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Abstract
This paper presents a numerical method for variable coefficient elliptic PDEs with
mostly smooth solutions on two dimensional domains. The method works best for
domains that can readily bemapped onto a rectangle, or a collection of nonoverlapping
rectangles. The PDE is discretized via a multi-domain spectral collocation method of
high local order (order 30 and higher have been tested and work well). Local mesh
refinement results in highly accurate solutions even in the presence of local irregular
behavior due to corner singularities, localized loads, etc. The systemof linear equations
attained upon discretization is solved using a direct (as opposed to iterative) solver
with O(N 1.5) complexity for the factorization stage and O(N log N ) complexity for
the solve. The scheme is ideally suited for executing the elliptic solve required when
parabolic problems are discretized via time-implicit techniques. In situations where
the geometry remains unchanged between time-steps, very fast execution speeds are
obtained since the solution operator for each implicit solve can be pre-computed.
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1 Introduction

This manuscript describes a direct solver for elliptic PDEs such as, e.g.,

{
[Au](x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ ,
(1)

where A is a variable coefficient elliptic differential operator

[Au](x) = − c11(x)[∂21u](x) − 2c12(x)[∂1∂2u](x) − c22(x)[∂22u](x)

+ c1(x)[∂1u](x) + c2(x)[∂2u](x) + c(x) u(x), (2)

where Ω is a rectangular domain in R2 with boundary Γ = ∂Ω , where all coefficient
functions (c, ci , ci j ) are smooth, andwhere f and g are given functions. The generaliza-
tion to domains that are either unions of rectangles, or can via local parameterizations
be mapped to a union of rectangles is relatively straight-forward [11, Sec. 6.4]. The
technique is specifically developed to accelerate implicit time stepping techniques for
parabolic PDEs such as, e.g., the heat equation

⎧⎪⎪⎨
⎪⎪⎩

�u(x, t) = ∂u

∂t
(x, t), x ∈ Ω, t > 0,

u(x, t) = f (x, t), x ∈ Γ , t > 0,

u(x, 0) = g(x), x ∈ Ω.

(3)

When (3) is discretized using an implicit time-stepping scheme (e.g. backwards Euler,
Crank–Nicolson or the Transpose Method of Lines [1]), one is required to solve for
each time-step an equation of the form (1), see Sect. 7.6. With the ability to combine
very high order discretizationswith a highly efficientmeans of time-stepping parabolic
equations, we believe that the proposed method will be particularly well suited for
numerically solving the Navier–Stokes equation at low Reynolds numbers.

The proposed solver is direct and builds an approximation to the solution operator
of (1) via a hierarchical divide-and-conquer approach. It is conceptually related to
classical nested dissection and multifrontal methods [2–4], but provides tight integra-
tion between the direct solver and the discretization procedure. Locally, the scheme
relies on high order spectral discretizations, and collocation of the differential oper-
ator. We observe that while classical nested dissection and multifrontal solvers slow
down dramatically as the discretization order is increased [6, Table 3], the proposed
method retains high efficiency regardless of the discretization order. The method is an
evolution of the scheme described in [10,11], and later refined in [5–7]. One novelty
of the present work is that it describes how problems with body loads can be han-
dled efficiently (the previous papers [5–7,11] consider the case where g = 0 in (1)).
A second novelty is that local mesh refinement is introduced to enable the method
to accurately solve problems involving concentrated loads, singularities at re-entrant
corners, and other phenomena that lead to localized loss of regularity in the solution
(in contrast, the previous papers [5–7,11] restrict attention to uniform grids).
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Theprincipal advantageof the proposed solver, compared to commonlyused solvers
for (1), is that it is direct (as opposed to iterative), which makes it particularly well
suited for problems for which efficient pre-conditioners are difficult to find, such as,
e.g., problems with oscillatory solutions. The cost to build the solution operator is in
themost basic version of the scheme O(N 3/2), where N is the number of discretization
points. However, the practical efficiency of the solver is very high and the superlinear
scaling is hardly visible until N > 107. When the number of discretization points is
higher than 107, the scheme can bemodified to attain linear complexity by implement-
ing techniques analogous to those described in [5]. Once the solution operator has been
built, the time required to apply it to execute a solve given a boundary condition and
a body load is either O(N log N ) for the basic scheme, or O(N ) for the accelerated
scheme, with a small scaling constant in either case. In Sect. 7, we demonstrate that
even when N = 106, the time for solving (1) with a precomputed solution operator is
approximately 1 s on a standard office laptop.

The discretization scheme we use is related to earlier work on spectral collocation
methods on composite (“multi-domain”) grids, such as, e.g., [9,14], and in particular
Pfeiffer et al. [12]. The differences and similarities between the various techniques
is discussed in detail in [11]. Our procedure is also conceptually related to so-called
“reduction to the interface” methods, see [8] and the references therein. Such “inter-
face” methods also use local solution operators defined on boundaries but typically
rely on variational formulations of the PDE, rather than the collocation techniques that
we employ.

The manuscript is organized as follows: Sect. 2 provides a high level description
of the proposed method. Sections 3 and 4 describe the local discretization scheme.
Section 5 describes the nested dissection type solver used to solve the system of
linear equations resulting from the discretization. Section 6 describes how local mesh
refinement can be introduced to the scheme. Section 7 provides results from numerical
experiments that establish the efficiency of the proposed method.

2 Overview of algorithm

The proposed method is based on a hierarchical subdivision of the computational
domain, as illustrated in Fig. 1 for the case of Ω = [0, 1]2. In the uniform mesh
version of the solver, the tree of boxes is built by recursively splitting the original box
in halves. The splitting continues until each box is small enough that the solution, and
its first and second derivatives, can accurately be resolved on a local tensor product
grid of p × p Chebyshev nodes (where, say, p = 10 or p = 20).

Once the tree of boxes has been constructed, the actual solver consists of two stages.
The first, or “build”, stage consists of a single upwards pass through the tree of boxes,
starting with the leaves and going up to larger boxes. On each leaf, we place a local
p × p tensor product grid of Chebyshev nodes, and then discretize the restriction of
(1) via a basic collocation scheme, as in [13]. By performing dense linear algebraic
operations on matrices of size at most p2 × p2, we form for each leaf a local solution
operator and an approximation to the local Dirichlet-to-Neumann (DtN) operator, as
described in Sect. 3. The build stage then continues with an upwards pass through

123



854 T. Babb et al.

Level 0 Level 1 Level 2 Level 3 Level 4

1 2 3

4

5

6

7

8 9

10 11

12 13

14 15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Fig. 1 The square domain Ω is split into 4 × 4 leaf boxes. These are then gathered into a binary tree of
successively larger boxes as described in Sect. 2. One possible enumeration of the boxes in the tree is shown,
but note that the only restriction is that if box τ is the parent of box σ , then τ < σ

the tree (going from smaller boxes to larger) where for each parent box, we construct
approximations to its local solution operator and its local DtN operator by “merging”
the corresponding operators for its children, cf. Sect. 4. The end result of the “build
stage” is a hierarchical representation of the overall solution operator for (1). Once this
solution operator is available, the “solve stage” takes as input a given boundary data f
and a body load g, and constructs an approximation to the solution u valid throughout
the domain via two passes through the tree: first an upwards pass (going from smaller
boxes to larger) where “particular solutions” that satisfy the inhomogeneous equation
are built, and then a downwards pass where the boundary conditions are corrected.

The global grid of collocation points used in the upwards and downwards passes is
obtained by placing on the edge of each leaf a set of q Gaussian interpolation nodes
(a.k.a. Legendre nodes). Observe that this parameter q is in principle distinct from
the local parameter p which specifies the order of the local Chebyshev grids used to
construct the solution operators on the leaves. However, we typically choose p = q+1
or p = q + 2.

3 Leaf computation

In this section, we describe how to numerically build the various linear operators
(represented as dense matrices) needed for a given leaf Ωτ in the hierarchical tree. To
be precise, let u be the solution to the local equation

{
[Au](x) = g(x), x ∈ Ωτ ,

u(x) = d(x), x ∈ Γτ ,
(4)

for some given (local) Dirichlet data d. We then build approximations to two linear
operators that both take d and g as their inputs. The first operator outputs the local
solution u on Ωτ and the second outputs the boundary fluxes of u on Γτ .

3.1 Notation

We use two sets of interpolation nodes on the domain Ωτ . First, let { y j }4qj=1 denote
the nodes obtained by placing q Gaussian nodes on each of the four sides ofΩτ . Next,

let {xi }p
2

i=1 denote the nodes in a p× p Chebyshev grid on Ωτ . We partition the index

123



An accelerated Poisson solver based on multidomain… 855

vector for the nodes in the Chebyshev grid as

{1, 2, . . . , p2} = Ice ∪ Ici

so that Ice holds the (Chebyshev) exterior nodes and Ici holds the (Chebyshev) interior
nodes. Let uc, uci, uce, and uge denote vectors holding approximations to the values
of the solution u at the interpolation nodes:

uc ≈ {u(xi )}p
2

i=1, uci ≈ {u(xi )}i∈Ici ,
uce ≈ {u(xi )}i∈Ice , uge ≈ {u( y j )}4qj=1.

Let vge ∈ R
4q denote a vector holding boundary fluxes of u on the Gaussian grid, so

that

vge( j) ≈ [∂1u]( yh j ) when y j lies on a vertical boundary,

vge( j) ≈ [∂2u]( yh j ) when y j lies on a horizontal boundary.

The sign convention for boundary fluxes means that a positive flux sometimes repre-
sents flow into the box and sometimes out of the box. Finally, let dge and gci denote
tabulations of the boundary data and the body load,

dge = {d( y j )}4qj=1, gci = {g(xi )}i∈Ici .

Our objective is now to build the matrices that map {dge,gci} to vge and uc.

3.2 Discretization on the Cheyshev grid

In order to execute the local solve on Ωτ of (4), we use a classical spectral collocation
technique, as described, e.g., in [13]. To this end, let D(1) and D(2) denote the p2 × p2

spectral differentiation matrices on the p × p Chebyshev grid (in other words, for
any function u that is a tensor product of polynomials of degree at most p − 1, the
differentiation matrix exactlymaps a vector of collocated function values to the vector
of collocated values of its derivative). Further, let A denote the matrix

A = −C11
(
D(1)

)2 − 2C12D(1)D(2) − C22
(
D(2)

)2 + C1D(1) + C2D(2) + C,

where Ci j are diagonal matrices with entries {ci j (xk)}p
2

k=1, and Ci and C are defined
analogously. Next, partition the matrix A to separate interior and exterior nodes via

Aci,ci = A(Ici, Ici), and Aci,ce = A(Ici, Ice).

Collocating (4) at the interior nodes then results in the discretized equation

Aci,ci uci + Aci,ce dce = gci, (5)
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where dce = {d(xi )}i∈Ice encodes the local Dirichlet data d.

3.3 Solving on the Chebyshev grid

While solving (5) gives the solution at the interior Chebychev nodes, it does not give
a map to the boundary fluxes vge that we seek. These are found by following the
classic approach of writing the solution as the superposition of the homogeneous and
particular solutions. Specifically, the solution to (4) is split as

u = w + φ

where w is a particular solution

{
Aw(x) = g(x), x ∈ Ωτ ,

w(x) = 0, x ∈ Γτ ,
(6)

and where φ is a homogeneous solution

{
Aφ(x) = 0, x ∈ Ωτ ,

φ(x) = d(x), x ∈ Γτ .
(7)

Discretizing (6) on the Chebyshev grid, and collocating at the internal nodes, we get
the equation

Aci,cewce + Aci,ciwci = gci.

Observing that wce = 0, the particular solution is given by

wc =
[
wce
wci

]
= Fc,cigci, where Fc,ci =

[
0

A−1
ci,ci

]
. (8)

Analogously, the discretization of (7) on the Chebyshev grid yields

Aci,ceφce + Aci,ciφci = 0.

Since φce = dce, the homogeneous solution is given by

φc =
[

φce
φci

]
=

[
I

−A−1
ci,ciAci,ce

]
dce. (9)

3.4 Interpolation and differentiation

Section 3.3 describes how to locally solve the BVP (4) on the Chebyshev grid via the
superposition of the homogeneous and particular solutions. This computation assumes
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that the local Dirichlet data d is given on the Chebyshev exterior nodes. In reality, this
data will be provided on the Gaussian nodes, and we therefore need to introduce an
interpolation operator that moves data between the different grids. To be precise, let
Lce,ge denote a matrix of size 4(p − 1) × 4q that maps a given data vector dge to a
different vector

dce = Lce,ge dge
4(p − 1) × 1 4(p − 1) × 4q 4q × 1

(10)

as follows: An entry of dce corresponding to an interior node is defined via a standard
interpolation from the Gaussian to the Chebyshev nodes on the local edge. An entry
of dce corresponding to a corner node is defined as the average value of the two
extrapolated values from the Gaussian nodes on the two edges connecting to the
corner (observe that except for the four rows corresponding to the corner nodes, Lce,ge
is a 4 × 4 block diagonal matrix).

Combining (8), (9), and (10), the solution to (4) on the Chebyshev grid is

uc = wc + φc = Fc,ci gci + Sc,ge dge, where Sc,ge :=
[

Ice,ce
−A−1

ci,ciAci,ce

]
Lce,ge.

(11)

All that remains is to determine the vector vge of boundary fluxes on the Gaussian
nodes. To this end, let us define a combined interpolation and differentiation matrix
Dge,c of size 4q × p2 via

Dge,c =

⎡
⎢⎢⎣

Lloc D2(Is, :)
Lloc D1(Ie, :)
Lloc D2(In, :)
Lloc D1(Iw, :)

⎤
⎥⎥⎦ ,

where Lloc is a q × p interpolation matrix from a set of p Chebyshev nodes to a set
of q Gaussian nodes, and where Is, Ie, In, Iw are vectors of length p with entries
corresponding to the points on the south, east, north, and west sides of the exterior
nodes in the Chebyshev grid. By differentiating the local solution on the Chebyshev
grid defined by (11), the boundary fluxes vge are given by

vge = Hge,ci gci + Tge,ge dge, (12)

where

Hge,ci = Dge,c Fc,ci and Tge,ge = Dge,c Sc,ge. (13)
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4 Merging two leaves

Consider a rectangular box τ consisting of two leaf boxes α and β, and suppose that
all local operators for α and β defined in Sect. 3 have been computed. Our objective
is now to construct the Dirichlet-to-Neumann operator for τ from the local operators
for its children. In this operation, only sets of Gaussian nodes on the boundaries will
take part, cf. Fig. 2. We group these nodes into three sets, indexed by vectors J1, J2,
and J3, defined as follows:

J1 Edge nodes of box α that are not shared with box β.
J2 Edge nodes of box β that are not shared with box α.
J3 Edge nodes that line the interior edge shared by α and β.

We also define

J τ
ge = J1 ∪ J2 and J τ

gi = J3

as the exterior and interior nodes for the parent box τ . Finally, we let hα,hβ ∈ R
4q

denote two vectors that hold the boundary fluxes for the two local particular solutions
wα and wβ , cf. (12),

hα
ge = Hα

ge,ci g
α
ci, and hβ

ge = Hβ
ge,ci g

β
ci. (14)

Then the equilibrium equations for each of the two leaves can be written

vα
ge = Tα

ge,ge u
α
ge + hα

ge, and vβ
ge = Tβ

ge,ge u
β
ge + hβ

ge. (15)

Now partition the two equations in (15) using the notation shown in Fig. 2:

[
v1
v3

]
=

[
Tα
1,1 Tα

1,3
Tα
3,1 Tα

3,3

] [
u1
u3

]
+

[
hα
1

hα
3

]
, (16)

Ωα ΩβJ1 J2J3

Fig. 2 Notation for the merge operation described in Sect. 4. Given two leaf boxes Ωα and Ωβ , their union
is denoted Ωτ = Ωα ∪ Ωβ . The sets J1 (black circles) and J2 (black diamonds) form the exterior nodes,
while J3 (white circles) consists of the interior nodes
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[
v2
v3

]
=

[
Tβ
2,2 Tβ

2,3

Tβ
3,2 Tβ

3,3

] [
u2
u3

]
+

[
hβ
2

hβ
3

]
. (17)

[the subscript “ge” is suppressed in (16) and (17) since all nodes involved are Gaussian
exterior nodes]. Combine the two equations for v3 in (16) and (17) to obtain the
equation

Tα
3,1 u1 + Tα

3,3 u3 + hα
3 = Tβ

3,2 u2 + Tβ
3,3 u3 + hβ

3 .

This gives

u3 =
(
Tα
3,3 − Tβ

3,3

)−1 (
Tβ
3,2u2 − Tα

3,1u1 + hβ
3 − hα

3

)
(18)

Using the relation (18) in combination with (16), we find that

[
v1
v2

]
=

([
Tα
1,1 0

0 Tβ
2,2

]
+

[
Tα
1,3

Tβ
2,3

] (
Tα
3,3 − Tβ

3,3

)−1 [
−Tα

3,1

∣∣ Tβ
3,2

]
.

) [
u1
u2

]

+
[
hα
1

hβ
2

]
+

[
Tα
1,3

Tβ
2,3

] (
Tα
3,3 − Tβ

3,3

)−1 (
hβ
3 − hα

3

)
.

We now define the operators

Xτ
gi,gi =

(
Tα
3,3 − Tβ

3,3

)−1
,

Sτ
gi,ge =

(
Tα
3,3 − Tβ

3,3

)−1 [
−Tα

3,1

∣∣ Tβ
3,2

]
= Xτ

gi,gi

[
−Tα

3,1

∣∣ Tβ
3,2

]
,

Tτ
ge,ge =

[
Tα
1,1 0

0 Tβ
2,2

]
+

[
Tα
1,3

Tβ
2,3

] (
Tα
3,3 − Tβ

3,3

)−1 [
−Tα

3,1

∣∣ Tβ
3,2

]

=
[
Tα
1,1 0

0 Tβ
2,2

]
+

[
Tα
1,3

Tβ
2,3

]
Sτ
gi,ge.

The approximate solution on the shared edge uτ
gi can be constructed via an upward

pass to compute the approximate boundary flux by

hτ
ge =

[
hα
1

hβ
2

]
+

[
Tα
1,3

Tβ
2,3

]
wτ
gi, (19)

where wτ
gi = Xτ

gi,gi

(
hβ
3 − hα

3

)
, followed by a downward pass

uτ
gi = Sgi,geuτ

ge + wτ
gi.
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Remark 1 (Physical interpretation of merge) The quantitieswτ
gi and h

τ
ge have a simple

physical meaning. The vector wτ
gi introduced above is simply a tabulation of the

particular solution wτ associated with τ on the interior boundary Γ3, and hτ
ge is the

normal derivative of wτ . To be precise, wτ is the solution to the inhomogeneous
problem, cf. (6)

{
Awτ (x) = g(x), x ∈ Ωτ ,

wτ (x) = 0, x ∈ Γτ .
(20)

We can re-derive the formula for w|Γ3 using the original mathematical operators as
follows: First observe that for x ∈ Ωα , we have A(wτ − wα) = g − g = 0, so the
DtN operator T α applies to the function wτ − wα:

T α
31

(
wτ
1 − wα

1

) + T α
33

(
wτ
3 − wα

3

) = (
∂nw

τ
) |3 − (

∂nw
α
) |3

Use that wτ
1 = wα

1 = wα
3 = 0, and that (∂nwα)|3 = hα

3 to get

T α
33w

τ
3 = (

∂nw
τ
) |3 − hα

3 . (21)

Analogously, we get

T β
33w

τ
3 = (

∂nw
τ
) |3 − hβ

3 . (22)

Combine (21) and (22) to eliminate (∂nw
τ )|3 and obtain

(
T α
33 − T β

33

)
wτ
3 = −hα

3 + hβ
3 .

Observe that in effect, we can write the particular solution wτ as

wτ (x) =
{

wα(x) + ŵτ (x) x ∈ Ωα,

wβ(x) + ŵτ (x) x ∈ Ωβ,

The function wτ must of course be smooth across Γ3, so the function ŵτ must have a
jump that exactly offsets the discrepancy in the derivatives of wα and wβ . This jump
is precisely of size hα − hβ .

5 The full solver for a uniform grid

5.1 Notation

Suppose that we are given a rectangular domain Ω , which has hierarchically been
split into a binary tree of successively smaller patches, as described in Sect. 2. We
then define two sets of interpolation nodes. First, {xi }Mi=1 denotes the set of nodes
obtained by placing a p × p tensor product grid of Chebyshev nodes on each leaf in
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the tree. For a leaf τ , let I τ
c denote an index vector pointing to the nodes in {xi }Mi=1

that lie on leaf τ . Thus the index vector for the set of nodes in τ can be partitioned
into exterior and interior nodes as follows

I τ
c = I τ

ce ∪ I τ
ci.

The second set of interpolation nodes { y j }Nj=1 is obtained byplacing a set ofq Gaussian
(“Legendre”) interpolation nodes on the edge of each leaf. For a node τ in the tree
(either a leaf or a parent), let I τ

ge denote an index vector that marks all Gaussian nodes
that lie on the boundary of Ωτ . For a parent node τ , let I τ

gi denote the Gaussian nodes
that are interior to τ , but exterior to its two children (as in Sect. 4).

Once the collocation points have been set up, we introduce a vector u ∈ R
M holding

approximations to the values of the potential u on the Gaussian collocation points,

u( j) ≈ u
(
y j

)
, j = 1, 2, 3, . . . , M .

We refer to subsets of this vector using the short-hand

uτ
ge = u

(
I τ
ge

)
, and uτ

gi = u
(
I τ
gi

)
for the exterior and interior nodes respectively. At the very end of the algorithm,
approximations to u on the local Chebyshev tensor product grids are constructed. For
a leaf node τ , let the vectors uτ

c , u
τ
ce, and u

τ
ci denote the vectors holding approximations

to the potential on sets of collocation points in the Chebyshev grid marked by I τ
c , I

τ
ce,

and I τ
ci, respectively. Observe that these vectors are not subvectors of u.

Before proceeding to the description of the algorithm, we introduce two sets of
auxiliary vectors. First, for any parent node τ , let the vector wτ

gi denote the computed
values of the local particular solution wτ that solves (6) on Ωτ , as tabulated on the
interior line marked by I τ

gi. Also, define h
τ as the approximate boundary fluxes of wτ

as defined by (14) for a leaf and by (19) for a parent.

5.2 The build stage

Once the domain is partitioned into a hierarchical tree, we execute a “build stage” in
which the following matrices are constructed for each box τ :

Sτ For a box τ , the solution operator that maps Dirichlet data ψ on ∂Ωτ to values of
u at the interior nodes. In other words, uτ

c = Sτ
c,geψ

τ
ge on a leaf or u

τ
gi = Sτ

gi,geψ
τ
ge

on a parent box.
Tτ For a box τ , the matrix that maps Dirichlet data ψ on ∂Ωτ to the flux v on the

boundary. In other words, vτ
ge = Tτ

ge,geψge.
Fτ For a leaf box, the matrix that maps the body load to the particular solution on the

interior of the leaf assuming the Dirichlet data is zero on the boundary. In other
words wτ

c = Fτ
c,cigci.

Hτ For a leaf box, the matrix that maps the body load to the flux on the boundary of
the leaf. In other words hτ

ge = Hτ
ge,cig

τ
ci.
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Xτ For a parent box τ with children α and β, Xτ maps the fluxes of the particular
solution for the children on the interior of a parent to the particular solution on the
interior nodes. In other words wgi = Xτ

gi,gi(h
β
3 − hα

3 ).

The build stage consists of a single sweep over all nodes in the tree. Any ordering
of the boxes in which a parent box is processed after its children can be used. For each
leaf box τ , approximations Sτ and Fτ to the solution operators for the homogeneous
and particular solutions are constructed. Additionally, approximations Tτ and Hτ to
the local continuum operators that map boundary data and body load for a particular
solution to the boundary fluxes of the resulting particular solution are constructed
using the procedure described in Sect. 3. For a parent box τ with children α and β,
we construct the solution operators Xτ

gi,gi and Sτ
gi,ge, and the DtN operator Tτ

ge,ge via

the process described in Sect. 4. Algorithm 1 in Fig. 3 summarizes the build stage.

5.3 The solve stage

After the “build stage” described inAlgorithm1has been completed, an approximation
to the global solution operator of (1) has been computed, and represented through the
various matrices (Hτ , Fτ , etc.) described in Sect. 5.2. Then given specific boundary
data f and a body load g, the corresponding solution u to (1) can be found through
a “solve stage” that involves two passes through the tree, first an upwards pass (from
smaller to larger boxes), and then a downwards pass. In the upward pass, the particular
solutions and normal derivatives of the particular solution are computed and stored
in the vectors w and h respectively. Then by sweeping down the tree applying the
solution operators S to the Dirichlet boundary data for each box τ and adding the
particular solution, the approximate solution u is computed. Algorithm 2 summarizes
the solve stage (Fig. 4).

We observe that the vectors wτ
gi can all be stored on a global vector w ∈ R

N .
Since each boundary collocation node y j belongs to precisely one index vector I τ

gi,
we simply find that wτ

gi = w(I τ
gi).

Remark 2 (Efficient storage of particular solutions) For notational simplicity, we
describe Algorithm 2 (the “solve stage”) in a way that assumes that for each box τ , we
explicitly store a corresponding vector hτ

ge that represents the boundary fluxes for the
local particular solution. In practice, these vectors can all be stored on a global vector
h ∈ R

N , in a manner similar to how we store w. For any box τ with children α and β,
we store on h the difference between the boundary fluxes, so that h(I τ

gi) = −hα
3 + hβ

3 .
In other words, as soon as the boundary fluxes have been computed for a box α, we
add its contributions to the vector h(Iα

ge) with the appropriate signs and then delete it.
This becomes notationally less clear, but is actually simpler to code.

5.4 Algorithmic complexity

In this section, we determine the asymptotic complexity of the direct solver. The
analysis is very similar to the analysis seen in [6] for no body load. Let Nleaf = 4q

123



An accelerated Poisson solver based on multidomain… 863

Fig. 3 Build stage

denote the number of Gaussian nodes on the boundary of a leaf box, and let p2 denote
the number of Chebychev nodes used in the leaf computation. In the asymptotic
analysis, we set p = q + 2, so that p ∼ q. Let L denote the number of levels in the
binary tree. This means there are 2L boxes. Thus the total number of discretization
nodes N is approximately 2Lq2.

In processing a leaf, the dominant cost involves matrix inversion (or factorization
followed by triangular solve) and matrix-matrix multiplications. The largest matrices
encountered are of size O(q2) × O(q2), making the cost to process one leaf O(q6).
Since there are N/q2 leaf boxes, the total cost of pre-computing approximate DtN
operators for all the bottom level is ∼ (N/q2) × q6 ∼ N q4.

Next, consider the process of merging two boxes, as described in Sect. 4. On level
�, there are 2� boxes, that each have O(2−�/2N 0.5)) nodes along their boundaries (on
level � = 2, there are 4 boxes that each have side length one half of the original side
length; on level � = 4, there are 16 boxes that have side length one quarter of the
original side length; etc.). The cost of executing a merge is dominated by the cost
to perform matrix algebra (inversion, multiplication, etc) of dense matrices of size
2−�/2N 0.5 × 2−�/2N 0.5. This makes the total cost for the merges in the upwards pass
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Fig. 4 Solve stage

L∑
�=1

2� ×
(
2−�/2N 0.5

)3 ∼
L∑

�=1

2� × 2−3�/2N 1.5 ∼ N 1.5
L∑

�=1

2−�/2 ∼ N 1.5.

Finally, consider the cost of the solve stage (Algorithm 2). We first apply at each
of the 2L leaves the operators Hτ

ge,ci, which are all of size 4q × (p − 2)2, making the

overall cost ∼ 2Lq3 = N q since p ∼ q and N ∼ 2Lq2. In the upwards sweep, we
apply at level � matrices of size O(2−�/2N 0.5) × O(2−�/2N 0.5) on 2� boxes, adding
up to an overall cost of

L∑
�=1

2� ×
(
2−�/2 N 0.5

)2 ∼
L∑

�=1

2� × 2−� N ∼
L∑

�=1

N ∼ NL ∼ N log N .
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The cost of the downwards sweep is the same. However, the application of thematrices
Fτ
c,ci at the leaves is more expensive since these are of size O(q2) × O(q2), which
adds up to an overall cost of 2L q4 = N q2.

The analysis of the asymptotic storage requirements perfectly mirrors the analysis
of the flop count for the solve stage, since each matrix that is stored is used precisely
once in amatrix-vector multiplication. In consequence, the amount of storage required
is

R ∼ N q2 + N log N . (23)

Remark 3 (A storage efficient version) The storage required for all solution operators
can become prohibitive when the local order q is high, due to the term N q2 in (23).
Oneway to handle this problem is to not store the local solution operators for a leaf, but
instead simply perform small dense solves each time the “solve stage” is executed. This
makes the solve stage slower, obviously, but has the benefit of completely eliminating
the Nq2 term in (23). In fact, in this modified version, the overall storage required
is ∼ NL ≈ N log2(N/q2), so we see that the storage costs decrease as q increases
(as should be expected since we do all leaf computations from scratch in this case).
Figure 9 provides numerical results illustrating thememory requirements of the various
approaches.

6 Local refinement

When solving a boundary value problem like (1) it is common to have a localized loss
of regularity due to, e.g., corners on the boundary, a locally non-smooth body load or
boundary condition, or a localized loss of regularity in the coefficient functions in the
differential operator. A common approach to efficiently regain high accuracy without
excessively increasing the number of degrees of freedom used, is to locally refine
the mesh near the troublesome location. In this manuscript, we assume the location is
known and given, and that wemanually specify the degree of local refinement. The dif-
ficulty that arises is that upon refinement, the collocation nodes on neighboring patches
do not necessarily match up. To remedy this, interpolation operators are introduced
to transfer information between patches (the more difficult problem of determining
how to automatically detect regions that require mesh refinement is a topic of current
research).

6.1 Refinement criterion

Suppose we desire to refine our discretization at some point x̂ in the computational
domain (the point x̂ can be either in the interior or on the boundary). Consider as an
example the situation depicted in Fig. 5. For each level of refinement, we split any leaf
box that contains x̂ and any “close” leaf boxes into a 2 × 2 grid of equal-sized leaf
boxes. In Fig. 5 we perform one level of refinement and find there are 6 leaf boxes
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Ωγ

Ωβ

x̂

Fig. 5 A sample domain where we desire to refine the grid at a point x̂, which is marked by a cross. For
the leaf box Ωγ , the shortest distance to x̂ satisfies dγ < tlγ for t = √

2, so Ωγ is refined. The maximum
distance tlγ is shown by the dashed circle, which is centered at the closest point from Ωγ to x̂. For the leaf
box Ωβ , the shortest distance to x̂ does not satisfy dβ < tlβ , so Ωβ is not refined. The maximum distance
tlβ is shown by the dotted circle

“close” to x̂, which is represented by the cross. These 6 boxes are refined into smaller
leaf boxes.

A leaf boxΩτ is close to x̂ if the distance dτ from x̂ to the boxΩτ satisfies dτ ≤ tlτ ,
where t = √

2 and 2lτ is the length of one side of the leaf box Ωτ . In Fig. 5 we show
circles of size tlγ and tlβ at the points in Ωγ and Ωβ closest to x̂ (in this case the
boxes are all the same size so lγ = lβ ). We see x̂ is “close” to Ωγ , but not “close” to
Ωβ . Just as in Sect. 5.1, we place a p × p tensor product grid of Chebyshev nodes on
each new leaf and a set of q Gaussian (“Legendre”) interpolation nodes on the edge
of each leaf. The vector { y j }Nj=1 holds the locations of all Gaussian nodes across all
leaves in the domain.

6.2 Refinedmesh

Notice that with the refined grid the nodes along common boundaries are no longer
aligned. Figure 6 is an example of such a grid. This is a problem during the build stage
of the method since the merge operation is performed by equating the Neumann data
on the common boundary. We begin the discussion on how to address this problem by
establishing some notation.

Define two boxes as neighbors if they are on the same level of the tree and they are
adjacent. In the case that only one of two neighbors has been refined, such as Ωα and
Ωβ in Fig. 6, special attention needs to be paid to the nodes on the common boundary.
In order to merge boxes with different number of Gaussian nodes on the common
edge, interpolation operators will be required. The next section describes this process
in detail.

Consider the nodes on the common boundary between the two leaf boxes Ωα and
Ωβ . Let q denote the number of Gaussian nodes on one side of each leaf. Let {Jα,i }qi=1

denote the index vector for the common boundary nodes fromΩα and {Jβ,i }2qi=1 denote
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Ωα Ωβ

(a)

Ωα Ωβ

(b)

Fig. 6 a Grid with refinement at the center. b A close up of neighbors Ωα and Ωβ . Since only one of the
boxes is refined the exterior Gaussian nodes on the common boundary are not aligned

the index vector for the common boundary nodes from Ωβ . That is, recalling that y
holds the locations of all Gaussian nodes in the domain, y(Jα,i ) contains the q Gaussian
nodes on the Eastern side of box Ωα and y(Jβ,i ) contains the 2q nodes on the Western
side of box Ωβ .

6.3 Modifications to build stage

Once the grid with the Gaussian and Chebyshev nodes is constructed, as described in
Sect. 6.2, the build stage starts with the construction of all leaf operators as described
in Sect. 3. Then, for simplicity of presentation, boxes are merged from the lowest level
moving up the tree. After merging the children of a refined parent, such asΩβ in Fig. 6
it is seen that the parent’s exterior nodes do not align with the exterior nodes of any
neighbor which has not been refined.

Recalling the index notation used in Sect. 6.2, we form the interpolation matrix
Pup,W mapping data on y(Jα,i ) to data on y(Jβ,i ) and the interpolation matrix Pdown,W
mapping data on y(Jβ,i ) to data on y(Jα,i ). Observe that when interpolating from two
sets of q Gaussian nodes to a set of q Gaussian nodes, the interpolation must be done
as two separate interpolations from q to q/2 nodes. The matrix Pdown,W is a block
diagonal matrix consisting of two q/2 × q matrices (assuming q is divisible by 2).

For a refined parent, such asΩβ in Fig. 6, we form the operators Tβ , Sβ , and Xβ and
form the interpolation operators for every side of the parent, regardless of whether the
exterior nodes align with the neighbor’s exterior nodes. Observe that in the case of
Ωβ in Fig. 6 the Eastern and Northern sides of Ωβ will have Pdown = Pup = I, where
I is the identity matrix.

Then interpolation operators mapping the entire boundary data between fine and
coarse grids are given by block diagonalmatrices Pup and Pdown whose diagonal blocks
are the interpolation operators for each edge. The interpolation operators for Ωβ are

Pβ
up = blkdiag

(
Pβ
up,S, P

β
up,E, Pβ

up,N, Pβ
up,W

)
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and

Pβ
down = blkdiag

(
Pβ
down,S, P

β
down,E, Pβ

down,N, Pβ
down,W

)
.

(the text blkdiag denotes the function that forms a block diagonal matrix from its
arguments). Then we form the new operators Tβ

new and Sβ
new for the parent box Ωβ as

follows

Tβ
new = Pβ

downT
βPβ

up

and

Sβ
new = SβPβ

up.

Now Tβ
new is a map defined on the same set of points as all of the neighbors of Ωβ and

Neumann data can be equated on all sides.
Next, suppose a refined parent does not have a neighbor on one of its sides. Then on

that side we use Pdown = Pup = I. This could happen if the parent is on the boundary
of our domainΩ . For example, supposeΩα in Fig. 6 was also refined. ThenΩα would
not have a neighbor on its Western side. Additionally, if multiple levels of refinement
are done then a refined parent could have no neighbors on one side. For example,
suppose the Northwestern child of Ωβ in Fig. 6 was refined. Then the Northwestern
child would not have a neighbor on its Western side since box Ωα is on a different
level of the tree.

Forming the interpolation operators for each side of Ωβ before we perform any
following merge operations is the easiest approach. The alternative would be to form
an interpolation operator every time two boxes are merged and the nodes do not align.

6.4 Modifications to solve stage

On the upwards pass of the solve stage, the fluxes for the particular solution must
be calculated on the same nodes so the particular solution can be calculated on those
nodes. This is easily achieved by applying the already computed interpolation operator
Pdown to obtain hβ

new = Pdownh
β
old.

In the downwards pass of the solve stage, the application of the solution operators
results in the approximate solution at the coarse nodes on the Western and Southern
sides of Ωβ . The solution operator S

β
new now maps the solution on the coarse nodes on

theWestern andSouthern sides ofΩβ (and the dense nodes on theEastern andNorthern
sides) to the solution on the interior of Ωβ . However, we also need the solution on the
dense nodes on the Western and Southern sides of Ωβ . Let uge,new denote the solution
on the boundary of Ωβ with the coarse nodes on the Western and Southern edges.
Then the approximate solution on the dense nodes is given by uge,old = Pupuge,new.
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3leveL2leveL1leveL

Fig. 7 Local refinement around a single point, as discussed in Sect. 6.5. In the figure, each leaf has a q × q
local grid, for q = 6. At each level of refinement, the center 2 × 2 block of nodes is refined into 4 × 4
blocks of half the size

6.5 Impact of refinement on the asymptotic complexity

We demonstrated in Sect. 5.4 that the asymptotic complexity of the build stage is
O(N 3/2) for the case of a uniform balanced tree. It turns out that such a tree is the
most adversarial case from the point of view of the number of flops required, just as
for nested dissection and multifrontal solvers. While we will not carry out a detailed
analysis of every possible tree, it is perhaps illustrative to consider what happens in
the extreme case where we start with a course level grid consisting of 4 × 4 nodes,
each with a q × q tensor product grid. Then we recursively refine the middle 2 × 2
nodes, as shown in Fig. 7. In this case, each refinement adds roughly 4q2 nodes, so
that with L levels in the tree, the total number of nodes satisfies N ∼ Lq2. During
the build stage, the processing of each level in the tree requires dense operations to be
carried out on matrices of size O(q2) × O(q2), at cost O(q6). This leads to a total
cost of T ∼ L q6 ∼ N q4 for the case of local refinement around a single point. In the
general case, asymptotic complexity between O(N ) and O(N 3/2), depending on the
structure of the tree, will be observed.

7 Numerical experiments

In this section, we present the results of numerical experiments that illustrate the
performance of the scheme proposed. Section 7.1 reports on the computational cost
and memory requirements. Sections 7.2–7.5 report on the accuracy of the proposed
solution technique for a variety of problems where local mesh refinement is required.
Finally, Sect. 7.6 illustrates the use of the proposed method in the acceleration of an
implicit time stepping scheme for solving a parabolic partial differential equation.

For each experiment, the error is calculated by comparing the approximate solution
with a reference solution uref constructed using a highly over resolved grid. Errors are
measured in �∞-norm, on all Chebyshev nodes on leaf boundaries.

In all of the experiments, each leaf is discretized using a p × p tensor product
mesh of Chebyshev nodes. The number of Legendre nodes per leaf edge is set to
q = p−1. In all experiments except the one described in Sect. 7.5, the computational
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domain is the square Ω = [0, 1]2 discretized into n × n leaf boxes, making the
total number of degrees of freedom roughly N ≈ p2 × n2 (to be precise, N =
n2 × (p − 1)2 + 2n × (p − 1) + 1).

The proposed method was implemented in Matlab and all experiments were run on
a laptop computer with a 4 core Intel i7-3632QM CPU running at 2.20 GHz with 12
GB of RAM.

7.1 Computational speed

The experiments in this section illustrate the computational complexity and memory
requirements of the direct solver. Recall that the asymptotic complexity of the method
scales as nested dissection or multifrontal methods, with execution times scaling as
O(N 3/2) and O(N log N ) for the “build” and “solve” stages, respectively. The asymp-
totic memory requirement is O(N log N ).

The computational complexity and memory requirements of the proposed method
depend only on the domain and the computational mesh; the choice of PDE is irrele-
vant. In the experiments reported here, we used Ω = [0, 1]2 with a uniform mesh.

Figure 8 reports the time in seconds for the (a) build and (b) solve stages of the
proposed solution techniquewhen there is a body load (BL),when the leaf computation
is done on the fly as described in Remark 3 (BL(econ)), and when there is no body
load (NBL). Results for two different orders of discretization (q = 8 and 16) are
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Fig. 8 a Time to execute build stage for the algorithm with and without a body load. These algorithms all
have complexity O(N1.5), and we see that the scaling factors depend strongly on the order of the method,
but only weakly on whether body loads are included or not. b Time to execute the solve stage. Three cases
are considered: NBL is the scheme for problems without a body load. BL is the scheme for problems with a
body load. BL(econ) is a scheme that allows for body loads, but do not store the relevant solution operators
at the leaves. p denotes the order in the local Chebyshev grids, and q = p − 1 is the number of Legendre
nodes on the edge of each leaf
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Fig. 9 Memory requirements. Notation is as in Fig. 8

shown. Notice that as expected the constant scaling factor for both stages is larger for
the higher order discretization (it may be of interest that our numerical experiments
in many cases demonstrate linear scaling for the build stage, despite its O(N 3/2)

asymptotic algorithmic complexity. The reason is that even for N ∼ 106, we have
hardly yet entered the regime where the O(N 3/2) term starts to dominate).

Figure 9 reports on memory requirements. Letting R denote total memory used,
we plot R/N versus the number of discretization points N , where R is measured in
terms of number of floating point numbers. We see that storing the solution operators
on the leaves is quite costly in terms of memory requirements. The trade-off to be
considered here is whether the main priority is to conserve memory, or to maximize
the speed of the solve stage, cf. Remark 3. As an illustration, we see that for a problem
with q = 8 and n = 128, for a total of 106 unknowns, the solve stage takes 1.7 s
with the solution operators stored versus 9.8 s for performing the local solves on the
fly. In situations where the solution is only desired in prescribed local regions of the
geometry, computing the operators on the fly is ideal.

Remark 4 (Complexity for a locally refined tree)We claim in Sect. 6.5 that for a locally
refined tree, the complexity of the scheme is no worse (and sometimes better) than the
O(N 3/2) complexity obtained for a balanced uniform tree. To substantiate this claim,
we timed an experiment involving a locally refined tree, as shown in Fig. 7. The results
are presented in Fig. 10, for two different orders of discretization (q = 16 and 32). We
use larger numbers for q in this section so that we obtain a significant increase in the
number of nodes. If we use q = 8 then each refinement only adds a few hundred nodes
and it is hard to see any significant scaling without doing an unreasonable number of
refinements. For reference, we include a comparison to the case of q = 16 with a body
load and no refinement.
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Fig. 10 a Time to execute build stage for the algorithm with refinement. b Time to execute the solve stage
with refinement. In both plots we see that the refinement does not impact the time to build the operators

Remark 5 When the underlying BVP that is discretized involves a constant coefficient
operator, many of the leaf solution operators are identical. This observation can be
used to greatly reduce storage requirements while maintaining very high speed in the
solve stage. This potential accelerationwas not exploited in the numerical experiments
reported.

7.2 Variable coefficients

In this section, the proposed scheme is applied to the variable coefficient Helmholtz
problem

−�u − κ2(1 − c(x))u = g, x ∈ Ω,

whereΩ = [0, 1]×[0, 1] andwhere c is a “scattering potential.” The body load is taken
to be a Gaussian given by g = exp(−α|x − x̂|2) with α = 300 and x̂ = [1/4, 3/4]
while the variable coefficient is a sum of Gaussians c(x) = 1

2 exp(−α2|x − x̂2|2) +
1
2 exp(−α3|x−x̂3|2)withα2 = α3 = 200, x̂2 = [7/20, 6/10], and x̂3 = [6/10, 9/20]
for the scattering potential. We set κ = 40, making the domain 6.4× 6.4 wavelengths
in size.

Figure 11 reports the l∞ error versus the number of discretization points N . We get
no accuracy for q = 4, but as q is increased, the errors rapidly decrease.
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Fig. 11 The error for the variable coefficient problem described in Sect. 7.2. As before, q denotes the
number of Legendre nodes along one side of a leaf

7.3 Concentrated body load

In this section, we consider a low frequency (κ = 20) Helmholtz boundary value
problem

−�u − κ2u = g, x ∈ Ω,

with Ω = [0, 1] × [0, 1] and a very concentrated Gaussian for the body load, g =
exp(−α|x − x̂|2) with α = 3000. In this case, we chose the Dirichlet boundary data
to equal the solution to the free space equation −�u − κ2u = g with a radiation
condition at infinity. In other words, u is the convolution between g and the free space
fundamental solution. We computed the boundary data and the reference solution by
numerically evaluating this convolution to very high accuracy.

To test the refinement strategy, we build a tree first with a uniform grid, i.e. n × n
leaf boxes then add nref levels of refinement around the point x̂. Figure 12 reports the
l∞ norm of the error versus nref for four choices of uniform starting discretization.
When n = 4 one level of refinement (i.e. 28 leaf boxes) results in approximately the
same accuracy as when n = 8 and no levels of refinement (i.e. 64 leaf boxes).

7.4 Discontinuous body load

In section, we consider a Poisson boundary value problem on Ω = [0, 1]2 with an
indicator function body load g that has support [1/4, 1/2] × [1/4, 1/2]. Observe that
the lines of discontinuity of g coincide with edges of leaves in the discretization.
Figure 13 reports the l∞ error versus the number of discretization points N with uni-
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Fig. 12 Error for Helmholtz equation with κ = 20 and a very concentrated body load, demonstrating the
ability to improve the solution with refinement. We use local Chebyshev grids with 17 × 17 Chebyshev
nodes per leaf, and n × n leaves, before refinement. For a problem like this with a concentrated body load
we can improve the error just as much by refining the discretization at the troublesome location as we can
from doubling the number of leaves, which would give the same grid at the target location
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Fig. 13 The error for a problem with a discontinuous body load. The discontinuities align with the edges
of the leaves so we still get 10 digits of accuracy. In the legend, q denotes the number of Legendre nodes
along one side of a leaf
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form refinement for four different orders of discretization. Note that the approximate
solution and its first derivative are continuous through the boundaries of the leaves
(even on the boundaries where the jump in the body load occurs) since the algorithm
enforces them by derivation.

Remark 6 Applying the scheme to a problem where a discontinuity in the body load
does not align with the leaf boundaries results in a very low accuracy approximation to
the solution. For a problem analogous to the one described in this section, we observed
slow convergence and attained no better than two or three digits of accuracy on the
most finely resolved mesh.

7.5 Tunnel

This section reports on the performance of the solution technique when applied to the
Helmholtz Dirichlet boundary value problem

−�u − κ2u = g, x ∈ Ω,

u = f x ∈ ∂Ω

with κ = 60 where the domain Ω is a “tunnel” as illustrated in Fig. 14. The body load
is taken to be a Gaussian g = exp(−α|x − x̂|2) with α = 300 and x̂ = [1, 3/4]. The
Dirichlet boundary data is given by

−3 −2 −1 0 1 2 3

0

0.5

1

1.5

2

2.5

3

3.5

4

x
1

x 2

Fig. 14 The domain used for the tunnel problem. We solve Helmholtz equation with κ = 60, making the
tunnel about 10λ wide and 115λ long. The end caps have fixed Dirichlet data and the sides of the tunnel
have the Dirichlet data set to u(x) = 0
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Fig. 15 Error for Helmholtz equation with κ = 60 on the tunnel. The end caps have fixed Dirichlet data
and the sides of the tunnel have the Dirichlet data set to f (x) = 0. A Gaussian g = exp(−α|x − x̂|2) with
α = 300 located at x̂ = [1, 3/4] is used for the body load

f (x) =
⎧⎨
⎩
0 for x1 	= ±3
1

100 sin (2π(x2 − 3)) for x1 = 3
1

100 sin (π(x2 − 3)) for x1 = −3.

Note that f (x) is continuous on ∂Ω andwith this choice of wave number κ the domain
Ω is about 10 wavelengths wide and 115 wavelengths long. The presence of the re-
entrant corners results in a solution that has strong singularities which require local
refinement in order for the method to achieve high accuracy.

Figure 15 reports the l∞ error versus the number of refinements into the corners
with three choices of coarse grid. We use q = 16 for all examples and h gives the
width and height of each leaf box. When h = 1/4, the discretization is only sufficient
to resolve the Helmholtz equation with κ = 60 within 1% of the exact solution. When
h = 1/8, the solution technique stalls at 5 digits of accuracy independent of the number
of refinement levels.

Remark 7 (Symmetries) This problem is rich in symmetries that can be used to accel-
erate the build stage. In our implementation, we chose to exploit the fact that the tunnel
is made up of four L-shaped pieces glued together. The DtN operator and correspond-
ing solution operators were constructed for one L-shape. Then creating the solver for
the entire geometry involved simply gluing the 4 L-shaped geometries together via
three merge operations.
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7.6 A parabolic problem

Our final numerical example involves a convection-diffusion initial value problem on
Ω = [0, 1]2 given by

(
ε� − ∂

∂x1

)
u(x, t) = ∂u

∂t
, x ∈ Ω, t > 0

u(x, 0) = exp
(
−α|x − x̂|2

)
, x ∈ Ω.

We imposed zero Neumann boundary conditions on the south and north bound-
aries (x2 = 0, 1) and periodic boundary conditions on the west and east boundaries
(x1 = 0, 1). These boundary conditions correspond to fluid flowing through a periodic
channel where no fluid can exit the top or bottom of the channel. To have a convection
dominated problem, we chose ε = 1/200. Finally, the parameters in the body load
were chosen to be α = 50 and x̂ = [1/4, 1/4].

Applying the Crank–Nicolson time stepping scheme with a time step size k results
in having to solve the following elliptic problem at each time step:

(
1

k
I − 1

2
A

)
un+1 =

(
1

k
I + 1

2
A

)
un, (24)

where A = ε� − ∂/∂x1 is our partial differential operator.
Observe that the algorithm does not change for this problem. The build stage exe-

cution time and memory requirement are identical to those seen in Sect. 7.1. The
execution time for the solve stage for each individual time step is nearly identical to
the solve stage execution time shown in Sect. 7.1. The only new step in the solve stage
is the need to evaluate (I/k + A/2)un at each time step.

Figure 16 reports the l∞ error vs. the time step size k at three different times
t = 0.025, 0.1, and 0.5. We use 16 leaf boxes per side with q = 16, to ensure that
the spatial resolution error is far smaller than the time-stepping error. Note that even
with a low order time stepping scheme, a high accuracy can still be attained since our
fast time stepper allows us to use a very short time step without incurring an unduly
long solution time.

8 Concluding remarks

We have described an algorithm for solving non-homogeneous linear elliptic PDEs
in two dimensions based on a multidomain spectral collocation discretization. The
solver is designed explicitly for being combined with a nested dissection type direct
solver. Its primary advantage over existing methods is that it enables the use of very
high order local discretization without jeopardizing computational efficiency in the
direct solver. The scheme is an evolution on previously published methods [5,6,11].
The novelty in this work is that the scheme has been extended to allow for problems
involving body loads, and for local refinement.
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Fig. 16 Error for the convection-diffusion equation described in Sect. 7.6. The error is estimated by com-
paring against a highly over-resolved solution

The scheme is particularly well suited for executing the elliptic solve required
solving parabolic problems using implicit time-stepping techniques in situationswhere
the domain is fixed, so that the elliptic solve is the same in every time step. In this
environment, the cost of computing an explicit solution operator is amortized over
many time-steps, and can also be recycled when the same equation is solved for
different initial conditions.

The fact that the method can with ease incorporate high order local discretizations,
and allows for very efficient implicit time-stepping appears to make it particularly
well suited for solving the Navier–Stokes equations at low Reynolds numbers. Such
a solver is currently under development and will be reported in future publications.
Other extensions currently under way includes the development of adaptive refinement
criteria (as opposed to the supervised adaptivity used in this work), and the extension to
problems in three dimensions, analogous to thework in [7] for homogeneous equations.
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