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Abstract

The present  study investigated  the  uncertainty  associated  with  Climatol’s  adjustment  algorithm

applied  to  daily  minimum  and  maximum  air  temperature.  The  uncertainty  quantification  was

performed based on several numerical experiments and the benchmark data, that were created in the

frame  of  the  INDECIS  project.  Using  a  complex  approach,  the  uncertainty  was  evaluated  on

different levels of detail (day-to-day evaluation through formalism of random functions and through

six statistical metrics) and time resolution (daily and yearly). However, only the main source of

potential residual errors was considered, namely station signals introduced into a raw data set to be

homogenized/adjusted. Other influencing factors were removed from the analysis or kept almost

unchanged.

According to our calculations, the Climatol’s adjustment uncertainty, evaluated on the daily

scale, varies in time. The width of the residual errors distribution in summer months is substantially

less compared to wintertime. The slight seasonality is also observed in the means of the residual

errors.  The  uncertainty  evaluation  based  on  the  statistical  metrics  usually  neglect  such  non-

stationarity of the residual errors providing just averaged in time assessments. On the other hand,

metrics provide detailed information regarding both types of the residual errors, systematic and
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scatter.  The  metrics  values  showed  good  capability  of  the  Climatol  software  to  remove  the

systematic errors related to jumps in the means, while the scatter errors are removed from the raw

time series  with less  efficiency.  On yearly  scale,  the uncertainty  evaluation  was performed for

yearly  temperature  data  and  several  climate  extreme  indices.  The  both  types  of  the  errors  are

removed well  in yearly time series of the air temperature and the extreme indices.  The metrics

values also showed significant reduction of the adjustment uncertainty of Climatol’s adjustment.

Substantial decreasing of linear trend errors in yearly time series can also be reported.

Key words: uncertainty, homogenization adjustment, Climatol, minimum and maximum daily air

temperature, INDECIS

1. Introduction

Detection of modern climate change and analysis of climate variability and extreme events on

national, regional or even global scales are mainly performed based on a statistical analysis of time

series  of  measured  meteorological  variables  such  as  air  temperature  and  precipitation  (e.g.

Alexander et al., 2006; Klein Tank et al., 2009; Hartmann et al., 2013). However, in order to extract

accurate and reliable conclusions from the analysis it is necessary firstly to homogenize raw data

sets due to many spurious artefacts (inhomogeneities) that are usually present in the data (Aguilar et

al., 2003; Trewin, 2010). By performing homogenization, one tries to remove the inhomogeneities

(abrupt shifts/jumps, gradual trends, outliers etc.) and in such way to approximate the data to the

real  climate  signal,  happened  on  some  area.  Usually  the  homogenization  procedure  allows  to

increase consistency of the data what is plainly seen after statistical comparison of the raw and

homogenized time series (e.g. Mamara et al., 2014; Prohom et al.,  2016; Osadchyi et al.,  2018;

Yosef et al., 2018; Skrynyk et al., 2019; Fioravanti et al., 2019; Dumitrescu et al., 2020). However,

a question remains unclear: how far are the homogenized data from the true climate signal? Or in

other words, what potential uncertainties could be still present in the data, homogenized by means

of some homogenization algorithm or software? It is the important but still extremely complicated
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issue because the climate signal (clean data) is usually unknown and it is impossible to conduct

direct quantitative comparison and evaluation of the homogenization results. Understanding of the

uncertainties and their causes is vital to correctly interpret outputs of any predicting model (e.g.

Iman and Helton, 1988), including homogenization software.

The problem of climate data homogenization can be divided into two sub-problems, namely

detection of discontinuities (most probable dates of potential inhomogeneities) and adjustment of

inhomogeneous data (some segments of raw time series) to homogeneous state. Both sub-problems

might produce a certain part of common errors, which deviate the homogenized data from the true

climate signal. An evaluation of efficiency of the detection algorithms has been performed in many

works (e.g. Ducré-Robitaille et al., 2003; De Gaetano, 2006; Reeves et al., 2007; Domonkos, 2011;

Kuglitsch  et al.,  2012; Venema  et al., 2012; Willett  et  al., 2014; Killick,  2016; Yozgatligil  and

Yazici, 2016; Coll et al., 2020). On the other hand, an assessment of performance of adjustment

methods has been addressed in papers (e.g. Della-Marta and Wanner, 2006; Mestre  et al., 2011;

Trewin, 2013; Squintu et al., 2020). In both cases, the evaluation was mainly performed in a relative

form, that is, several homogenization algorithms are usually compared in order to define which one

gives the best output and is most suitable for practical applications. Such relative comparison is

usually performed based on some benchmark data. However, the quantification of uncertainties of

homogenization procedures has been published just  in several works (e.g.  Lindau and Venema,

2016; Vincent et al., 2018; Trewin, 2018). Lindau and Venema (2016) studied uncertainty of the

multiple  breakpoint  detection  algorithms  applied  to  yearly  climate  time  series.  To  do so,  they

defined a probability  distribution for possible shifts  of the detected break from its true position

based on a theoretical approach. According to their findings, the probability of the shifts or, in other

words detection errors, can be described statistically by a Brownian motion with drift. Vincent et al.

(2018) and Trewin (2018) evaluated uncertainty of homogenization adjustment algorithms applied

to daily air temperature time series. In both works, parallel measurements of temperature were used

in  order  to  assess  potential  residual  errors.  However,  the  uncertainty  of  the  adjustment  was
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quantified using different methodology. In (Vincent et al., 2018) the remaining errors in corrected

time series were evaluated through two statistical metrics, the root mean square error (RMSE) and

the  percentage  of  days  within  0.5oC  (POD 05)  that  were  calculated  based  on  daily  data.  As

mentioned in the paper,  RMSE and  POD 05 were used to assess the uncertainty in the mean and

extreme  temperature  values,  respectively.  In  (Trewin,  2018)  the  uncertainty  is  also  evaluated

through some statistical  indicators,  but they were calculated on seasonal and annual scales. The

uncertainty  was  defined  as  a  standard  deviation  of  the  indicator  values  that  were  obtained  by

repeating  calculations  for  slightly  different  adjustment  conditions  (changing  a  set  of  reference

stations, their number etc.). Important to note that despite of intuitively clear meaning of the term

‘uncertainty’,  which can be simply interpreted  as  a  range or a  distribution  of possible  residual

errors, there is no unique methodology how it can be quantified for homogenization/adjustment of

climate data.

The objective of this paper is to evaluate the uncertainty associated to the adjustment of daily

maximum and minimum temperature series using Climatol (Guijarro, 2018). We constrain our work

assuming a perfect detection to focus on Climatol’s adjustment algorithm. It is also worth noting,

that the problem of the uncertainty evaluation of homogenization adjustment is especially important

when dealing with daily time series, since climate data with such time resolution is the basis for

many  modern  climatological  studies  (e.g.  monitoring,  detection  and  attribution  of  changes  in

climate extremes). In order to achieve our goal we used benchmark data sets (Aguilar et al., 2018;

Pérez-Zanón et  al.,  2018)  specially  elaborated  in  the  frame of  the  European  project  INDECIS

(Integrated  approach for  the  development  across Europe of  user  oriented  climate  indicators  for

GFCS high-priority sectors: agriculture, disaster risk reduction, energy, health, water and tourism)

(INDECIS, 2018).

The methodology proposed in this paper and applied to Climatol can be generalized for other

homogenization software, which are able to adjust daily time series of climatological variables in

automatic mode with predefined break points. Our findings should also be helpful for developers of
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homogenization methods and software as well as for their potential users who ought to know what

possible errors they still could expect after applying the homogenization adjustment.

2. Data and methods

2.1. The Climatol homogenization software

The R package Climatol is a homogenization software that has been widely used recently in order to

remove  inhomogeneities  from collections  of  raw time  series  of  different  climate  variables  and

different time resolution (e.g.  Mamara et al., 2013;  Sanchez-Lorenzo et al., 2015;  Guijarro et al.,

2018; Meseguer-Ruiz et al., 2018; Azorin‐Molina et al., 2019; Dumitrescu et al., 2020; Coll et al.,

2020).  The  effectiveness  of  the  software  has  been  evaluated  during  several  benchmark  tests

(Venema et al., 2005;  MULTITEST, 2015; Killik, 2016; Guijarro et al.,  2017) where it showed

good  results,  which  are  comparable  to  other  high  quality  and  well  tested  homogenization

algorithms. According to the benchmarking, both part of the homogenization procedure in Climatol,

namely detection and adjustment, work well allowing to remove different type of the artefacts and

increase  consistency  of  raw data  sets.  One  of  Climatol’s  characteristics  is  that  it  can  be  used

automatically what significantly increases its objectivity and applicability to large data sets such as

the  European  Climate  Assessment  and  Dataset  (ECA&D)  (Klein  Tank  et  al.,  2002).  Several

versions of the software have been updated since its creation. In our work, we used Climatol 3.1.1.,

available through CRAN (https://cran.r-project.org/package=climatol).

The  Climatol  detection  method  (Guijarro,  2018)  is  based  on  the  standard  normalized

homogeneity  test  (SNHT)  (Alexandersson,  1986;  Alexandersson  and  Moberg,  1997).  For  any

candidate  time  series,  Climatol  uses  data  from neighbor  stations  to  create  only  one  composite

reference series as their optionally weighted average. 

Climatol  first  normalizes  the  data  and infills  missing  values  through an  iterative  process

during which the main statistical properties of time series, namely means and standard deviations,

are recalculated at every iteration until their stable values are obtained. Once the means become

stable, all data are normalized and estimated (whether existing or missing, in all of the series) by
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means of respective value from the composite  reference series,  i.e.  as a weighted average of a

prescribed number of the nearest available data. From the statistical point of view, the approach

used is equivalent to applying a type II linear regression model (Sokal and Rohlf, 1969), what is

reasonable since all climatic time series from a network under study usually have similar errors. On

the next step,  the normalized original data and their  estimates are used to create time series of

anomalies (the estimated values are subtracted from the observed ones), which in turn are exploited

to find and eliminate outliers and to detect inhomogeneities by applying SNHT. Since SNHT is a

test originally devised for finding a single break point in a series, it is applied iteratively, splitting

the  candidate  time  series  or  its  segment  into  two  parts  every  cycle  until  no  inhomogeneous

segments  are  found.  Moreover,  during  iterations,  the  test  is  applied  twice:  (1)  to  stepped

overlapping temporal  windows and after  that  (2)  to  complete  series.  Such two-stage procedure

allows to minimize detection errors arisen when two or more shifts in the mean of similar size could

mask its results. Finally, all homogeneous sub-periods originate complete reconstructed series by

using new estimated values to fill all missing data in.

2.2. The INDECIS benchmark data sets

In the frame of the INDECIS project (see www.indecis.eu), two different collections of benchmark

time  series,  which  cover  two  regions  in  Europe  with  different  climate  (Southern  Sweden  and

Slovenia) were created (Aguilar et al., 2018; Pérez-Zanón et al., 2018). Each collection contains

daily series of nine essential climate variables (cloud cover, wind speed, relative humidity, sea level

pressure,  precipitation  amount,  snow  depth,  sunshine  duration,  maximum  and  minimum  air

temperature)  over  the  period  of  1950-2005.  Each  benchmark  data  set  consists  of  clean  data,

extracted  from the  output  of  the  Royal  Netherlands  Meteorological  Institute  (KNMI)  Regional

Atmospheric Climate Model (RACMO) version 2, driven by Hadley Global Environment Model 2 -

Earth System (MOHC-HadGEM2-ES) (Collins et al., 2008), and inhomogeneous data, created by

introducing realistic breaks and errors. Missing values and other quality problems (different from

biases) were also added to generate other flavors of the perturbed benchmarks, however they were
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not  used  in  our  study.  The  RACMO  model  was  chosen  due  to  its  high  spatial  resolution

(0.11o×0.11o) and the daily time step of the output provided: gridded time series of essential climate

variables.

In our study, we used only the maximum (TX) and minimum (TN) air temperature benchmark

data sets for the southern Sweden (Fig. 1 a). Both data sets contain 100 ‘stations’, a subset of the

RACMO grid points chosen to imitate stations spatial distribution. Their geographical locations on

the domain under study are shown in Fig. 1 b.

The introduction of biases in the homogeneous series was done by simulating relocations.

First, closest pairs of the RACMO grid time series were used to build a database of differences (or

ratios, depending on the variable) between nearby locations. Then, for every random sub-period to

perturb in the homogeneous series, a difference (or a ratio) was randomly chosen, modified by a

random factor, and applied to bias the sub-period. Total numbers of break points introduced into TN

and TX clean time series are 258 and 280, respectively. That is, the mean break frequency was set

to  ~4/~5 (TN/TX)  in  100  years,  as  it  was  found in  previous  studies  on  European  series  (e.g.

Domonkos, 2011; Venema et al., 2012; Domonkos, 2017). Fig 2 represents the time distribution of

the break points,  while  Fig 3 shows the distribution of the number of stations/time series with

respect to the number of breaks in one time series.

Due to the daily time resolution and the way that was used to create the realistic, as much as

possible, station signals (considered here as the time series of the introduced errors, see an example

in Fig. 7 a below),  they are characterized by intensive noise presence at  each of homogeneous

segments except the last ones. That makes it difficult to define precisely factors and amplitudes of

the shifts at the break points. Nevertheless, we estimated such parameters by averaging respective

sub-periods of the error time series. Thus, in our case the factors are mean values of errors at the

homogeneous segments,  while  the amplitudes  are  differences  between pairs  of two consecutive

factors:  between the means at  previous and next segments.  As can be seen from Fig. 4, where

histograms of the factors and amplitudes are presented, their range for TN, approximately from -6
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to 6oC (Fig. 4 a, c), is wider comparing to TX, (-3; 3) (oC) (Fig.4 b, d). This was deliberately

introduced  into  the  benchmark  to  mimic  real  effects  such  as  those  related  to  larger  local

microclimate differences at nights comparing to daylight period of days (e.g.  Brunet et al., 2008).

Beside the factors and amplitudes, the homogeneous segments can also be characterized by standard

deviations (SD) of errors. Fig. 5 shows their histograms for TN and TX time series. The mean and

SD of the errors on the homogeneous segments can be combined in a single parameter called as

signal to noise ratio. But in our work, we consider them separately.

The presented statistical properties of the break points and respective homogeneous segments

in  the  introduced  station  signals  are  close  to  reality.  Such  conclusion  is  supported  by  many

homogenization results of real data sets where similar statistical features of inhomogeneities have

been found (e.g. Brunet et al., 2008; Trewin, 2018).

2.3. Methodology used to evaluate uncertainty of homogenization adjustment

In order to describe our approach to the evaluation of Climatol’s adjustment uncertainty, we first

introduce the formalism and present some graphical illustrations. Let

X I, X H, and XC                                                              (1)

be inhomogeneous, homogenized, and clean daily data, respectively. X I and XC can be also referred

to as raw and homogeneous data, correspondingly. All these data sets are collections of time series

X={x ij },  i=1 , …, M ,  j=1 ,…, N ,                                         (2)

where  M  is  the  number  of  meteorological  stations  considered  andN  is  the  number  of  time

steps/days. From mathematical point of view X  is a rectangular matrix with dimension of M × N .

Let  X k,  which  is  the  k-th  row  in  (2),  denote  the  entire  time  series  for  the  k-th  station.  The

homogenization adjustment can be formally thought as mapping g that transform the input matrix

X I in to the output one X H

X I g
→

X H
.                                                                 (3)

XC is the reference, etalon result for the outputs.
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Based on the data available in (1), time series of real, ER, detection, ED, and homogenization,

EH, errors can be calculated: 

ER
=X I − XC,  ED

=X I − XH ,  EH
=X H − XC.                             (4)

Specifically  in  our  case,  ER is  a  collection  of  station  signals  (or,  more  precisely,  station

signals plus noise; but we will call them as station signals for simplicity) that were introduced into

the clean data XC. EH is a dataset of residual errors that might be still present in the homogenized or

adjusted series X H. The error datasets ER, ED and EH are also M × N-matrices: E={e ij },  i=1 , …, M

,  j=1 ,…, N .

Fig. 6 shows some typical examples of the time series associated with the same (k-th) station.

They were extracted from the TN raw, homogenized by means of the Climatol software, and clean

data sets. Fig. 7 shows the corresponding error time series (4), calculated from the data given in Fig.

6. All figures can be also interpreted as graphical representations of the k-th rows in the respective

matrices.  We will  refer to both figures throughout this  paper to illustrate  the configuration and

layout of our numerical experiments and results.

The main object of our study is the matrix  EH:  we want to know how large could be the

residual errors in the adjusted data,  or in other words, how large could be the departure of the

adjustment prediction  X H from the reference, etalon result  XC. According to (e.g.,  Walker et al.,

2003),  such departure is  usually  called as ‘uncertainty’.  Typically,  there exist  multiple  reasons,

referred to as sources of the uncertainty (Jakeman et al., 2006), which may affect the adjustment

performance and magnitude of the errors in EH. Therefore, in order to evaluate the uncertainty of

the homogenization adjustment we must consider all these sources - the whole credible range of

every uncertain input and parameter of the adjustment software - and define the effective width of

the corresponding probability distribution of the residual errors (Domonkos and Efthymiadis, 2013).

The wider the error distribution, the more uncertain the software prediction X H is.
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The residual errors of the homogenization adjustment  EH should depend on the introduced

errors  ER.  The more complex station signals in  ER (e.g. the larger number of break points, the

higher amplitudes of shifts, etc.), the larger residual errors should be expected. Thus, to clarify how

wide the distribution of the potential remaining errors could be, we have to consider as many as

possible different but real variants of  ER. Performing the homogenization adjustment for each of

them  provides  a  respective  ensemble  of  Climatol’s  outputs,  necessary  for  the  uncertainty

quantification.

The result of the homogenization adjustment should also depend on other factors, such as a

mean correlation between candidate and reference time series (Szentimrey, 2008; Guijarro, 2011;

Domonkos and Coll, 2017), the number of reference series (Trewin, 2018) etc. However, in the

present study we focus only on the influence of the station signals on the adjustment result. That is,

we try to quantify the adjustment uncertainty, which comes from only one source: errors introduced

into the input data to be adjusted. The sensitivity of Climatol’s adjustment to other possible factors

will be addressed in our future works.

2.3.1.  The  concept  of  a  random  field/function  applied  to  the  residual  errors  EH.  The

considerations presented above suggest an appropriate theoretical model for EH that can provide a

basis for further calculations and can make calculation results more statistically and theoretically

solid. Since we are going to consider an ensemble of different realizations of  EH, it is natural to

assume that EH is a random field or, more generally, a random function, that is given at the limited

number (M × N) of discrete points in space and time domains, D and T , respectively. Therefore, in

order to evaluate  the homogenization adjustment and to quantify the adjustment uncertainty we

have to define and study statistical properties of the random field  EH. According to the theory, a

multidimensional (M × N-dimensional) probability distribution function

f M × N (e11
H , e12

H ,…, e1N
H , e21

H ,…, e2N
H , …,eMN

H )                                      (5)

provides complete and the most detailed description of EH. Based on f M × N  it is possible to derive

multidimensional probability distribution of the residual errors in any of M  meteorological stations.
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For instance, for k-th station we get f N (ek1
H , ek 2

H , …,ekN
H ). The f N  is obtained by integrating f M × N  with

respect to its all arguments except  ek 1
H ,ek 2

H , …,ekN
H . Function f 1 (ekl

H ) defines probability distribution

of the residual error in k-th meteorological station (i=k) and l-th day ( j=l).

In the most general case, a random field might be non-stationary in time and heterogeneous in

space. In this situation, the simplest statistical properties of the random field defined in a single

point of the space-time domain, such as the mean or standard deviation, vary in the domain. On the

contrary, when the field is stationary and homogeneous, these statistical moments are constant in

time  and space.  Specifically  to  the  homogenization  adjustment,  we can  expect  EH to  be  non-

stationary (e.g. due to seasonal cycle in temperature time series) and heterogeneous (e.g. due to

possible different topography in D and, as a result, different local correlation between temperature

time series). Such peculiarities of EH, non-stationarity and spatial heterogeneity, make its analysis

more difficult.  In particular,  that means we cannot use ergodic assumption in order to calculate

statistical properties of EH based on its only realization.

Let ERq, q=1 ,…,Q be Q different but real variants of the collection of the introduced station

signals.  Assume  also  that  the  same  number  of  numerical  experiments,  the  homogenization

adjustments, were performed and corresponding number of realizations of EH were obtained using a

chain of the calculations

ERq
+ XC

=X Iq,  X
Iq g

→
X Hq

,  X Hq − XC
=EHq,  q=1 , …,Q,                      (6)

Based on these realizations,  it  is theoretically possible to evaluate  f M × N .  However, such task is

hardly feasible in practice due to extremely large number of dimensions to be considered. On the

other hand, based on the statistical ensemble of  Q individual realizations of  EH we can evaluate

some of the moments of the residual error distribution (5). In the context of our objective, the most

important of them are a mean value (m) and some parameter that can characterize a width of the

distribution  such  as  a  standard  deviation  (σ )  or  a  percentile  range.  The  mean  value  provides

information  regarding  a  systematic  bias  of  the  homogenization  adjustment,  while  the  standard
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deviation or the percentile range characterize its uncertainty. Both statistics,  m and σ , can vary in

the space-time domain where EH is defined and they can be evaluated based on formulas

mij=
1
Q
∑
q=1

Q

e ij
Hq,                                                          (7.1)

σ ij=( 1
(Q− 1 )

∑
q=1

Q

(eij
Hq −mij)

2)
1
2 ,                                            (7.2)

i=1 , …, M ,  j=1 ,…, N .

While the proposed approach to the evaluation of the adjustment uncertainty on the daily time

scale appears attractive and theoretically rigorous, it can potentially lead to some problems that may

limit its practical applicability. For instance, one of the limitations can be related to difficulties with

a  construction  of  the  statistical  ensemble  for  ER with  a  sufficient  number  of  its  individual

realizations in order to perform the calculations according to (6). Another example of limitations

can be explained as follow: typically, at the end of the time domain  T , all station signals in  ER

contain undisturbed segments (see, for example, Fig. 7 a). Hence, a lot of zero values in  EH are

usually obtained there. Such zero values have to be excluded from the analysis when evaluating

homogenization adjustment since they do not mean ‘perfect’ adjustment. However, it is not very

easy to do so, because individual station signals usually have undisturbed segments of different

length.

Estimating the statistical properties of the random field of the residual error EH is not the only

way to evaluate the performance of the homogenization adjustment and to quantify its uncertainty

on the daily time resolution. An alternative approach is to use specially elaborated statistical metrics

or indicators (e.g. Vincent et al., 2018; Trewin, 2018). As noted in Coll et al. (2020), such metrics

can  provide  useful  indications  in  relation  to  the  strengths  and  weaknesses  of  homogenization

methods used.

2.3.2. Metrics for the adjustment evaluation on the daily time scale. The performance evaluation

of an adjustment algorithm and the quantification of its uncertainty are slightly different tasks in

several aspects. For instance, we can evaluate the performance even if there is only one realization
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of  the  adjustment  output  X H.  Whereas  to  define  the  uncertainty  we  usually  should  have  the

statistical ensemble of  X H (X Hq,q=1 ,…,Q) and the respective ensemble of  EH (EHq,q=1 , …,Q).

As was mentioned above, a single realization of EH can be used for the uncertainty quantification

only if EH satisfies the special conditions. The evaluation is usually performed by means of some

metrics or statistical indicators. The metrics are computed for each individual station in the data set

based on error data Ei
H (i=1 , …, M ) or on comparison of the corresponding pair of time series X i

H

and  X i
C. Calculated for a single output of the homogenization adjustment  X H, they yield general

(averaged in time) estimates of the systematic and random residual errors in this actual software

run. The metrics values can be averaged over all stations, providing overall (for the whole space

domain) evaluation. Some of such averaged metrics, however, can be also used in order to quantify

the adjustment uncertainty.

Fig. 8 a shows a graphical comparison between homogenized X k
H and clean X k

C time series,

presented in Fig. 6 b and c. Similar plot for inhomogeneousX k
I  and clean X k

C data (Fig. 6 a and c) is

presented in Fig.8 b for comparison. The solid bisecting line of black color, usually referred to as a

line of true predictions, represents full agreement between respective time series. The perfect/ideal

adjustment  algorithm  would  yield  corrected  values,  which  would  be  completely  the  same  as

respective clean data. In this case, all dots depicting all pairs (xkj
C , xkj

H ), j=1 ,…, N  would lie on the

line of true predictions. The dots lying below the black line mean underestimation of the adjustment

algorithm, while the above black line dots show overestimation. Other lines in the diagrams are

explained later. The figures are used below for further explanations.

The discrepancy  between  the  homogenized  and clean  time  series  (Fig.  8  a)  is  obviously

reduced compared to the discrepancy between the inhomogeneous and clean data (Fig. 8 b). The

residual disagreement in Fig. 8 a might be quantified by means of some statistical metrics. Due to

the random nature of X k
H and X k

C, it is evident, that several metrics should be used because no sole
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one can provide complete information regarding the residual errors of both types, systematic and

random.

Keeping in mind the daily resolution of our data, we applied six different metrics: bias (B),

root mean square error (RMSE), factor of exceedance (FOEX), percentage of days within ±0.5/±2

oC margin (POD 05/POD 2), and difference in slopes (SlopeD). The metrics B, FOEX  and SlopeD

are intended to estimate the systematic errors, while other three,  RMSE and  POD 05/POD 2, are

used  for  evaluation  of  the  random or  scatter  residual  errors.  In  the  context  of  the  uncertainty

evaluation,  the  two  most  important  metric  are  B and  RMSE,  which  averaged  values  can  also

provide  information  regarding  the  overall  deviation  of  the  adjustment  prediction  from the  true

climate signal and the range of the possible residual errors, respectively. Formulas for the majority

of the metrics are standard and well known, however we include them for clarification. Note that all

formulas  are  presented  for  individual  pairs  of  time  series,  X i
H and  X i

C,  i=1 ,…,M .  Obviously,

similar metrics can be calculated for inhomogeneous data by replacing X i
H with X i

I.

1) Bias

Bi=
1
N i

∑
j=1

N i

(x ij
H − x ij

C
)=

1
N i

∑
j=1

N i

e ij
H ,                                       (8)

where  N i is a number of pairs  (x ij
C , xij

H ) in an adjusted segment/segments. The data from the last

uncorrected segment are not used in calculations  ( N i<N ).  The bias can be positive or negative.

Depending on its sign it shows average overestimation (+) or underestimation (-) of the adjusted

data. However, the bias does not provide any information regarding whether overestimations are

more frequent than underestimations or vice-versa. The ‘perfect’ homogenization algorithm would

give 0 for this metric, while Bi=0 does not mean that all differences x ij
H − x ij

C
=eij

H,  j=1 ,…, N i are

zeros. In a case when the statistical ensemble of Q individual realizations of the adjustment outputs

is  available,  Bi can  be  averaged  over  this  statistical  ensemble.  By  comparing  (7.1)  and  (8)  it
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becomes clear that such averaged value can be considered as an estimate of the mean of the random

field EH for i-th station.

2) Root mean squared error

RMSEi=( 1
N i

∑
j=1

N i

(x ij
H − x ij

C )
2)

1
2
=( 1

N i
∑
j=1

N i

(e ij
H )

2)
1
2.                            (9)

RMSE provides information about an average deviation of the adjusted data from the true climate

signal. However, this metric can be also interpreted as a value that is proportional to the Euclidian

distance  between  X i
H and  X i

C in  a  multidimensional  space.  Consequently,  such  interpretation

provides qualitative explanation why  RMSEi, averaged over the statistical ensemble of  Q model

runs, can characterize the width of possible residual error distribution for  i-th station and, hence,

can be used to characterize the homogenization adjustment uncertainty. Comparing (7.2) and (9), it

can be also concluded, that such averaged value should be close to the standard deviation of the

random field EH for i-th station.

3) Factor of excedance

FOEX i=(
N

(xij
H> xij

C )

N i

− 0.5)100,                                                (10)

where N (x ij
H
> x ij

C
) is a number of pairs (x ij

C , xij
H ) when x ij

H
>x ij

C, i.e. a homogenized value is overestimated

comparing to a respective value from a clean time series. The factor of excedance is measured in %

and its values range from -50% to 50%. For instance, FOEX=50  means that all homogenized data

are overestimated with respect to true climate data. This measure is widely used in climate analysis

and applied meteorology, e.g. Mosca et al. (1998).

4-5) Percentage of days within ±0.5/±2 oC margin. In addition to the line of true values in Fig

8, other reference lines might be shown on a scatter diagram in order to facilitate the qualitative

evaluation of adjustment performance. For instance, pairs of parallels, defined as

|X i
H − X i

C|=∆ T ,                                                              (11)
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where  || denotes an absolute value,  ∆ T  is a certain threshold of temperature differences, can be

drawn. In our study as the thresholds, we chose 0.5ºC following Vincent et al. (2018), and 2oC by

analogy with the Factor of 2 used in other fields of applied meteorology (e.g. Mosca et al., 1998). A

pair of such reference lines when ∆ T=2 are shown in red color in Fig. 8. Now metrics POD 05 and

POD 2 can  be  simply  explained  as  percentage  of  dots  (x ij
C , xij

H ),  which  lie  in  the  area  between

respective reference lines (11). That is,

POD 05i=
N

|xij
H− x ij

C|<0.5

N i

100 and POD 2i=
N

|x ij
H − x ij

C|<2

N i

100,                     (12)

where  N|xij
H− x ij

C|≤0.5 and  N|xij
H− x ij

C|≤2 mean  numbers  of  dots  (x ij
C , xij

H ),  which  lie  in  the  areas  inside

respective lines (11). Such metrics show how large scatter of the adjusted values around the clean

data is.

6) Difference in slopes

SlopeDi=bi− 1,                                                                (13)

where b i is a slope of a linear regression model X i
H
=ai+bi X i

C, built using the standard least-squares

approach. The need to introduce such metric can be explained based on Fig. 8 a. As can be seen

from this figure, neither  B nor  FOEX  can clearly capture the tendency of general simultaneous

underestimation  of  positive  temperatures  and  overestimation  of  negative  ones  (the  opposite

situation  is  also  possible).  The  absolute  values  of  the  under/over-estimations  depend  of  the

temperature  magnitude,  and  they  are  the  largest  for  temperature  extreme.  In  other  words,  the

under/over-estimation should be reflected in the underestimation of an amplitude of the seasonal

cycle showing less variability of the adjusted temperature values. We propose to evaluate such type

of discrepancies (systematic error) between homogenized and clean data based on comparison of

slopes of the true value line, which always equals to 1, and the linear regression built on the data

(blue line in the Fig. 8). The metric is important when evaluating the adjustment of daily data, since

the  under/over-estimation  of  values  from  tails  of  the  temperature  distribution  can  influence

calculating of some climate extremes indices. The best value for SlopeD is 0. It worth noting that

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403



similar approach was used in (Della-Marta and Wanner, 2006), where comparison of a candidate

series against a reference one through a scatter diagram was a part of a newly developed adjustment

method. According to this paper, deviation of a slope of a line that fits the data from 1 indicates that

daily temperatures at the candidate are less/more variable than those at the reference.

The set of the introduced metrics are capable to provide a fairly detailed description of the

adjustment performance on the daily time resolution.

2.3.3. Quantifying discrepancies between homogenized and clean data on the yearly scale. As

it was pointed out in the introduction,  daily air  temperature data are used in order to calculate

climate extremes indices.  Therefore, it  is important to evaluate how accuracy of the adjustment

algorithm for data with such temporal resolution is reflected in calculation of these indices and their

regular tendencies (trends) (Trewin and Trevitt, 1996). To do so, we calculated yearly time series of

the temperature data, TNy and TXy, and the following indices (Klein Tank et al., 2009; Zhang et

al., 2011): FD (frost days), TR (tropical nights), TN10p (cold nights), TN90p (warm nights), ID (ice

days), SU (summer days), TX10p (cold days), TX90p (warm days). However, due to peculiarities

of the Southern Sweden climate (relatively cold) we slightly shifted the standard absolute thresholds

in  the  respective  climate  extremes  indices.  That  is,  instead  of  0  and  20oC  for  FD  and  TR,

respectively,  we  used  -10  and  10oC.  Instead  of  0  and  25oC for  ID  and  SU,  respectively,  the

thresholds of 5 and 20oC were used. Calculation of the indices was performed for raw, clean and

homogenized data based on the RClimDex software (Zhang et al., 2018). After that, quantifying the

discrepancies  between  the  indices  calculated  based  on  the  clean  and  homogenized  data  was

performed by means of only two metrics, namely B and RMSE. Similarly to the daily time series,

the metrics were calculated based on only adjusted segment/segments. In addition, we computed

differences/errors  in the indices linear trends (TrD),  calculated for adjusted and clean data.  The

trends were evaluated over the whole time series (including undisturbed segments) through the least

squares regression.
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2.3.4.  Ensemble  of  introduced  station  signals.  As was  noted  above,  the  main  source  of  the

uncertainty for the homogenization adjustment is the station signals introduced into the raw time

series. In other words, the results of the adjustment are sensitive to the input data and magnitude of

errors contained there. It is natural to expect that the larger the deviation of raw time series from the

clean ones, the larger the residual errors should be after the adjustment. In turn, the deviation of the

raw time series from the clean data is controlled by the system of break points and corresponding

statistical  properties  of  homogeneous  segments  in  the  station  signals  ER,  such  as  the  shift

amplitudes/factors, signal to noise ratios etc. In real situation when homogenizing a some set of raw

time series, such information is usually unknown. This is a reason why in order to estimate the

adjustment  uncertainty  we  have  to  use  the  benchmark  data  and  consider  all  possible  but  real

variants of the station signals or, in other words, consider their statistical ensembleERq,q=1 ,…,Q.

Such  ensemble  is  preferred  for  further  calculations,  no  matter  what  approach  is  used  to

quantify  the  adjustment  uncertainty:  the  statistical  metrics  or  the  random field  formalism.  Our

general idea regarding creating  ERq,q=1 ,…,Q is to use the collections of the error time series,

introduced in the benchmark, and apply to them replacements and/or permutations. As was shown

in Section 2.2., the collection of the station signals  ER, that was created in the INDECIS project,

possesses  statistical  properties,  which  are  close  to  reality.  Therefore,  we  should  expect  that  a

sufficient number of the replacements and/or permutations in the set of 94/96 (TN/TX, see Fig. 3)

different  station  signals  will  provide  enough  number  of  individual  realizations  of  EH.  Our

methodology will be applied to two different case studies, with increasing complexity, which will

be fully described in the Results section.

3. Results

3.1. Case study #1

This first case study considers ten stations (Fig. 9) and limits the length of the corresponding time

series to the period of 1971-1980 (10 years). Nine time series (the references), belonging to the

stations marked in black color in Fig. 9, are left clean, while the time series of the tenth station (the
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candidate),  depicted  in  red,  is  assumed  to  be  corrupted  with  only  one  break  point  dated  to

01.01.1976. That is, the first half (1971-1975) of the period under study is intended to be corrupted.

Using matrix notations similar to (2), these initial conditions can be written as follows

{x ij
I }= {x ij

C }, when i=1 , …, 9,  j=1 ,…, 3653, or i=10,  j=1827 ,…,3653;   (14.1)

{x ij
I }≠ {xij

C }, when i=10,  j=1 ,…,1826,                         (14.2)

where 3653 is a total number of days in 1971-1980, 1826 is a number of days in 1971-1975.

An  average  distance  between  the  candidate  and  the  reference  stations  is  ~34  km,  while

averaged Pearson’s correlation coefficient between X10
C  and X i

C, i=1 ,…, 9 is 0.96 for TN and 0.97

for TX data. Before the correlation calculation, the seasonal cycle was removed from every time

series by using an approach similar to Vincent et al. (2018).

In  order  to  construct  the  raw  data  with  the  corrupted  5-year  sub-period  ({x ij
I },  i=10,

j=1 ,…,1826), we analyzed all station signals in ER, that were initially introduced in the INDECIS

benchmark,  and  defined  homogeneous  error  segments,  which  length  is  more  than  5  complete

consecutive years (since January 1 until December 31). For instance, in the error time series shown

in Fig. 7 a, all three homogeneous non-zero segments satisfy the stated above condition. The total

numbers of such segments in TN and TX error data sets are 185 and 193, respectively. Then 185 for

TN and 193 for TX different versions of the raw time series were constructed by shifting a 5-year

period from each of the defined segments to 1971-1975 and adding them to the respective clean

data  {x ij
C },  i=10,  j=1 ,…, 1826.  In such way (by performing such replacements),  we obtained a

statistical ensemble of individual realizations of the raw data set X Iq, q=1 ,…,Q, where Q=185 for

TN and  Q=193 for TX. The members of the ensemble differ from each other by only statistical

properties of the disturbed segment in the tenth series (see (14.1) and (14.2)), which are well known

(Fig. 4 and 5) and, hence, can be considered as controlled. Applying Climatol with the predefined

break point to each member of the statistical  ensemble,  we obtained a sample of the respective

number of the adjustment results, which were used for further calculations. It should be mentioned
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that the average correlation between  X10
Iq,  q=1 , …,Q and the system of the reference series  X i

C,

i=1 , …,9 slightly varies for different q. For TN data the range of the correlation coefficient values

is (0.80 , 0.95 ) with the mean around 0.89, while for TX data the range and the mean are (0.81 , 0.96 )

and  0.91,  respectively.  We believe  that  such variations  are  not  substantially  influencing on the

adjustment results and, furthermore, they are unavoidable since they come from the variations of

station signals in the statistical ensemble of the candidate time series.

The same corrupted period along with unchanged system of reference series allows to conduct

statistically reliable and justified evaluation of the residual errors. Moreover, the approach, used in

case study #1, provides an assessment of an almost pure effect of the introduced station signals on

the  adjustment  uncertainty  since  any  other  reasons,  which  might  have  some  influence  on  the

homogenization adjustment, were kept approximately constant or removed.

Fig. 10 shows results of the adjustment uncertainty quantification on daily scale by applying

the concept of a random field to the residual errors EH. Since only one time series of the raw data

set was corrupted on 1971-1975,  EH has non-zero values only for one point in the space domain

(i.e. for tenth station) and only for the first half of the period under study. Therefore, statistical

properties of EH were defined only for these station and period. In Fig. 10, the mean values, 5th (

P 05) and 95th (P 95) percentiles of empirical distributions of EH, calculated for each day of 1971-

1975, are shown. Figure (a) shows the calculations for TN, while (b) depicts the similar results for

TX.  The  mean  values  were  calculated  based  on  formula  (7.1),  whereas  the  percentiles  were

evaluated based on the samples of Q (185 for TN and 193 for TX) values e10 j
Hq , q=1 , …,Q for each

day ( j=1 ,…, 1826).

As can be seen from the figure, the calculated parameters, means and percentiles,  vary in

time. Beside noise, which is due to the limited number of individual realizations in the statistical

ensemble, a regular one-year periodicity can be observed. Generally, the range of the residual error

is less in summertime compared to winter months. Such non-stationary/periodic behavior of the

widths of the residual error distributions can be obviously explained by the similar periodicity of the
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introduced  errors  ER.  The  reason  for  the  seasonality  in  ER is  significantly  less  local  spatial

variability of air temperature in a summer period compared to winter. Thus, we could expect that

the adjusted values of air temperatures, both TN and TX, are closer to the true climate signal in

summer than in winter.

The similar 1-year periodicity of the mean values of the residual error distributions implies

periodic bias of the air temperature, adjusted by the Climatol software. For both climatic variables,

the  residual  errors  are  slightly  shifted  to  negative  values  during  summertime,  while  in  winter

months the shift has opposite direction. Such bias periodicity means the average underestimation of

temperature in summer, and the overestimation in winter and it should have some influence on the

amplitude of the seasonal cycle of the adjusted minimum and maximum air temperature.

In  order  to  provide  additional  evidences  for  the  conclusions,  stated  after  the  qualitative

analysis of the results presented in Fig. 10, we averaged the empirical error distributions over the

whole period, and over January and July months separately (Fig. 11). Table 1 contains some of the

parameters  of  these  averaged  distributions.  Similar  parameters  for  the  introduced  errors  are

presented in the table for comparison. The seasonality of the residual error distributions is seen in

the figure for both variables and it is also supported by the table content.

In summer months, the percentile intervals of the residual errors, ( P 05 , P 95 ), for the adjusted

daily TN and TX air temperatures are (−2.80 , 1.70 ) (oC) and (−2.60 , 1.90 ) (oC), respectively. Note,

that such  quantitative assessments can be considered as one of possible measures of Climatol’s

adjustment uncertainty. The corresponding mean values of the error distributions are − 0.41oC and

− 0.22oC. These results imply that in summer we could expect any adjusted temperature value x ij
H  to

be slightly underestimated (on average) compared to a respective clean temperature  x ij
C by 0.41oC

for TN and  0.22 oC for TX. Also, we could expect  with 90% probability that for minimum air

temperature the adjusted value x ij
H  lays in the interval (x ij

C −2.80 , x ij
C
+1.70 ) (oC), while for maximum

air  temperature  the  interval  is  (x ij
C −2.60 , xij

C
+1.90 ) (oC).  It  is  important  to  note  a  reduction  by
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~26/11% (TN/TX) in the percentile range length of the residual errors compared to the introduced

ones. Such decreasing of the uncertainty is a quantitative assessment of the added value (Sturm and

Engström, 2019) of the homogenization adjustment performed by the Climatol software on day-to-

day level in a summer period.

In winter months, the ranges ( P 05 ,P 95 ), evaluated for the homogenization adjustment errors

in TN and TX data are  (−3.60 , 4.50 ) (oC) and (−2.00 ,2.60 ) (oC), respectively. The corresponding

mean values of the error distributions are  0.40oC for TN and  0.28oC for TX. Thus, in winter we

could expect any adjusted temperature value x ij
H  to be slightly overestimated (on average) by 0.40 oC

for TN and 0.28oC for TX relatively to the respective clean value  x ij
C and with 90% probability it

lays in the interval (x ij
C −3.60 , x ij

C
+4.50 ) (oC) in case of TN air temperature and (x ij

C −2.00 , x ij
C
+2.60 )

(oC) in case of TX. Compared to summer months, there is noticeable difference between widths of

( P 05 ,P 95 ) intervals calculated for TN and TX winter residual errors. For minimum air temperature

such interval is substantially larger (almost twice) meaning larger uncertainty in the adjusted values

of TN in this period of the year. Similar to the summer period,  the homogenization adjustment

reduced the width of the introduced error distribution by15/13% (TN/TX).

The parameters of the empirical distribution of the residual errors, averaged over the whole 5-

year period (see Table 1), can characterize only overall (time-averaged) Climatol performance and

uncertainty. Some peculiarities of the errors time evolution are neglected. For instance, the shifts of

the error mean values in the opposite directions during the winter and summer seasons compensate

each other yielding perfect, almost unbiased Climatol’s adjustment. The 5th and 95th percentile for

TN and TX are between the respective summer and winter values, showing averaged uncertainty of

the Climatol software. The standard deviations of the residual error distributions, which also can be

used to characterize the adjustment uncertainty along with the percentile range, are 2.15oC for TN

and 1.64oC for TX. These numbers are important because they can be compared later with averaged

values  of  RMSE,  which  are  also  intended  to  show  the  general/overall  uncertainty  of  the
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homogenization  adjustment.  It  is  worth noting,  that  parameters  of  the error distribution  for  the

whole 5-year period can be also used in the evaluation of the adjustment uncertainty in spring and

autumn, which can be considered as transitional periods between two limiting cases: summer and

winter.

Thus, we can conclude that, if it is possible, the errors of the homogenization adjustment of

daily  air  temperature  time series  should be evaluated  on daily  or,  at  least,  seasonal  scale.  The

overall time-averaged evaluation might omit some peculiarities of the residual errors.

Fig.  12 summaries  evaluating  results  of  Climatol’s  adjustment  performance (including its

uncertainty), which were obtained by applying the statistical metrics. It is important to keep in mind

when interpreting these results that the metrics can provide only information regarding overall time-

averaged performance of the software. As was pointed above, the six metrics that were used in the

study yield detailed evaluation of Climatol’s capability to remove systematic and random errors in

each  individual  realization  of  the  raw  time  series  of  the  statistical  ensemble.  However,  only

averaged value of RMSE (averaged over the statistical ensemble) can be considered as measure of

the adjustment uncertainty, providing information regarding the width of empirical distribution of

the  potential  residual  errors.  For  each  metric,  185/193  (TN/TX)  values  were  calculated,  that

corresponds to the numbers of individual  realizations  in  the statistical  ensembles.  These metric

values are summarized as boxplots in the figure. Note, that the boxplots of the metrics, calculated

for the respective raw data, are also shown for relative evaluation of the adjustment efficiency. Due

to very short adjusted period (just 5 years) the climate extremes indices were not calculated and the

evaluation  of  the  Climatol  software  on  the  yearly  scale  was  not  performed  in  this  series  of

numerical experiments.

As can be seen from the figure, the mean value of bias (B) and its interquartile range (IQR),

which  we use as  a  convenient  measure  of  the metric  distribution  width directly  shown on the

boxplots, tend to zero for both variables, TN and TX. Similar tendencies are observed for FOEX .

Here IQR is not zero, but it has relatively small magnitude, especially for TN. Both these metrics
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indicate  the almost perfect performance of the Climatol  software in removing systematic  errors

(shifts  in  the  means).  Such  conclusion  is  plainly  and  brightly  supported  by  a  simple  visual

comparison with the same metrics in the raw data.

However,  another type of the systematic residual errors associated with the seasonality of

discrepancies  between the  homogenized and clean  data  (described by  SlopeD)  is  not  removed.

Moreover, such type of errors seems to be slightly amplified by Climatol in a sense that almost all

values of SlopeD became negative compared to symmetric distribution of the metric values in the

raw data. That means the simultaneous underestimation of summer temperatures and overestimation

of winter ones, and as the result  - the underestimation of an amplitude of seasonal cycle. Such

conclusion is fully supported by the day-to-day evaluation provided above. The potential ability of

the Climatol software to slightly alter seasonality was also pointed out by (Sturm and Engström,

2019).

The performance of the Climatol software in removing random errors is not so pronounced as

the removing systematic ones. After adjusting, the means and IQRs of metrics RMSE, POD 05 and

POD 2 for both variables, TN and TX, are slightly improved compared to similar values in the raw

data. However, this improvement seems to be associated with the almost perfect removing of break

point shifts in the means, and not directly related to the real Climatol’s capability to cope with the

scatter of errors. The mean value of RMSE, which yield the overall, time-averaged assessment of

the adjustment uncertainty, is 2.06oC for TN and 1.53oC for TX. Such values are very close to the

previously calculated standard deviations of the residual error distributions, calculated on the day-

to-day level and averaged over 5-year period (see Table 1). The coincidence of the uncertainty

estimates that were obtained by applying different approaches indicates robustness of the drawn

conclusions and the quantitative assessments. In addition, our assessments of RMSE for TN and TX

adjusted data are close to similar estimates presented by Vincent et al. (2018).

It is worth noting again that the provided quantitative assessments of Climatol’s performance

and uncertainty (as well as those given in the following section) are valid only for cases when the
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correlation  between  candidate  and  reference  series  is  quite  high,  ~ (0.80 ,0.95 ) for  TN  and

(0.81 ,0.96 ) for Tx. As already mentioned, the uncertainty quantification in other situations, i.e. with

other values of correlation ties between time series, will be performed in our future work.

According to (Vincent et al., 2018), adjustment algorithms, applied to daily air temperature

data, might show worse ability to remove small size shifts compared to large ones. Thus, it would

be interesting  to  define  if  there are  some relationships  between statistical  characteristics  of  the

introduced errors, such as their mean value (an amplitude of shift in the break point) and standard

deviation (SD), and the corresponding values of the metrics, calculated after applying Climatol. The

main purpose of the following calculations is to define what kind of errors (with small or large shift

amplitude, with small or large noise component) is removed better. Because the statistical ensemble

of Climatol runs contains 185 different individual realizations for TN data, the same numbers of

different values of the error means and SDs were calculated and bound to corresponding values of

the metrics (Fig. 13). Similar figure was created also for TX, but it is not included in the text. Note,

that in Fig. 13 metrics calculated based on the raw data are also shown for comparison.

The relationships  for  B and  FOEX  are  trivial  and they  were expected  due to  the almost

perfect performance of the Climatol software in removing jumps in the means.  However, other

metrics show more interesting dependencies on the error means and SDs. For instance, SlopeD has

negative values for any shift amplitude. However, the metric depends almost linearly on SD of the

introduced errors. The larger the standard deviation, the larger negative value of SlopeD should be

expected, meaning the more intensive seasonality in the residual error time series. There are no any

visible relations between the values of  RMSE,  POD 05 and  POD 2 and the shift amplitudes from

some interval around zero (shifts of small magnitudes). In this interval (approximately from −2 to 2

oC for TN and from −1 to  1oC for TX), there are also no visible differences between the metric

values computed based on the homogenized and raw data. It means that removing shifts of small

magnitudes  has  small  influence  the  random  part  of  the  residual  errors.  However,  certain

improvement of the metrics is observed for relatively large shifts. This conclusion is agreed well
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with the results by Vincent et al. (2018). Similar to SlopeD, the metrics RMSE, POD 05 and POD 2

show noticeable  relationships  with  the  standard  deviations  of  the  introduced  errors.  The larger

magnitude of this statistical parameter, the larger random residual errors should be expected, what is

indicated by the worse values of the metrics.

3.2. Case study #2

This case study is more complex since the raw time series can have more than one break point and

their positions are not strictly fixed: they are different in different realizations of the experiment.

Here, we used the same ten stations presented in Fig. 9 but considered them on the initially defined

period of time 1950-2005. Similar to case study #1, nine time series (the references) are always kept

clean, while constructing of the tenth disturbed or candidate series was slightly changed. Formally,

these initial conditions can be stated in the following form

{x ij
I }= {x ij

C }, when i=1 , …, 9,  j=1 ,…, 20454, or i=10,  j=N10+1, …, 20454;   (15.1)

{x ij
I }≠ {xij

C }, when i=10,  j=1 ,…, N 10,                                (15.2)

where  20454 is  a  total  number of  days  in  1950-2005,  N 10 is  a  number of  days  in  a  disturbed

segment/s  of  the  candidate  time  series.  N 10 varies  in  different  realizations  of  the  numerical

experiment.

In the INDECIS benchmark, 94 and 96 different non-zero station signals were created for TN

and TX data, respectively (Fig. 3). By adding these error series to the clean data of the tenth station

alternately,  we created corresponding numbers of different realizations of raw data, which were

used as inputs for the Climatol software. As in the previous case, each realization of this statistical

ensemble consists of nine clean and one perturbed time series. By performing such replacement of

the station signals, we do not change significantly the statistical properties of the introduced errors:

the distributions of their means and standard deviations are almost the same as in case study #1.

Besides,  we do  not  change  the  system of  reference  stations.  Pearson’s  correlation  coefficients

between  X10
C  and  X i

C,  i=1 , …, 9 and between  X10
Iq  (q=1 , …,Q) and  X i

C,  i=1 , …, 9 are almost the

same as in the previous case for both TN and TX data. But we change the structure and timing of
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break  points,  make  it  more  difficult  for  Climatol  to  adjust  different  segments  happened

simultaneously in the raw time series.  In addition,  in this set of numerical  experiments we can

estimate Climatol’s  performance and its uncertainty on the yearly scale by defining the residual

errors in the adjusted time series of climate extremes indices. Evaluation of the Climatol software in

case  study #2 on the  daily  scale  was  performed only  through metrics,  i.e.  only  overall,  time-

averaging  evaluation  was carried  out.  Day-to-day estimation  of  the  residual  error  distributions,

based on the concept of a random field, was not conducted. Such estimation is difficult to perform

statistically correct in case study #2 since individual realizations of the raw candidate time series in

the statistical ensemble have last undisturbed periods of different lengths. Consequently, for days in

the end of 1950-2005 the calculations would operate with considerably less quantity of the non-zero

error values compared to days in the beginning of 1950-2005.

Fig. 14 contains boxplots of the metrics that were calculated on the daily scale for the adjusted

TN and TX data. Similar to the previous case, we provided also respective metric values for raw

data in order to evaluate relative success of the adjustment algorithm.

As it can be seen from the figure, the distributions of the metric values are almost the same as

in the previous case. That means good Climatol’s performance in removing systematic errors (shifts

in  the  means)  and  moderate  improvement  of  the  metrics  showing  removing  of  scatter/random

residual  errors.  However,  the  seasonality  of  the  residual  errors  and  the  related  issue  of  the

underestimation of the seasonal cycle amplitude is also preserved in this case study. Therefore, the

number  of  break  points  in  raw  time  series  does  not  influence  significantly  the  accuracy  of

Climatol’s homogenization adjustment. If they are correctly defined during the detection process,

the same (on average) adjustment results should be expected,  no matter how many breaks were

detected in each of raw time series.

The mean value of RMSE for the adjusted TN data is 2.07oC, while for the TX adjusted time

series this parameter equals to 1.54oC. These values are very close to the similar estimates that were
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obtained in case study #1. Thus, the overall time-averaged uncertainty of Climatol’s adjustment is

not influenced significantly by including multiple break points in the raw time series.

The  boxplots  of  the  metrics  calculated  based  on  the  adjusted  yearly  time  series  of  air

temperature data and the climate extremes indices are presented in Fig. 15. Similar results that were

obtained based on raw yearly series are also presented in the figure for comparison. As can be seen

in the figure, the averaging TN and TX daily data to the yearly scale almost completely remove

both types of residual errors. Nearly zero values of B for adjusted TNy and TXy series are obvious,

since Climatol removes very well systematic errors even in daily data. The mean value of RMSE for

TNy is reduced after adjustment from 0.94oC to 0.20oC (by ~78%) while for TXy the reduction is

slightly less: from 0.56oC to 0.16oC (by ~63%). Such substantial improvement of  RMSE for both

climatic  variables  can  be  explained  by  the  fact  that  averaging  data  to  yearly  scale  removes

random/noisy part of the residual errors, seen on the daily scale. Note, that the mean values of

RMSE, 0.20oC for TNy and 0.16oC for TXy, can be also considered as the measures of Climatol’s

adjustment uncertainty on the yearly time scale. In addition, as can be seen in the figure, Climatol

removes most of the trend error in TNy and TXy data. The mean value and IQR of TrD are almost

zeros (~0.00 and ~0.01oC/decade, respectively) for both climatic variables.

Climatol removes well both types of errors also in the time series of all considered extreme

indices. This is clearly seen in the figure, where empirical distributions of B and RMSE, calculated

based on the adjusted data, can be compared with similar distributions, obtained for raw series. Both

metrics for all indices indicate substantial improvement after applying Climatol’s adjustment. The

underestimation  of  the  seasonal  cycle  amplitude  in  the  adjusted  data,  seen  on  the  daily  time

resolution, is not so noticeable in the indices time series, probably due to relatively small negative

values of SlopeD (see Fig. 14). However, the means of B for all indices with fixed thresholds are

slightly negative, meaning general slight underestimation of these indices in the adjusted data.

Below we focus mainly on trend evaluation in the time series of the extreme indices due to

their  critical  importance  in  climatological  applications.  The  empirical  distributions  of  errors

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710



(differences)  in trends,  TrD,  calculated for adjusted data  are also presented in Fig.  15.  Table 2

contains  some of  parameters  of  the  empirical  distributions  of  TrD values.  The first  noticeable

qualitative conclusion that can be drawn from the figure is substantial decreasing of the trend errors

in the adjusted data compared to the raw ones. Regular tendencies of all extreme indices, evaluated

based on corrected data, are much closer to the real trends than evaluated based on the raw time

series.

Based on the table content, quantitative assessments of Climatol’s accuracy and uncertainty in

the indices trend calculation can be derived. For instance, the mean value of the trend errors in the

adjusted series of FD (frost days) is relatively small,  0.29 days/decade  (2.9 days/100years). The

uncertainty  of  the  trend calculation  in  the  adjusted  FD data  can  be  estimated  by mean  of  the

standard deviation (0.42 days/decade) or the percentile range  ( P 05 , P 95 ), which is  (− 0.23 ,0.94 )

(days/decade). Thus, we could expect, that a linear trend, calculated in the FD yearly time series

that was corrected by the Climatol software, is slightly shifted (on average) on  0.29 days/decade

relatively  to  the  true  climate  trend  (TrC),  and  with  90%  probability  it  lies  in  the  interval

(TrC −0.23 , TrC
+0.94 )(days/decade). It is worth noting, that the percentile range of the trend errors

in  the  raw  time  series  is  significantly  larger,  (−3.00 , 2.92 )(days/decade),  i.e.  after  applying

Climatol, a 80% decrease of the uncertainty can be reported. Similar assessments can be obtained

from Table 2 for other climate extreme indices. We also can conclude, that, in general, the trends

can be estimated more accurately and with less uncertainty in the adjusted time series of the TX

extreme climate indices than in TN extremes. One more important conclusion is that despite the

substantial amount of the residual scatter/random errors which still remained in the adjusted daily

time series, the linear trends calculated on the corrected yearly time series are reliable and close to

real regular tendencies and they can be evaluated with significantly removed uncertainty.

4. Conclusion

In this study, the uncertainty quantification and the general performance evaluation of Climatol’s

adjustment  algorithm, applied to daily minimum and maximum air  temperature time series, are

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736



presented.  We focused our  attention  only on the most  influencing and important  source of the

uncertainty, namely introduced station signals into the raw data set to be adjusted. Other possible

sources  of  the  adjustment  uncertainty  were  removed  from  the  analysis  or  kept  approximately

constant.  For instance,  the mean correlation between candidate  and reference series was around

(0.80 , 0.95 ) for TN and (0.81 ,0.96 ) for Tx data. Therefore, our results are valid only for cases where

the  mentioned  mean  correlation  can  be  observed.  The  sensitivity  of  the  obtained  quantitative

assessments to other factors/sources will be addressed in our future work.

In order to evaluate the adjustment uncertainty, we used the INDECIS benchmark data and

applied  a  complex  approach,  quantifying  the  uncertainty  at  different  levels  of  detail  and  time

resolution. According to our findings, Climatol’s adjustment uncertainty, evaluated on day-to-day

level,  varies  in  time  and depends on the  season.  In  summer  months,  the  residual  errors  in  the

adjusted daily TN and TX series are expected to belong to the intervals, ( P 05 ,P 95 ), (−2.80 , 1.70 )

(oC)  and  (−2.60 , 1.90 ) (oC), respectively. In winter months, the ranges of the possible remaining

errors are larger:  (−3.60 , 4.50 ) (oC) for TN and (−2.00 , 2.60 ) (oC) for TX. The overall adjustment

uncertainty,  averaged  over  all  seasons,  can  be  evaluated  as  the  error  range,  ( P 05 , P 95 ),

(−3.20 , 3.20 ) (oC) for TN and  (−2.50 , 2.30 ) (oC) for TX. In terms of standard deviations of the

residual error distributions, the overall uncertainty can be evaluated as 2.15oC for TN and 1.64oC for

TX data. These estimates agree well with the mean values of 𝑅𝑀𝑆𝐸, which also can be used as a

measure of the width of the empirical distribution of the residual errors. Besides 1-year periodicity

in  the  width  of  the  residual  error  distributions,  their  mean  values  are  also  slightly  shifted

periodically.  For both climatic variables, the shift is toward negative values during summertime,

while in winter months it has opposite direction. Such peculiarities of the residual errors can lead to

the slight underestimation of the amplitude of the seasonal cycle of the adjusted TN and TX data.

The calculations based on the specially introduced metric (SlopeD) provide additional evidence for

such conclusion. Other metrics, used in the study, showed that Climatol removes extremely well

systematic errors related to jumps in the mean and this Climatol’s capability is valid for shifts of
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any magnitude and does not depend on the number of break points in the raw time series. The

ability  of  Climatol  to  remove  scatter/random  errors  in  the  daily  raw  time  series  is  not  so

pronounced.

However, on the yearly time scale, both types of residual errors are removed well in adjusted

time series. The adjusted yearly TN and TX temperature data are unbiased, and their uncertainty is

reduced significantly: mean values of RMSE for TNy and TXy were decreased to 0.20oC (by ~78%)

and 0.16oC (by ~63%), respectively. In addition, Climatol removes most of the trend error in TNy

and TXy data, so trend analysis is more solid and better represents climate variations.

Similar conclusions are valid for the yearly time series of the considered climate extreme

indices: both types of errors are removed well by Climatol. The underestimation of the seasonal

cycle amplitude in the adjusted data, seen on the daily time resolution, is not clearly reflected in the

indices time series. However, the mean values of bias (B) for all indices with fixed thresholds are

slightly negative, meaning slight underestimation of these indices in the adjusted data. However,

this does not have substantial influence on the linear trend calculations in the indices time series.

The trends calculated in the adjusted time series are generally unbiased. The percentile ( P 05 ,P 95 )

ranges of the errors in the indices trends, calculated based on adjusted data, is reduced by ~70-80%

compared to the trend errors in the corresponding raw time series. Despite the substantial amount of

the residual scatter errors in daily time series, the linear trends calculated on the corrected yearly

time series are close to real regular tendencies and they can be evaluated with significantly removed

uncertainty.
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Tables
Table 1. Parameters of averaged empirical distributions of errors: homogenization/residual EH and

real/introduced ER (all in oC)
Year January July

EH ER EH ER EH ER

TN

Mean -0.03 -0.11 0.40 -0.08 -0.41 -0.13

SD 2.15 2.53 2.56 2.97 1.39 1.85

P05 -3.20 -4.00 -3.60 -4.90 -2.80 -3.20

P95 3.20 3.70 4.50 4.60 1.70 2.90

P95-P05 6.40 7.70 8.10 9.50 4.50 6.10

TX

Mean -0.02 -0.00 0.28 -0.03 -0.22 0.04

SD 1.64 1.84 1.58 1.78 1.48 1.67

P05 -2.50 -2.70 -2.00 -2.70 -2.60 -2.50

P95 2.30 2.60 2.60 2.60 1.90 2.50

P95-P05 4.80 5.30 4.60 5.30 4.50 5.00

Table 2. Parameters of empirical probability distributions of TrD (errors/differences in linear
trends), defined for yearly time series of climate extreme indices: (a) TN, (b) TX

a)
FD

days/decade
TR

days/decade
TN10p

%/decade
TN90p

%/decade
hom-cln raw-cln hom-cln raw-cln hom-cln raw-cln hom-cln raw-cln

Mean 0.29 -0.26 0.64 -0.79 -0.35 -0.52 -0.29 -0.73

SD 0.42 1.83 0.74 3.59 0.42 1.25 0.34 1.27

P05 -0.23 -3.00 -0.42 -6.65 -1.02 -2.22 -0.79 -2.54

P95 0.94 2.92 2.05 2.55 0.32 1.44 0.31 0.28

P95-P05 1.17 5.92 2.47 9.20 1.34 3.66 1.10 2.82

b)
ID

days/decade
SU

days/decade
TX10p

%/decade
TX90p

%/decade
hom-cln raw-cln hom-cln raw-cln hom-cln raw-cln hom-cln raw-cln

Mean -0.05 -0.36 0.21 -0.56 -0.13 -0.13 -0.10 -0.36

SD 0.27 0.88 0.44 1.73 0.33 0.79 0.23 0.64

P05 -0.49 -1.88 -0.37 -3.41 -0.71 -1.47 -0.49 -1.40

P95 0.39 0.96 0.96 2.00 0.33 1.06 0.23 0.56

P95-P05 0.88 2.84 1.33 5.41 1.04 2.53 0.72 1.96
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Figures

Fig. 1. (a) The domain of the Southern Sweden (inside of the red rectangular frame) and (b)
locations of the ‘stations’ (the subset of the RACMO grid points, shown as black dots) on it

Fig. 2. Number of break points per year introduced to clean (a) TN and (b) TX air temperature
time series
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Fig. 3. Distribution of the number of stations/time series with respect to the number of break points
in one time series: (a) TN, (b) TX

Fig. 4. Histograms of the factors (a, b) and amplitudes (c, d) of the shifts at break points, that were
introduced to TN (a, c) and TX (b, d) clean data sets. The frequency/count was normalized by the

total number of the breaks. The factors/amplitudes were estimated by averaging homogeneous
segments in the time series of the introduced error
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Fig. 5. Histograms of standard deviations (SD) of the introduced errors at the homogeneous
segments: (a) TN, (b) TX. The frequency/count was normalized by the total number of the breaks.

Fig. 6. Examples of TN time series belonging to the same (k-th) station extracted from the
inhomogenious X I (a), homogenized X H (b) and clean XC (c) data sets

1017
1018

1019

1020

1021
1022

1023



Fig. 7. Examples of time series of errors: real/introduced Ek
R (a), detected Ek

D (b) and residual Ek
H (c)

calculated from the data presented in Fig. 6

Fig. 8. Example of scatter diagrams. Homogenized X k
H (a) and raw X k

I  (b) daily data are built

against respective clean values X k
C presented in Fig. 6
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Fig. 9. The chosen set of meteorological stations in case study #1. Black dots show the stations
whose time series were always clean, red dot is the station where inhomogeneities were introduced
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Fig. 10. Mean, 5th and 95th percentiles (P05 and P95) of empirical distributions of the residual
errors, evaluated for each day of the corrupted segment: (a) TN, (b) TX.
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Fig. 11. Empirical distributions of the residual errors, averaged over (a, d) the whole 5-year
period, (b, e) January months, (c, f) July months: (top panel) TN, (bottom panel) TX. 

Fig. 12. Boxplots of the metrics, calculated in the set of numerical experiments #1: (a) TN, (b) TX.
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Fig. 13. Relationships between the metric values and the main statistical properties of corrupted
segment in the station signals: means (left column) and standard deviations (right column). TN data.
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Fig. 14. Boxplots of the metrics calculated in the set of numerical experiments #2: (a) TN, (b) TX.

Fig. 15. Box-plots of the metrics calculated based on the yearly series of the climate extremes
indices in the set of numerical experiments #2: (a) TN, (b) TX
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