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While the Punic Wars (264–146 BC) have been the subject of numer-
ous studies, generally focused on their most sensational aspects
(major battles, techniques of warfare, geopolitical strategies, etc.),
curiously, the exceptional economic resilience of the Carthaginians
in the face of successive defeats, loss of mining territory, and the
imposition of war reparations has attracted hardly any attention.
Here we address this issue using a newly developed powerful
tracer in geoarchaeology, that of Pb isotopes applied to palaeo-
pollution. We measured the Pb isotopic compositions of a well-
dated suite of eight deep cores taken in the Medjerda delta around
the city of Utica. The data provide the first robust evidence of
ancient lead-silver mining in Tunisia and lay out a chronology
for its exploitation which appears to follow the main periods of
geopolitical instability at the time: the Greco-Punic Wars (480–307
BC) and the Punic Wars (264–146 BC). During the last conflict, the
data further suggest that Carthage was still able to pay indemni-
ties and fund armies despite the loss of its traditional silver sources
in the Mediterranean. This work shows that the mining of Tunisian
metalliferous ores between the second half of the 4th and the
beginning of the 3rd c. BC contributed to the emergence of Punic
coinage and the development of the Carthaginian economy.

palaeo-pollution | mining resources | Medjerda river | Punic Wars |
Utica

Introduction
The three Punic wars (264–146 BC) saw two of the greatest
empires of antiquity struggle for over a century for control of
the western Mediterranean: Punic Carthage, a maritime power
whose territory at the dawn of the First Punic War (264–241 BC)
formed a narrow fringe along the coasts of NorthAfrica and those
of Andalusia, including the islands of the westernMediterranean;
andRome, an emerging terrestrial power on the Italian peninsula.
Our knowledge of this conflict is dependent on the nature of the
available sources, principally historical records, and, secondarily,
on epigraphy, numismatics and archaeology (1,2). Each of these
disciplines deals with complementary aspects covering various
fields such as the techniques of warfare employed, the geopolitical
strategies implemented, or the resources committed. A particular
difficulty when dealing with the ancient historical accounts (2) is
source bias: no Punic texts have been preserved, and the Latin
authors showed a notable bias against their Punic enemies (1).

A key problem concerns the financial and monetary means
used to support the war effort, which depended on access to
mining resources, especially lead-silver ores, critical for ancient
economies (3–5). Our knowledge of ancient mining centres (i)
is focused mainly on Roman mining districts (a question of
textual sources?) (6, 7), (ii) tends to emphasize major centres
to the detriment of smaller ones (8) and (iii) concerns Central

and Western Europe more than North Africa (5–7, 9–12), often
without robust chronological timelines (7). This paradox is all the
more striking when one observes the spatial distribution of lead-
silver mines within the Roman Empire, which is largely devoid of
them along its southern and eastern fringes (5–7). Information
on the large mining regions exploited by the Carthaginians is
limited to southern Spain (5, 6), Sardinia and Sicily (13) territories
which were annexed by the Romans during, respectively, the
1st (264–241 BC) and the 2nd Punic War (218–201 BC). What,
then, was the geographical origin of the metalresources of the
Carthaginians that supported the war effort during the later
Punic Wars? Shedding new light on this underestimated aspect
is required to put the exceptional resilience of the Carthaginians
against the Romans into perspective. Despite the large amount of
evidence accumulated over the last two centuries for the possible
exploitation of metal resources in Tunisia since antiquity (14-
17), mining archaeology has not yet demonstrated that lead/silver
exploitation actually took place, still less established a chronology.
Only one historical account may refer to the mines of North
Africa, a letter of Saint Cyprian dated AD 257 (Ep. 76) (18),
which mentions Christian convicts sent to mines, but without any
useful details on either the nature or the location of the mines in
question (14, 15).

Significance

How do we explain the exceptional economic resilience for
more than a century and a half of the Carthaginian civilization
against the Romans during the Punic Wars? Based on eight
deep cores taken in the Medjerda delta around the city of Utica
in Tunisia, we show that the sustainable retreat of Carthage
into its hinterland during this period of warfare provided
the metal resources whose exploitation by the Carthaginians
was sufficient to resist the Romans for said long period. The
earliest phase of mining activity recorded in the Utica sedi-
ments occurred during the Greco-Punic Wars (480-307 BC) and
is coeval with the first minting of Punic coins at Carthage, from
which point on the Carthaginian economy became increasingly
monetized.
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Fig. 1. Stratigraphic log of reference core UKC1 showing the palaeo-environmental successions, current (22) and Roman (48) sea levels, and the 14C age-
depth model of core UKC1 constructed using the Clam software (47) on 10 radiocarbon dates (shown with black labels on the stratigraphic log). From
this age-depth model are derived both the historical time slice boundaries (indicated with black arrowheads) and the time interval of anthropogenic lead
pollution highlighted by the gray band and red stars. This figure shows the Pb concentrations (in ppm), the Pb Enrichment Factor (EFPb), downcore variations
of 208Pb/204Pb, 206Pb/204Pb, 207Pb/206Pb, and 208Pb/206Pb for leachates, 208Pb/206Pb for residues, and ΔPb (the isotopic contrast between residue and leachate)
of 208Pb/204Pb, 206Pb/204Pb, and 207Pb/204Pb.

Fig. 2. (A) Plot of 204Pb/206Pb and 208Pb/206Pb for leachates from all eight cores for residues (white triangles) from cores UKC1 and UTC12. (B) Similar plot
using the geochemically informed parameters Tmod and κ for leachates (colored circles) from all eight cores for residues (white triangles) from UKC1 and UTC
12. Colors of leachates refer to the major historical periods. The two mixing lines (gray dashes) connect α and β′, and α and β″. The α end-member corresponds
to the local geogenic Pb fingerprint (unpolluted water), whereas the β end-member corresponds to the anthropogenic component which in turn exhibits two
distinct Tunisian Pb-Ag mining clusters β′ and β″. References for the Pb isotope database (n = 163) of the Tunisian ores are given in the SI Text.

Here we suggest that the sources normally used to study
the Punic Wars (history, epigraphy, numismatics, archaeology,
archaeometry) might benefit from being supplemented by geo-
chemistry through the study of Pb palaeo-pollution trapped in en-
vironmental records. It is well known that environmental archives,
such as the polar icecaps, trapped atmospheric aerosols over
several millennia (5), and that high-altitude glaciers (19) and peat
bogs (12), as well as lakes (20) at high and medium latitudes,
record the signal of past human activity in mining and smelting
lead-silver ores. However, there is ongoing debate over the long-
distance transport of Pb from its sources (the Pb-Ag mining

districts) into these natural archives, with the spatial extent of
the recorded signals ranging from a macro-regional, even hemi-
spheric, scale (5) to a local and/or regional scale, implying strong
spatial and temporal variability (12). Atmuch smaller local scales,
such as the area of a city, the Pb palaeo-pollution approach is
less ambiguous about the source since the distances traveled by
anthropogenic lead pollution are short and the routes well estab-
lished; they follow the urban hydrographic network. Studies of Pb
palaeo-pollution trapped in fluvio-marine sediments of ancient
harbor basins have thus been able to document unexpected and
intriguing facets of urban history in a number of ancient cities
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Fig. 3. Map of the Pb isotope database (n = 135; see
SI Text for references) of Tunisian metal ores (mainly
galena) represented as a function of the Tmod (A) and
κ (B) parameters. The Pb-Ag mining districts shown
with black and white stars (panel A) caused the Pb
pollution recorded in the sediment cores because they
(i) form the sub-components β' and β″ (Fig. 3), respec-
tively, and (ii) are located inside the Medjerda catch-
ment (unlike the mining districts of Hamra, Chaamb-
Agab and Sekarna whose Pb isotopic signatures also
are similar to those of component β). The cores of the
present study are located around Utica, ( white circle).

around the Mediterranean (10, 11, 21). These metal palaeo-
pollutions trapped in harbor sediments could not have come from
aerosols as these contain very low levels of lead, even during
episodes of intense atmospheric pollution. For example, during
the Roman period when lead contamination of the atmosphere
was widespread, the proportion of pollutant lead did not exceed
∼10 ppm in European lake deposits (20) and a few ppt in
Greenland ice (5), while at the same time port sediments were
several hundred ppm above the natural Pb abundance level (11).
The difference—an order of magnitude or more—is far too large
to consider aerosols as a credible source of lead contamination
of fluvio-marine sediments. This general pattern of long-range
pollutant transport resulting in low lead accumulation must be
balanced by the local metal aerosol emissions from mining and
metallurgical pollution sources towards areas in their immediate
vicinity. Environments near ancient metal-related activity areas
could experience Pb enrichments of several tens of ppm during
Roman and medieval times (12).

To explore the means used by the Carthaginians to support
the war effort during the PunicWars, wemeasured the Pb isotopic
compositions and concentrations (Dataset S1) of eight sediment
cores (UKC1; UCN1, 2; UTC1, 2, 10, 12; and KAL1) taken
around the city of Utica in the northern part of the Medjerda
delta in Tunisia (Fig. S1).UKC1was selected as the reference core
because its position at the exit of the bottleneck between the Utica
promontory and the hill of Castra Corneliana (Fig. S1) means that
it carries a record of both the Medjerda watershed and the city of
Utica. Moreover, the number and quality of 14C dates measured
on the UKC1 core is higher than for the other boreholes.

The Medjerda delta is of particular interest because Utica
is the oldest Phoenician foundation in the western Mediter-
ranean, with a traditional foundation date of 1101 BC, predating
Carthage, although the earliest known archaeological remains
are from the 8th c. BC. The cores were previously described
and dated (Dataset S2) as part of a major geoarchaeological
research program conducted over a period of eight years by an
international team fromTunisia, Belgium, Britain and France (22,
23).

Results and Discussion
The natural Pb source

Of the Pb concentrations measured for 146 samples from
the eight cores of this study (Fig. S1), 77, or just over half, are
considered natural since their Pb enrichment factors (EFPb) are
less than 2 (Dataset S1). These samples have relatively low Pb
concentrations (an example is shown for the UKC1 core in Fig.
1), with a mean value of 12 ppm, consistent within error bars with
the average Pb concentration of 17 ppm for the upper crust (24).

Compared to Pb abundances, Pb isotopes are more suitable
for identifying uncontaminated sediments because they are inde-
pendent of the prevailing environmental conditions (25). First,

the residual fraction left over after leaching a sample in the
laboratory corresponds to the Pb contained initially in themineral
crystal lattice during rock formation and hence is referred to
as natural, crustal, or detrital since it characterizes the local
geogenic Pb background (26). Secondly, the leachate fraction (or
extractable phase) represents the labile or anthropogenic compo-
nent of the sample Pb, which is adsorbed onto sediments once
released from an independent anthropogenic source (11, 26).
This anthropogenic component (e.g. lead pipes, gasoline, coal,
aerosols, etc.) involves “imported” or “exotic” lead whose Pb iso-
topic composition is often very different from the local geogenic
Pb. This is why leachate and residue Pb isotopic compositions are
theoretically, and usually in practice as well, distinct in the case
of a pure Pb source (e.g. lead pipes). This theoretical framework
is in reality more complex because the leached Pb fraction also
incorporates part of the natural signal in variable amounts. Con-
sequently, the leached Pb fraction is a mixture between the natu-
ral and anthropogenic components, whose respective proportions
vary from one sample to another, and the leachates, when plotted
in a binary diagram of 204Pb/206Pb vs. 208Pb/206Pb, form mixing
lines between a natural and an anthropogenic source (Fig. 2A). In
the case of theMedjerda delta sediments, the isotopic fingerprint
of the natural Pb ranges between 0.0530 and 0.0532 and 2.062
and 2.070 for 204Pb/206Pb and 208Pb/206Pb, respectively (Fig. 2A).
This natural Pb isotopic composition is also easily readable using
the geochemically informed parameters Tmod (Pb model ages in
million years, Ma) and κ (kappa, the 232Th/238U ratio), which are
derived from the time-integrated Pb isotopic compositions using
the equations given by Albarède et al. (27). The advantages of
this representation over that based on raw Pb isotopic ratios have
been demonstrated in a number of geological (28), archaeological
(27) and geoarchaeological contexts (11). The natural Pb isotopic
signatures of the Medjerda delta sediments cluster between -20
and 20 Ma and 3.90 and 3.92 for Tmod and κ, respectively (Fig.
2B), reflecting the natural Pb background noise of the Medjerda
River and the surrounding Pliocene rocks (5.3–2.6 Ma) forming
the Jebels Kechabta, Touiba, Ennadhour, the Utica promontory
and the hill of Castra Corneliana (29), all of which border the
northern part of the delta (Fig. S1).

Tunisian mine tailings as the source of Pb pollution
Just under half of the samples (69 of 147) have Pb concen-

trations elevated well above background level, which must derive
from anthropogenic pollution. Three lines of evidence point to
the source of the Pb pollution in the Medjerda delta being mine
tailings in the river’s watershed.

(i) The 69 Pb-polluted sediments differ from the unpolluted
samples in both their Pb content and Pb isotopic composition.
Lead concentrations and EFPb range between 10 and 210 ppm
(mean = 59.1 ppm) and 2.13 and 20.9 (mean = 6.9), respectively
(Fig. 1 and Dataset S1). According to the 14C age-depth model
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reconstructed for the UKC1 reference core (Fig. 1 and Dataset
S2), the first Pb pollution event started in the middle of the
4th c. BC, when Utica was under the hegemony of Carthage. This
anthropogenic Pb enrichment occurs in the UKC1 reference core
between 5.8 and 8.2 m core depth and shows up as a decrease
in 206Pb/204Pb and 208Pb/204Pb isotopic ratios (respectively <18.8
and <38.9) and an increase in 207Pb/206Pb and 208Pb/206Pb ratios
(respectively >0.835 and >2.07) (Fig. 1 and Dataset S1). More
generally for theMedjerda delta as a whole, a lead pollution event
caused by an anthropogenic source is attested by a surge of exotic
lead observed in leachates with values above 0.0532 and 2.070 for
204Pb/206Pb and 208Pb/206Pb, respectively (Fig. 2A). This change
in the local Pb isotopic composition also affects the residual
fraction of Pb since its 208Pb/206Pb increases until overlapping
the anthropogenic Pb of the UKC1 core between 5.8 and 8.2 m
core depth (highlighted by the gray band and red stars in Fig.
1A). This co-evolution of leachate-residue pairs is seen in the
downcore behavior of the isotopic contrast between the residue
and the leachate (ΔPb isotope ratios) in the UKC1 core (Fig. 1A).
Values of ΔPb isotope ratios in the anthropogenic Pb level of the
UKC1 core (between 5.8 and 8.2 m core depth) are ∼0, meaning
that the Pb isotopic compositions within these physico-chemical
Pb fractions are the same. Usually the opposite occurs during
a pollution phase (11, 26). This concordance between residues
and leachates is also observed for the geochemical parameters
Tmod and κ (as well as µ, the 238U/204Pb ratio) which, at the
anthropogenic Pb level of the UKC1 core (between 5.8 and 8.2
m core depth), display similar increasing values of, respectively,
> 30Ma and 3.91 (Fig. S2). Such co-evolution of leachate-residue
pairs (Figs. 1, 2B and S2) implies that the labile and crustal lead
have a common anthropogenic source, which in turn must have
a sedimentary origin (the residual fraction cannot come from
somewhere else). We therefore suggest that the only conceivable
anthropogenic Pb source is that of early mining activity involving
Pb ores and the release of mine tailings into the Medjerda water-
shed.

(ii) The idea of a mining source for the Pb-contaminated
sediments in the Utica cores is supported by the alignment of
the core samples in a plot of Tmod vs. κ along two mixing lines
with a natural end-member α and an anthropogenic end-member
β (Fig. 2B). The Hercynian Pb model ages of the β component
(Tmod ∼ 140–240 Ma) split into two local subcomponents β′ and
β″, which correspond to some modern Tunisian mining districts
(Fig. 2B). The α end-member has an epicenter on a Pb model
age of ∼ 3.8 Ma (Fig. 2B), which closely matches that of the
Pliocene rocks (5.3–2.6 Ma) surrounding the northern part of the
Medjerda delta. The mixing lines α–β′ and α–β″ are distinguished
according to the periods to which the Pb-contaminated sediments
refer, and the metalliferous sources from which they are derived
(Fig. 2B). It is not surprising to find a significant contrast between
the Pb isotopic signatures of certain metalliferous deposits within
the Medjerda catchment basin and its deltaic sediments given
the specific mineralogical history of the metal ores forming the
mining districts which is distinct from that of the host rocks (26).
Similar cases have been documented, for example, in Bulgaria
(30), Iran (31) and Mexico (32). For Tunisia, the isotopic con-
trast is all the more pronounced because its metallic resources,
almost exclusively galena and sphalerite (33, 34), are hosted
by tectonically, lithologically and stratigraphically widely diverse
environments which, moreover, cover geological periods from the
Triassic to the Upper Miocene (5–253 Ma) (8, 35, 35).

(iii) In addition to the co-evolution of Pb leachate-residue
pairs in the Utica core sediments (Figs. 1 and S2) and the Pb iso-
tope mixing lines pointing towards Tunisian ores (Fig. 2), another
indicator of mine tailings being the only source of Pb pollution in
theUtica sediments comes from elemental geochemistry (Dataset
S3). In Fig. S3, factor analysis of the bulk sediment element

abundances identifies Pb as clustered tightly with Ag (r ∼ 0.92),
P (r∼ 0.94), Cu (r∼ 0.79) and Zn (r∼ 0.62), with a large loading
on the first factor indicative, respectively, of a common source for
all these elements, and of their predominance in the sedimentary
deposits of theMedjerda’s delta. According to the correlogram of
the 29 elements analyzed, the highest positive Pb correlations are
foundwith these elements (Fig. S4). Recently, such factor analysis
has contributed to identifying lead pipes as the Pb pollution
source of the ancient harbor sediments of Naples because Pb was
clearly separated from othermetal trace elements, thus indicating
the presence of a pure Pb source (10). Here the factor analysis
shows the opposite, with an impure anthropogenic Pb source
containing Pb, Ag, P, Cu and Zn. The most common Ag ore is
galena, a lead sulfide. Most silver mines, therefore, are also lead
mines. Galena is today exploited at several sites in Tunisia (37,
38), with an average Ag content ranging from 200 to 500 g/t of
galena (36), values sufficiently high to suggest its exploitation for
silver as well as lead during ancient times (9, 36, 37). In Spain,
for example, mining archaeology has shown that Roman lead-
silver mines have an Ag content ranging from 50 to 8000 g/t of
galena (36). In the Sierra Morena in Spain, a hotspot of ancient
lead–silvermining, Domergue (37) concluded that theAg content
in galena is generally between 300 and 500 g/ton. Copper can
occur either as traces in the galena or as a result of chalcopyrite
extraction. Nevertheless, this last hypothesis is unlikely in the case
of Tunisian trace element systematics since ore deposits hosting
this type of Cumineral are very rare in Tunisia (34). Zinc deposits,
in contrast, largely associated with those of Pb because Pb and
Zn are very similar geochemically, are widespread in Tunisia (10,
34, 35) and consist of blende and smithsonite ores (34). Finally,
phosphorus is not known to be associated with galena, implying
that its grouping with Pbmay attest the simultaneous exploitation
of Tunisian phosphate deposits (34).

Based on the three geochemical arguments above (the co-
evolution of Pb leachate-residue pairs, Pb isotopic mixing lines
with Tunisian ores as the anthropogenic end-member, and clus-
tered metal trace element systematics), this study has made it
possible for the first time to establish direct measurable evidence
of ancient mining activity in the Medjerda catchment basin.

Tracing the Tunisian mining sources
Rather than using the classical elliptical fields technique to

identify the mining districts responsible for environmental con-
tamination (e.g. 21), we here favor the use of mapped-out Pb
isotope data from compiled Pb isotope databases. In addition
to providing full transparency on the data used to build these
databases (27), this technique has demonstrated its usefulness
in various contexts, including, but not limited to, archaeometry
(27) and environmental sciences (10). Figure 3 is a map of the
compiled Pb isotope data (n = 135) for Tunisian metal ores
(mainly galena) (see SI Text for references) represented in terms
of Tmod (Fig. 3A) and κ (Fig. 3B). This particular geographical
display of the data shows at a glance that the isotopically sus-
pected Pb-bearing districts are part of the Medjerda catchment
area, supporting the argument above that the co-evolution of
Pb leachate-residue pairs requires a mining source of pollution
within the Medjerda watershed.

The first generation of strongly Pb-contaminated sediments
dating back to the Punic period plots along the mixing line α–β′
(Fig. 2B), where the anthropogenic subcomponent β′ refers to the
mines of Djebba and Kebbouch (Fig. 3). Both have Pb isotopic
compositions consistent with that of sub-component β′ (Tmod ≥
140 Ma and κ ≥ 4) (Fig. 3) and are located inside the Medjerda
watershed, unlike the mines of Hamra or Sekarna (Fig. 3). It
has long been suspected that the Djebba mines, in the lower
Medjerda plain, were exploited since Punic times (15, 16), while
those of Kebbouch are thought to have been exploited only in
modern times (34). It is not possible to know at which site the
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Pb and Ag ores were mined, or whether production took place
simultaneously at both sites.

The second cluster of strongly Pb-contaminated sediments
dates to the Punic and Roman periods and plots along the mixing
line α–β″ (Fig. 2B), where the anthropogenic subcomponent β″
refers to the Pb-Ag mines of Slata and Bou Jaber (Tmod ≥ 200
Ma and κ ≥ 4) (Fig. 3). The Pb isotopic signatures of Hamra,
Chaambi-Agab and Sekarna alsomatch that of the subcomponent
β″ (Fig. 2), but these sites are not within the Medjerda catchment
(Fig. 3). Like the mines of Djebba, the Bou Jaber mines are
suspected to have been exploited since antiquity (8, 17), while
the Slata deposits are believed to have been worked only since
medieval times (8, 33).

A historical chronology of Tunisian Pb pollution
While the periods defined below correspond to what history

has described as phases of instability, the reality was more com-
plex. Each period was marked by both a series of geopolitical
conflicts and quieter times. Instability is thus defined here as an
increase in the frequency of conflicts compared to preceding or
succeeding periods.

Phase 1 (340–280 BC): mining during the time of the Greco-
Punic Wars (480–307 BC)

Although Carthage was founded by Phoenician settlers at
the beginning of the 1st millennium BC, the first phase of Pb
contamination in the deltaic sediments of theMedjerda River did
not occur until the second half of the 4th c. BC. At this time a slight
increase in Pb concentrations is recorded (EFPb = 3–11) in the
cores UKC1 (Figs. 1, S3 and S2) and UTC12 (Dataset S1), as well
as an aging of the Pb model ages centered around 40 Ma (note in
Fig. 2B, the three Punic samples plotting outside the Pb isotopic
composition of the natural background). This signal probably
represents the first mining activity in Tunisia, which seems to have
developed during the extension of Carthaginian control overits
hinterland from the 5th c. BC, once the First Greco-Punic War
ended (480 BC) (38). According to the 14C age-depth model, this
early phase of mining in the Medjerda catchment extends from c.
340 to 280 BC. Particularly striking is that the onset of this early
pollution phase coincides with the first minting of Punic coins at
Carthage during the middle of the 4th c. BC (39): after that the
Carthaginian economy became increasingly monetized (40). The
minting of silver coinage intensified during the conflict against
Syracuse (317–289 BC), which has led some scholars to consider
this war as the trigger for monetary activity at Carthage (40, 41).

Phase 2 (275–180 BC): increasing mining activity in the first two
Punic Wars (264–201 BC) and the inter-war period (241–218 BC)

The anthropogenic excess Pb trapped in deltaic sediments
rises sharply from 275 BC (Figs. 1 and S3) with EFPb values of up
to 20 (Fig. 1 and Dataset S1). Pb isotopes indicate that between
275 and 180 BC (sediments dated to the Punic period that plot
along the mixing line α–β’ in Fig. 2) the mining districts of Djebba
and/or Kebbouch (Figs. 2 and 3) were mined with tailings dis-
charged into the Medjerda catchment, contributing to increasing
Pb levels in the local sediments. This second Tunisian mining
phase took place during the first two Punic Wars (264–201 BC).
As with the first mining phase (340–280 BC), activity during this
period seems to have been driven by a military context requiring
significant financial and monetary resources (1, 2). Numismatic
studies show that from the beginning of this conflict Carthage
increased its minting of silver coins (39, 40) to pay its mercenaries
(42). It can now be assumed that part of the lead-silver ores
contained in the coins minted at Carthage was extracted from the
mines of the Medjerda watershed.

Moreover, because the Pb and Ag mines of Djebba and/or
Kebbouch were exploited for almost a century (275–180 BC), it
can be assumed that these mining districts also contributed to
funding the penalties imposed by Rome on Carthage during this
conflict: 3,200 talents of silver (96 tons) (43) at the end of the

First War, and 12,500 talents (375 tons) after the Second War
(44). Indeed, while it has generally been thought that the penalty
of the First Punic War (264–241 BC) was paid in silver from the
Iberian peninsula (1), we now suspect that the Tunisian mines
also contributed to this effort since Carthage successively lost its
traditional silver sources during the first two PunicWars: Sardinia
and Sicily in 241 BC, and Spain in 201 BC.

Phase 3 (180–95 BC): sustained mining activity until the end of
the Punic Wars

The recorded levels of Pb pollution between 180–95 BC are
still high as shown by EFPb values ranging between 10 and 20
(Fig. 1 and Dataset S1). The Pb isotope ratios are consistent
with this observation since 206Pb/204Pb displays a decrease in
values to ∼18.6 (natural 206Pb/204Pb > 18.8), while 207Pb/206Pb
and 208Pb/206Pb are, respectively, > 0.835 and 2.07 (Fig. 1). This
period differs from the second period of mining activity because
of a change in the metalsources exploited by the Carthaginians,
and later by the Romans, as indicated by the alignment of the
corresponding samples along the secondmixing line α–β″ (Fig. 2).
Lead and silver mining was now evidently carried out in themines
of Bou Jaber and/or Slata (subcomponent β″) from the beginning
of the 2nd c. BC onwards (Fig. 3).

Once again, this major event took place in a particular his-
torical context: the interval between the Second and Third Punic
Wars (201–149 BC). During this period, Carthage suffered a
double financial pressure: it no longer had any metal resources in
Spain, and was forced to pay war compensations in Rome about
four times the level of those after the First Punic War. There
was thus a considerable imbalance between Carthage’s monetary
needs and the metalresources available to it. We can surmise
that this strong demand for mineral resources would have pushed
the Carthaginians towards mining districts with higher potential
and located in the territory it still controlled (modern Tunisia).
Paradoxically, this period between the two last Punic Wars is con-
sidered to be a period of renewed prosperity in Carthage, whose
traces can be seen in the city’s urban planning (45), and apparently
reflecting a revival of commercial activities based on the export
of ceramics, cattle, and, potentially, metals (1). Our new results
suggest that the Carthaginians were exceptionally economically
resilient during this period, owing to their exploitation of mining
regions in Carthage’s hinterland.

Figure 2 shows that the sediments deposited after the Third
Punic War (149–146 BC) remain affected by Pb excesses, but
to a lesser extent (samples are closer to the natural component
α), resulting from mining Pb-Ag ores from Slata and/or Bou
Jaber (Fig. 3), from then on under Roman control. It is difficult
to determine whether the Romans’ desire to appropriate the
Carthaginianmines was one of the causes of the Third PunicWar,
but their appropriation was certainly a consequence of it. After
going to Carthage in 157 BC, Cato was struck by the prosperity of
Africa and later became a fervent advocate for the destruction
of Carthage (44). Carthage had settled its war debt to Rome,
which may have been tempted permanently to eliminate its old
rival, monopolizing its metal resources at the same time. Roman
history later shows that once a territory was annexed its metal
resources were swiftly exploited for the benefit of the imperial
power (6); the Carthaginian hinterland would have undergone
this same dynamic, as Carthaginian territory had already done in
Sicily and Spain.

Phase 4 (95 BC–AD 800): declining mining activity
Figure 2 shows that the samples from the Republican period

until the Early Middle Ages are still aligned along the mixing line
α–β″, but with a greater proportion of the natural component α.
Consequently, it appears that at the beginning of the 1st c. BC,
mining activity in the Medjerda catchment in the mining districts
of Bou Jaber and/or Slata continued, but much less intensively.
This slowdown in metal exploitation during the Roman period
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in Tunisia must be seen in the light of Roman territorial expan-
sion northward into northern Spain, Gaul, Germany and Britain,
where Rome gained access to new metal resources with potential
higher than that of the Carthaginian mines (6, 7).

Mining activity continued through the early medieval period
until the beginning of the 9th c. The latest Pb-polluted levels
recorded during the medieval period are in the peat layers of
coresUTC1, 2 and 12 (Fig. 2), which display EFPb andTmod values
ranging between 2 and 8 and 46 and 97, respectively (Dataset S1).

Perspectives
From this research emerge multi-disciplinary perspectives re-

lating to history, archaeology, and geomorphology. From a histor-
ical point of view, the occurrence of a first phase of anthropogenic
Pb pollution not before the middle of the 4th century BC excludes
the idea that it was the attraction of the mineral resources of
the Carthaginian hinterland that led to the original settlement
of the Phoenicians at Carthage and Utica at the beginning of
the 1st millennium BC. From an archaeological point of view,
this study reveals the potential of the Tunisian mining deposits,
and those of North Africa more generally, for archaeological
mining studies. Finally, from a geomorphological point of view,
the considerablemine tailings released during the ancient periods
of mining activity documented here should be regarded as an
important factor alongside climate and land use for the evolution
of deltas. The current environmental effects of Tunisia’s mining
legacy are amatter of concern as remobilization ofRomanmining
tailings could be triggered by fluvial erosion processes.

Materials and Methods
Radiocarbon dates and the age-depth model

The 37 radiocarbon dates (22, 23) used in this study are listed in Dataset
S2. The measured 14C (BP) ages were converted into BC—AD dates using
the continental and marine curves of Reimer et al. (46). For each core an
age-depth model was created using the Clam software (47) to classify the
samples according to the broad historical periods covered here (Pre-Punic,
Punic, Republican, Early Roman Empire, Late Roman Empire, Early Middle
Ages and Late Middle Ages).

Major and trace element analysis
Major and trace element analyses were carried out on core UKC1 (10 m

depth) with a sample resolution of one sample approximately every 12 cm
(86 samples analyzed in total) (Dataset S3). The analytical details are those
of Delile et al. (10, 11), which are briefly summarized in the SI Text.

Pb isotopic analysis
Lead isotopic compositions were measured on 146 leachates and 79

residual fractions, the latter of which were from the same sample digestions
as the leachates. The samples were distributed among the eight cores of
this study as follows (Dataset S1): UKC1, 86 leachates and 30 residues; UTC2,
1 leachate; UTC1, 3 leachates; UTC10, 5 leachates and 5 residues; UTC12,
11 leachates and 7 residues; UCN2, 18 leachates and 15 residues; KAL1,
17 leachates and 17 residues; and UCN1, 5 leachates and 5 residues. The
analytical details are those of Delile et al. (10, 11) with the main steps
summarized in the SI Text.
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