Rapid#genera-on#of#an-gen0specific#transcriptomics#within#two#weeks#

Et=#40#0#Ct#

E t
#

IFNɣ#

IL2#

TNFα#

TGFβ#

IL10#

IL13#

0#Total#Memory#CD4#T#cells##
Flu0specific#CD4#T#cells#
PfSPZ0specific#CD4#T#cells#

10

15

20

25

30

IL2

CD154- HA Protein PfSPZ

Phenotype

10

15

20

25

30
IF

N
g

CD154- HA Protein PfSPZ

Phenotype

10

12

14

16

18

20

22

24

26

G
ZM

B,
 C

TL
A1

CD154- HA Protein PfSPZ

Phenotype

17

18

19

20

21

IL
16

CD154- HA Protein PfSPZ

Phenotype

12

14

16

18

20

IL
13

CD154- HA Protein PfSPZ

Phenotype

19

20

21

22

23

24

FAS

CD154- HA Protein PfSPZ

Phenotype

IFNγ%

B.#Rapid#genera-on#of#an-gen0specific#transcriptomics#within#two#weeks#

Et=#40#0#Ct#

E t
#

IFNɣ#

IL2#

TNFα#

TGFβ#

IL10#

IL13#

0#Total#Memory#CD4#T#cells##
Flu0specific#CD4#T#cells#
PfSPZ0specific#CD4#T#cells#

IL13%

IL2%

IL16%

GZMB% FAS%

***%
ns%

***%
ns%

***%

***%
***%

ns%
**%

**%
***%

***%

ns%
***%ns%

***%
***%

***%

F.&



 99 

3.2.5 Validation of single cell gene expression from PfSPZ-specific CD4+ T 

lymphocytes 

3.2.5.1 Data processing and quality control 

 

The final aim was to assess the efficiency and limitations of single-cell gene 

expression from PfSPZ-specific CD4+ T cells. Note that the analysis and quality 

control strategies examined in this section will form the foundation for the 

remaining analysis in this thesis. 

 

For the pilot experiments, four subjects with varying vaccination regimens and 

protection outcomes were selected to test the assay against a variety of subject 

phenotypes (Figure 3.5-A). Subjects received either four or five doses of the 

1.35x105 PfSPZ Vaccine. Three out of the four subjects were sterilely protected 

following CHMI three weeks after the final vaccination. Two subjects were then 

rechallenged three months later, of which one was sterilely protected. PfSPZ-

specific CD154 responses were assessed approximately nine months following the 

final PfSPZ vaccination. For each subject, gene expression was analyzed from 

approximately 140 PfSPZ-specific CD69+CD154+ CD4+ T cells, in addition to 

control wells described in the previous section (Figure 3.5-B and C).  

 

Fluidigm Biomark data were processed and filtered using the methods previously 

published to ensure retention of high quality PCR reactions (244). As this thesis 

employs a unique gene panel and cell isolation strategy, it was critical to ensure that 

these quality control measures were appropriate for this dataset. Based on previous 

data that suggests that expression of common housekeeping genes widely varies 
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among single cells and fails to correlate with each other, gene expression was not 

normalized in this study. Instead, statistical outliers were removed using a multistep 

data filtering process. Samples with discrete expression of less than 10% genes 

above the limit of detection (Et >13, or approximately 1 RNA molecule) were 

removed. Furthermore, samples with gene expression greater than 7 standard 

deviations above the median based on the overall distribution were used to remove 

outliers. Genes were removed from analysis if discrete expression was not detected 

in at least 10% of samples. This eliminated 33 of 96 genes.  

 

Following filtering, samples discretely expressed on average 54% of all genes 

(range: 30-81%; Figure 3.5-D). In samples with discrete expression of any given 

gene, median quantitative expression was Et of 19 (Figure 3.5-E). Overall, an 

average of 77% of individual RT-PCR reactions (range: 70-92% across six different 

Fluidigm chips) were of sufficient quality to be retained for downstream analysis 

(Figure 3.5-F). Of the remaining cells, 98% expressed CD154 by gene expression. 

 

The single-cell gene expression data were validated against pooled bulk wells of the 

same population. Consistent with previous studies, gene expression of the “average” 

single cells within a subject correlated with the signal in bulk populations (R2 = 

0.76, p<0.0001; Figure 3.5-G). These data suggest that the single cell gene 

expression analyzed following filtering reflects biological variation.  
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Figure 3.5 Single-cell gene expression from PfSPZ-specific CD4+ T cells  

(A) Subject immunization information. (B) CD154 sorting strategy for all subjects. 
(C) Representative Fluidigm 96.96 Array following data acquisition. (D) Discrete 
and (E) continuous gene expression before and after data filtering of all sorted cells. 
(F) Percentage of wells filtered from each chip due to overall low expression of all 
genes, absence of any gene expression, and low number of genes discretely 
expressed. (G) Expression of analyzed genes from bulk wells containing 25 cells per 
well or “average” single cell. Each dot represents the expression from one gene post 
filtering and the opposite end of the line represent expression prior to data filtering.   
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As there were only four subjects in this study, there was not enough power to assess 

correlations between gene expression profiles and protection outcome. However, the 

benefit of single cell transcriptomics in revealing true coexpression, semi 

coexpression and discordant expression was highlighted (Figure 3.6).   

 

 
 
 
 

 
 
 
Figure 3.6 Benefits of gene expression from single cells vs. bulk populations.  

Examples of gene pairs that display true coexpression (top), semi coexpression 
(middle) or discordant coexpression (bottom).   
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3.2.5.2 Hypothesized contribution of “background” CD154+ cells  

 

An important limitation of this assay is the presence of a limited number of 

CD69+CD154+ CD4+ T cells in the control samples stimulated with the PfSPZ 

diluent (1% HSA). These “background” cells are not PfSPZ-specific, but likely 

contaminate the matched gate in the PfSPZ stimulated samples. In other words, 

there exist non-antigen-specific cells that are isolated and analyzed downstream in 

the Fluidigm assay as recently activated PfSPZ-specific cells. It was hypothesized 

that the greatest difference among isolated single cells would be those that are 

recently activated (i.e. antigen-specific) and the “background” CD4+ T cells. 

 

The PfSPZ-specific CD69+CD154+ response for each subject was calculated as the 

fold-change over the matched population in the sample incubated with 1% HSA 

(Figure 3.7-A). The CD69-CD154+ and CD69+CD154- populations served as 

internal controls, as these populations are expected to have limited change upon 

antigen stimulation. One subject with a significantly low antigen-specific response 

was identified as potentially having a large contribution of background cells.  

 

Unsupervised two-way hierarchical clustering of all analyzed single cells revealed 

two phenotypically distinct cohorts, identified by red and blue (Figure 3.7-B). It 

was hypothesized that the population highlighted in red consisted of background 

CD69+CD154+ cells that were not PfSPZ-specific. The percentage of the 

background response by flow cytometry and the percentage of cells in the red 

population as a proportion of the total number isolated samples by the downstream 

Fluidigm assay per subject were calculated. While there were only four subjects, 
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there was positive correlation between calculated percentages of background cells 

by flow cytometry vs. Fluidigm (R2 = 0.93, p =0.31; Figure 3.7-C). PCA suggested 

that separation of these two groups was largely driven by increased expression of six 

markers: IL2RB, DPP4, FAS, CCR1, RORA, and IL16 (Figure 3.7-D). All of these 

genes were significantly enriched, but not exclusively expressed, in the 

hypothesized background vs. antigen-specific cells (Figure 3.7-E).  

  



 106 

 

 
  

-6

-4

-2

0

2

4

6

C
om

po
ne

nt
 2

  (
4.

59
 %

)

-6 -4 -2 0 2 4 6
Component 1  (7.37 %)

-1.0

-0.5

0.0

0.5

1.0

C
om

po
ne

nt
 2

  (
4.

59
 %

)

IL2

TNFRSF9, CD137

IL21RIRF4IFNg
BIRC3, CIAP2

MYC
ICOS

CD84

CXCR3, MIGR
STAT6CCR4

TNFSF14, LIGHTFASLG, CD95LG

CSF2, GMCSF

CD40LG, CD154
FOXP1POU2AF1PTPN6, SHP1

RUNX1FLIP

IL21

GAPDH

CXCR5

TNF, TNFa

LEF1

SLAMF1, CD150

IL10
PD1
LIF
IL13

IL4

TGFB1

HLADRA
TRAF2IL3
CCL3, MIP1aCCL5, RANTES
CXCL13, BLCSTAT3TBX21, TBET

IL7R, CD127

CCR8
IL4R

TNFRSF4, OX40

CCR7

CCR3IL5

FOXP3
CD27

IL2Ra, CD25

GABPA
SMAD4
MKI67, Ki67
CD28

RORC

CCR6CD69

CTLA4

GZMB, CTLA1
IL17_
TIMP2

CSF1, MCSFTGFBR1BAX
SH2D1A, LYP

TRAT1, TRIM

CD4

SOCS1
BCL6
CD48, BLAST

BCL2

GATA3
GZMA, CTLA3
IL6R, CD126MAF
CXCR4TNFRSF11A, RANK

CD8a

RUNX3

SOCS2
CXCR6
PRDM1, Blimp1TNFSF10, TRAIL

TNFSF13B, BAFF

STAT1TIMP1

CCR5

RORA

IL2RB

CCR1
FAS

IL16

DPP4, CD26

-1.0 -0.5 0.0 0.5 1.0
Component 1  (7.37 %)

B
AX

B
C

L2

B
C

L6

B
IR

C
3,

 C
IA

P2

C
C

R
1

C
C

L3
, M

IP
1a

C
C

L5
, R

AN
TE

S

C
C

R
3

C
C

R
4

C
C

R
6

C
C

R
7

C
C

R
8

C
D

27

C
D

28

C
D

4

C
D

40
LG

, C
D

15
4

C
D

48
, B

LA
ST

C
D

69

C
D

84

C
D

8a

C
SF

1,
 M

C
SF

C
SF

2,
 G

M
C

SF

C
TL

A4

C
XC

L1
3,

 B
LC

C
XC

R
3,

 M
IG

R

C
XC

R
4

C
XC

R
5

D
PP

4,
 C

D
26

FA
S

FA
SL

G
, C

D
95

LG

FL
IP

FO
XP

1

FO
XP

3

G
AB

PA

G
AP

D
H

G
AT

A3
G

ZM
A,

 C
TL

A3

G
ZM

B
, C

TL
A1

H
LA

D
R

A

IC
O

S

IF
N

g

IL
10

IL
13

IL
16

IL
17

_

IL
2

IL
21

IL
21

R

IL
2R

a,
 C

D
25

IL
2R

B

IL
3

IL
4

IL
4R

IL
5

IL
6R

, C
D

12
6

IL
7R

, C
D

12
7

IR
F4

LE
F1

LI
F

M
AF

M
KI

67
, K

i6
7

M
YC

C
XC

R
6

PD
1

PO
U

2A
F1

PR
D

M
1,

 B
lim

p1

PT
PN

6,
 S

H
P1

R
O

R
A

R
O

R
C

R
U

N
X1

R
U

N
X3

SH
2D

1A
, L

YP

SL
AM

F1
, C

D
15

0

SM
AD

4

SO
C

S1

SO
C

S2

C
C

R
5

ST
AT

1

ST
AT

3

ST
AT

6

TB
X2

1,
 T

B
ET

TG
FB

1

TG
FB

R
1

TI
M

P1

TI
M

P2

TN
F,

 T
N

Fa

TN
FR

SF
11

A,
 R

AN
K

TN
FR

SF
4,

 O
X4

0

TN
FR

SF
9,

 C
D

13
7

TN
FS

F1
0,

 T
R

AI
L

TN
FS

F1
3B

, B
AF

F

TN
FS

F1
4,

 L
IG

H
T

TR
AF

2

TR
AT

1,
 T

R
IM

A.#

C.# E.#

D.#

0 10 20 30 40 50
0

10

20

30

40

50

Fluidigm (% of hypothesized 
background)

F
lo

w
 C

yt
o

m
et

ry
 (%

 o
f b

ac
kg

ro
u

n
d

)

12

14

16

18

20

22

24

D
PP

4,
 C

D
26

Antigen-specific Background
Hypothesis

12

14

16

18

20

22

24

FAS

Antigen-specific Background
Hypothesis

12

13

14

15

16

17

18

19

IL
16

Antigen-specific Background
Hypothesis

12

14

16

18

20

22

24

26

IL
2R

B

Antigen-specific Background
Hypothesis

12

14

16

18

20

22

24

R
O
R
A

Antigen-specific Background
Hypothesis

12
13
14
15
16
17
18
19
20
21

C
C
R
1

Antigen-specific Background
Hypothesis

B.#Rapid#genera-on#of#an-gen0specific#transcriptomics#within#two#weeks#

Et=#40#0#Ct#

E t
#

IFNɣ#

IL2#

TNFα#

TGFβ#

IL10#

IL13#

0#Total#Memory#CD4#T#cells##
Flu0specific#CD4#T#cells#
PfSPZ0specific#CD4#T#cells#

DPP4$ FAS$

IL16$ IL2RB$

CCR1$RORA$

B.#Rapid#genera-on#of#an-gen0specific#transcriptomics#within#two#weeks#

Et=#40#0#Ct#

E t
#

IFNɣ#

IL2#

TNFα#

TGFβ#

IL10#

IL13#

0#Total#Memory#CD4#T#cells##
Flu0specific#CD4#T#cells#
PfSPZ0specific#CD4#T#cells#

***" ***"

***"***"

***" ***"

B.#

PfSPZ1% HSA

VRC 312-426

VRC 312-444

VRC 312-445

VRC 312-450

0 103 104 105

<G560-A>: CD154 PE

0

102

103

104

105

<G
61

0-
A

>:
 C

D
69

 E
C

D 7.58 0.0453

0.347

0 103 104 105

<G560-A>: CD154 PE

0

102

103

104

105

<G
61

0-
A

>:
 C

D
69

 E
C

D 15.2 0.407

0.531

0 103 104 105

<G560-A>: CD154 PE

0

102

103

104

105

<G
61

0-
A

>:
 C

D
69

 E
C

D 14.3 0.0755

0.0831

0 103 104 105

<G560-A>: CD154 PE

0

102

103

104

105

<G
61

0-
A

>:
 C

D
69

 E
C

D 21.6 0.188

0.185

0 103 104 105

<G560-A>: CD154 PE

0

102

103

104

105

<G
61

0-
A

>:
 C

D
69

 E
C

D

0.426

10.8 0.0629

0 103 104 105

<G560-A>: CD154 PE

0

102

103

104

105

<G
61

0-
A

>:
 C

D
69

 E
C

D 21.3 0.507

0.843

0 103 104 105

<G560-A>: CD154 PE

0

102

103

104

105

<G
61

0-
A

>:
 C

D
69

 E
C

D 12.5 0.0608

0.308

0 103 104 105

<G560-A>: CD154 PE

0

102

103

104

105

<G
61

0-
A

>:
 C

D
69

 E
C

D 24 0.334

0.137

CD69
+ C

D15
4-

CD69
- C

D15
4+

CD69
+ C

D15
4+

0

4

8

12

Phenotype

Fo
ld

 C
ha

ng
e 

(P
fS

P
Z 

/ 1
%

H
S

A
)

PfSPZ-specific responses by cellular phenotype
PfSPZ1% HSA

VRC 312-426

VRC 312-444

VRC 312-445

VRC 312-450

0 103 104 105

<G560-A>: CD154 PE

0

102

103

104

105

<G
61

0-
A

>:
 C

D
69

 E
C

D 7.58 0.0453

0.347

0 103 104 105

<G560-A>: CD154 PE

0

102

103

104

105

<G
61

0-
A

>:
 C

D
69

 E
C

D 15.2 0.407

0.531

0 103 104 105

<G560-A>: CD154 PE

0

102

103

104

105

<G
61

0-
A

>:
 C

D
69

 E
C

D 14.3 0.0755

0.0831

0 103 104 105

<G560-A>: CD154 PE

0

102

103

104

105

<G
61

0-
A

>:
 C

D
69

 E
C

D 21.6 0.188

0.185

0 103 104 105

<G560-A>: CD154 PE

0

102

103

104

105

<G
61

0-
A

>:
 C

D
69

 E
C

D

0.426

10.8 0.0629

0 103 104 105

<G560-A>: CD154 PE

0

102

103

104

105

<G
61

0-
A

>:
 C

D
69

 E
C

D 21.3 0.507

0.843

0 103 104 105

<G560-A>: CD154 PE

0

102

103

104

105

<G
61

0-
A

>:
 C

D
69

 E
C

D 12.5 0.0608

0.308

0 103 104 105

<G560-A>: CD154 PE

0

102

103

104

105

<G
61

0-
A

>:
 C

D
69

 E
C

D 24 0.334

0.137

CD69
+ C

D15
4-

CD69
- C

D15
4+

CD69
+ C

D15
4+

0

4

8

12

Phenotype

Fo
ld

 C
ha

ng
e 

(P
fS

P
Z 

/ 1
%

H
S

A
)

PfSPZ-specific responses by cellular phenotype



 107 

 

Figure 3.7 Hypothesized contribution of "background" CD154+ CD4+ T cells.  

(A) Fold-change of three CD4+ T cell populations following in vitro restimulation 
with PfSPZ: CD69+CD154-, CD69-CD154+, and CD69+CD154+. (B) Unsupervised 
single cell hierarchal clustering of all cells. Proposed “background” cells are 
highlighted in red. (C) Percentage of background responses as assessed by flow 
cytometry (% CD154+CD69+ from PfSPZ stimulated wells divided by matched 
control) or as estimated by Fluidigm analysis (% red/(red+blue)). Line of best fit 
calculated from four subjects. (D) Principal components analysis with proposed 
background cells labeled, as well as gene components that drive separation. (E) 
Quantitative gene expression of six markers enriched in proposed background 
population.    
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3.3 Discussion 

 

The aim of this chapter was to optimize the isolation of PfSPZ-specific CD4+ T cells 

from vaccinated subjects and assess the Fluidigm platform for downstream bulk and 

single-cell gene expression analysis. First, dual expression of CD69 and CD154 

identified PfSPZ-specific CD4+ T cells, of which 30-50% did not produce cytokines 

typically measured by multi-parameter flow cytometry. This finding highlights the 

increased sensitivity of our assay to identify PfSPZ-specific T cells that would not 

be detected by standard flow cytometry panels. Thus, the assay provides enhanced 

breadth of the antigen-specific response and the ability to detect additional 

mediators that may influence protection. Second, high-resolution microarray 

analysis revealed that malaria-specific CD4+ T cells had a distinct gene expression 

profile compared to virus-specific CD4+ T cells in protected subjects. Third, the 

quality control and validation measures to analyze single-cell gene expression data 

were described, in addition to a key limitation of the assay. Overall, this chapter laid 

the foundation for the in-depth transcriptional analysis of cellular immune responses 

from large clinical trials, which will constitute the remainder of this thesis.  

 

In the following chapters regarding clinical assessment of the PfSPZ Vaccine, CD4+ 

T cells will be examined. CD8+ T cells are hypothesized to be critical for protection; 

however, PfSPZ- and PfRBC-specific responses are low to absent in vaccinated 

subjects (286). One possibility may be that antigen-specific CD8+ T cells are 

sequestered in the liver, and do not circulate in the peripheral blood. Murine studies 

suggest that PfSPZ antigens are retained in liver up to six months following 

vaccination (174). Preclinical studies suggest that CD4+ T cells may be necessary 
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for SPZ-elicited protection. Furthermore, in-depth single cell analysis in this setting 

may provide insights into the heterogeneity elicited by a whole parasite vaccine.  

 

While the de novo detection of CD154 to identify live antigen-specific CD4+ T cells 

has been previously described (273, 274), its use to isolate responses in an in vitro 

restimulation assay using a whole parasite is unique. Individual PfSPZ antigens may 

be presented less efficiently than a single immunodominant protein or peptide used 

in conventional restimulation assays. Yet, responses against the immunodominant 

CSP antigen are low to undetectable in vaccinated subjects as assessed by 

ELISPOT, suggesting that CD154 responses target a wealth of antigens. This is 

impossible to know in absence of a tetramer or downstream T cell receptor (TCR) 

analysis. Furthermore, it is important to note that the total CD4+ T cell responses 

detected by this live-cell assay may be lower the total immune responses detected by 

standard ICS assays due to the absence of Golgi inhibitors. However, these data 

demonstrate the breadth of phenotypic responses is dramatic, as the assay is not 

restricted to a set of three predefined cytokines.  

  

Fluidigm analysis of PfSPZ- vs. HA-specific CD4+ T cells revealed subtle 

differences on a bulk level between the different responses and common antigen-

specific signature. Overall, these data suggest that there exists a common 

CD69+CD154+ “antigen-specific” transcriptional phenotype distinct from total 

memory T cells. Not surprisingly, the genes most significantly upregulated between 

CD154+ vs. CD154- cells were CD154, IFNG and IL2. These genes are among the 

most sensitive and commonly measured markers in standard flow cytometry assays 

(239, 240). Critically, unsupervised analysis by two-way clustering and PCA was 
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driven by antigen-specificity, and not by individual. This suggests that subject-level 

variation in gene expression is smaller than pathogen-specific variation as assessed 

by this assay. This allows for comparison of transcriptomic profiles across subjects, 

critical for assessment of correlations of protection in a clinical trial.  

 

Following a multi-step filtering process that removed statistical outliers and failed 

RT-PCR reactions, the majority of samples were retained for downstream analysis. 

Furthermore, validation methods comparing gene expression detected in the 

“average” single cell vs. the bulk wells suggest that the single-cell data analyzed 

downstream reflects biological variation masked by larger populations. While a 

number of genes were removed from downstream analysis in this chapter, many of 

these were markers of interest that may play a role in protective immunity against 

the pre-erythrocytic stage of malaria, such IL-4, IL-5 and IL-10. As it was 

impossible to exclude the possibility that expression would only be detected one 

week prior to challenge, all markers remained in the gene panel.  

 

It is important to be aware of the limitations of a new assay, even if it is difficult to 

remove them. These data suggest that a phenotype consisting of six enriched genes 

may resemble the background CD69+CD154+ cells that are not specific for PfSPZ 

but are nonetheless analyzed in the downstream Fluidigm assay as “antigen-

specific.” Unfortunately, these data do not create a sufficient definition for 

background cells nor allow for a possibility to filter out these cells. All of these 

markers have also been documented to play a role in vaccine-induced immunity. For 

example, RORA is a critical transcription factor for Th17 cells, and FAS plays a 

critical role in cytolytic activity. However, it suggests that the presence of 
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background cells must be taken into account with downstream analysis to prevent 

skewed results that reflect the magnitude, and not the quality of T cell. As such for 

future analysis, only subjects with a total PfSPZ-specific CD154+ T cell response 

three-fold above the background responses were utilized for downstream analysis. 

Furthermore, any samples with an antigen-specific response greater than five 

standards of deviation above the average were noted. 
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4. VRC 312- PfSPZ Vaccine Trial #1   
 

4.1 Introduction  

 
 

Intravenous administration of highly purified, irradiated sporozoites can provide 

high-level protection against CHMI in humans. However, the mechanism of 

protection is unclear. In terms of cellular immunity, pre-clinical studies in rodents 

and non-human primates demonstrate a critical role for CD8+ T cells in mediating 

protection in the liver through production of IFN-γ (135, 150, 152). The protective 

role of CD4+ T cells may be more complex as such cells are heterogeneous and can 

have diverse functions (155, 175, 176, 181) (See Chapter 1.3.2 regarding more in-

depth discussion of the protective mechanisms in pre-erythrocytic immunity).  

 

VRC312 was the first clinical trial to assess the safety and immunogenicity of the 

intravenous administration of cryopreserved irradiated sporozoites (PfSPZ Vaccine) 

(116). Fifteen subjects who received the highest administered dose of vaccine 

(1.35x105 PfSPZ) underwent CHMI. Of those subjects that received four doses, six 

out of nine were sterilely protected. Of those that received five doses, five out of 

five were protected.  

 

Immunization induced a dose-dependent increase in PfSPZ-specific antibodies and 

T cell responses (116). Analysis examining the quality of cellular immune responses 

with multiparameter flow cytometry revealed largely polyfunctional (IFN-γ+IL-

2+TNF-α+) CD4+ T cells. Moreover, protected subjects who received four doses 
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showed a trend of higher monofunctional IFN-γ-producing CD8+ T cell responses 

than unprotected subjects in the same group. Analysis of the CD8+ T cell responses 

is limited, as five of the subjects had low to undetectable immune responses. Of 

note, the PfSPZ-induced antibodies in this study blocked invasion of hepatocytes in 

vitro and therefore may have contributed to protection. 

 

Based on the multi-factorial role that CD4+ T cells may have in vaccine-elicited 

protection and limited analysis possible for CD8+ T cells, vaccine-induced CD4+ T 

cells were characterized in greater depth than with current technologies. In this 

regard, detection of de novo-synthesized CD154 following in vitro restimulation is a 

powerful strategy to capture the global malaria-specific CD4+ T response elicited by 

PfSPZ vaccine. Following isolation of CD154+CD4+ T cells, highly multiplexed, 

single-cell technologies were used for in-depth characterization of the PfSPZ-

specific response and elucidation of mechanisms of immunity. The findings from 

the optimization studies described in Chapter 3 will be directly applied here.  

 

The aims of this chapter are the following: (1) define the molecular signatures of 

PfSPZ-specific CD4+ T cell responses induced by malaria infection versus 

vaccination with a whole live parasite; (2) evaluate the heterogeneity of the CD4+ T 

cell response at the single cell level; and (3) compare the gene expression profiles of 

such responses from protected and unprotected subjects following vaccination and 

challenge in order to identify potential correlates of protection.   
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4.2 Results  

4.2.1 Isolation of individual PfSPZ-specific CD4+ T cells from vaccinated subjects 

prior to challenge  

 

The first aim was to isolate individual PfSPZ-specific CD4+ T cells from vaccinated 

subjects in the clinical trial VRC312 (Figure 4.1 and Table 4.1). Responses from 

vaccinated subjects were assessed from PBMCs isolated two weeks following the 

final immunization (approximately one week prior to CHMI). Due to low immune 

responses elicited using lower doses of the PfSPZ Vaccine, analysis was restricted to 

the fifteen subjects who received 4 or 5 doses of the 1.35 × 105 PfSPZ Vaccine, 

where high-level protection was observed (116).  

 

In addition, PfSPZ-specific CD4+ T cells from five unvaccinated infection control 

subjects were isolated two weeks following CHMI. As the magnitude of IFN-γ-

producing T cells peaks at this timepoint over the 28-day monitoring period 

following CHMI as assessed by flow cytometry (286), it was hypothesized that these 

samples represent the primary immune response to Pf malaria infection. 

 

Overall CD4+ T cell responses defined by coexpression of CD154 and CD69 protein 

were assessed by flow cytometry for each cohort (Figure 4.2). During each sort, a 

positive and negative control for the CD154 staining assay was run. The positive 

control was a PfSPZ-vaccinated subject six months post the final vaccination. The 

negative control was a subject who had not been infected with malaria or immunized 

with a malaria vaccine. The PfSPZ-specific CD4+ T cell responses from three 

vaccinated subjects were equal to or below the threshold required for downstream 
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analysis as defined in Chapter 3. Furthermore, the CD154 responses from these 

three subjects were not significantly different from the negative controls. Of note, 

these three subjects had the lowest CD4+ T cell responses as assessed by cytokine 

production of IFN-γ, IL-2 and TNF-α in a previous study (116). When these three 

subjects were removed from the analysis, CD154 responses did not differ 

significantly across the three cohorts. Overall, twelve vaccinated subjects and five 

infection controls had PfSPZ-specific CD4+ T cell responses of sufficient magnitude 

for downstream analysis.  
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Figure 4.1 VRC312 clinical study.  

The vaccination schedule, PfSPZ Vaccine dose and route for all subjects under the 
VRC312 clinical study. Note that only groups 4 and 5 are assessed in this thesis. 
This figure is taken from reference (116).  
 
 
 

 
 

Table 4.1 VRC312 subjects initially selected for Fluidigm analysis.  

All subjects who were assessed following detection of CD69+CD154+ CD4+ T cell 
responses for downstream transcriptional analysis.  
 

Group Vaccine 
Regimen  

Timepoint CHMI #1 
Outcome 

# of 
volunteers 

Vaccinees  4a/4b/4c 4 or 5 doses 
of 1.35x105 
PfSPZ 
Vaccine 

2 weeks 
post final 
vaccination 

Protected  12 

Unprotected 3 

Infection 
Controls 

5a/5b N/A 2 weeks 
post CHMI 

Unprotected  5 
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Figure 4.2 PfSPZ-specific CD4+ T cell responses.  

PBMCs isolated from samples at two weeks following the final vaccination were 
stimulated in vitro with 135,000 PfSPZ for 15 hours. The frequency of 
CD69+CD154+ cells is represented as a percentage of the memory CD4+ T cell 
population as assessed by flow cytometry. Subjects with responses below the limit 
for Fluidigm analysis are shaded. Mean +/ standard error of the mean (SEM).     
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Fluidigm 96.96 Dynamic Arrays were used for quantitative RT-PCR analysis, 

allowing for simultaneous measurement of 96 genes in 96 individual samples. For 

each subject, analysis was performed on approximately 100 individual PfSPZ-

specific CD4+ T cells, in addition to bulk wells of 25 cells in triplicate. The gene 

panel described in Chapter 3 for CD4+ T cells was used. Failed reactions and 

statistical outliers were removed using the multistep data filtering process described 

in Chapter 3.3 to ensure analysis of only high quality RNA. The single-cell gene 

expression data were also validated against pooled microarrays, as described in 

Chapter 3.4 (data not shown). Expression of 82 genes from 1,475 single cells was 

retained for downstream analysis.  

 

In order to assess the sensitivity of downstream quantitative RT-PCR, mRNA 

expression of key transcripts was examined. Although gene expression was not 

normalized, CD69 and CD154 mRNA levels did not differ significantly across the 

different cohorts (Figure 4.3-A). There was evidence of considerable T cell 

heterogeneity in vaccinated subjects prior to challenge at the single-cell level. 91% 

of vaccine-induced cells that remained following data filtering expressed CD154 

mRNA, serving as an internal positive control (Figure 4.3-B). Gene expression of 

markers associated with a wide spectrum of T-helper (Th) subsets, such as Th1, 

Th2, Th17, TFH, and T regulatory subsets was detected. In accordance with 

previous estimates by flow cytometry (See Chapter 3.2), 53% of sorted cells from 

vaccinated subjects did not express IFNG, TNF or IL2. These data highlight that this 

experimental approach dramatically increased the breadth of phenotypic and 

functional analysis, even down to single-cell resolution.  
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Figure 4.3 Sensitivity of single cell gene expression from vaccinated subjects in 
VRC312 

 
(A) Single-cell gene expression from subjects across all three cohorts for 
CD40L/CD154 and CD69. Et values are shown on the y-axis. Median +/- quantiles 
(IQR). (B) Expression of key transcripts associated with canonical T helper subsets 
from all from vaccinated subjects. CD154 expression is shown on the left axis. Cells 
which do not discretely express IFNG, IL2 or TNF are highlighted in grey on the 
right axis. Et values are displayed.  
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4.2.2 Global transcriptomic profiles of PfSPZ-specific CD4+ T cells from 

vaccinated subjects and infection controls 

 

The transcriptomic profile of CD4+ T cells induced by a protective vaccine 

composed of a live parasite was compared to that induced by a primary malaria 

infection. Principal-component analysis (PCA) was first performed to visualize the 

global changes in expression from vaccinees prior to the first challenge versus the 

non-vaccinated infection controls. Analysis was restricted to the first principal 

component (PC1) in order to transform the data into one eigenvalue that would 

account for as much variation as possible, simplifying multivariate patterns within a 

complex dataset to a single variable. Note that principal components are determined 

in an unsupervised fashion without regard for class labels.  

  

The cellular detection rate (CDR), which reflects the proportion of genes discretely 

expressed in a given sample, has been described as an important source of technical 

variation in single-cell expression studies (270, 287-289). In the original dataset, 

PC1 was strongly correlated to the cellular detection rate (CDR), accounting for 

15% of the variance in the original dataset (Figure 4.4-A and B). After removing 

the CDR effect, PC1 accounted for 7.97% of the variance in the dataset (Figure 4.4-

C).    

 

Single cell analysis revealed that the three cohorts were composed of globally 

different transcriptomic profiles, as the median PC1 value among all three cohorts 

was statistically significant (Figure 4.4-D). The fold-change in the median PC1 
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value between infection and all vaccinated subjects was 4.4 times greater than the 

fold-change between protected and unprotected vaccinees.  

 

The first ten principals components retained only 22% of all of the original variance 

(Figure 4.4-C). Traditional representation of PCs in a two-dimensional plot would 

fail to represent over 80% of the variance in the original data set. Instead, linear 

discriminant analysis (LDA) was performed in order to provide insight into the 

variables that would best maximize the separation of known classes.  

 

LDA confirmed that there exist sets of genes that distinguish each of the three 

cohorts (Figure 4.4-E). In line with the PCA, the first linear discriminant (LD1) best 

accounted for the variance between the infection and vaccinated cohort, and was 

characterized by upregulation of a set of genes following CHMI. Of note, the gene 

component that maximized the greatest separation within the dataset was 

CCL5/RANTES, which encodes a chemokine involved in recruitment of CCR1- and 

CCR5-expressing activated T cells to sites of inflammation (290). LD2 provided 

some information about separation between protected and unprotected vaccinees; 

however, two-way analysis is required in order to control for the derivation of 

discriminants based on the infection cohort. 86.4% of cells were accurately 

characterized into the three classes. 

 

Overall, these data suggest that there are global qualitative differences among these 

three cohorts that will be parsed into individual genes or groups of genes in the 

following sections. In order to accurately characterize the transcriptomic profiles of 

the three different cohorts, further analysis was restricted to two groups at a time. 
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Figure 4.4 Global gene expression of vaccinated subjects and unvaccinated 
infection controls 

(A) Cellular detection rate (or fraction of genes discretely expressed) as a function 
of the first principal component. Both values transformed. Variance explained by 
first three eigenvalues before (B) and after (C) correction for model-based 
correction for cellular detection rate. (D) Scaled values of first principal component 
and (E) linear discriminant analysis of all three cohorts. Circles display normal 50% 
contours. Median +/- IQR. Infection: unvaccinated infection controls two weeks 
post CHMI. Protected = vaccinated and protected subjects two weeks post final 
immunization. Unprotected = vaccinated and unprotected subjects two weeks post 
final immunization.   
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4.2.3 Differential gene expression signatures of PfSPZ-specific CD4+ T cells 

following vaccination versus infection  

 

As the global variance between the infection and vaccinated cohort was much 

greater than that within the vaccinated cohort, the effect of live malaria vaccination 

versus infection was assessed first without regard for protection outcome. 

Differentially expressed genes were those that exhibited a statistically significant 

effect due to vaccination (p < 0.001) based on a likelihood ratio test of the combined 

discrete and continuous model components, and which exhibited at least a two-fold 

change in expression associated with vaccination. Thirty-four genes were identified, 

of which 20 were enriched in infection controls (Figure 4.5-A and B).  

 

In line with the multivariate analysis in the previous section, the top five genes 

enriched in the infection controls in terms of median fold-change were 

CCL5/RANTES, DPP4/CD26, GZMB/CTLA1, TBX21/TBET, and CD28, in order of 

decreasing fold-change. In the vaccinated cohort, the top five genes with the same 

criteria were BIRC3/CIAP2, CCR4, TNFSF14/LIGHT, IL21R and IL2 (Figure 4.5-

B).  

 

It is important to note median expression of GAPDH, a commonly used 

housekeeping gene was significantly greater (p<0.001) in the infection cohort. 

However, the fold-change change was 2.4, barely over the threshold for 

significance. Moreover, the median expression of CD154 and CD69 was not 

significantly different across all cohorts.  
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In order to assess the molecular networks uniquely induced by infection vs. 

vaccination, the sets of genes that discriminated between these two cohorts at the 

single cell level were examined using unsupervised hierarchal clustering (Figure 

4.5-C). This analysis was restricted to genes that were differentially expressed 

between infection and vaccination. Only 2% of cells from the vaccinated cohort and 

8.6% of cells from control subjects were misclassified by hierarchical clustering. Of 

note, the gene expression profiles from non-vaccinated infection control subjects 

appeared more transcriptionally homogeneous compared to vaccination. 

Furthermore, such subjects were marked by a group of genes that are distinctly 

upregulated, while the vaccinated subjects profiles were characterized by a 

combination of downregulated genes in a subset of cells.  

 

In the infection cohort, expression of TBX21/TBET, CCL5/RANTES and 

DPP4/CD26 (three of the top five significantly expressed genes) clustered together. 

41% of cells that discretely expressed any one of these genes coordinately expressed 

all three. Furthermore, these markers were clustered with IFNG by single cell 

hierarchal clustering, consistent with previously reported cell-intrinsic coordination.  

 

Discrimination between the two groups was also accurate when gene expression was 

represented as the per-subject median (Figure 4.5-D) or proportion of discrete 

expression (Figure 4.5-E). CD4 and SLAMF150/CD150 were removed from further 

analysis, as expression in one subject was greater than three logs from the median 

level in the infected cohort. Overall, a coherent subject-level increase is evident in 

natural infection, demonstrating that differential expression is not driven by outlier 
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subjects and single-cell gene expression patterns were representative of subject-level 

effects.  
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Figure 4.5 Differential gene expression of PfSPZ-specific CD4+ T cells following 
vaccination vs. CHMI.  

(A) All differentially expressed genes (DEGs) between the infection and vaccination 
cohort (p<0.001 and 2-fold change). (B) Volcano plots of all genes displaying 
significance and fold-change. (C) Unsupervised hierarchal clustering. Single cells 
labeled as vaccination (purple) or infection (yellow). Expression of all DEGs 
represented as the per-subject median (D) or proportion of discrete expression (E). 
In all heatmaps, expression is centered and standardized by column.   

D.# E.#

Infection 
Vaccination 
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4.2.4 Modular analysis for examination of cooperation of gene expression at the 

single-cell level 

 

Overall, the enriched expression of molecules involved in activation and chemotaxis 

in the infected cohort suggests a key role for CD4+ T cell-mediated trafficking of 

leukocytes during the primary immune response to malaria. In order to gain greater 

insight into the molecular networks following CHMI versus vaccination, gene set 

enrichment analysis (GSEA) was performed (270) based on previously developed 

blood transcriptional modules (270, 291) (Figure 4.6-A and B). Only modules 

containing at least four genes that were measured by Fluidigm were included for 

analysis (n=11 modules). The average effect of genes in a module was calculated 

while controlling for gene-gene correlation using Bootstrap replicates. A Z-score 

was generated, taking into account both the discrete and continuous components of 

mRNA expression.  

 

Of the 11 modules tested, 8 exhibited a significant vaccine effect (p<0.01). Analysis 

identified six modules that were enriched in non-vaccinated controls, including T 

cell activation (I)(M7.2), T cell activation (II)(M7.3), and enriched in T cells 

(I)(M7.2). Two modules were enriched to a lesser extent in vaccinated subjects (|Z-

score| <5), specifically cell adhesion (GO)(M117) and receptors and cell-migration 

(M109).  

 

Although these modules have been previously used in a number of studies (291-

295), this analysis has two important limitations. First, the modules were developed 

based on DNA microarray data from whole blood, which does not necessarily reflect 
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molecular networks intrinsic to CD4+ T cells. Two, only a subset of the genes that 

comprise the modules are reflected in the Fluidigm analysis. New modules were 

developed based on genes associated with CD4+ T cell differentiation pathways 

described in the literature (Table 4.2). GSEA was performed as described above 

(Figure 4.7).  

  

Modules associated with Th17, Th2 and Treg differentiation did not differ 

significantly between vaccinees and infection controls (Figure 4.7). Modules 

associated with homing to the liver and TFH differentiation were enriched in 

infection cohorts (|Z-score| = 4.95 and 5.70, respectively). Enrichment of the module 

“homing to the liver” in infection controls was characterized by increased 

expression in CXCR3 and CCR5; and “TFH differentiation” by ICOS, MAF and 

IL21. There was no difference in expression of the remaining genes in these two 

modules.  

 

Markers associated with a Th1 signature were significantly enriched in vaccinees 

(|Z-score| = 5.62; Figure 4.7). Of note, TBX21/TBET, STAT1 and IFNG were 

enriched in infection controls. However, IL2 and TNF were enriched in vaccinated 

subjects with a greater statistical significance and fold-change in expression (Figure 

4.5-B).  
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Figure 4.6 GSEA of vaccinated subjects vs. infection controls using BTM 

(A) Gene set enrichment analysis showing blood transcriptional modules (BTM) 
enriched in vaccinated subjects or infections controls (p<0.01). Positive Z-scores 
indicate enrichment in protected vaccinated subjects. Negative Z-scores indicate 
enrichment in natural infection. Composite Z-score with 95% confidence intervals. 
(B) Violin plots of the individual genes within each module. 
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Table 4.2 List of genes in curated modules for GSEA of T helper subsets 

 

 
 

 
 
Figure 4.7 GSEA of vaccinated subjects vs. infection controls using curated 
modules for T helper subsets  

Gene set enrichment analysis with Th modules described in Table 4.2 showing 
enrichment in vaccinated subjects or infections controls (p<0.01). Positive Z-scores 
indicate enrichment in vaccinated subjects. Negative Z-scores indicate enrichment in 
natural infection. Composite Z-score with 95% confidence intervals.   
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4.2.5 Plasticity and heterogeneity of CD4+ T cell gene expression 

 

To determine CD4+ T helper cell lineage fidelity at the single cell level, 

coexpression analysis was restricted to genes that regulate key Th differentiation 

pathways (Figure 4.8-A). Coordinate discrete expression of three predominant Th 

subsets (Th1, Th2 and TFH) and their respective canonical cytokines (IFNG, IL13, 

and IL21) and master transcriptional regulators (TBET, GATA3, and BCL6) was 

examined. It was hypothesized that cells expressing any given canonical 

transcription factor would be more likely to express the cytokine associated with the 

Th subset. For example, TBET-positive cells would be more likely to express IFNG 

than IL13 or IL21, conforming to a traditional Th1 signature.  

 

The hypothesis was true for all three Th subsets. Among GATA3-positive cells, 97% 

expressed IL13 compared to 43% IFNG and 31% IL21 expression. (Note that the 

percentages do not add up to 100, as cells commonly express multiple cytokines at a 

time.) Among TBET-positive cells, 91% expressed IFNG compared to 43% IL21 

and 37% IL13 expression. IL21 expression in BCL6-positive cells was statistically 

greater than IFNG or IL13, but cooperation between TFH canonical genes appeared 

less stringent. Together, these data suggest that there exists cooperation among 

canonical genes associated with functional Th subsets at the single cell level.  

 

In order to assess the polyfunctionality of PfSPZ-specific CD4+ T cells as a function 

of vaccination, the coexpression of all genes (not just those differentially expressed) 

was assessed in both cohorts in a two-way hierarchal clustering analysis. Overall, 

there was evidence of greater co-expression and structure in CD4+ T cells from 
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infection controls (Figure 4.8-B) compared to vaccinated subjects (Figure 4.8-C). 

In both cohorts, the groups of genes with the greatest positive cooperation were 

CCR5 and CCL5/RANTES; and IL2RA and TNFRSF14/OX40, and 

TNFRSF9/CD137. However, there is little evidence to suggest that overall patterns 

of gene cooperation distinguish the infection and vaccinated cohort.  

  



 135 

 

Figure 4.8 Heterogeneity of PfSPZ-specific CD4+ T cells 

(A) Coexpression of canonical Th cytokines (IL21, IFNG, IL13) and transcription 
factors (BCL6, TBET, GATA3) for all subjects. Y axis displays proportion of cells 
that discretely express any gene. 95% confidence intervals. (B) Correlation matrix 
for the infection control and (C) vaccinated cohort. Green indicates gene pairs where 
the difference between infection controls vs. vaccination is significantly greater than 
0.05 and purple indicates gene pairs where the difference between infection controls 
vs. vaccination is significantly less than -0.05%. 
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4.2.6 Gene signatures associated with protection following vaccination  

 

The transcriptomic profiles of CD4+ T cells from vaccinated subjects were assessed 

in order to determine if T cell quality prior to challenge was associated with 

protection. Note that in this clinical study, there were only 10 protected versus 2 

unprotected vaccinated subjects with CD154 responses above the threshold for 

Fluidigm analysis. 

 

Twelve genes were differentially expressed (p<0.001 and fold-change >2) between 

protected and unprotected vaccinees prior to challenge (Figure 4.9-A and B). 10/12 

genes were enriched in nonprotected subjects, including RORA, a promoter of Th17 

differentiation (296); IL4R, a receptor responsible for IL-4- and IL-13-mediated Th2 

differentiation (297, 298), and a number of activation markers such as 

TNFRSF9/CD137, IL2RA, CD48/BLAST. Of note, IL21 was exclusively expressed 

in protected subjects prior to challenge.  

 

As there were only two unprotected subjects and twelve differentially expressed 

genes, there was not sufficient power to perform single-cell hierarchal clustering. 

Instead, coexpression analysis of all genes (not just those differentially expressed) at 

the subject level was performed in order to understand networks of genes that 

characterized the protected cohort. Coexpression of HLADRA and TRAT1, as well as 

coexpression of IL21 with any marker best distinguished between the two cohorts 

(Figure 4.9-C). Furthermore, IL21 expression at the single-cell level in the 

protected cohort was not driven by any individual subject. Among all genes, IL21 
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expression was correlated at a statistically significant level (spearman rank 

correlation: ρ > 0.25 and p<0.001) with ICOS, CTLA4, and CXCR3.  

 

In order to understand the relevance of key CD4+ T cell differentiation pathways, 

GSEA was performed, using modules previously described in Table 4.2. The TFH 

gene set is enriched in the protected vs. unprotected cohort (|Z-score| = 10.0), while 

other modules were not significantly different between the two cohorts (Figure 

4.10-A). Among IL21-positive cells, a plurality discretely expressed either BCL6 

(41%) or TBET (34%), with marginal expression of the remaining canonical 

transcription factors (GATA3 15%, FOXP3 4%, and RORC 12%). There was not 

sufficient power for second-order correlations at the single cell level (i.e. 

coexpression of BCL6 and TBET in a single cell).  

 

IL21 is required for efficient development of TFH via the upregulation of BCL-6 

(299-301) and subsequent affinity maturation of B cells in the germinal center (300, 

302, 303). Therefore, increased IL21 expression may reflect enhanced humoral 

responses. Accordingly, the subject-level median gene expression of IL21 

significantly correlated (spearman rank correlation: ρ = 0.69, p < 0.001) with 

antibodies titers against the circumsporozoite protein (CSP), the major surface 

protein on PfSPZ (Figure 4.10-B). 
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Figure 4.9 Gene signatures of vaccinated and protected vs. unprotected 
subjects 

(A) Linear discriminant analysis and (B) violin plots of genes identified as 
differentially expressed between protected and non-protected subjects within the 
vaccinated cohort (p<0.001 and fold-change >2). (C) Subject-level average 
expression of pairs of genes discriminating between protection and non-protection in 
vaccinated subjects using penalized logistic regression.  
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Figure 4.10 IL21 expression and humoral immunity 

(A) GSEA with Th modules described in Table 4.2 showing enrichment in protected 
vs. unprotected subjects (p<0.01). Positive Z-scores indicate enrichment in protected 
vaccinated subjects. Negative Z-scores indicate enrichment in unprotected 
vaccinated subjects. Composite Z-score with 95% confidence intervals. (B) 
Correlation between IL21 subject-level average gene expression detected by 
Fluidigm assay and PfCSP-specific antibody titers measured by ELISA. 
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4.3 Discussion 

 

The main aims of this chapter were to assess the single-cell transcriptomic profiles 

of (1) vaccination with a live whole parasite vaccination versus malaria infection 

and (2) protected versus unprotected vaccinated subjects prior to challenge. First, 

single-cell gene expression profiles from the three analyzed cohorts 

(vaccinated/protected, vaccinated/unprotected and infection controls) are broadly 

distinct by unsupervised dimensionality reduction analysis. These data supported 

later studies that characterized this phenotype by differential expression of 

individual genes or sets of genes. Second, hierarchal clustering and modular analysis 

suggested the CHMI was predominately characterized by T cell activation, TFH 

differentiation, and homing to the liver compared to vaccination alone. Finally, 

while there was limited power for correlates of protection analysis, initial data 

demonstrated enriched IL21 expression in protected subjects prior to challenge. 

Furthermore, IL21 gene expression on per-subject basis correlated with antibodies 

against the immunodominant CS protein, suggesting an important role for 

circulating TFH CD4+ T cells in protection.  

 

It is important to note that downstream analysis was not possible for all vaccinated 

subjects, as three subjects had CD4+ T cell responses that were not significantly 

different from the negative control. Note that these three subjects had the lowest 

CD4+ T cell responses as previously assessed by multiparameter flow cytometry. 

However, by removing these three subjects, the magnitude of the remaining CD154 

responses did not differ across the three cohorts. From optimization data in Chapter 

3, there was an initial concern that the CD154 responses by flow cytometry would 
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vary dramatically and affect interpretation of downstream transcriptomics (see 

Section 3.5 for more details). Thus, while this filtering step removed 1/3 unprotected 

and 2/12 protected subjects, it ensured that transcriptional profiles reflected the 

quality of CD4+ T cell responses, and not the proportion of background CD154+ 

cells.  

 

Not surprisingly, the global transcriptomic differences between the infection and 

vaccination cohorts was much greater than within the vaccination cohort when 

comparing protected and unprotected subjects prior to challenge. Overall, the 

infection controls had a more homogeneous gene expression profile by single-cell 

hierarchal clustering, in line with relatively consistent primary immune responses to 

malaria under control conditions (22). Increased expression of activation markers 

coupled with enrichment of previously described modules associated with T cell 

activation and differentiation likely reflects an increased antigen load present in the 

liver following CHMI vs. PfSPZ immunization (304). Alternatively, PfSPZ 

vaccination alone and CHMI both induce multi-stage immune responses that target 

both liver and blood stage antigens. However, there is a likely a different repertoire 

of antigen specificities, potentially skewing a direct comparison of the two groups.    

 

Curated modules based on literature describing the molecular mechanisms of CD4+ 

T cell differentiation pathways provided a more nuanced interpretation of the data. 

The enrichment of modules reflecting homing to the liver and TFH differentiation 

were characterized by significant upregulation of the individual genes in the 

infection controls, or no difference between the two cohorts. This TFH phenotype 

may reflect the role of antibody-mediated protection in natural acquired immunity 
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(31, 100, 305). Furthermore, exposure to the sporozoites for the first time in 

infection controls compared to subjects vaccinated with the attenuated parasite may 

explain the enrichment of genes associated with homing to the liver. The Th1 

module was overall enriched in the vaccinated cohort, but the signature was less 

significant. A Th1 phenotype in vaccinated subjects versus infection controls may 

reflect the importance of CD4+ T cell help for CD8+ T cells in PfSPZ-mediated 

immunity (176, 306), but again this finding is less clear.  

 

Correlates of protection analysis was limited in this study, as there were only two 

unprotected subjects with sufficient CD154 responses for downstream single cell 

transcriptomics. Analysis was overall restricted to differential gene expression 

comparisons at the subject or cohort level, as well as first-order coexpression 

analysis. IL21 was one of two genes enriched in the protected cohort, and discrete 

IL21 expression was undetectable in the two unprotected subjects. While IL21 

protein is produced by many different subsets of CD4+ T cells (303, 307-309), a 

positive correlation with CSP antibodies suggests that the IL21 gene expression 

reflects circulating TFH cells. Predominant expression of BCL and TBET in IL21-

producing cells further suggests that such cells are TFH or transitional Th1/TFH 

CD4+ T cells (310). Increased power, specifically a greater number of vaccinated 

subjects or a larger proportion of unprotected vaccinated subjects, will be necessary 

in order to support this hypothesis.    

 

Overall, this characterization of the PfSPZ-specific cellular immune response should 

advance our understanding of the role of CD4+ T cells against human malaria 

infection as well as delineate the striking heterogeneity of CD4+ T cell responses 
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following vaccination with a whole parasite. The main future goals will be to 

substantiate these findings in a larger clinical trial using Fluidigm anlaysis and other 

assays to assess the molecular phenotype at the protein level.  
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5. VRC 314- PfSPZ Vaccine Trial #2   

5.1 Introduction  

 

The VRC312 study demonstrated that IV administration of the PfSPZ Vaccine was 

safe, immunogenic and induced high-level protection when volunteers were 

challenged three weeks following the final immunization. Six out of six subjects 

who received five doses of 1.35x105 PfSPZ and three out of nine subjects who 

received four doses were protected (116). However, protection was short-lived. Six 

volunteers (three from each vaccination group) who were protected upon the first 

CHMI were rechallenged 21 weeks following the final immunization. Only 2/6 were 

protected, one from each vaccination group (Overall vaccine efficacy (VE) = 33%, p 

=0.2273). As a result, the PfSPZ Vaccine did not meet the efficacy standards of 

greater than 80% for a year (111, 204).   

 

As no long-term protection was afforded by 1.35x105 PfSPZ, a follow-up study 

(VRC314) was designed to test if a higher dose (2.7x105 PfSPZ) administered IV 

was safe and could confer durable protection (205) (Figure 5.1). Additionally, as a 

deployable malaria vaccine would likely require as few immunizations as possible, 

the study assessed how the number of doses affected protective efficacy. VRC314 

was conducted over two study sites due to the large number of vaccine recipients 

(Vaccine Research Center, NIAID, NIH and the University of Maryland, Baltimore; 

both USA).   

 

  



 146 

 
 
Figure 5.1 VRC314 clinical study 

This figure is taken from reference (205). The vaccination schedule, PfSPZ dose and 
route for all subjects immunized under the VRC314 Clinical study. Note that not all 
subjects included in this table were assessed by Fluidigm analysis.  
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First, the immunogenecity and protective efficacy of IV administration of PfSPZ 

given by varying doses and schedules were assessed. Group 3 served as a positive 

control for protection in the study, by repeating the vaccination regimen assessed in 

VRC312. Non-human primate (NHP) data acquired after the start of the study 

suggested that a higher dose would increase protection (data not published). As a 

result, subjects in Group 3 received four doses of 1.35x105 PfSPZ followed by a 

fifth dose of 4.5 x105 PfSPZ.) Subjects in Groups 1 and 4 received three or four 

doses of 2.7 x 105 PfSPZ, respectively. Cellular immunogenecity was assessed by 

flow cytometry by in vitro stimulation with PfSPZ and PfRBC two weeks following 

the final immunization in all groups. Immunization induced high-level antibody and 

CD4+ T cell responses. CD8+ T cell responses to PfSPZ and PfRBC were low to 

undetectable in all groups.  

 

Groups 1, 3, and 4 were challenged three weeks following the final immunization. 

In Group 3, 8/12 were protected (VE = 62%, p=0.025). In subjects who received 

three or four doses of 2.7x105, 3/9 (VE = 24%, p=0.335) and 7/9 (VE = 73%, 

p=0.035) were protected, respectively. Immune correlates were assessed from 

samples isolated two weeks following the final immunization. Neither the 

magnitude nor quality of CD4+ or CD8+ T cells correlated with protection. PfSPZ-

specific antibody levels assessed by automated immunofluorescence assays (aIFA) 

correlated with outcome (p=0.0098), but waned substantially after 59 weeks.  

 

Given the administrative hurdles for the deployment of a malaria vaccine 

administered IV, this study also assessed the protective efficacy of the PfSPZ 

Vaccine administered by the IM administration of a much higher dose. Subjects in 
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Group 2 received four doses of 2.2x106 PfSPZ on the same schedule as Group 4. 

Two weeks following the final immunization, antibody levels and CD4+ T cell 

responses in Group 2 were significantly lower compared to Groups 1, 3, and 4 

(PfSPZ administered IV). Following CHMI, 3/8 subjects were protected (VE = 

29%). These data suggest that PfSPZ administered IM at 8-fold higher dose was less 

efficient at inducing protective immunity compared to IV.  

 

Finally, the third important aim in this study was to assess durable immunity of the 

PfSPZ Vaccine administered by the IV route. Subjects in Group 5 received four 

doses of 2.7 x 105 PfSPZ (the same dose and schedule as Group 4) and were 

challenged 21-24 weeks following the final immunization. Following CHMI, 6/11 

subjects were protected (VE = 55%, p=0.0373).  

 
The increased number of vaccinated subjects in VRC314 provided greater statistical 

power for in-depth analysis of PfSPZ-specific CD4+ T cells compared to Chapter 4. 

Furthermore, it also provided an opportunity to test hypotheses generated in the 

previous chapter concerning possible correlates and/or biomarkers of PfSPZ-

induced protection. Thus, the aims of this chapter are: (1) compare molecular 

signatures of PfSPZ-specific CD4+ T cell responses induced by different vaccination 

regimens; (2) characterize single-cell transcriptional profile of such responses from 

protected vs. unprotected vaccinated subjects; (3) test hypothesis that circulating 

CD4+ TFH cells are associated with protection; and (4) assess multi-order 

combinations of gene expression in order to explore cell-intrinsic gene networks. 

 



 149 

5.2 Results 

5.2.1 Isolation of PfSPZ-specific CD4+ T cells from subjects vaccinated with 

varying doses under clinical study VRC314   

 

The first aim of this chapter was to isolate individual PfSPZ-specific CD4+ T cells 

from vaccinated subjects who were assessed for short-term protection in VRC314 

(205) (Figure 5.1). Responses were assessed from PBMCs isolated two weeks 

following the final immunization (one week prior to challenge). Analysis of short-

term protection consisted of three cohorts: ten subjects who received four doses of 

1.35 × 105 followed by a fifth dose of 4.5 × 105 PfSPZ (VRC314 Group 3), seven 

subjects who received three doses of 2.7 × 105 PfSPZ (Group 1), and nine subjects 

who received four doses of 2.7 × 105 PfSPZ (Group 4).  

    

In addition, ten subjects from Group 5 were analyzed in order to explore potential 

correlates for long-term protection. These subjects received four doses of 2.7 × 105 

PfSPZ as in Group 4, but underwent CHMI 21-25 weeks following the final 

immunization. Responses were assessed from PBMCs isolated two weeks following 

the final immunization, as above. All other subjects in these four groups (1, 3, 4, and 

5) had low to undetectable CD4+ T cell responses as determined by cytokine 

production of IFN-γ, IL-2 and TNF-α in an independent experiment, and as such 

were excluded from analysis prior to assessment of CD154 responses. Vaccination 

groups 2, 6, and 7 were not examined, as either overall T cell responses were too 

low or samples were not available at the time of analysis.  
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Overall CD4+ T cell responses defined by coexpression of CD154 and CD69 protein 

were assessed by flow cytometry for each cohort, in the same manner as described 

in Chapters 3 and 4 (Figure 5.2). Six subjects across all vaccine groups had 

responses that were below the threshold for downstream Fluidigm analysis. 

Following exclusion of these subjects, the total magnitude of CD69+CD154+ CD4+ 

T cells was similar across all groups with the exception of Group 3, which had 

significantly lower responses. This pattern is similar to that seen in independent 

experiments measuring CD4+ T cell responses as assessed by cytokine production of 

IFN-γ, IL-2 and TNF-α from the same subjects (205). In total, 26 subjects from 

VRC314 were assessed by Fluidigm (Table 5.1), over twice the number of 

vaccinated subjects analyzed in the previous chapter.  

 

Quantitative gene expression was acquired as described in the previous chapter, 

using Fluidigm 96.96 Dynamic Arrays with the same gene panel, plate layout and 

quality control measures. Expression of 84 genes from 2,128 single cells was 

retained for downstream analysis. As previously discussed, gene expression was not 

normalized as part of the multistep data filtering process. Of note, CD154 mRNA 

levels were slightly higher in Group 1 compared to other cohorts (Figure 5.3). 

However, CD69 and GAPDH mRNA levels were similar across all groups, 

suggesting that there was no overall disparity among internal controls. Overall, the 

data quality was similar to the previous chapter in terms of the percentage of genes 

and cells retained downstream of data acquisition (data not shown).  
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Figure 5.2 PfSPZ-specific CD4+ T cell responses 

 
PBMCs isolated from samples at two weeks following the final vaccination were 
stimulated in vitro with 135,000 PfSPZ for 15 hours. The frequency of 
CD69+CD154+ cells is represented as a percentage of the memory CD4+ T cell 
population as assessed by flow cytometry. Subjects with responses below the limit 
for Fluidigm analysis are shaded. Mean +/ standard error of the mean (SEM).    
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Table 5.1 VRC314 subjects analyzed by Fluidigm 

All subjects with CD4+ T cell responses above limit of detection for Fluidigm 
analysis organized by vaccination group and protection outcome. †Subjects in group 
3 received four doses of 1.35x105 PfSPZ followed by a fifth dose of 4.5 × 105 

PfSPZ.  
 
 
 
 
 

 
 
 

Figure 5.3 Controls for gene expression analysis 

Single-cell gene expression from subjects across all four vaccination groups for 
CD154, CD69, and GAPDH. Et values are shown on the y-axis. Median +/- IQR.  
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4 7/9 5/6
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5.2.2 Global transcriptomic profiles of PfSPZ-specific CD4+ T cells from 

vaccinated subjects across different vaccination regimens  

 

The transcriptomic profile of CD4+ T cells induced by the vaccination regimen 

similar to that assessed in VRC312 (Group 3) was first compared to the shortened, 

high-dose regimen first assessed in VRC314 (Groups 4 and 5). The goal was to 

determine if there was any difference in the quality and phenotype of cellular 

immunity as a function of vaccination dose and schedule. Subjects from Groups 4 

and 5 are combined in this analysis, as both cohorts received four doses of 2.7 x 105 

with the only difference being the time of challenge. All samples were isolated two 

weeks after the final vaccination, which is reflective of peak immunogenecity. Note 

that both cohorts (Group 3 vs. 4/5) exhibited similar protective short-term efficacy, 

but only four doses of 2.7 × 105 PfSPZ conferred durable protection. As previously 

described, differentially expressed genes are defined as those that exhibited a 

statistically significant effect due to vaccination (p < 0.01) based on a likelihood 

ratio test of the combined discrete and continuous model components, and which 

exhibited at least a two-fold change in expression.  

 

Thirteen genes were differentially expressed between the two cohorts, of which 

eleven were enriched in subjects who received the shortened, high-dose vaccination 

regimen (Figure 5.4-A). TBET and IFNG were the only two genes that were 

significantly enriched in Group 3. The top five upregulated genes in the shortened, 

high-dose vaccination regimen as a factor of fold-change in the median value were 

TRAT1/TRIM, DPP4/CD26, CCR7, IL16, and RUNX3, in decreasing order of fold-

change. 
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Linear discriminant analysis (LDA) further suggested that while some set of 

variables could maximize separation of the two vaccination groups, this was mostly 

characterized by a small set of genes that were upregulated in the shortened, high 

dose vaccination group (Figure 5.4-B). Furthermore, misclassification of individual 

cells into the two vaccination groups was high (38.4%). The gene component that 

was most associated with LD1 was TRAT1/TRIM, which is involved in TCR 

signaling during the antiviral response in CD4+ T cells (311). Of note, TBET and 

IFNG were mostly associated with LD2, which as a whole added very little 

information in maximizing separation within the dataset compared to LD1. 

  

In order to assess cooperation among differentially expressed genes, unsupervised 

single-cell hierarchal clustering was examined (Figure 5.4-C). This analysis was 

performed without regard for vaccination group, as LDA previously determined that 

the misclassification rate was high. In addition, single cell coexpression of all 

possible two-way combinations was calculated to account for both negative and 

positive gene associations (Figure 5.4-D). TRAT1/TRIM, the gene component that 

drove the greatest separation between the two groups, clustered positively with IL16 

and CXCR4. The two genes enriched in Group 3 (TBET and IFNG) clustered 

positively together among all differentially expressed genes, but the association was 

relatively weak (spearman rank correlation: ρ = 0.21 and p<0.01). Interestingly, the 

genes that displayed the most significant cooperation (spearman rank correlation: |ρ| 

> 0.25 and p<0.001) were IL2RB/DPP4, FAS/DPP4, as well as a negative 

correlation between TRAT1/TRIM and IFNG.  
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Figure 5.4 Fluidigm analysis of vaccine immunogenecity 

Transcriptional signatures of subjects which received either four doses of 2.7x105 
PfSPZ (Group 4/5) or four doses of 1.35 x105 followed by one dose of 4.5x105 
PfSPZ (Group 3). (A) List of differentially expressed genes (p< 0.001 and fold-
change >2). (B) Linear discriminant analysis and (C) unsupervised two-way 
heirarchical clustering and (D) pair-wise correlations of single-cell gene expression 
restricted to those genes which are differentially expressed. 
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5.2.3 Gene signatures associated with short-term protection following vaccination 

 

In order to assess if T cell quality prior to challenge was associated with short-term 

protection, the gene expression profiles of CD4+ T cells were assessed from all 

vaccinated subjects in Groups 1, 3, and 4. Note that the overall protective efficacy is 

lower in Group 1 (24% VE) compared to Groups 3 and 4 (62% and 73%, 

respectively). Group 5 was examined separately, as these subjects were challenged 

21-24 weeks following the final immunization. Analysis was first performed by 

combining all of the vaccination groups (1, 3, and 4) in order to maximize statistical 

power, and then assessed within each group.  

 

Twenty-five genes were differentially expressed (p<0.01 and fold-change >2) 

between all protected and unprotected vaccinated subjects prior to challenge (Figure 

5.5-A and B). 8/25 differentially expressed genes were enriched in the protected 

cohort, which was broadly composed of cytokines IFNG, IL21, IL2, and IL13, as 

well as chemokine receptors CCR5, IL2RA/CD25, and IL6R/CD126. Of note, the 

finding of enriched IL21 gene expression in protected subjects was repeated, but 

expression was not exclusive as seen in the VRC312 study. The top five enriched 

genes in the unprotected cohort were CD27, LEF1, STAT3, FOXP1, and 

TRAT1/TRIM, in order of decreasing fold-change. Increased expression of IL4R, 

IL7R, IL16 and RORA in unprotected subjects was seen in both VRC312 and 

VRC314 studies (Chapter 4.3).  

 

By contrast, only 6/84 analyzed genes were differentially expressed between 

protected and unprotected subjects in Group 5, which assessed correlates of long-
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term protection (Figure 5.5-C). All of these genes were upregulated in the 

unprotected cohort. Given the weak evidence suggesting that gene expression 

profiles of CD4+ T cells isolated at two weeks following the final immunization 

would lend insight into long-term protection, no further analysis was performed for 

Group 5. All remaining analysis was restricted to Groups 1, 3 and 4.    

 

Multivariate analysis was performed in order to determine if sets of differentially 

expressed genes were sufficient to characterize the transcriptional profile of 

protected vs. unprotected subjects assessed for short-term protection. Single-cell 

unsupervised hierarchal clustering alone was unable to clearly distinguish between 

the two cohorts (Figure 5.5-D), suggesting that further analysis would be necessary 

to dissect a signature associated with protection. However, there was evidence of 

cell-intrinsic coordination (Figure 5.5-E and F). The cytokines that were enriched in 

protected subjects (IL13, IL2, IL21, IFNG) clustered together, and of which 

coexpression of IL21 and IL2 was most significant (spearman rank correlation: ρ = 

0.54 and p<0.001). Among genes enriched in unprotected subjects, coexpression of 

CXCR4/IL16 and CD27/CD84/LEF1 were tightly coordinated based on cluster and 

correlation analysis (|ρ| > 0.25 and p<0.001). 

 

The set of differentially expressed genes described above was then assessed in each 

vaccination group separately. The classification efficiency for each group was then 

calculated based on the model for protection generated by the set of differentially 

expressed genes above (Figure 5.6). The Receiver Operating Characteristic (ROC) 

curves measure the rate of true positives against the false positives at various 

significance thresholds, reflecting the sensitivity and specificity of the model. The 
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higher the curve is from the diagonal, the more accurate the model. The area under 

the ROC curve (AUC) was greatest for Group 4 (AUC = 0.95), where subjects 

received four doses of 2.7 x 105 PfSPZ. Accuracy was significantly lower in Groups 

1 (AUC = 0.91) and 3 (AUC = 0.88). With this model, misclassification rates for 

Group 1, 3, and 4 were 14.9%, 22.1% and 11.6%, respectively. 
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Figure 5.5 Fluidigm analysis of short-term protection 

(A) List of differentially expressed genes (p< 0.001 and fold-change >2) between 
protected vs. unprotected subjects for cohorts that were assessed for short-term 
protection (Group 1,3, and 4) and (B) associated linear discriminant plot. (C) 
Differentially expressed genes between protected vs. unprotected subjects assessed 
for durable protective immunity (Group 5 only). (D) Unsupervised two-way 
clustering, (E) pair-wise correlations of single-cell gene expression and (F) principal 
components analysis restricted to those genes which are differentially expressed in 
subjects assessed for short-term protection. 
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Figure 5.6 Accuracy of protective model by vaccination group 

Wide linear discriminant analysis assessing the percentage single cells misclassified 
into each designated cohort. Circles represent the normal 50% contours. Associated 
Receiver Operating Characteristic (ROC) curves are shown for each vaccination 
group and plot the rate of true positives (sensitivity) against the false positives (1-
specificity) at various significance thresholds.   
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5.2.4 Further investigation of IL21-expressing CD4+ T cells    

 

As enriched IL21 expression in protected vs. unprotected prior to challenge was 

demonstrated in both VRC312 and VRC314, further analysis of this cohort of cells 

was performed. The subject-level median gene expression of IL21 in this study 

correlated (spearman rank correlation: ρ = 0.39, βprotection = 1.52, p = 0.014) with 

antibodies titers against the circumsporozoite protein (CSP), the major surface 

protein on PfSPZ (Figure 5.7-A). Increased IL21 expression was most significantly 

associated with protection in vaccination Group 1 and 4, which received three and 

four doses of 2.7x105 PfSPZ vaccine, respectively (Figure 5.7-B). Among all genes, 

IL21 expression was correlated at a statistically significant level (spearman rank 

correlation: ρ > 0.25 and p<0.001) with ICOS, IFNG, and IL2.    

   

To further understand the function of IL21-expressing CD4+ T cells induced by 

PfSPZ vaccination, the frequency of cells in this subset that expressed different 

combinations of transcription factors was analyzed at the single cell level. Analysis 

was restricted to six canonical transcription factors that have been reported to drive 

differentiation of key CD4 T cell subsets (85, 87). As an internal control, 

coexpression of transcription factors among all cells, not just those that expressed 

IL21, was also examined (Figure 5.8).  

  

IL21-expressing cells predominantly coexpressed BCL6, TBET, and GATA3, alone 

or in combination (Table 5.2). TBET and BCL6 were the most frequently co-

expressed 2nd order combination (10.4%), followed by BCL6 and GATA (8.4%), 

then GATA3 and BCL6 (4.8%). The most commonly expressed single transcription 
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factor was BCL6 (12%), while 6.0% expressed all three markers. None of the IL21-

positive cells expressed FOXP3 or RORC, compared to 18.1% total discrete 

expression in the overall CD4+ T cell population (Figure 5.8). Of note, 

approximately 20% of all IL21-positive T cells did not discretely express any one of 

the five transcription factors, a similar proportion compared to the total population.  
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Figure 5.7 IL21 gene expression and PfCSP antibodies 

The mean IL21 gene expression at the subject-level is plotted against the PfSPZ 
ELISA. (B) IL21 gene expression at the single-cell broken by vaccination group. 
*** p<0.0001, * p <0.01 
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Figure 5.8 Canonical Th transcriptional factors 

Single cell hierarchal clustering of five key transcription factors are shown for all 
single cells isolated from vaccination groups 1,3, and 4.  
 
 
 

 
Table 5.2 Analysis of Th transcription factors for IL21+ CD4+ T cells 

Proportion of all possible combinations of the five transcription factors at the single 
cell level. Upper and lower 95% Confidence Intervals are given.    
  

TBX21, TBET

GATA3
RORC
FOXP3

BCL6

TBET BCL6 RORC GATA3 FOXP3 ! 
Lower 95% 

CI 
Upper 95% 

CI 
- - - - - 0.2329317 0.1804293 0.2854342 
- + - - - 0.1204819 0.0800493 0.1609145 
+ + - - - 0.1044177 0.0664348 0.1424006 
- - - +  - 0.0843373 0.0498209 0.1188538 
- + - + - 0.0843373 0.0498209 0.1188538 
+ - - - - 0.0803213 0.0465629 0.1140797 
+ + - + - 0.0602410 0.0306879 0.0897940 
+ - - + - 0.0481928 0.0215908 0.0747947 
- - + - - 0.0321285 0.0102256 0.0540315 
- - - - + 0.0240964 0.0050493 0.0431434 
- + + - - 0.0160643 0.0004485 0.0316800 
+ - + - - 0.0120482 0.0000000 0.0255994 
- - + + - 0.0120482 0.0000000 0.0255994 
+ + + + - 0.0120482 0.0000000 0.0255994 
+ + - - + 0.0120482 0.0000000 0.0255994 
+ + + - - 0.0080321 0.0000000 0.0191191 
+ - + + - 0.0080321 0.0000000 0.0191191 
+ - - - + 0.0080321 0.0000000 0.0191191 
- + - - + 0.0080321 0.0000000 0.0191191 
- - - + + 0.0080321 0.0000000 0.0191191 
+ + + - + 0.0040161 0.0000000 0.0118716 
+ - - + + 0.0040161 0.0000000 0.0118716 
- + - + + 0.0040161 0.0000000 0.0118716 
+ + - + + 0.0040161 0.0000000 0.0118716 
+ - + + + 0.0040161 0.0000000 0.0118716 
+ + + + + 0.0040161 0.0000000 0.0118716 
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5.2.5 Expanded modular analysis of protected vs. unprotected subjects   

 

In order to understand the relevance of key CD4+ T cell differentiation pathways, 

gene set enrichment analysis (GSEA) was performed (Figure 5.9), using modules 

previously described in Table 4.2. Additional modules were developed based on 

categories in previously described blood transcriptional modules, such as T cell 

activation, maturation, apoptosis, and chemokine receptors (270, 292). However, the 

incorporated genes were curated to better reflect CD4+ T cell-intrinsic mechanisms 

reported in the literature (85, 87). In total, thirteen modules were assessed. Analysis 

was performed as described in Section 4.2.4. Briefly, the average effect of all genes 

in a set was calculated as a Z-score, taking into account both the discrete and 

continuous components of mRNA expression. Based on evidence that the accuracy 

of the protective transcriptional model varied across vaccination groups (Figure 

5.6), modular analysis was performed for each group separately.  

  

Overall, the absolute values of Z-scores in Group 3 were much lower compared to 

those in Groups 1 and 4 (Figure 5.9). In Group 3, only 2/13 modules displayed a 

significant effect due to protection outcome (p<0.01): chemokines and chemokine 

receptors. Both modules were only slightly enriched in protected subjects (|Z-score| 

<5). 

 

In contrast, 8/13 and 6/13 modules displayed a significant protective effect in 

Groups 1 and 4, respectively. Two of these modules displayed a common significant 

effect in both groups: “Th1” and “Memory.” The remaining modules with a 
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significant protective effect in one vaccination group were not significant in the 

other groups. 

 

The “Th1” module was enriched in protected subjects prior to challenge in both 

Groups 1 (Z-score = 5.62) and 4 (Z-score = 3.23). This effect was predominately 

driven by increased expression of IFNG and IL2 in the protected cohort. Overall 

expression of the remaining makers in the “Th1” module was not increased in the 

protected cohort. However, IFNG expression weakly correlated with TBET 

(spearman rank correlation: ρ = 0.19 and p< 0.001) and TNF (spearman rank 

correlation: ρ = 0.24 and p< 0.001).  

 

Additionally, the module associated with T cell memory was commonly enriched in 

the unprotected subjects in both Groups 1 (Z-score = -4.30) and 4 (Z-score = -5.18). 

This effect was characterized by overall increased expression of CD27, CD28 and 

IL7R, three out of the four markers in this module.  

 

Given the positive correlation of subject-level IL21 expression and antibody levels 

demonstrated in both clinical studies VRC312 and VRC314, it was hypothesized 

that the TFH module would be enriched in protected subjects. However, there was 

no significant effect due to the protection outcome (|Z-score| < 1 in all vaccination 

groups). Although overall expression of IL21 was significantly increased in 

protected subjects, CXCR5 was significantly enriched in unprotected subjects with a 

greater median fold-change (Figure 5.5-A). Of note, CXCR5 expression appeared 

discoordinate with IL21 (spearman rank correlation: ρ = 0.0045 and p=0.89). There 

was no difference in expression of the remaining markers in this module. 
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Figure 5.9 Modular analysis by vaccination group 

Enrichment of curated modules designed for analysis of CD4 T cells. Genes for each 
of the modules not previously described in Table 4.2 are listed in associated table. 
FDR adjusted p-value of less than 1%.  
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5.2.6 Coexpression analysis of cytokines associated with canonical Th subsets as 

function of protection outcome 

 
As protein coexpression of multiple cytokines has been shown to be important in a 

number of settings (312, 313), the protective effect of different combinations of 

cytokines at the transcriptional level was assessed here. Analysis was restricted to 

cytokines that are reflective of canonical Th subsets: IFNG, IL2, TNF, IL10, IL21, 

and IL17. In order to maximize power for calculations of third and fourth-order gene 

combinations, all vaccination groups challenged three weeks following the final 

vaccination were combined in this analysis (Groups 1, 3, and 4). Discrete expression 

of any gene is defined as Et > 13, approximately 1 mRNA molecule. 

 

First, unsupervised hierarchal clustering of all cytokines independent of protection 

outcome was performed (Figure 5.10-A). Overall expression of cytokines was 

assessed, in addition to second and third-order combinations. Over 70% of all CD4+ 

T cells discretely expressed any one of the six cytokines, most commonly TNF 

(35.5%), IFNG (34.6%), IL2 (29.8%), and IL21 (15.5%). Expression of these four 

cytokines was particularly linked among “high producers.” Accordingly, among 

cells that discretely expressed any one cytokine above the median value, 29% 

discretely expressed all four (Figure 5.10-A). The most common second order 

combinations were IL2/TNF, IL2/IFNG, and IL21/IFNG, in decreasing order. 

Interestingly, IL13 expression clustered independently of these four cytokines, 

consistent with the broad Th1 vs. Th2 CD4+ T cell paradigm. Discrete expression of 

IL17 or IL10 was relatively low compared to other cytokines (7.9% total of cells). 

Of note, 21.4% of cells did not express any one of these seven cytokines.   
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In order to assess if cooperation among genes was different between the two 

cohorts, spearman correlations were calculated for every second order combination 

of the seven cytokines. There was no difference in the cooperation of all pairs of 

genes with the exception of increased coordination of IL17 and IL10 in the 

unprotected cohort (Figure 5.10-B). However, this difference was weakly 

significant (p<0.01), as the overall percentage of cells that discretely express either 

of these genes is low (Figure 5.10-A). 
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Figure 5.10 Coexpression of canonical Th cytokines 

(A) Single cell hierarchal clustering of seven key cytokines are shown for all single 
cells isolated from vaccination groups 1, 3, and 4. (B) Pairwise correlations for all 
possible combinations broken up by protection outcome.  
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Finally, the percentage of common combinations of genes was assessed in the 

protected vs. unprotected cohort (Figure 5.11-A). Note that not all possible 

combinations of genes are assessed due to statistical power. IL10 was excluded from 

this analysis, as expression is detected is less than 2% of all cells. Overall, clusters 

were formed in an unsupervised fashion. However, the number of clusters was 

optimized, such that each cluster contained at least 100 single cells. The percentage 

of protected vs. unprotected cells in each cluster was calculated (Figure 5.11-B and 

C).  

 

Among clusters with discrete expression of any one cytokine, cluster 6 was the only 

one with a significant effect due to protection outcome. This cluster was enriched in 

the protected cohort (p<0.001) and consisted of triple-positive IL2+ IFNG+ IL21+ 

CD4+ T cells, in the absence of IL17, TNF and IL13. Of interest, this cluster did not 

consist of the cells that expressed the highest levels of each of these three cytokines. 

Continuous expression of IL2, IFNG, and IL21 was 2-5 logs lower in cluster 6 

compared to cluster 5, which consisted of cells that coexpressed all three cytokines 

in addition to TNF. The largest cluster (2) consisted of CD4+ T cells with no 

expression of any of these genes and was enriched in the unprotected cohort 

(p<0.001).   
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Figure 5.11 Combinations of canonical Th cytokines 

 
(A) Eight combinations of gene with the average Et for each gene for each cluster. 
Et>13 (~1 mRNA molecule) is consider discrete gene expression. (B) Percentage of 
cells from protected vs. unprotected cells for each of the clusters. Width is 
proportional to the number of cells in each cohort. Note that cluster 8 is too small to 
be shown. (C) Significance of any of the eight combinations with protection. 
Comparison of response proportions use a normal approximation to the binomial. 
Blue box represent the decision limits of significance for each cluster based on 
number of cells. Red dot indicates that the limit for that cluster is exceeded (α = 
0.05).  
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5.3 Discussion 

 
 

The main aims of this chapter were to (1) further characterize the overall 

transcriptional profile of PfSPZ-specific CD4+ T cells of protected vs. unprotected 

subjects in a larger cohort than previously assessed and (2) test the hypothesis that 

circulating TFH cells were associated with protection. First, there appeared to be no 

substantial difference in the quality of CD4+ T cells induced by two vaccination 

regimens that induced similar levels of protection, as misclassification rate was 

greater than 30%. Second, IL21-expessing cells were enriched in protected vs. 

unprotected subjects, and predominantly expressed TBET and/or BCL6 among 

canonical transcription factors. As in the previous chapter, IL21 expression on a per-

subject basis positively correlated with PfCSP-specific antibody levels. Third, 

modular analysis revealed association of a “Th1” signature with protection. Upon 

further examination, triple expression of IFNG/IL21/IL2 in the absence of TNF and 

IL17 was significantly increased in protected subjects, among common 

combinations of canonical cytokines. Overall, these data suggest an important role 

of Th1/TFH-like cells in PfSPZ-mediated protection.  

 

In-depth transcriptional analysis was predominantly restricted to correlates of short-

term protection. Misclassification of individual antigen-specific CD4+ T cells was 

high (>30%) when comparing the cohorts that received four doses of 2.7x105 PfSPZ 

vs. four doses of 1.35x105 PfSPZ followed by modified fifth dose. These data are in 

line with previous experiments, which show no difference in the quality of CD4+ T 

cell responses from these groups based on protein expression of IFN-γ, IL-2, and 
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TNF-α (205). Additionally, very few genes were differentially expressed at two 

weeks following the final immunization between protected vs. unprotected in 

subjects who were challenged 21-24 weeks later vs. one week later (6 vs. 25 

differentially expressed genes; Figures 5.5-A and C). These data suggest that the 

quality of CD4+ T cells following vaccination assessed by Fluidigm analysis does 

not necessarily predict durable immunity. Future investigation of correlates for 

durable protective immunity should assess samples within one week prior to 

challenge.  

 

It is interesting to note that the accuracy of the protective model for short-term 

protection was much lower in Group 3 vs. Groups 1 and 4 (Figure 5.6). The level of 

misclassification for a given group did not appear to be tied to vaccine efficacy (VE 

= 62% and 73% for Groups 3 and 4, respectively). One possible explanation is that 

the percentage of non-specific “background” cells was greater in Group 3 compared 

to Groups 1 and 4 because the overall magnitude of CD154 responses was lower 

(Figure 5.2). This could decrease the ability to distinguish between PfSPZ-specific 

cells from protected and unprotected subjects within a given cohort.  

 

The repeated finding of overall enriched IL21 expression and a positive correlation 

between per-subject IL21 expression and PfCSP antibody levels substantiates the 

hypothesis that either circulating TFH or transitional Th1/TFH cells play an 

important role in PfSPZ-mediated protection. Modular analysis, as well as 

coexpression analysis of canonical transcription factors and cytokines provided 

more nuanced information. Even though IL21 expression was increased in protected 

subjects, the TFH module as a whole was not significantly enriched. Notably, IL21 
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was not associated with other TFH markers, in particularly CXCR5, an important 

chemokine marker of circulating TFH cells that promote antibody responses (252, 

314, 315). However, there was enrichment of the Th1 module in the protected 

cohort, as well as triple-positive IL21+IFNG+ IL2+ T cells. Coexpression analysis of 

transcription factors revealed that IL21-expressing cells most commonly expressed 

TBET and/or BCL6.  

 

There are three important ways to interpret these data. First, differential gene 

expression of TFH surface markers in circulating CD4+ T cells does not reflect the 

protein expression, and as such IL21-producing cells express CXCR5 at the protein 

but not mRNA level. However, studies have demonstrated an association between 

the transcriptional signatures of circulating TFH cells compared to those in the 

germinal center (252, 300). Second, PfSPZ-specific IL21+ CD4 T cells are derived 

from a Th1-lineage that can support antibody maturation. Indeed, in P. chabaudi 

infection, IFN- γ+ IL21+ cells are critical for the generation of antibodies that control 

chronic parasitemia, and this cellular subset is predominantly TBET-positive (316, 

317). Third, it is possible that IL21 acts through some other mechanism such as help 

for CD8+ T cells (307). The correlation of IL21 and PfCSP-specific antibodies 

simply reflects independent biomarkers of a successful vaccination response. 

Phenotype characterization of IL21+ CD4+ T cells is difficult, as the sensitivity for 

detection of such responses by flow cytometry is low (318). Instead, ongoing flow 

cytometry studies will characterize the phenotype of IL21-producing cells in 

response to a mitogen stimulation before and after PfSPZ vaccination, particularly 

assessing the overlap of IL21 protein with chemokine markers associated with Th1 

and TFH subsets.  
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It is unclear if CD4+ T cells contribute as a mediator of protection or if the quality 

merely reflects a biomarker of a successful vaccine response. Transcriptional 

analysis in this study was restricted to CD4+ T cells that circulate in the peripheral 

blood. However, liver-resident CD8+ T cells are hypothesized to be necessary and 

sufficient for PfSPZ-mediated durable protection (116, 161).  Cellular immune 

responses in the liver of non-human primates (NHPs) immunized with PfSPZ do not 

correlate with those in the peripheral blood (205). In particular, the frequency of Pf-

specific CD8+ T cells was approximately 100-fold higher in liver than in PBMCs, 

and the majority of IFN- γ producing lymphocytes in the liver were CD8+ T cells. 

Future investigation should assess the quality of CD4+ T cells in the livers of PfSPZ-

immunized NHPs to order to understand how tissue-resident responses reflect those 

in the peripheral blood.   

  

Overall, this characterization of PfSPZ-specific CD4+ T cells in larger, independent 

cohort extends many findings from the previous chapter regarding a gene signature 

associated with protection following vaccination with a whole parasite and 

elucidates cooperative gene networks within multifunctional CD4+ T cells. As CD8+ 

T cells are hypothesized to be critical in protection against liver-stage malaria, an 

important future goal will be to assess such responses with the same platform in a 

setting of vaccine-induced protection. 
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6. ChAd63/MVA ME-TRAP Vaccination  

6.1 Introduction  

 

Chapters 4 and 5 in this thesis have investigated the role of malaria-specific CD4+ in 

protection induced by vaccination with irradiated sporozoites. While CD4+ T cells 

are thought to play a role in protection against liver-stage malaria, CD8+ T cells are 

hypothesized to be critical in the clearance of parasitized hepatocytes (135, 149, 

319). In-depth characterization of such responses induced by vaccination will be 

critical in elucidation of mechanisms underlying protective immunity. However, 

CD8+ T cell responses in PfSPZ-vaccinated subjects are low to undetectable (116, 

205).  

  

Subunit vaccine platforms based on highly potent adenoviruses containing the 

recombinant insert ME-TRAP elicit CD8+ T cell responses of high magnitude in 

mice (159, 320), NHP (222) and humans (223). In particular, heterologous prime-

boost immunization with ChAd63/MVA ME-TRAP is safe, immunogenic, and 

elicits protection in malaria naïve-individuals (153). This immunization induced a 

high proportion of cytokine-producing CD4+ and CD8+ T cells, predominantly 

directed towards TRAP rather than ME. Vaccination induced a total efficacy (sterile 

protection plus delay in time to patency) of 58% (8/14). Monofunctional CD8+ T 

cells expressing IFN-γ, but not IL-2 or TNF-a at the time of challenge correlated 

with protection. Field studies assessing immunogenicity and protective efficacy in 

adults with chronic exposure have also been very encouraging. Vaccination of 



 183 

Kenyan male volunteers elicited TRAP-specific CD8+ T cells and reduced the risk 

of infection by 67% (95% CI 33%-88%) (321).   

 

Detection of newly expressed CD107a (LAMP-1) following in vitro stimulation of 

PBMCs enables isolation of live antigen-specific CD8+ T cells (322). CD107a 

resides in membranes of cytotoxic granules and is rapidly expressed on the surface 

of CD8+ T cells following TCR activation, often concordant with IFN-γ secretion 

(322, 323). Downstream Fluidigm analysis of isolated single cells provides the 

opportunity to dramatically expand the breadth of phenotypic characterization, 

revealing more information about the quality of vaccine-induced CD8+ T cells.  

 

The aims of this chapter are the following: (1) isolate TRAP-specific CD8+ T cells 

following vaccination with ChAd63/MVA ME-TRAP; (2) evaluate the 

heterogeneity and phenotype of the TRAP-specific CD8+ T cell response at the 

single cell level and (3) compare the gene expression profiles of such responses 

from subjects who demonstrated sterile protection, delay to patency or no protection 

following CHMI in order to identify potential correlates of protection.  
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6.2 Results  

6.2.1 Isolation of live TRAP-specific CD8+ T cells from vaccinated subjects 

 

The first aim of this chapter was to isolate antigen-specific CD8+ T cells from 

subjects vaccinated with viral vectors containing ME-TRAP. Subjects selected for 

downstream analysis were pooled from three different clinical trials (Table 6.1 and 

6.2) (153, 219, 268). However, all subjects received one dose of the ChAd63 vector 

containing the ME-TRAP insert, followed by an MVA boost 56 days later. The 

protective efficacy of ChAd63/MVA prime-boost vaccination with ME-TRAP was 

broadly similar across all three trials (Table 6.2).    

 

Overall, fifteen vaccinated subjects who demonstrated sterile protection, a delay to 

patency or no protection were assessed for downstream analysis (n=5 per group). 

For each outcome group, subjects across the three different trials with the highest 

frequencies of IFN-γ+CD8+ T cells at one day prior to challenge (CH-1) were 

selected in order to optimize downstream sorting. It is important to note that a delay 

to patency is defined as a start of treatment greater than 2 times the standard 

deviation in days after the mean time to treatment of the unvaccinated infection 

controls for each specific trial. As such, the minimum number of days to patency 

required for classification of delayed protection may vary slightly across the trials.  
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Table 6.1 ChAd63/MVA ME-TRAP vaccinated subjects assessed by Fluidigm. 

Subjects are grouped by protection outcome with relevant cellular immune 
responses assessed at one day prior to challenge. IFN-γ ELISPOT reponses and the 
frequency of IFN-γ+ cells as a total of the CD3+CD8+ T cell population is measured 
in response to TRAP (T9/96 strain) stimulation.  
 
 
 

 
 

Table 6.2 Vaccination regimen for selected subjects from each trial.  

Protective efficacy reflects the number of subjects who demonstrated sterile 
protection or delay to patency following CHMI. Note that this table does not cover 
all regimens assessed in each trial: only those which were assessed in this analysis. 
IM = intramuscular, ID = intradermally, pfu = particle forming units, vp = viral 
particles. CS = circumsporozoite.  
  

Protection 
Outcome 

Patient ID  Clinical Trial Days to 
Parasitemia 

ELISPOT  IFNγ+/
CD3+CD8+ 
T cells 

Sterilely Protected  009 MAL34 21 858 0.081 

012 MAL34 21 4224 0.226 

049 MAL34 21 5082 0.168 

1324 VAC52 21 1024 0.155 

1378 VAC52 21 2390 0.655 

Delay to 
Parasitemia 

1426 VAC45 14 4970 0.534 

1314 VAC52 17 2924 0.421 

1318 VAC52 16 4628 1.7 

1319 VAC52 17 3018 0.195 

1362 VAC52 14.5 2056 0.286 

Not Protected  1429 VAC45 12.5 3486 0.468 

1431 VAC45 8.5 3372 0.331 

1312 VAC52 13 5284 2.14 

1321 VAC52 12.5 2088 0.789 

1330 VAC52 12.5 3000 0.869 

Clinical 
Trial

Vaccination Regimen Protective
Efficacy 
(sterile, delay)

MAL34 ChAd63 ME-TRAP 5x105 vp IM, followed by MVA ME-TRAP 2 x108 pfu ID 3/14, 5/14 

VAC45 ChAd63 ME-TRAP 5x105 vp IM, followed by MVA ME-TRAP 2 x108 pfu IM 2/15, 5/15

VAC52 Mixture of ChAd63 ME-TRAP 5x105 vp and ChAd63 CS 5x105 vp IM, 
followed by mixture of MVA ME-TRAP 2 x108 pfu and MVA CS 2 x108 pfu IM

3/13, 4/13
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Cellular immune responses were assessed from PBMCs isolated at CH-1 in order to 

explore transcriptional signatures associated with protection. Live CD107a+ memory 

CD8+ T cells were detected following in vitro stimulation with TRAP (T9/96) 

peptide pools (Figure 6.1). Double staining with CD69 did not substantially reduce 

the frequency of background events compared to the matched control sample, and as 

such the marker is not included in the flow cytometry panel (data not shown). As 

previously described, in vitro stimulation was performed in the absence of Golgi 

inhibitors to limit changes in intracellular transport (See Chapter 3.2.2).  

 

CD8+ T cell responses defined by protein expression of CD107a were assessed by 

flow cytometry for all fifteen vaccinated subjects (Figure 6.2). During each sort, a 

positive and negative control for the CD107a assay was included. One vaccinated 

subject who was sterilely protected (Patient ID 009) had a CD8+ T cell response 

below the threshold required for the Fluidigm assay as defined in Chapter 3, and as 

such was excluded from downstream analysis. Of note, this subject had the lowest 

IFN-γ ELISPOT responses and frequency of IFN-γ+CD8+ T cells among all fifteen 

subjects as determined by previous studies (153). After exclusion of this subject, the 

median CD8+ T cell responses in the delayed cohort were significantly lower 

compared to the sterilely protected and nonprotected groups (p<0.05). 
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Figure 6.1 Gating strategy for isolation of live TRAP-specific CD8+ T cells.  

Surface staining by flow cytometry of PBMCs isolated one day prior to challenge is 
shown for a representative vaccinated subject. PBMCs are stimulated in vitro for 18 
hours with TRAP (T9/96 strain) peptide pool in the presence of CD107a antibody 
without Golgi inhibitors. This timepoint correpsonded to the peak CD107a 
expression (data not shown). Memory T cells are defined by differential expression 
of CCR7 and CD45RO. 
  

TRAP T9/96Unstim
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Figure 6.2 CD107+ CD8+ T cell responses.  

Magnitude of TRAP-specific CD107a+ memory CD8+ T cells. Background is 
subtracted. Responses are organized by protection outcome. Subjects with responses 
below the limit for Fluidigm analysis are shaded. Negative and positive controls to 
ensure appropriate CD107a staining were included for each sort. For the negative 
controls, PBMCs from a CMV-seropositive subject were stimulated with CMV 
peptides. For the positive controls, PBMCs from a malaria-naïve subject were 
stimulated with the TRAP (T9/96) peptide pool. Median +/ IQR.  
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Single cell gene expression was acquired using Fluidigm 96.96 Dynamic arrays. Out 

of 96 genes in the previously described panel, seven were altered in order to assess 

for expression of markers more relevant for CD8+ vs. CD4+ T cell function (see 

Chapter 2 for more details). All of the remaining methods for data acquisition and 

filtering were as previously described in Chapters 3-5. Expression of 86 genes from 

1,119 single cells was retained for downstream analysis. Following exclusion of 

statistical outliers and correction for the cellular detection rate (CDR), there was no 

significant difference in the median gene expression of CD8a, CD107a, and 

GAPDH among three cohorts (Figure 6.3-A).  

 

In order to assess the sensitivity of downstream quantitative RT-PCR, mRNA 

expression of markers previously assessed by flow cytometry in evaluation of 

ChAd63/MVA ME-TRAP vaccination was examined (Figure 6.3-B). 96.4% of 

sorted CD107a+CD8+ T cells expressed CD107A by gene expression, serving as an 

internal positive control. Of interest, 87.8% of isolated cells discretely expressed 

IFNG, TNF or IL2. 
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Figure 6.3 Gene expression controls. 

(A) Single-cell gene expression of cells from three examined cohorts for CD107A, 
CD8a and GAPDH following data filtering. (B) Hierarchical clustering of cells from 
all vaccinated subjects for markers previously assessed by flow cytometry.   
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6.2.2 Global characterization of TRAP-specific CD8+ T cells  

 

The first aim of this study was to characterize the phenotype and heterogeneity of 

TRAP-specific CD8+ T cells induced by ChAd63/MVA immunization in greater 

depth. Global expression of single cells from all vaccinated subjects was examined 

independent of protection outcome. 

  

Principal components analysis (PCA) was used to understand the intrapopulation 

variation within the TRAP-specific CD8+ T cell response (Figure 6.4-A). PC1 and 

PC2 accounted for 7.82% and 4.95% of the variance within the data, respectively. 

Moreover, the first fifteen principal components accounted for 38.9% of the 

variation. The components that describe greatest variation within the data included 

genes encoding effector molecules (IFNG, TNFSF10/TRAIL, GRZMB) and 

activation markers (IL2RA/CD25, IL2RB), as well as CD107A.    

 

In order to investigate the cooperation among groups of genes, pair-wise 

correlations of all possible combinations of genes were determined (Figure 6.4-B). 

There was evidence of overall coordination of genes at the single cell level. In 

particular, three main networks of genes emerged, characterized by different 

combinations of activation markers, effector molecules, and chemokine receptors 

(highlighted in black).  

 

As CD8+ T cell-mediated IFN-γ production is hypothesized to be critical in 

protection against liver-stage malaria (135, 150, 319), all genes that significantly 

correlated with IFNG expression were determined (spearman rank correlation: ρ > 
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0.20 and p<0.001; Figure 6.4-C). IFNG directly correlated with expression of a 

number of genes, most notably CCL5/MIPa, IL2RA/CD25, CSF2/GMCSF, and 

CD107A, in order of decreasing spearman rank correlation coefficients. Of note, 

IFNG negatively correlated with CXCR4 and TRAT1/TRIM (spearman rank 

correlation: ρ = -0.34 and ρ = -0.28, respectively p<0.001). This finding is consistent 

with data in previous chapters (Figures 4.8-B and 5.5-E).  
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Figure 6.4 Global characterization of all TRAP-specific CD107a+ CD8+ T cells.  

(A) Principal components analysis. Genes which describe the greatest variance are 
highlighted. (B) All possible pairwise pairwise correlations clustered by 
significance. (C) Genes which correlate significantly with IFNG (p<0.0001, 
ρ>0.20). 
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6.2.3 Multifunctional use of effector molecules  

 

As TRAP-specific CD8+ T cells are hypothesized to mediate killing of parasitized 

hepatocytes (153, 159, 219, 324, 325), it is important to understand the mechanisms 

of actions that are induced by vaccination. Accordingly, single-cell coordination 

among key effectors molecules that are involved in killing target cells was 

investigated (73, 326-329). Analysis was restricted to expression of six genes: 

cytokines IFNG and TNF, granzymes GZMA and GZMB, and apoptosis-inducing 

ligands FASLG/CD95LG and TNFSF10/TRAIL (Figure 6.5-A).  

  

The percentage of cells that discretely expressed any of the six markers was variable 

(Figure 6.5-B). TNFSF10/TRAIL, GZMA, and TNF were each expressed in less 40% 

of cells. By contrast, IFNG and GZMB, the most common effector molecules, were 

expressed in 81% and 88% of TRAP-specific CD107a+CD8+ T cells, respectively.  

 

In order to investigate second-order combinations, all significant pairwise 

correlations were calculated (spearman rank correlation: ρ > 0.20 and p<0.001; 

Figure 6.5-C). Differential expression of GZMA and GZMB was tightly linked 

(spearman rank correlation: ρ = 0.30 and p<0.001), as 98% of GZMA-positive cells 

expressed GZMB (Figure 6.5-A). Principal components analysis (Figure 6.5-D) and 

single-cell hierarchal clustering (Figure 6.5-A) restricted to these six effector 

molecules highlighted two broad groups of cooperation: (1) IFNG, TNF, and FASLG 

and (2) TNFS10/TRAIL, GZMA, and GZMB.  
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Finally, higher order combinations of discrete expression among the six effector 

molecules were examined (Figures 6.5-E and F). Only combinations that were 

evident in greater than 1% of the population were examined, resulting in 14 different 

phenotypes. Of interest, all assessed phenotypes were IFNG+GZMB+ (highlighted in 

green for clarity) underscoring the coordinate gene expression of these two 

molecules. The most frequent combinations of six genes were expression of IFNG 

and GZMB alone (GZMA-TNFSF10- FASLG-; 17% of population) or in combination 

with FASLG (GZMA-TNFSF10-; 14% of population).  
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Figure 6.5 Coordinate expression of effector molecules among all TRAP-
specific CD107a+ CD8+ T cells.  

(A) Single cell hierarchal clustering of individual cells from all vaccinated subjects. 
(B) Discrete expression of any given gene, defined as Et value > 13, which is 
equivalent 1 mRNA molecule. (C) Pairwise correlations that are statistically 
significant. (D) Principal components analysis of all effector molecules. (E) Discrete 
expression of genes for IFNG+ cells only. Clustering of all possible combinations 
that comprise greater than 1% of population. (F) Percentage of common 
combinations represented as percentage of IFNG+ population. 
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6.2.4 Characterization of monofunctional IFNG+ CD8+ T cells  

 

In order to further characterize TRAP-specific CD8+ T cells, analysis was focused 

on the transcriptional phenotype of IFNG+TNF-IL2- “monofunctional” T cells 

induced by ChAd63/MVA vaccination. The frequency of monofunctional, but not 

total, IFN-γ+CD8+ T cells correlate with protection in malaria-naïve volunteers 

(153). As such, it was hypothesized that monofunctional IFNG+CD8+ T cells would 

have a unique transcriptional signature with specialized effector functions compared 

to the other IFNG-expressing CD8+ T cells.  

  

Individual CD8+ T cells from all vaccinated subjects were divided into two cohorts: 

IFNG+TNF-IL2- (“G”) and IFNG+TNF+IL2- (“GT”), the second common phenotype 

within the IFNG+ population (Figure 6.6-A). As the frequencies of IFNG+TNF-IL2+ 

and triple positive IFNG+TNF+IL2 were small (<5% of all CD8+ T cells; Figure 

6.3-B), these subsets were excluded from the analysis. Of note, median IFNG 

expression was significantly higher in the GT vs. G subsets, but statistical 

significance was low (p<0.01; Figure 6.6-A)  

 

Linear discriminant analysis revealed that gene components other than IFNG or TNF 

could drive the separation of two cellular subsets, suggesting that a unique global 

transcriptional signature exists for monofunctional CD8+ T cells (Figure 6.6-B). 

The top gene components that best distinguished the cohorts consisted of effector 

molecules, as well as inflammation marker CCL3/MIP1a and CD107A (Figure 6.6-

C). Monofunctional IFNG+ CD8+ T cells (“G”) were characterized by increased 

expression of GZMA and CD107A (p<0.001). Double-positive IFNG+TNF+IL2– 
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(“GT”) were characterized by increased expression of TNFSF10, CCL3/MIPa, and 

GZMB, in order of decreasing fold-change.  
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Figure 6.6 Characterization of monofunctional IFNG+ CD8+ T cell subset.  

(A) Functional characterization of the two subsets. (B) Linear discriminant analysis 
of the two subsets assessing all genes. (C) Differential expression of genes which 
described the greatest variance between the two groups. ***p<0.0001, **p<0.001, 
p<0.01. 
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6.2.5 Global gene signatures from protected vs. unprotected cohorts 

 

The next aim of this chapter was to assess the global transcriptional signatures of 

CD107a+ CD8+ T cells from protected vs. nonprotected subjects vaccinated with 

ChAd63/MVA ME-TRAP. 

  

Analysis of immune correlates was first restricted to genes encoding cytokines that 

have been previously assessed by flow cytometry in these subjects (153, 219, 268). 

The median expression of IFNG in CD107a+ CD8+ T cells was statistically higher in 

nonprotected compared to protected subjects (Figure 6.7-A). Of note, there was no 

significant difference within the protected cohort between sterilely protected and 

delayed subjects. Cluster analysis was then used to assess the frequency of common 

phenotypic combinations of IFNG, IL2, and TNF in protected vs. nonprotected 

subjects (Figure 6.7-B and C). While there was trend towards a higher frequency of 

monofunctional IFNG+ CD8+ T cells in the protected cohort (the sum of clusters 3 

and 4), it was not statistically significant. However, there was a significant 

difference in the frequency of low vs. high cytokine producers within the 

monofunctional IFNG+ CD8+ T cell subsets (clusters 3 vs. 4; p<0.001). Protected 

subjects were enriched in low producers of IFNG, while unprotected subjects were 

enriched in high producers. There was no difference in the frequency of the other 

phenotypes between the two cohorts. 
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Figure 6.7 Assessment of CD8+ T cell functionality based on previous studies.  

(A) Gene expression of IFNG organized by protection outcome. (B) Hierarchal 
clustering of markers typically assessed by flow cytometry. Seven clusters are 
identified based on prominent patterns of gene combinations. Median expression of 
each of the genes within the cluster are shown. (C) Quality of protected vs. not 
protected based on percentage of each cluster. 
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Next, analysis of immune correlates was expanded to include all genes that were 

assessed by the Fluidigm assay. When all three protection outcome groups were 

examined simultaneously, misclassification of individual CD8+ T cells into each of 

the three cohorts was high (>30%; Figure 6.8-A). This rate was only slightly lower 

when delayed and sterilely protected subjects were combined (27.6%; AUC = 80.3) 

Figures 6.8- B). Examination of all possible pairs of the three cohorts yielded more 

information (Figure 6.8-C). Single-cell misclassification was lowest between the 

sterilely protected and nonprotected cohorts (19.5%, AUC = 88.6). This was 

followed by sterilely protected vs. delayed (23.4%, AUC = 84.2) and delayed vs. 

nonprotected (28.6%, AUC = 80.1).  
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Figure 6.8 Global differences among protected vs. nonprotected cohorts.  

 
(A) Linear discriminant analysis (LDA) assessing all three cohorts. Wide 
discriminant analysis with corresponding ROC curves assessing (B) protected vs. 
nonprotected subjects and (C) all two-way combinations of the three cohorts. 
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As the global transcriptional signatures of sterilely protected vs. nonprotected 

subjects appeared the most distinct, the differences in gene expression between these 

two cohorts were further parsed. Seventeen genes were differentially expressed 

between the two cohorts, of which 11 were enriched in the protected subjects 

(Figure 6.9-A and B). Although separation between the two cohorts was not 

precise, unsupervised single-cell hierarchal clustering helped to further identify 

combinations of differentially expressed genes. In particular, IFNG and 

CCL3/MIP1a, which were individually enriched in unprotected subjects, clustered 

together. By contrast, CXCR4, TRAT1, CXCR3/MIGR, and STAT1, which were 

individually enriched in protected subjects, notably clustered together.  

 

Of interest, although differential expression of granzyme-encoding genes was 

significant (Figure 6.5-C), GZMB was significantly enriched in the protected cohort 

(Figure 6.9-A and B), while GZMA was enriched in the unprotected cohort. Further 

examination revealed that while almost all GZMA cells expressed GZMB, the 

protected cohort was enriched in monoproducers of GZMB, which expressed more 

of the transcript per cell than double-positive GZMA+GZMB+ cells (Figure 6.9-D).   
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Figure 6.9 Differential gene expression between sterilely protected and 
nonprotected vaccinated subjects. 

 
(A) List of all differentially expressed genes (DEGs) (p<0.0001, median fold-change 
> 2), (B) Linear discriminant analysis with overlaid DEGs. (C) single-cell hierarchal 
clustering restricted to DEGs expressed in greater than 10% of population. (D) Level 
of GZMB expression in GZMA- (B) vs. GZMA+ cells (AB).  ***p<0.0001 
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6.2.6 Gene set enrichment analysis of sterilely protected subjects 

 
In order to gain greater insight into the molecular networks involved in sterile 

protection, gene set enrichment (GSEA) was performed. Blood transcriptional 

modules previously described in Chapter 4 were used (291). Briefly, only modules 

containing at least four genes that were measured by Fluidigm were included for 

analysis (n=11).  An aggregate Z-score was generated, taking into account both 

discrete and continuous components of gene expression. Due to the limited number 

of genes in each of the modules and the potential bias, data interpretation was 

focused on enriched modules with an enrichment score or aggregate |Z-score| > 5 

(see Chapter 4.2.4 for more details). 

 

Modular analysis first assessed sterilely protected vs. nonprotected subjects, as these 

cohorts were the most distinct (Figure 6.10-A and Table 6.3). Of the 11 modules 

tested, 8 exhibited a significant effect due to protection outcome, all of which were 

enriched in the sterilely protected cohort (p<0.01). The top enriched modules (|Z-

score| > 5) were T cell differentiation (Th2)(M19), enriched in NK cells (I)(M7.2), 

and enriched in T cells (I)(M7.0). Enrichment of these three modules was 

predominantly characterized by increased expression of TRAT1/TRIM, TBX2/TBET, 

GZMB, and DPP4/CD26 (Table 6.3).  

  

In order to explore mechanisms required for complete but not partial protection, 

modular analysis was then performed comparing the sterilely protected vs. delayed 

cohort (Figure 6.10-B and Table 6.4). Of the 11 modules tested, 6 exhibited a 

significant effect to protection outcome (p<0.01). Of modules with the greatest 

change (|Z-score| > 5), two were enriched in sterilely protected: signaling in T cells 
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(I)(M35.0) and (II)(M35.1). Further examination revealed significant overlap in the 

genes that composed the two modules, such that enrichment of both was 

characterized by increased expression of TNFSRF4, IL2RA, and TNF (Table 6.4). 

The module with the greatest fold-change in the delayed cohort was T cell activation 

(II)(M7.3) (Z-score = -8.2). Enrichment of this module was characterized by 

increased expression of GZMA and CCL5/RANTES in delayed vs. sterilely protected 

subjects (Table 6.4).  

 

Of the top three modules that were enriched in sterilely protected vs. nonprotected 

subjects, two displayed a similar pattern of enrichment in sterilely protected vs. 

delayed. Both T cell differentiation (Th2) (M19) and T cell activation (I)(M7.1) 

were enriched in the sterilely protected cohorts. However, this was characterized by 

increased expression of only one gene (TRAT1/TRIM) in sterilely protected subjects 

compared to those who showed delay to patency and no protection. As a result, the 

Z-scores for the modules were much lower.  
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Figure 6.10 Modular analysis of sterilely protected subjects.  

Gene set enrichment analysis of sterilely protected subjects vs. (A) nonprotected 
subjects and (B) subjects who demonstrated delayed to patency. Y-axis shows 
enrichment score or aggregate Z-score of all genes in the module. Note that in both 
graphs a positive Z-score indicates enrichment in the sterilely protected cohort.  
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Table 6.3 Modules enriched in sterilely protected vs. nonprotected subjects.  

Individual Z-scores for all of the genes in the modules are listed in descending order. 
 
 
 
 
 
  

 

Table 6.4 Modules enriched in sterilely protected vs. delayed subjects.  

Individual Z-scores for all of the genes in the modules are listed in descending order.  
  

T cell differentiation 
(Th2)(M19) 

Enriched in NK cells (I)
(M7.2) 

Enriched in T cells (I)
(M7.0) 

TRAT1, 
TRIM 4.863391  TBX21, TBET 4.863391  TRAT1, TRIM 4.863391 
DPP4, 
CD26 2.714139  GZMB, CTLA1 2.975904  GZMB,CTLA1 2.975904 
GATA3 0.717576       GZMA -2.69497  SH2D1A,LYP 1.599006 

CD28  -0.1265  IL2RB 2.264661  CCL5, RANTES 1.525649 

 CCL5, RANTES 1.525649  RORA 1.316644 

 RORA 1.316644  IL7R -1.14045 
 EOMES 0.4612781  CD27 0.9342079 

 FASLG, CD95LG -0.43568    GATA3 0.717576 

 CD28 -0.1265 

 LEF1 -0.082687 

 ICOS 0.0651693 

signaling in T cells (I) 
(M35.0) 

signaling in T cells (II) 
(M35.1) 

T cell activation (II) (M7.3) 

TNFRSF4' 3.512717' TNFRSF4' 3.512717' GZMA' (3.63986'
IL2RA' 3.055554' IL2RA' 3.055554' CCL5,'RANTES' (2.71057'
TNF' 3.054146' TNF' 3.054146' ICOS' (1.71363'
FASLG' 1.300153' IL2RB' (2.16534' TRAT1,'TRIM' 0.699948'
GZMB' 0.8271' FASLG' 1.300153' CXCR3,'MIGR' 0.3807357'
CD40LG' 0.5655252' GZMB' 0.8271' SLAMF1,'CD150' 0.3303508'
LEF1' 0.2364555' BCL6' 0.5397541' IFNG' (0.186509'

IFNG' (0.186509'  
CCR5' (0.031528'
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6.3 Discussion  

 

The main aims of this chapter were to (1) characterize the single-cell transcriptomic 

profiles of TRAP-specific CD107a+ CD8+ T cells following vaccination with 

ChAd63/MVA ME-TRAP and (2) assess the gene expression signatures of such 

responses from protected vs. nonprotected subjects prior to challenge. First, TRAP-

specific CD107a+ CD8+ T cells from vaccinated subjects predominantly express 

IFNG and GZMB alone or in combination with FASLG among six key effector 

molecules. Second, analysis of monofunctional IFNG+TNF-IL2- CD8+ T cells, 

which have been previously correlated with protection, are transcriptionally distinct 

from the total IFNG+CD8+ T cell population with enriched expression of CD107A 

and GZMA. Finally, while there was limited power for correlates analysis due to the 

number of subjects, initial data suggested that global transcriptional signatures 

between sterilely protected and nonprotected subjects were unique. Sterilely 

protected subjects were enriched in modules associated with T cell differentiation 

and overall enrichment in T cells.  

  

Detection of de novo-expression on CD107a following in vitro restimulation with 

TRAP peptide pools was successful in isolating live malaria-specific CD8+ T cells 

that could be assessed for expression of a large number of genes at the single cell 

level. This experimental approach did not increase the sensitivity of identifying 

TRAP-specific CD8+ T cells following vaccination compared to previous flow 

cytometry studies (153, 268), as 100% of analyzed cells expressed CD107A, IFNG, 

IL2 or TNF at the transcriptomic level (Figure 6.3-B). However, Fluidigm analysis 

dramatically expanded the breadth of phenotypic characterization of such responses. 
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It is important to note the study limitations in order to appropriately interpret the 

results. First, only CD107a+ CD8+ T cells were analyzed. The frequency of CD107a+ 

CD8+ T cells was shown to be notably lower than the frequency of IFN-γ+ CD8+ T 

cells at the time of challenge following ChAd63/MVA ME-TRAP vaccination 

(153). As such, there exists a subset of CD107a- cytokine-producing cells that is not 

captured by this experimental approach. Phenotypic and correlates analysis reflects 

only a subset of the total CD8+ T cell response. Second, Fluidigm analysis was 

restricted to those subjects with the highest IFN-γ+ CD8+ T cell responses across the 

three trials. It is possible that the quality of these responses do not reflect the full 

spectrum of cellular phenotypes of TRAP-specific CD8+ T cells.   

 

In this study, there was an enrichment of IFNG+ CD107a+ CD8+ T cells in 

nonprotected subjects. By contrast, IFN-γ+ secretion as assessed from ELISPOT 

assay of flow cytometry analysis CD8+ T cell responses has been associated with 

protection induced by viral vector vaccination in multiple studies (153, 219, 268). 

Furthermore, transcriptional analysis of whole PBMCs revealed that genes 

associated with IFN-γ induction were enriched in sterilely protected vs. 

nonprotected subjects (330) . However, as this study was restricted to CD107a+ 

cells, a subset of the total CD8+ T cell responses, this finding is not inconsistent with 

previous data.  

 

The multiple cellular phenotypes based on combinations of key effector molecules is 

consistent with previous studies that demonstrate the remarkable heterogeneity 

among antigen-specific CD8+ T cells based on protein expression of granzymes, 
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perforin, and IFN-γ (329, 331, 332). It is interesting to note that almost all CD107a+ 

CD8+ T cells in this study expressed both IFNG and GZMB, consistent with 

previous work showing high expression of these two markers among CD107+ CD8+ 

T cells (322). Most studies that have aimed to dissect the effector function of CD8+ 

T cells against liver-stage malaria have demonstrated different requirements based 

on the murine Plasmodium strain and vaccination model (135, 149, 333-335). 

However, induction of memory CD8+ T cell responses against P. berghei is 

independent of perforin, TRAIL, or FASLG in RAS (336) and DC-LM prime/boost 

immunization approaches (337). Given the expression of markers in TRAP-specific 

CD8+ T cells, future studies should examine protein expression of these markers by 

flow cytometry in order to assess whether protective responses are skewed towards a 

specific “killing” phenotype.  

 

Although monofunctional IFN-γ+ CD8+ T cells have been correlated with protection 

induced by viral vectors in mice (320) and humans (153), the effector function of 

IFN-γ secretion alone or in combination with other cytokines is unknown (313). This 

study provides evidence of a broad transcriptional signature for monofunctional 

IFNG+TNF-IL2- CD8+ T cells compared to those cells that also express TNF. These 

data suggest that “monofunctional” IFNG+ CD8+ T cells have other effector 

functions that may play a role in induction of sterile protection against malaria. 

Interestingly, monofunctional IFNG+ CD8+ T cell responses were associated with 

expression of GZMA and CD107A, while expression of GZMB and TNFSF10/TRAIL 

were more associated with double positive IFNG+TNF+ T cells (Figure 6.6-C). 

Although viral vector vaccination induces multiple CD8+ T cell effector functions, 

there may exist an optimal pathway for elimination of infected hepatocytes. Indeed, 
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granzyme A preferentially induces reactive oxygen species (ROS), while granzyme 

B is more important for caspase-dependent mechanisms of killing (338, 339), 

suggesting that induction of ROS may best augment IFN-γ-mediated clearance of 

hepatocytes.  

 
It was not surprising that among the three protection outcome groups, the greatest 

difference in the transcriptional profiles was between sterilely protected vs. 

nonprotected subjects. There was wide variation in the time to parasitemia among 

subjects classified as delayed (14-17 days). As such, the components of cellular and 

humoral immunity that contribute to partial immunity may have varied. While initial 

data suggested that sterilely protected subjects were enriched in modules associated 

with T cell differentiation and overall enrichment of T cells compared to 

nonprotected subjects, it is important to note that these modules were predominantly 

characterized by increased expression of TRAT1/TRIM.  This gene plays a key role 

in modulation of T cell activation and TCR-mediated signaling via association with 

CD3-ζ (340) and facilitates shuttling of CTLA-4 to the cell surface, thus inhibiting T 

cell proliferation (341-343). Indeed, enriched expression of TRAT1/TRIM was 

associated with low vs. high responders to vaccination with viral vectors containing 

M. tuberculosis antigen 85A (MVA85A) (344). One possibility for enriched 

expression of TRAT1/TRIM in sterilely protected subjects is that the presence of 

activated CD8+ T cells measured in the peripheral blood could reflect the absence of 

such responses in the liver, and subsequently poor T-cell mediated clearance of 

parasitized hepatocytes. On the other hand, it is important to note TRAT1/TRIM 

expression was strongly negatively correlated with IFNG expression in this study 

(Figure 6.4-C). Thus, it is unclear if modular enrichment reflects a true mechanism 

or merely lower frequencies of IFNG+ CD107a+ CD8+ T cell population in protected 
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vs. nonprotected subjects. The observation that the top modules that were enriched 

in sterilely protected vs. nonprotected subjects were not the same as those in 

sterilely protected vs. delayed subject suggests different components of cellular 

and/or humoral immunity may be relevant for different levels of protection.  

 

Overall, this characterization of cellular immune response induced by 

ChAd63/MVA ME-TRAP immunization should advance our understanding of the 

phenotype of CD8+ T cells in liver-stage protection. In light of encouraging Phase II 

clinical trials assessing this vaccination platform, future studies should couple 

transcriptional profiling with flow cytometric analysis in order to elucidate 

correlates of protection.  

 

  



 220 

7.  Concluding Remarks  
 

7.1 Overview  

 

Vaccine approaches that confer durable and high-level protection against malaria 

infection are urgently needed. While RTS,S/AS01 will likely become the first 

licensed malaria vaccine, efficacy against clinical malaria is partial and wanes 

dramatically over time (117). Development of next-generation vaccine strategies is 

partially hindered by a limited understanding of the mechanisms underlying 

protective immunity. An effective pre-erythrocytic vaccine that induces high-level 

sterile protection will likely require induction of potent cellular immune responses 

with a broad range of functions. Indeed, remarkable progress in pre-erythrocytic 

vaccine development has depended upon strategies that exploit the plasticity of 

CD4+ T cells and induce potent CD8+ T cells that target liver-stage antigens. In-

depth characterization of such responses will be critical in identifying immune 

correlates and ultimately guiding the development of next-generation vaccine 

strategies. 

 

The aim of this thesis was to dramatically enhance the breadth and depth of 

phenotypic analysis from cellular immune responses induced by two malaria 

vaccine candidates that have demonstrated high-level protection against CHMI: the 

PfSPZ Vaccine and ChAd63/MVA ME-TRAP. Single cell gene expression analysis 

of antigen-specific CD4+ and CD8+ T lymphocytes following vaccination and/or 

CHMI revealed a number of important findings. First, investigation of PfSPZ-

specific CD4+ T cells from unvaccinated infection controls revealed enrichment of 
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modules associated with T cell activation and TFH vs. Th1 differentiation compared 

to vaccinated and protected subjects. These data likely reflect the increased antigen 

load seen in the liver following CHMI vs. PfSPZ vaccination and suggest a skewing 

of CD4+ T cell effector function from CD8+ T cell help to antibody production 

during CHMI. Second, PfSPZ-specific CD4+ T cells from vaccinated and protected 

subjects in a small cohort were enriched in IL21 gene expression compared to 

unprotected subjects prior to challenge. Median IL21 expression of this gene on a 

per-subject level correlated with antibody levels against the immunodominant CS 

protein. Analysis of a larger independent cohort confirmed both of these findings 

and provided greater power to dissect this population of IL21+ CD4+ T cells. 

Interestingly, IL21+ CD4+ T cells displayed increased expression of IFNG and IL2 

compared to IL21- cells and predominantly expressed BCL6 and/or TBET. 

Furthermore, there was an enrichment of triple positive IL21+IFNG+IL2+ CD4+ T 

cells in protected vs. nonprotected vaccinated subjects prior to challenge. These data 

provide evidence for a class of Th1/TFH-like cells that could potentially provide 

help for both CD8+ T cells and humoral responses elicited by PfSPZ vaccination.  

 

Finally, analysis of CD8+ T cells from subjects vaccinated with ChAd63/MVA ME-

TRAP provided the opportunity to investigate cellular immune responses that are 

critical for clearance of infected hepatocytes. There was evidence for 

multifunctional use of effector molecules in TRAP-specific CD107a+ CD8+ T cells 

and a broad transcriptional signature of monofunctional IFNG+ CD8+ T cells, which 

have been previously correlated with protection induced by viral vectors. 

Furthermore, preliminary data suggested enrichment of genes associated with T cell 

activation in subjects who demonstrated sterile protection vs. no protection prior to 
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challenge. Overall, data presented in this thesis demonstrate that Fluidigm analysis 

is a powerful tool that can be used in conjunction with other immunologic assays in 

order to expand the phenotypic characterization of cellular immune responses and 

elucidate potential correlates of protection.  
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7.2 Conclusion and Future Directions  

 

7.2.1 Single-cell transcriptomics as a powerful technology for analysis of large 

clinical trials  

 

The initial aim of this thesis was to optimize isolation and downstream single-cell 

gene expression analysis of malaria-specific T cells. Detection of de novo 

expression of CD154 and CD107a on the cellular surface following in vitro 

stimulation allowed for the isolation of live PfSPZ-specific CD4+ T cells and TRAP-

specific CD8+ T cells, respectively. Both assays allowed for assessment of gene 

expression from antigen-specific T lymphocytes at single-cell resolution with 

minimal manipulation, enabling in-depth characterization of T cells that may play a 

role in protection.  

 

However, it is important to note that findings from the two assays have different 

interpretations. The CD154 assay increases the sensitivity of detecting antigen-

specific CD4+ T cells, thus broadening the characterization of such responses. 

Indeed, data presented in this thesis demonstrated that approximately 30% of 

CD69+CD154+ PfSPZ-specific T cells do not express IFN-γ, IL2 or TNF-α, the most 

commonly measured cytokines by flow cytometry. By contrast, detection of 

CD107a identified only a subset of the TRAP-specific CD8+ T cell response, based 

on previous data demonstrating the presence of cytokine-producing CD107a- CD8+ 

T cells. In this light, data from Fluidigm studies are best interpreted in conjunction 

with flow cytometry analysis of the same immune responses. Given the broad 
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heterogeneity of CD4+ T cells (85, 87), the greater protective relevance of different 

phenotypes of such responses compared to CD8+ T cells (313), and the ability of the 

CD154 assay to capture a broad set of antigen-specific CD4+ T cells, Fluidigm 

analysis may best enhance the characterization of CD4+ compared to CD8+ T cells.  

 

Data presented in this thesis also optimized data acquisition and downstream 

analysis using the Fluidigm platform. It is critical to note that in all of the studies 

discussed in this thesis, gene expression of the “average” single cell from a subject 

correlated with the signal in the bulk population, strongly suggesting that the results 

from this thesis reflect the true biological patterns. One important limitation of the 

assay that was described in Chapter 3 was the presence of background cells that 

contaminate analysis of the antigen-specific population. Of interest, in all studies 

assessing CD4+ and CD8+ T cells (Chapters 4-6), TRAT/TRIM and CXCR4 were 

among the top five genes that describe the total variation within the T cell 

population. Furthermore, these genes negatively correlated with IFNG expression, 

an approximate marker of T cell immunogenicity. These data provide greater 

evidence that the variation between background and antigen-specific T cells is 

greater than the variation within a population. These two markers could be used with 

others to identify background cells and remove them from the analysis of the 

broader antigen-specific population. Indeed, ongoing experiments are combining 

transcriptional profiles of non-antigen-specific CD154+CD4+ T cells with 

computational analysis in order to minimize this biological signal.  

 

This thesis provided the opportunity to look at both malaria-specific CD4+ and CD8+ 

T cells using largely the same set of markers. It is difficult to make direct 
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comparisons between the two different studies. Dissimilarities could reflect inherent 

CD4+ vs. CD8+ T cell heterogeneity, whole parasite vs. viral vector vaccination or 

the level of sterile protection induced by the two platforms. However, antigen-

specific CD4+ T cells largely coexpressed IL2 with TNF and/or IFNG, while CD8+ T 

cells were predominantly IL2- expressing IFNG and/or TNF, consistent with 

previous flow cytometry data (153, 313). Furthermore, heterogeneity among PfSPZ-

specific CD4+ T cells from vaccinated subjects (as defined by the number of 

principal components required to account for 50% of the variation within a 

population) was almost twice that of TRAP-specific CD8+ T cell responses. 

 

Single-cell RNA-Seq (scRNA-Seq) of these same cellular immune responses is an 

important extension of the findings presented in this thesis (241, 250, 251, 262). 

Indeed, studies are already underway to assess the PfSPZ-specific T cells in the 

livers of non-human primates (205). However, given the greater ease of data 

acquisition (241, 244), the greater maturity of methodologies for analysis (270, 287), 

and the overall cost, the Fluidigm platform may be more useful for rapid monitoring 

of immune responses to vaccination in a large population.  
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7.2.2 Role of CD4+ T cells in PfSPZ-mediated protection  

 
Heretofore, analysis of PfSPZ-specific T cell responses has been largely restricted to 

detection of IFN-γ, IL2 or TNF-α by multiparameter flow cytometry (116, 167, 

205). The results presented in this thesis provide the broadest characterization of 

immune responses elicited by the PfSPZ Vaccine with single-cell resolution to date. 

Given the absence of potent CD8+ T cell responses in the peripheral blood of 

vaccinated subjects (205), in-depth characterization of PfSPZ-specific CD4+ T cell 

is a critical step in evaluation of this vaccine platform.  

 

First, it is striking that the enriched expression of IL21 in protected vs. unprotected 

subjects and the correlation of IL21+ CD4+ cells with PfCSP antibodies was found in 

two independent cohorts of PfSPZ vaccinated subjects. These data highlight the 

strength and reproducibility of the Fluidigm platform and encourage further 

investigation of this potential biomarker of protection. Ideally, all studies that use 

transcriptional analysis to investigate immune correlates should aim to examine at 

least two identical and independent cohorts of vaccinated subjects: one for 

generation of hypotheses and another for validation findings. The data presented 

here are not an exact repeat, as there were no two groups that received the same 

vaccine dose and schedule; however, immunization regimens were broadly similar 

and induced high-level sterile protection (116, 205).   

  



 227 

The biological interpretation of the findings is more difficult. It was hypothesized 

that IL21 expression reflected circulating TFH CD4+ T cells. IL21 cells largely 

expressed BCL6, a canonical transcriptional factor for TFH cells (301). However, 

Th1 but not TFH modules as a whole were enriched in protected vs. unprotected 

subjects. In light of these results and other studies that provide conflicting results for 

what markers constitute a sufficient signature of circulating TFH CD4+ T cells (318, 

345-348), future work will be necessary in order to understand the function of this 

subset in PfSPZ-elicited protection. 

 

Further characterization of IL21+CD4+ T cells in PfSPZ vaccinated subjects is not 

straightforward, as overall CD4+ T cell responses are relatively low and IL21-

expressing cells constituted a small but significant subset of the total response. 

However, work is ongoing to optimize detection of such cells by flow cytometry, 

such that IL21 protein secretion could be readily detected in future studies assessing 

the PfSPZ Vaccine alongside IFN-γ, IL2 or TNF-α. Moreover, ongoing studies are 

elucidating how this population could play a role in protection. Future experiments 

will assess IL21+ CD4+ T cells in the peripheral blood and liver of mice and NHPs 

administered the PfSPZ Vaccine. In addition, the circulating TFH cell population as 

defined by protein expression of CXCR5, ICOS, and PD-1 will be assessed in 

response to mitogen stimulation before and after PfSPZ vaccination in human 

subjects (318). Overall, the data presented in this thesis have provided more 

evidence for the importance of CD4+ T cells elicited by PfSPZ vaccination. 

Furthermore, while humoral immunity may not be sufficient for PfSPZ-elicited 

protection, T cell-mediated maturation of antibodies may be critical in reducing the 
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parasite burden in the liver and allowing effective clearance of infected hepatocytes 

by CD8+ T cells.  

 

 

7.2.3 CD107a+ CD8+ T cells in ChAd63/MVA ME-TRAP induced immunity  

 

Finally, this thesis provided the opportunity to characterize the antigen-specific 

CD8+ T cell response induced by heterologous prime-boost vaccination with 

ChAd63/MVA ME-TRAP. As CD8+ T cells are critical in protection against liver-

stage malaria, this analysis was an important step forward in elucidation of 

mechanisms underlying sterile immunity. Furthermore, as monofunctional IFN-γ+ 

CD8+ T cells correlate with protection induced by ChAd63/MVA immunization 

(153), this study allowed for an expanded characterization of an important cellular 

phenotype previously described in humans.  

 

Data presented in thesis highlight the striking heterogeneity of CD8+ T cells and 

underscore the importance of qualitative analysis of cellular immune responses 

beyond flow cytometry. TRAP-specific CD8+ T cells induced by vaccination were 

composed of multiple different effector phenotypes expressing various combinations 

of TRAIL, FASLG, GZMA, GZMB, IFNG and TNF. This study could not assess the 

protective role of each of the different phenotypes, as the CD107 assay captured 

only a subset of the total CD8+ T cell response. However, “monofunctional” IFNG+ 

CD8+ T cells, which have been previously correlated with protection, were shown to 

have a unique transcriptional signature compared to the total IFNG+ population. Of 

note, IFNG+ TNF- CD8+ T cells were characterized by enrichment of GZMA but not 
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GZMB, possibly indicating an important role for GZMA-induced ROS in 

augmenting IFN-γ-mediated killing (331). Based on the these results and other 

evidence of overlapping mechanisms of killing (135, 334, 335, 349), future work 

should continue to dissect pathways of killing in mouse models (333).  

 

More subjects will likely be required to assess a transcriptional signature of 

protective CD8+ T cells induced by TRAP. However, it is interesting to note that 

transcriptional profiles of CD8+ T cells from delayed subjects were more closely 

related to those from nonprotected subjects compared to those who demonstrated 

sterile protection. These data suggest that the total magnitude of CD8+ T cell 

responses or other components of cellular and/or humoral immunity drive partial 

protection induced by viral vaccination. As such, future gene expression analysis of 

cellular immune responses should primarily focus on comparing subjects who 

demonstrated sterile protected vs. no protection. Preliminary data suggests that 

modules enriched in T cell activation may play a role in sterile protection. However, 

as these modules were predominantly characterized by TRAT1/TRIM, which is 

strongly negatively correlated with IFNG expression, the relevance of this finding is 

unclear. To circumvent this issue, future transcriptomic studies should investigate 

the signature of live CD8+ T cells isolated by the IFN-γ secretion assay (350), given 

the importance of this cytokine in pre-erythrocytic immunity and the limited ability 

of the CD107a assay to capture all IFN-γ-producing cells. 

 

Given the encouraging progress of ChAd63/MVA ME-TRAP in Phase II clinical 

trials (219, 321, 351), the Fluidigm platform could be used to monitor the progress 

of responses in the field and assess the influence of previous malaria exposure on 
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the quality of vaccine-elicited CD8+ T cells. Furthermore, given the large genetic 

diversity of parasites in the field (202, 352) and evidence of specific TRAP 

sequences associated with protection (321), single cell gene analysis could be 

coupled with TCR sequencing in order to link antigen specificity with functionality 

(353). 
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7.3 Final Remarks 

 

This study describes a powerful technology for single cell transcriptional analysis of 

antigen-specific immune responses elicited by two clinical advanced malaria 

vaccine candidates. This strategy could supplement traditional techniques that 

quantify cellular immune responses against malaria and other diseases where T cell 

immunity is hypothesized to be critical for vaccine-elicited protection. In addition, 

elucidation of effector functions could be used to optimize immunization schedules, 

design novel adjuvants that promote specific immune responses, or predict 

protection outcome prior to pathogen exposure. Taken together, the results in this 

thesis delineate the striking heterogeneity of T cells elicited by vaccines and 

advance our understanding of how multifunctional CD4+ and CD8+ T cells may play 

a role in protection against human malaria infection. Therefore, future clinical trials 

should prioritize the use of single-cell transcriptomic technologies to guide the 

rational design of next-generation vaccines against malaria.  
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Appendix 
TRAP peptide pool used for in vitro stimulation of PBMCs for flow cytometry  
 

TRAP T9/96 
peptide pool Sequence 

1 MNHLGNVKYLVIVFLIFFDL 
2 VIVFLIFFDLFLVNGRDVQN 
3 FLVNGRDVQNNIVDEIKYSE 
4 NIVDEIKYSEEVCNDQVDLY 
5 EVCNDQVDLYLLMDCSGSIR 
6 LLMDCSGSIRRHNWVNHAVP 
7 RHNWVNHAVPLAMKLIQQLN 
8 LAMKLIQQLNLNDNAIHLYV 
9 LNDNAIHLYVNVFSNNAKEI 
10 NVFSNNAKEIIRLHSDASKN 
11 IRLHSDASKNKEKALIIIRS 
12 KEKALIIIRSLLSTNLPYGR 
13 LLSTNLPYGRTNLTDALLQV 
14 TNLTDALLQVRKHLNDRINR 
15 RKHLNDRINRENANQLVVIL 
16 ENANQLVVILTDGIPDSIQD 
17 TDGIPDSIQDSLKESRKLSD 
18 SLKESRKLSDRGVKIAVFGI 
19 RGVKIAVFGIGQGINVAFNR 
20 GQGINVAFNRFLVGCHPSDG 
21 FLVGCHPSDGKCNLYADSAW 
22 KCNLYADSAWENVKNVIGPF 
23 ENVKNVIGPFMKAVCVEVEK 
24 MKAVCVEVEKTASCGVWDEW 
25 TASCGVWDEWSPCSVTCGKG 
26 SPCSVTCGKGTRSRKREILH 
27 TRSRKREILHEGCTSEIQEQ 
28 EGCTSEIQEQCEEERCPPKW 
29 CEEERCPPKWEPLDVPDEPE 
30 EPLDVPDEPEDDQPRPRGDN 
31 DDQPRPRGDNSSVQKPEENI 
32 SSVQKPEENIIDNNPQEPSP 
33 IDNNPQEPSPNPEEGKDENP 
34 NPEEGKDENPNGFDLDENPE 
35 NGFDLDENPENPPNPDIPEQ 
36 NPPNPDIPEQKPNIPEDSEK 

  38 DIPEQKPNIPEDSEKEVPSD 
39 EDSEKEVPSDVPKNPEDDRE 
40 VPKNPEDDREENFDIPKKPE 
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41 ENFDIPKKPENKHDNQNNLP 
42 NKHDNQNNLPNDKSDRNIPY 
43 NDKSDRNIPYSPLPPKVLDN 
44 SPLPPKVLDNERKQSDPQSQ 
45 ERKQSDPQSQDNNGNRHVPN 
46 DNNGNRHVPNSEDRETRPHG 
47 SEDRETRPHGRNNENRSYNR 
48 RNNENRSYNRKYNDTPKHPE 
49 KYNDTPKHPEREEHEKPDNN 
50 REEHEKPDNNKKKGESDNKY 
51 KKKGESDNKYKIAGGIAGGL 
52 KIAGGIAGGLALLACAGLAY 
53 ALLACAGLAYKFVVPGAATP 
54 KFVVPGAATPYAGEPAPFDE 
55 YAGEPAPFDETLGEEDKDLD 
56 TLGEEDKDLDEPEQFRLPEE 
57 EPEQFRLPEENEWN 

 
 
 

 


