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Abstract

Background

Bovine tuberculosis (bTB) caused by Mycobacterium bovis is a re-emerging problem in both

livestock and humans. The association of some M. bovis strains with hyper-virulence, MDR-

TB and disseminated disease makes it imperative to understand the biology of the

pathogen.

Methods

Mycobacterium bovis (15) among 1755 M. tuberculosis complex (MTBC) isolated between

2012 and 2014 were characterized and analyzed for associated patient demography and

other risk factors. Five of the M. bovis isolates were whole-genome sequenced and compar-

atively analyzed against a global collection of published M. bovis genomes.

Results

Mycobacterium bovis was isolated from 3/560(0.5%) females and 12/1195(1.0%) males

with pulmonary TB. The average age of M. bovis infected cases was 46.8 years (7-

72years). TB patients from the Northern region of Ghana (1.9%;4/212) had a higher rate of

infection with M. bovis (OR = 2.7,p = 0.0968) compared to those from the Greater Accra

region (0.7%;11/1543). Among TB patients with available HIV status, the odds of isolating

M. bovis from HIV patients (2/119) was 3.3 higher relative to non-HIV patients (4/774). Direct

contact with livestock or their unpasteurized products was significantly associated with bTB

(p<0.0001, OR = 124.4,95% CI = 30.1–508.3). Two (13.3%) of the M. bovis isolates were

INH resistant due to the S315T mutation in katG whereas one (6.7%) was RIF resistant with
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(2019) Molecular epidemiology and whole genome

sequencing analysis of clinical Mycobacterium

bovis from Ghana. PLoS ONE 14(3): e0209395.

https://doi.org/10.1371/journal.pone.0209395

Editor: Mark Spigelman, Hebrew University,

ISRAEL

Received: November 25, 2018

Accepted: February 19, 2019

Published: March 4, 2019

Copyright: © 2019 Otchere et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This work was supported by the

Wellcome Trust Intermediate Fellowship awarded

to DYM (Grant Number 097134/Z/11/Z). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0001-8982-9488
http://orcid.org/0000-0002-4380-5250
https://doi.org/10.1371/journal.pone.0209395
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209395&domain=pdf&date_stamp=2019-03-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209395&domain=pdf&date_stamp=2019-03-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209395&domain=pdf&date_stamp=2019-03-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209395&domain=pdf&date_stamp=2019-03-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209395&domain=pdf&date_stamp=2019-03-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209395&domain=pdf&date_stamp=2019-03-04
https://doi.org/10.1371/journal.pone.0209395
http://creativecommons.org/licenses/by/4.0/


Q432P and I1491S mutations in rpoB. M. bovis from Ghana resolved as mono-phyletic

branch among mostly M. bovis from Africa irrespective of the host and were closest to the

root of the global M. bovis phylogeny. M. bovis-specific amino acid mutations were detected

among MTBC core genes such as mce1A, mmpL1, pks6, phoT, pstB, glgP and Rv2955c.

Additional mutations P6T in chaA, G187E in mgtC, T35A in Rv1979c, S387A in narK1,

L400F in fas and A563T in eccA1 were restricted to the 5 clinical M. bovis from Ghana.

Conclusion

Our data indicate potential zoonotic transmission of bTB in Ghana and hence calls for inten-

sified public education on bTB, especially among risk groups.

Introduction

Among the Mycobacterium tuberculosis complex (MTBC), Mycobacterium bovis is the main

causative agent of TB in cattle and sheep, albeit with the widest host range among other mam-

mals including wildlife and humans [1]. M. bovis associated TB is a re-emerging global prob-

lem affecting both livestock and humans alike. The World Health Organization reported

147,000 new Bovine TB (bTB)) cases and 12,500 deaths among humans in 2016 [2]. Despite

the low incidence of M. bovis associated TB (~2% globally), the mortality rate is high, especially

among children and HIV co-infected patients [1,3,4]. Human-to-human transmission of M.

bovis is mostly rare [5], thus human bTB is considered a zoonotic chronic disease character-

ized by lung infections and their draining lymph nodes as granulomatous necrotizing inflam-

matory disease [6,7]. Nevertheless, bTB among immunocompromised people and children are

mostly extrapulmonary or disseminated affecting other organs other than the lungs and their

draining lymph nodes. bTB in humans is mostly transmitted via the alimentary canal by the

[4] consumption of unpasteurized dairy products from infected cattle [3,8,9] and or inhalation

of aerosolised bacilli via direct contact with infected cattle and/or their carcasses [5]. However,

a lack of knowledge or simply negligence of the dangers associated with being in close contact

with livestock or wildlife and their unpasteurized products is apparent among some individu-

als who are constantly in direct contact with animals [10]. In addition, there is a growing asso-

ciation of M. bovis related TB cases with treatment failure due to intrinsic resistance to some

commonly used anti-tuberculosis drugs [11].

Even though M. bovis, being a member of the MTBC, is genetically homogenous compared

to other bacteria [12], molecular epidemiology of M. bovis infections in Great Britain has

shown that they exhibit polymorphic metabolic profiles, such as differential rates of incorpo-

ration of propionate into membrane lipid components among different genotypes [13] as well

as differential expression of some essential genes and accumulation of single nucleotide poly-

morphisms (SNPs) which could have functional implications [14].

About 85% of herds and 82% of humans in both rural and urban settings in sub Saharan

Africa (SSA) live in close proximity to one another, thus driving the wide distribution of bTB

compared to other global settings [15,16]. This is compounded by the inadequate sanitation

practices such as the habit of sharing drinking water with beasts and consumption of non-pas-

teurized milk and dairy products [17–19]. Despite the economic and public health importance

of bTB, little knowledge exists on the epidemiology and biology of M. bovis in relation to the

human adapted MTBC (hMTBC) lineages spanning M. tuberculosis sensu stricto (Mtbss) and
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M. africanum (Maf) [20,21]. However, such information is critical for development of effective

control tools for bTB.

We determined the prevalence of bTB among pulmonary TB patients passively reporting to

selected TB diagnostic/treatment facilities in Ghana, determined potential risk factors associ-

ated with bTB in Ghana and explored genomic similarities and differences among M. bovis
strains from around the globe, irrespective of the host, using whole genome sequencing.

Materials and methods

Ethical statement and participant enrolment

The Institutional Review Board (IRB) of the Noguchi Memorial Institute for Medical Research

(NMIMR) with Federal Wide Assurance number FWA00001824 reviewed this study and its

protocols and accordingly gave ethical clearance in support of the work.

Mycobacterial isolation, drug resistance profiling and genotyping

Smear-positive sputum samples from the selected health centers in the Northern and Greater

Accra regions of Ghana were decontaminated and inoculated on 2 pairs of Lowenstein Jensen

(LJ) slants; one pair supplemented with 0.4% sodium pyruvate (to enhance growth of M. bovis
and M. africanum (Maf)) the other with glycerol (for enhanced growth of M. tuberculosis sensu
stricto (Mtbss) and incubated as previously described [22]. MTBC cells growing in confluence

were harvested and heat inactivated at 95 oC for 60 min in nuclease-free water. After heat inac-

tivation, chromosomal DNA was extracted using previously described protocol [23]. The iso-

lates were confirmed as MTBC by PCR amplification of IS6110 and spoligotyping was carried

out for lineage classification [24]. Isolates classified as M. bovis were confirmed with a large

sequence polymorphism (LSP) assay using PCR detection of deleted regions of difference

RD9, RD4 and RD12 [25]. Drug susceptibility testing against isoniazid (INH) and rifampicin

(RIF) was carried out using the micro-plate alamar blue assay [23,26].

Whole genome sequencing and phylogenetic analysis

Whole genome sequencing of 5 candidate M. bovis isolates was carried out as previously

described [27]. The 5 genomes (ERR502499; ERR502526; ERR502529; ERR502538;

ERR1203064) were added to a collection of 767 previously published clinical and veterinary M.

bovis genomes (S1 Table) from around the world for analysis. Sequence reads were mapped to

the Mycobacterium bovis AF2122/97 reference genome (NC0002945) using BWA (minimum

and maximum insert sizes of 50 and 1000 respectively) [28]. Single nucleotide polymorphisms

(SNPs) were called using SAMtools mpileup and BCFtools (minimum base call quality of 50

and minimum root squared mapping quality of 30) as previously described [28,29]. Variant

sites in the alignment were extracted using snp-sites [30] and a maximum likelihood phyloge-

netic tree was constructed using FastTree2 [31] (nucleotide general time-reversible tree). The

resulting tree was annotated and rooted using iTOL [32]

Comparative mutational analysis of selected MTBC core-genes

Coordinates of 147 MTBC core genes (S2 Table) previously reported to harbour amino acid

mutations with phenotypic consequence on virulence and fitness of some laboratory strains of

the MTBC [33–39] were compiled from the Tuberculist database [40]. Using the fasta file of

H37Rv as reference, the paired end reads of the 5 Ghanaian M. bovis genomes, 257 M. africa-
num [27] and global collection of 20 MTBC genomes [41] were screened for mutations within

the compiled 147 core genes using ARIBA with default settings [42]. Amino acid mutations
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found to be present only among the 5 Ghanaian M. bovis genomes were suspected to be M.

bovis specific. To confirm whether these mutations were widespread in M. bovis, the global col-

lection of 767 clinical and veterinary M. bovis genomes (S1 Table) was screened for these spe-

cific mutations using ARIBA as described above. We further classified these amino acid

mutations as M. bovis-specific if they were found in 100% of genomes in the global collection

or core M. bovis mutations if found in at least 99% of genomes.

Statistical analysis

Where applicable, chi-square and Fisher’s exact tests were used to establish statistical signifi-

cance. P-values less than 0.05 were considered statistically significant with 95% confidence.

Results

Demography and biological associations of TB patients infected with M.

bovis
A total of 1755 MTBC isolates were obtained from 2074 smear positive TB patients (84.6% iso-

lation rate). Among the patients from whom a MTBC was isolated, 212 (12.1%) were from the

Northern region and 1543 (87.9%) from the Greater Accra region as previously described [27].

Fifteen (0.9%) of the isolates were genotyped as M. bovis whereas the remaining 1740 (99.1%)

were members of the hMTBC (Mtbss and Maf). The average age of patients infected with M.

bovis was 46.8 years (7 to 72 years) of which 12/1195 (1.0%) were from males compared to 3/

560 (0.5%) from females (p = 0.412, OR = 1.9). Four (1.9%) of the isolates from the Northern

region (n = 212) were M. bovis compared to 11/1543 (0.7%) from the Greater Accra region

(p = 0.0968, OR = 2.7). Among the patients with known HIV status (893; 50.3%), 119 (13.3%)

were HIV-positive compared to 774 (86.7%) HIV-negative. The incidence of bTB among HIV

and non-HIV TB patients was 1.7% (2/119) and 0.5% (4/774) respectively with higher odds of

isolating M. bovis from HIV patients relative to non-HIV TB patients (OR = 3.3). Six TB

patients including 1 herdsman, 1 herds owner and 4 butchers representing 40% of 15 patients

with history of direct contact with livestock were infected with M. bovis. This is significantly

higher compared to 0.5% (9/1740) of M. bovis infected TB patients without such history

(p< 0.0001, OR = 124.4, 95% CI = 30.1–508.3)

Drug resistance profile of M. bovis isolates

Most of the M. bovis isolates (13) were susceptible to all the drugs tested except two isolates

resistant to INH and one isolate resistant to RIF (Table 1). The two INH resistant isolates both

had the S315T mutation in katG while the RIF resistant isolate had Q432P and I1491S muta-

tions in rpoB.

Table 1. Sensitivity of the MTBC isolates to INH and RIF.

Drug Total (1755) hMTBC (1740) M. bovis (15) P-value OR 95%CI

INHr 133; 7.6% 131;7.5% 2;13.3% 0.3163 1.9 0.2–8.5

RIFr 16; 0.9% 15;0.9% 1;6.7% 0.1288 8.2 0.2–61.0

MDR 40 (2.3%) 40;2.3% 0;0.0% - - -

ANY 189 (10.8%) 186;10.9% 3;20.0% 0.2139 2.1 0.4–7.8

NB: ANY: Total number of isolates resistant to at least one drug.

https://doi.org/10.1371/journal.pone.0209395.t001
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Phylogenetic distribution of global collection of M. bovis
The maximum likelihood phylogenetic tree of global collection of M. bovis spanning both clin-

ical and veterinary isolates rooted on Maf L6 as an outgroup shows random distribution of

both the clinical and veterinary M. bovis (Fig 1). The majority of the global collection of M.

bovis analyzed were isolated from animals (predominately cattle). The M. bovis genomes of

African origin (Ghana, Eritrea and South Africa) generally clustered together closest to the

root of the phylogeny irrespective of the host. Nevertheless, there were few M. bovis from

South Africa which were sporadically distributed far from the root of the tree. There were 2

major clusters of M. bovis from New Zealand and one major cluster each from the United

Kingdom, Mexico and the United States of America. Interestingly, the 5 Ghanaian clinical M.

bovis clustered together as a monophyletic branch among the African M. bovis group (Fig 1).

In silico predicted M. bovis-specific amino acid mutations

We identified 41 M. bovis restricted amino acid mutations among 32 core-genes of the 5 clini-

cal M. bovis from Ghana when compared to 257 Maf [27] and 20 global MTBC genomes [41]

Fig 1. Phylogenetic tree of the Ghanaian clinical M. bovis amidst global collection of 767 published M. bovis genomes. The whole genome phylogeny of 767 publicly

available M. bovis genomes together with 5 clinical M. bovis from Ghana rooted on M. africanum as an outgroup, shows the 5 Ghanaian clinical M. bovis genomes as a

monophyletic group siting in a clade consisting mostly of other African M. bovis isolates basal to the rest of the dataset.

https://doi.org/10.1371/journal.pone.0209395.g001
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(S3 Table). However, when we screened our global collection of 772 M. bovis genomes (includ-

ing the 5 from Ghana), only 8 of the mutations were found in all genomes, 20 mutations in

99.22% to 99.87% of the genomes and 7 mutations in 95.85% to 98.97% of genomes. A further

6 mutations (P6T in chaA, G187E in mgtC, T35A in Rv1979c, S387A in narK1, L400F in fas
and A563T in eccA1) were restricted to the 5 clinical M. bovis from Ghana (Fig 2; S4 Table; S1

Fig).

Among the 41 mutations identified uniquely among 32 core-genes M. bovis, 17 were

among 15 essential genes associated with important physiological processes such as lipid

metabolism, cell wall and cell processes, intermediate metabolism, and cellular respiration, vir-

ulence, detoxification and virulence as well as regulatory proteins (Table 2). These include

mce1A, phoT and eccA1 previously shown to be essential for the growth of Mtbss L4 strain

H37Rv in primary murine macrophages [35]. In addition, mutations in other genes such as

Fig 2. Distribution of selected core-gene amino acid mutations among M. bovis.

https://doi.org/10.1371/journal.pone.0209395.g002
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pks6, pknD, pks4 and glgP have been shown to be associated with no production of phthiocerol

dimycocerosates (PDIM) among mutant strains [36], attenuation in the central nervous sys-

tem of BALB/c mice [39], no production of mycolic acid derivatives (mycolipanoic, mycolipe-

nic and mycolipodienoic acids) among mutant strains [38] and in vitro slow growth [34].

Discussion

The global aim of reducing the impact of tuberculosis by the year 2030 cannot be achieved

without considering the impact of zoonotic transmission and biology of M. bovis, the main

causative agent of TB among cattle. The prevalence and incidence of bTB among humans is

significantly lower across the globe compared to TB caused by the hMTBC [2]. Nevertheless,

the association of bTB with compromised immunity and the innate resistance of M. bovis to

pyrazinamide (PZA) (one of the four first line anti-TB drugs) underscore the need to adapt

and implement TB control programs that encompass both bTB and TB caused by the hMTBC.

Compared to other geographical regions, Africa has the highest burden of zoonotic transmis-

sion of bTB due to close contact of humans and animals (domestic and wild-life) as well as rel-

atively poor hygienic practices [2,17,44–46]. We identified 15 M. bovis isolates among a total

of 1755 MTBC isolated from pulmonary TB patients. Further molecular epidemiological

Table 2. Description of M. bovis-restricted amino acid mutations among essential genes.

Gene Common

name

Mutation Proportion of M.

bovis
Function Essentiality Reference

Rv0169 mce1A P359S 100% virulence, detoxification,

adaptation

required for survival in primary murine macrophages

required for growth in C57BL/6J mouse spleen

[35]

[34]

Rv0405 pks6 A456fs 100% lipid metabolism transposon mutant does not produce phthiocerol dimycocerosate

(PDIM)

essential gene for in Mtbss CDC1551 strain

[36]

[37]

Rv0820 phoT F35L 100% cell wall and cell processes required for survival in primary murine macrophages in H37Rv [35]

Rv0931c pknD L376fs 99.9% Regulatory mutant Mtbss CDC1551 is attenuated in the central nervous

system of BALB/c mice

[39]

Rv1181 pks4 D505A 99.5% lipid metabolism essential gene in Mtbss CDC1551 strain

mutant aggregates in liquid culture and does not produce

mycolipanoic, mycolipenic, or mycolipodienoic acids

[37]

[38]

Rv1328 glgP D532G 100% intermediary metabolism

and respiration

slow growth of Mtbss H37Rv mutant strain [34]

Rv1522c mmpL12 S947N 97.4% cell wall and cell processes essential gene for in vitro growth of Mtbss H37Rv [43]

Rv1661 pks7 S1176P 95.9% lipid metabolism essential gene for in vitro growth of Mtbss H37Rv [43]

[34]

Rv1662 pks8 A808V 97.9% lipid metabolism essential gene for in vitro growth of Mtbss H37Rv [43]

[37]

Rv1662 pks8 D78Y 97.8% lipid metabolism essential gene for in vitro growth of Mtbss H37Rv [43]

[34]

Rv1662 pks8 Y1469C 99.6% lipid metabolism essential gene for in vitro growth of Mtbss H37Rv [43]

[34]

Rv2339 mmpL9 A44V 99.9% cell wall and cell processes essential gene for in vitro growth of Mtbss H37Rv [43]

Rv2524c fas L400F 0.7% lipid metabolism essential gene in Mtbss H37Rv and CDC1551;

essential gene for in vitro growth of Mtbss H37Rv

[34]

[37]

[43]

Rv2956 N.A I237T 99.6% information pathways essential gene for in vitro growth of Mtbss H37Rv [43]

Rv3282 N.A A133S 99.7% conserved hypothetical Mtbss H37Rv mutants are slow growing [34]

Rv3666c dppA E451G 97.8% cell wall and cell processes essential gene in Mtbss H37Rv [34]

Rv3868 eccA1 A243V 99.5% cell wall and cell processes required for survival of Mtbss H37Rv in primary murine

macrophages

[35]

https://doi.org/10.1371/journal.pone.0209395.t002
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analysis of these together with global collections of M. bovis and hMTBC showed (1) an associ-

ation between close contact with livestock/animal carcasses and bTB infection in Ghana, (2)

clustering of M. bovis of African origin close to the root of the global phylogeny and (3) the

presence of M. bovis-specific amino acid mutations among both essential and non-essential

core MTBC genes.

The finding of a significant association between bTB and close contact with animals

(p< 0.0001) suggests zoonotic transmission and this calls for the implementation of preven-

tive policies and strategies to reduce zoonotic transmission of TB among these high-risk

groups [44]. This observation also calls for intensive education to create awareness of the dis-

ease about the risks of infection, the detection of infected animals/carcasses and prevention

among farmers, butchers and the general population. Further emphasis should be placed on

training butchers and animal handlers on the importance of adequate infection control mea-

sures, including the use of personal protective equipment (PPE) and the disposal of infected

organs to avoid transmission of bTB among such personnel. An experienced butcher suffering

from bTB in Australia gave an account of slaughtering many animals suspected of bTB and

further cutting out the lungs for over 35 years without any proper precaution [47]. Also, some

butchers in Nigeria, suffering from bTB, admitted eating visibly infected parts of the lung of

cattle out of ignorance in order to convince customers to buy meat [48]. These instances high-

light the importance of public education in the fight against bTB. This education should

include veterinarians because there are instances of these professionals getting infected with

bTB due to a lack of precautionary measures during execution of their work as was the case of

a veterinary surgeon who suffered cutaneous bTB after performing several examinations with-

out proper PPE [49].

Our observation also confirms the importance of the test and slaughter (TS) control strat-

egy for bTB. In addition to pasteurisation of dairy products, bTB has been controlled in devel-

oped countries due to the successful implementation of the TS policy of all infected cattle and

compensation of affected farmers by governments [50]. However, this has not been imple-

mented in SSA partly due to the costs involved. Nevertheless, our findings call for a reconsider-

ation of the TS strategy and mass vaccination for bTB control in SSA and Governments must

respond to this call.

We found the proportion of M bovis infected patients among participants from the North-

ern region (1.9%) of Ghana to be relatively higher (OR = 2.7) compared to those from the

Greater Accra region of Ghana (0.6%). The Northern region is home to over 70% of the

national cattle population [51], confirming the observation that there is a relationship between

close animal contact and bTB. Even though we found no clear association between the M.

bovis isolates and drug resistance and HIV infection, the proportions were relatively higher

than among the hMTBC. However, the lack of association may be because of the relatively lim-

ited number of M. bovis isolates thus further investigation using a larger number of isolates is

required.

The global phylogeny of M. bovis clusters most of the M. bovis of African origin at the root

of the tree (Fig 1) which might be an indication that they are closest to the progenitor of this

successful member of the MTBC with the widest host range. However, the limited number of

genomes from Africa does not allow inference of ancestry. With the exception of the five clini-

cal M. bovis from Ghana which clustered as a monophyletic branch at the base of the tree, the

random distribution of M. bovis irrespective of the speciation of the host underscores the wide

host range of M. bovis and indicates that there is no specific host adaptation. However, the geo-

graphical distribution may suggest transmission of specific clones within certain geographical

locations which agrees with earlier reports [52–54].
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The identification and implications of M. bovis-specific amino acid mutations among genes

such as mce1A, phoT and eccA1 [35], pks6 [36,38] as well as glgP [34] highlights the potential

attenuated virulence of M. bovis relative to the hMTBC [55]. It would be interesting to test the

effects of these mutations on fitness of mutants using ex vivo human cell lines or in vivo bovine

models. In addition to the potential phenotypic implications of the identified mutations

among essential genes, the 8 M. bovis-specific mutations could be utilized in developing either

a rapid lateral flow diagnostic tool or a PCR-based tool specific for differential diagnosis of

bTB among TB patients to advice an appropriate treatment regimen since M. bovis is innately

resistant to pyrazinamide, a component of the DOTS regimen.

The scarcity of M. bovis genomes from Africa limited our ability to infer ancestry of the

Ghanaian clinical isolates. Nevertheless, our data indicates a potential zoonotic transmission

of bTB hence highlights the need for public education among people at risk. Moreover, the

identified M. bovis-specific mutations could be utilized in the development of rapid diagnostic

assays for differential diagnosis of bTB.
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