A brief review of collocation uncertainty and results from comparison of GRUAN and IASI data

Xavier Calbet - EUMETSAT

1. Consistency of GRUAN vs IASI

2. Collocation Uncertainty Determination

1. Consistency of GRUAN vs IASI

2. Collocation Uncertainty Determination

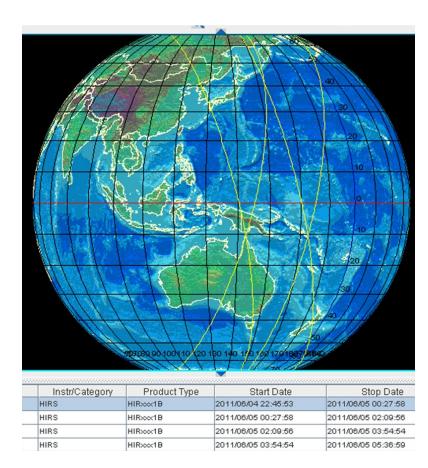
1. GRUAN stands for GCOS Reference Upper-Air Network

2. Are providing uncertainties with the measurements

3. But, most importantly, they have made a great effort to reduce systematic errors from the measurements → Humidity measurements are very much bias free

- 1. IASI is a Reference for GSICS (Global Space-based Inter-calibration System)
- 2. "Very stable" and "highly accurate" instrument

GCOS Requirements

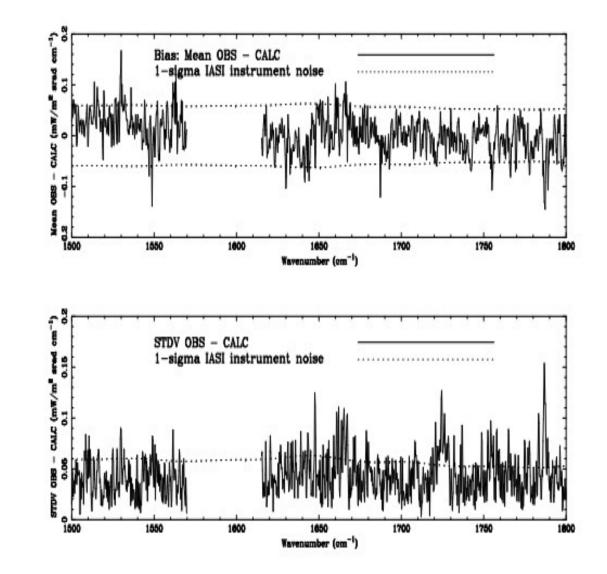

Variable/ Parameter	Horizontal Resolution	Vertical Resolution	Temporal Resolution	Accuracy	Stability
Total column-water vapour	25km	N/A	4h	2%	0.3%
Tropospheric and lower- stratospheric profiles of water vapour	25km (troposphere) 100-200km (stratosphere)	2km	4h (troposphere) daily (stratosphere)	5%	0.3%
Upper-tropospheric humidity	25km	N/A	1h	5%	0.3%

From GCOS-154: Accuracy for WV 5%

GRUAN and IASI Collocation

- Orbits close to 00Z and 12Z
- IASI FOVs less than 25 km and 30 min (Pugatchev et al. 2009 ACP) apart for Manus Island 2011-2013: 76 Clear Sky cases found

- · Observed IASI radiances (OBS) are compared to
- Calculated radiances (CALC) using GRUAN Sonde profile + Radiative Transfer Model (LBLRTM 12.2)
- $^{\cdot}$ OBS-CALC should fall within ±3 σ IASI instrument noise



Consistency check: is this even possible?

OBS-CALC should fall within ±3σ IASI instrument noise: is this even possible?

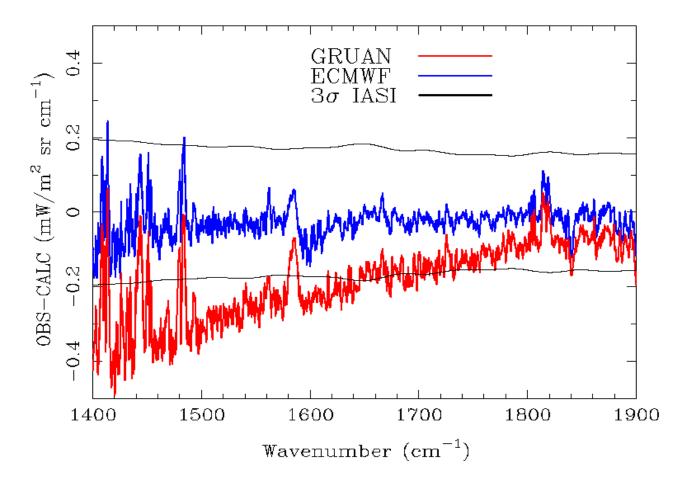
Yes! With two RS92 Sondes and a CFH Sonde. Sodankyla EPS/MetOp Campaign 2007

Calbet et al. AMT 2011

EUMETSAT

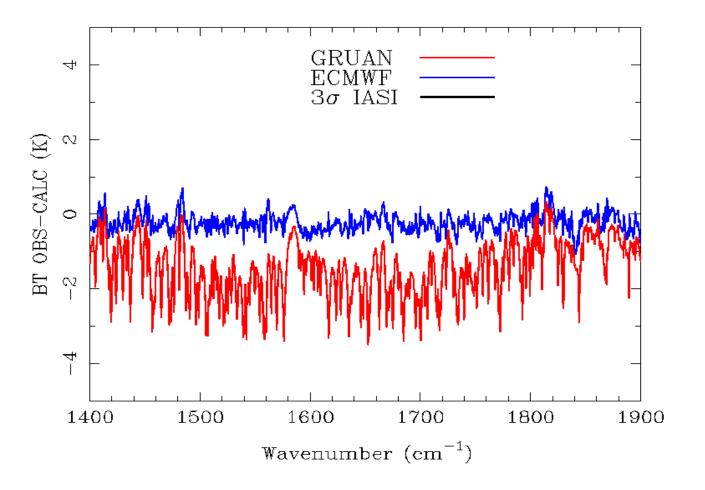
Consistency check: is this even possible?

OBS-CALC should fall within $\pm 3\sigma$ IASI instrument noise:

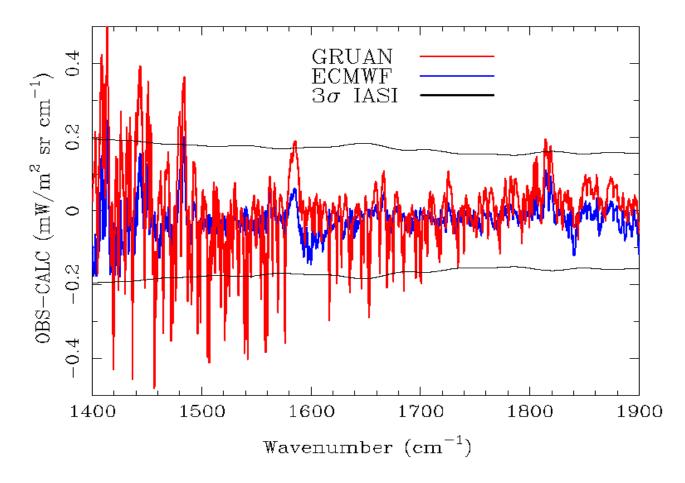

is this possible with GRUAN?

GRUAN: one RS92 sonde very well processed

Radiation Bias: GRUAN + 0% RH

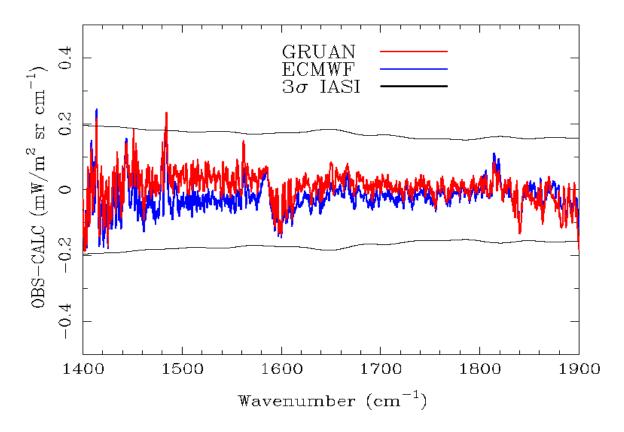

OBS-CALC Bias. GRUAN + 0% RH

Radiation Bias: GRUAN + 0% RH


OBS-CALC Bias. GRUAN + 0% RH

Radiation Bias: GRUAN + 5% RH

OBS-CALC Bias. GRUAN + 5% RH



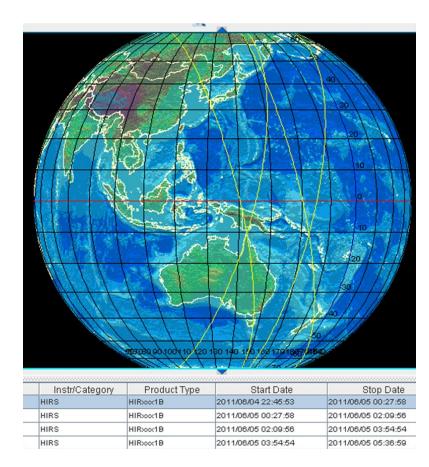
GRUAN sondes + LBLRTM 12.2 vs IASI INCONSISTENCY!!!!!

Radiation Bias: GRUAN + 10% RH (300-100 hPa)

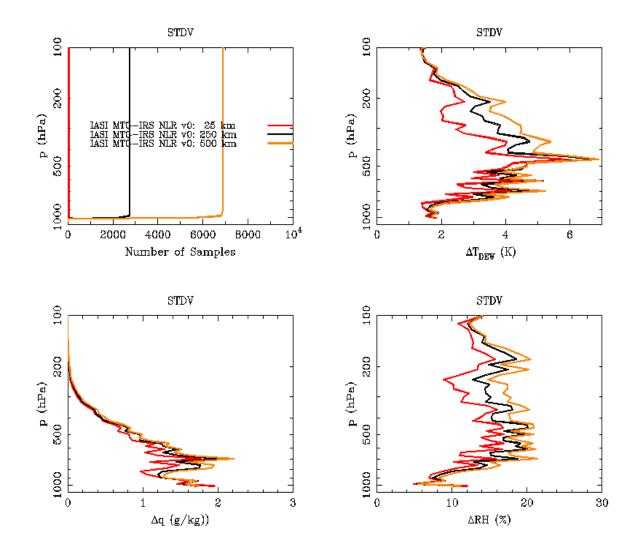
OBS-CALC Bias. GRUAN + 10% RH between 300 and 100 hPa

GRUAN sondes + LBLRTM 12.2 vs IASI INCONSISTENCY!!!!!

1. Consistency of GRUAN vs IASI


2. Collocation Uncertainty Determination

Extended IASI FOVs Collocation


1. Collocation

- \cdot Orbits close to 00Z and 12Z
- IASI FOVs less than 25 km and 30 min (Pugatchev et al. 2009 ACP) apart for Manus Island 2011-2013: 76 Clear Sky cases found
- With above criteria met, searched for IASI FOVs
 500 km away: 15200 Clear Cases found

Dependency of Statistics with Maximum Collocation Radius

EUMETSAT

Dependency of Statistics with Maximum Collocation Radius

STDV of $\mathrm{T}_{\mathrm{dew}}$ for NWP and IASI (IRS NLR v0) on Manus (Tropic)

Possibility to estimate the collocation uncertainty

Collocation uncertainty determination project

- GRUAN + GSICS IR Hyperpsectral (AIRS,IASI,CriS) + GNSSRO (3G) community joining forces to estimate the collocation uncertainty
- Collocation uncertainty is by far the largest source of errors when intercomparing satellite and ground based (sonde) measurements
- Collocation uncertainty should be taken into account when inercomparisons are made

Collocation uncertainty determination project: Phases

- Collocation of a limited sample to estimate the time and space window for collocation of all 3G to obtain 2-3 examples per site
- Exact determination of time/space collocation window
- Collection of datasets (GRUAN, IASI, CriS, AIRS, COSMIC, GRAS, ECMWF)
- Collocation uncertainty determination using available data
- First results should be available mid 2015: description of algorithms

CONCLUSIONS

- ECMWF + LBLRTM 12.2 vs IASI Consistent
- GRUAN Sonde + LBLRTM 12.2 vs IASI Inconsistent (GRUAN + 5% RH is consistent, GRUAN+10% RH in 300-100 hPa even better)
- Large inconsistency for climate purposes
- Reason unknown: Correction of GRUAN or LBLRTM?
- Collaboration between different communities (Satellite and GRUAN) essential to provide a coherent picture of the atmosphere → improve accuracy → provide an adequate picture for climate purposes

• 3G Collocation Uncertainty Determination project:

PARTNERS WELCOME!!

