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Abstract
Melanopsin is a blue light-sensitive opsin photopigment involved in a range of non-image forming behaviours, including 
circadian photoentrainment and the pupil light response. Many naturally occurring genetic variants exist within the human 
melanopsin gene (OPN4), yet it remains unclear how these variants affect melanopsin protein function and downstream 
physiological responses to light. Here, we have used bioinformatic analysis and in vitro expression systems to determine 
the functional phenotypes of missense human OPN4 variants. From 1242 human OPN4 variants collated in the NCBI Short 
Genetic Variation database (dbSNP), we identified 96 that lead to non-synonymous amino acid substitutions. These 96 mis-
sense mutations were screened using sequence alignment and comparative approaches to select 16 potentially deleterious 
variants for functional characterisation using calcium imaging of melanopsin-driven light responses in HEK293T cells. 
We identify several previously uncharacterised OPN4 mutations with altered functional properties, including attenuated or 
abolished light responses, as well as variants demonstrating abnormal response kinetics. These data provide valuable insight 
into the structure–function relationships of human melanopsin, including several key functional residues of the melanopsin 
protein. The identification of melanopsin variants with significantly altered function may serve to detect individuals with 
disrupted melanopsin-based light perception, and potentially highlight those at increased risk of sleep disturbance, circadian 
dysfunction, and visual abnormalities.
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Introduction

Melanopsin (OPN4) is a blue light-sensitive opsin-type 
G-protein coupled receptor (GPCR) that is expressed within 
a small subset of retinal ganglion cells of the human retina 
[1–3], termed intrinsically photosensitive retinal ganglion 
cells (ipRGCs) [4–6]. These inner retina photoreceptors 

characteristically mediate a range of non-image forming 
(NIF) responses to light, including circadian photoentrain-
ment [7–9], regulation of sleep [10–13], and the pupil-
lary light response [14, 15]. However, recent evidence has 
revealed additional roles for melanopsin-based light per-
ception in visual signalling pathways [16–19], and during 
development of visual [20] and non-visual systems [21]. 
Furthermore, the growing appreciation of how sleep and cir-
cadian disruption may contribute to the onset of symptoms 
of neurological and psychiatric conditions has highlighted 
the importance of the melanopsin system to human health 
and disease [22].

Like other genes, naturally occurring mutations and 
sequence changes are known to exist within the human 
melanopsin gene. The most common forms of genetic vari-
ation are single-nucleotide polymorphisms (SNPs), where 
an individual nucleotide base differs at a specific location 
within the genome in more than 1% of the population [23]. 
Substitutions that occur less frequently are classified as 
rare variants [24]. The majority of genetic variants occur in 
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non-coding regions of genes or lead to synonymous amino 
acid substitutions [25]. However, genetic variation can also 
cause frameshifts, nonsense and missense mutations, leading 
to disruption or total loss of protein function and potentially 
causing disease. For example, mutations in rhodopsin are a 
leading cause of blindness, with over 150 rhodopsin muta-
tions associated with human retinal disease [26, 27].

Both common SNPs and rare gene variants have been 
reported in the human melanopsin gene (OPN4) from 
whole-genome and exome sequencing projects, such as the 
1000 Genomes project [28]. The OPN4 sequence variants 
identified to date are collated in the NCBI Short Genetic 
variation database (dbSNP) [29] and number over 1200 in 
total. Of these, 96 OPN4 variants reported in the dbSNP 
database lead to non-synonymous missense mutations, yet 
the functional consequences of these mutations on melano-
psin activity, and the extent to which they may influence 
melanopsin-dependant behaviours in humans, remain largely 
undetermined. The exceptions are a series of studies examin-
ing the possible association of two OPN4 SNPs, P10L and 
T394I, with abnormal melanopsin-driven behaviours and 
higher frequency of seasonal affective disorder [30–35]. 
However, at present, the mechanisms by which OPN4 poly-
morphisms may influence melanopsin protein function are 
currently unclear.

Identification of OPN4 mutations that give rise to altered 
melanopsin function is an important step towards under-
standing the role of melanopsin in human physiology and 
behaviour. Yet, the structure–function relationships of 
melanopsin are still poorly defined. The majority of tar-
geted mutagenesis studies of melanopsin have explored 
post-translational modification sites [36–40] and the reti-
nal chromophore-binding pocket [41–43]. It is, therefore, 
difficult to predict the functional consequences of OPN4 
variants based solely on existing knowledge of melanopsin 
structure–function.

All GPCRs, including melanopsin, share a common 
seven-transmembrane helical structure and many highly 
conserved functional domains [44, 45]. As such, studies 
of sequence homology with other GPCRs offer a valuable 
approach for predicting the impact of OPN4 variants. As 
one of the most-well characterised GPCRs, rhodopsin is 
especially useful as a model for structure–function relation-
ships in GPCRs and, in particular, other opsin photopig-
ments. Opsin photopigments, which consist of a vitamin 
A-derived retinal chromophore bound to an opsin protein 
moiety, have a conserved activation mechanism. Isomerisa-
tion of the chromophore after absorbing a photon causes a 
conformation change in the opsin protein from inactive to an 
active state, triggering activation of a G-protein signalling 
pathway and downstream phototransduction cascades [46]. 
The critical residues responsible for these functions in rho-
dopsin have been extensively documented based on crystal 

structures (first in [47], summarised in [48]), site-directed 
mutagenesis studies [49–53], and the identification of over 
150 rhodopsin mutations associated with retinal disease [26, 
27].

This comparative approach has its limits and is only valid 
for OPN4 variants that have equivalent residues within rho-
dopsin. While sequence homology is relatively high within 
transmembrane regions and other key conserved GPCR 
domains, overall rhodopsin and melanopsin share only 28% 
amino acid identity [45]. The N- and C-terminal domains 
of melanopsin are highly variable between different spe-
cies, and melanopsin contains several extended insertions 
within  the intracellular loops that are absent in rhodop-
sin. Furthermore, there are several functional differences 
between melanopsin and rhodopsin, including G-protein 
specificity ([54–57], reviewed in [58]) and chromophore 
regeneration mechanisms [55, 56, 59–61], suggesting that 
key functional residues may differ between these two opsins 
even within highly conserved domains. It is, therefore, nec-
essary to directly investigate the functional properties of 
melanopsin genetic variants to determine their role in mel-
anopsin activity.

Here, bioinformatic analysis of sequence alignments and 
comparative approaches were used to identify 16 missense 
OPN4 variants likely to result in loss-of-function phenotypes 
from the 96 known OPN4 missense mutations. Further func-
tional characterisation of these 16 variants was completed 
using in vitro heterologous expression combined with cal-
cium imaging of melanopsin-driven light responses. Using 
this approach, we identified a number of previously unchar-
acterised OPN4 variants with atypical functional properties. 
These data provide important insights into the key functional 
domains of the melanopsin protein and highlight individuals 
with potential increased risk of visual, sleep, and circadian 
dysfunction.

Materials and methods

Identification of OPN4 variants

Polymorphisms in the OPN4 gene (Gene ID 94233, transcript 
NM_033282.2) were identified from the NCBI Short Genetic 
Variation database (dbSNP) Build 140 [29]. The dbSNP is 
a large public database that collates simple genetic varia-
tions, including common SNPs and rare genetic variants. 
Each genetic variant in dbSNP is assigned a reference SNP 
ID (rs#), and includes information on the variant position, 
alleles, and validation status. Missense variants were identi-
fied and prioritised for further in vitro screening using crite-
ria shown in Table 1. Melanopsin protein sequences from the 
following species were used for multiple alignment—Homo 
sapiens (NP_150598.1, NP_001025186.1), Pan troglodytes 
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(XP_001135445.1, XP_001135533.1), Macaca mullata 
(XP_001088248.2), Canis familiaris (XP_853735.2), 
Bos taurus (NP_001179328.1), Felis catus (AAR36861), 
Mus musculus (NP_038915.1, NP_001122071.1), Rat-
tus Norvegicus (NP_620215.1), Phosopus sungorus 
(AAU11506), Spalax ehrenbergi (CAO02487), Gal-
lus gallus (ABX10832.1, ABX10833.1, ABX10834.1, 
NP_989956.1, ABX10831.1), Sminthopsis crassicaudata 
(ABD38715), Danio rerio (NP_001245153.1, ADN39430, 
NP_840074.1, NP_001243006.1, ADN39434.1), Podarcis 
siculus (AAY34941.2), Xenopus laevis (NP_001079143.1), 
and Brachiostoma belcheri (BAE00065). Multiple sequences 
for a given species represent different splice variants or dis-
tinct melanopsin genes, which are duplicated in non-mam-
mals [62]. Protein sequences were aligned using multiple 
sequence alignment software MAFFT [63].

A BLAST protein alignment [67] of human melanopsin 
(NP_150598.1) and bovine rhodopsin (NP_001014890.1) 
was used to define melanopsin protein domains and iden-
tify the equivalent position of the OPN4 variants within the 
rhodopsin protein (Figure S1). A literature search was then 
performed in NCBI PubMed (http://www.ncbi.nlm.nih.gov/
pubme d/) and Google Scholar (http://www.schol ar.googl 
e.co.uk/) to determine whether the equivalent residues are 
functionally significant in rhodopsin, based on analysis of 
crystal structure [47, 68, 69] and lists of rhodopsin mutations 
known to be associated with retinitis pigmentosa [26, 70].

Generation of OPN4 expression vectors

Single-nucleotide point mutations were introduced to 
pcDNA3.1 plasmid (Invitrogen) containing human melanop-
sin (NM_033282.2) with a 1D4 tag [57] using a Quikchange 
II XL site-directed mutagenesis kit (Stratagene). Mutagen-
esis primers are shown in Table S2. Successful introduction 
of mutations was confirmed by Sanger sequencing (Source 
Biosciences). Plasmid production and purification was per-
formed using standard techniques.

Cell culture and transient transfection

HEK293T cells (ATCC) were cultured in DMEM (Sigma) 
with 10% foetal bovine serum (Life Technologies), 
2 mM l-glutamine (Sigma), and 1% (v/v) penicillin/strepto-
mycin (Sigma). Cells were maintained in a humidified incu-
bator at 37 °C with 5%  CO2, fed fresh media every 2–3 days 
and passaged before reaching confluence. 24 h after seed-
ing into multi-well plates (see below), cells were placed in 
antibiotic-free DMEM with 10% foetal bovine serum and 
2 mM l-glutamine, and transiently transfected using Gene-
juice transfection reagent (Merck Millipore) according to the 

manufacturer’s instructions with a 1:3 ratio of DNA (µg) to 
Genejuice (µl).

Immunocytochemistry

HEK293T cells were seeded into 6-well plates containing 
13 mm glass coverslips at ~ 1 × 105 cells per well and trans-
fected as described above. 48 h after transfection, cells were 
fixed with 4% methanol-free paraformaldehyde (Thermo 
Scientific) in phosphate buffered saline (PBS) for 10 min 
at room temperature and immunostained as described pre-
viously [71]. A rabbit polyclonal anti-human melanopsin 
antibody (H-300, Santa Cruz Biotechnology, 1:400) was 
incubated for 1 h at room temperature. Secondary antibody 
was donkey anti-rabbit IgG conjugated to Alexa 568 (Life 
Technologies, 1:200). After final wash step, nuclear coun-
terstaining was performed with 0.5 μg/ml DAPI for 10 min 
at room temperature. Coverslips were then mounted onto 
glass microscope slides using Prolong Gold anti-fade mount-
ing media (Life Technologies). Fluorescence images were 
collected using an inverted LSM 710 laser scanning con-
focal microscope (Zeiss) and Zen 2009 image acquisition 
software (Zeiss). Individual channels were collected sequen-
tially. Laser lines for excitation were 405 and 561 nm, with 
emissions collected between 440–480 and 580–625 nm for 
blue and red fluorescence respectively. Images were col-
lected using  a 40× objective with images collected every 
1.0 µm in the Z axis. Global enhancement of brightness and 
contrast was performed using ZenLite 2011 software (Zeiss) 
and applied equally to all images.

Fluorescent calcium imaging

HEK293T cells were seeded into 24-well plates at 4 × 104 
cells per well and transfected with pcDNA3.1 OPN4-1D4 
plasmid 24 h later. 24 h after transfection, cells were incu-
bated with 5 µM Fluo-4 AM calcium indicator dye (Life 
Technologies), 0.015% Pluronic F-127 (Life Technologies), 
2.5 µM probenecid (Life Technologies), and 20 µM 9-cis 
retinal (Sigma) for 20 min at 37 °C. Following dye loading, 
cells were incubated for a further 10 min at 37 °C in DMEM 
with 2.7 µM probenecid and then transferred to Hank’s buff-
ered saline solution without additional calcium (Gibco) prior 
to calcium imaging. All steps were conducted under dim red 
light (610 ± 10 nm, 3.02 × 1011 photons/cm2/s in the working 
area). Calcium imaging was performed using a FLUOstar 
Omega plate reader (BMG Labtech) at room temperature. 
Total fluorescence values from each well were collected 
every 2 s for a total of 120 s, with individual wells imaged 
sequentially. Each data point was generated by averaging 
fluorescence values collected from 200 repeated 5 ms flashes 
of light generated by the plate reader’s internal xenon flash 
bulb with excitation and emission filters of 485 nm (12 nm 

http://www.ncbi.nlm.nih.gov/pubmed/
http://www.ncbi.nlm.nih.gov/pubmed/
http://www.scholar.google.co.uk/
http://www.scholar.google.co.uk/
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bandwidth) and 520 nm (30 nm bandwidth), respectively. 
These multiple flashes of excitation light resulted in a near 
continuous illumination of cells (485 ± 6 nm, 1.21 × 1014 
photons/cm2/s) and were sufficient to activate the melanop-
sin photopigment without further light stimulation.

Each 24-well plate contained four technical replicates 
of five different OPN4 variants and wild-type OPN4 posi-
tive control. Values for the four technical replicates of each 
plasmid obtained from individual plates were averaged to 
produce a single biological replicate for each sample. A 
total of six biological replicates (each the result of a sepa-
rate transfection) were performed for each OPN4 variant or 
control. For analysis, biological replicates were first nor-
malised to baseline (first recorded fluorescence value) for 
response amplitude comparisons (Baseline = 0, ΔF/F0), then 
normalised to maximum for comparing response kinetics 
(Baseline = 0, maximum = 1, ΔF/Fmax). As no statistical dif-
ference was observed in response properties of OPN4 WT 
replicates from different plates (Figure S2), the OPN4 vari-
ants were compared to pooled OPN4 WT data for subse-
quent comparisons.

Statistical analysis

Statistical tests were conducted using SPSS 22.0 (IBM). 
Unless stated otherwise, all comparisons between groups 
were tested using one-way between-subjects analysis of 
variance (ANOVA) with genotype as the independent vari-
able. For one-way ANOVA, a post hoc Dunnett’s test was 
used to explore significant main effects of genotype, using 
OPN4 WT as the control group. A significance threshold 
of p ≤ 0.05 was used. In all figures, asterisk (*) indicates 
p < 0.05, **p < 0.01, and ***p < 0.001. Error bars show 
standard error of mean. Where error bars are smaller than 
data symbols, error bars are not shown.

Results

Identification and selection of 16 OPN4 variants 
for in vitro screening

At the time this study was conducted 1242 genetic variants 
of the OPN4 gene were identified in the dbSNP database 
(build 140), of which 96 lead to non-synonymous amino acid 
substitutions. A detailed description of these 96 OPN4 mis-
sense mutants is provided in Supplementary Table 1. Using 
sequence alignment and comparative approaches a subset 
of these 96 OPN4 variants were prioritised for functional 
screening in vitro using six main selection criteria, includ-
ing validation status, conservation of residues in melanopsin 
across 16 different species, biochemical properties of the 
amino acid substitution, location of the mutation within key 

functional domains, functional role of the equivalent residue 
in rhodopsin (if present), and the overall frequency of the 
variant within the population. A detailed description of the 
criteria and methods used for selecting variants is shown in 
Table 1. OPN4 variants did not have to meet all criteria to 
be included for further analysis, with preference given to 
variants with altered amino acid biochemical properties and 
those occurring at sites highly conserved amongst melano-
psin sequences of different species. Based on the selection 
criteria, 16 OPN4 variants were classified as being likely to 
result in change of function phenotypes and were selected 
for further in vitro functional testing. The location of the 
16 OPN4 variants within the human melanopsin protein is 
shown in Fig. 1. Details of how each variant matched the 
criteria for selection is outlined in Table 2. 

Overall, only five of the 96 non-synonymous mutations 
identified, P10L, T394I, G444D, R406W, and L365V, occur 
in more than 1% of the population and can be considered 
polymorphic. SNPs G444D, R406W, and L365V are located 
in poorly conserved domains of the melanopsin protein and 
produce only minor changes in biochemical properties of 
amino acids (Fig. 1). These substitutions were, therefore, 
deemed unlikely to significantly affect melanopsin func-
tion and were excluded from further analysis. Indeed, the 
majority of missense variants identified were rejected due 
to their location at sites poorly conserved amongst melano-
psins, suggesting a non-critical role in melanopsin function. 
Given the suggested impact of OPN4 SNPs P10L and T394I 
on human behaviour [30–35] and their comparatively high 
minor allele frequency (MAF), both P10L and T394I were 
selected for further in vitro functional testing.

Notably, we identified several OPN4 variants that occur at 
highly conserved sites known to be critical for normal rho-
dopsin and GPCR function, including the conserved E/DRY 
motif required for G-protein activation [79], the vertebrate 
opsin counterion in transmembrane helix 3 which maintains 
stability of the chromophore when bound to opsin [49], and 
the conserved xWxPY opsin motif in transmembrane helix 6 
[77, 78], which is essential for the opsin confirmation change 
necessary to trigger the phototransduction cascade. Muta-
tion of these highly conserved sites severely disrupts protein 
function [49, 80, 81] and may, therefore, result in similar 
loss-of-function phenotypes in melanopsin. The minor allele 
frequency of variants located within these highly conserved 
sites indicates that these potentially deleterious mutations 
are rare (MAF < 0.01, Table 2).

We also identified a number of OPN4 variants located 
in the less conserved regions of the N-terminus, C-terminus, 
and intracellular loops of melanopsin, for which there are no 
homologous residues in rhodopsin—which may represent 
variants at sites with melanopsin-specific functional prop-
erties. These included P10L, R186H, W283C, T394I, and 
R408C. In addition to the 16 OPN4 variants selected for 
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in vitro screening, the OPN4 K340A mutant was generated 
to act as a negative control during calcium imaging assays. 
This construct contains a targeted site-specific mutation 
(i.e., one not found naturally in the human genome) at the 
retinal chromophore-binding site rendering melanopsin non-
functional [41, 42].

Cellular localisation and membrane trafficking 
of mutant OPN4 protein

In the first instance, the subcellular localisation and mem-
brane trafficking of selected OPN4 variants was examined 
using immunocytochemistry following transient transfec-
tion in HEK293T cells (Fig. 2). Overall, levels of OPN4 
protein staining were similar between the different variants. 
All variants appeared to be trafficked normally and were 
expressed at the plasma membrane, with no obvious dif-
ferences observed in overall levels of expression or cellular 

localisation between OPN4 WT and any OPN4 variants 
examined. Notably, we did not observe any evidence of 
increased protein aggregation in the endoplasmic reticulum 
for any OPN4 variant tested, as may be expected for muta-
tions affecting tertiary structure and protein folding [26, 82].

Functional characterisation of OPN4 variants using 
fluorescent calcium imaging

We next used in vitro fluorescent calcium imaging meth-
ods to characterise the functional properties of each of 
the 16 selected OPN4 variants. In line with the previous 
reports, light stimulation (485 ± 6 nm, 1.21 × 1014 photons/
cm2/s) led to a rapid elevation of intracellular calcium levels 
within HEK293T cells transfected with OPN4 WT (ΔF/F0, 
Fig. 3) [37, 38, 57], consistent with the activation of a Gαq/11 

Fig. 1  OPN4 genetic variants selected for in vitro screening. Location 
of 96 naturally occurring non-synonymous amino acid substitutions 
(thick black outline) in the human OPN4 protein, of which 16 (red) 
were screened using immunocytochemistry and calcium imaging of 

melanopsin-driven light responses. Location of variants not screened 
in  vitro (yellow) and the K340A control mutation (black) is also 
shown. Secondary structure based on homology with bovine rhodop-
sin [47]
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signalling cascade and release of calcium from intracellular 
stores [41, 42, 83].

Several OPN4 variants failed to show any detect-
able changes in intracellular calcium levels in response 

to light (Fig. 3a, b). This included the negative control 
mutation K340A, which is incapable of binding retinal 
chromophore [41, 42], but also OPN4 variants Y146C and 
R168C. The response amplitudes of these variants were 

Table 2  Properties of OPN4 variants selected for in vitro screening

Highlighted in bold are properties of each variant that met criteria for further investigation. Minor allele is shown in brackets beneath MAF 
score. All variants were validated by multiple submissions and 1000 Genomes project [28], unless stated otherwise
a Variants with published data
b Variants validated by multiple submissions only
c Equivalent residue in rhodopsin is mutated in individuals with retinitis pigmentosa [70]

Mutation Conservation between 
species

Amino acid properties Protein position MAF Equivalent 
rhodopsin 
residue

Functional role of equiva-
lent residue in rhodopsin

P10La

rs2675703
Not conserved Both non-polar and 

hydrophobic
NT 0.08 (T) Not conserved

T83M
rs202029105

Conserved in Opn4M, 
l/V/L in Opn4X

Polar to non-polar TM1 0.0002 (T) L50 Part of chromophore chan-
nel [72]

F95L
rs573102269

Conserved in all species Loss of large side chain. 
Both hydrophobic and 
non-polar

TM1 0.0002 (C) T62 H-bond between TM1 and 
TM2 [73]

Y146C
rs200099863

Conserved in all species Both polar and similar 
hydrophobicity

TM3 0.0002 (G) E113 Schiff Base Counterion 
[49]

R168Cb

rs143641898
Conserved in all species Positive charge to polar. 

Increased hydropho-
bicity

TM3 / IL2 0.0005 (T) R135c Conserved DRY motif 
[47]

S183P
rs151123640

Conserved in most spe-
cies (T in Amphioxus)

Polar to non-polar IL2 0.0002 (C) E150c Required for normal mem-
brane trafficking [74]

R186Hb

rs141089672
Conserved in most spe-

cies (K in Chicken and 
Zebrafish)

Both positive charge, 
increase in hydropho-
bicity

IL2 0.0005 (A) Not conserved

G208S
rs549998450

Conserved in all species Non-polar to polar. 
Introduce large side 
chain

TM4 EL2 0.0004 (A) G174c Unknown

V213M
rs202171086

Conserved in Opn4M, 
l/V in Opn4X

Both hydrophobic and 
non polar

EL2 0.0002 (A) I179 Unknown

G216R
rs201432667

Conserved in all species Non-polar to polar, loss 
of hydrophobicity

EL2 0.0002 (A) G182c Part of H-bond within 
EL2 [75]

G266E
rs576858032

Conserved in mammals, 
S/G/N in non-mammals

Non-polar to negative 
charge. Introduce 
large side chain and 
decrease hydropho-
bicity

IL3 0.0002 (A) A234 Arrestin Binding Site [76]

W283C
rs145634412

Not conserved Non-polar to polar, loss 
of large side chain

IL3 0.001 (T) Not Conserved

S308F
rs559392371

Conserved in all species Positive charge to polar. 
Similar hydrophobic-
ity

TM6 0.001 (T) C264 Part of xWxPY motif 
[77, 78]

H345Q
rs184720512

Conserved in Opn4M, Y 
in Opn4X

Polar to non-polar, 
increase hydropho-
bicity

TM7 0.0002 (G) Y301 H-bond between TM2 and 
7 [73]

T394Ia

rs1079610
Conserved as S or T in 

all species
Polar to non-polar, 

increase hydropho-
bicity

CT 0.25 (C) Not Conserved

R408C
rs199878852

Conserved in mammals, 
not conserved in non-
mammals

Positive charge to polar CT 0.0002 (T) Not Conserved
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Fig. 2  Melanopsin variants show normal membrane localisation. Heterologous expression of pcDNA3.1 OPN4 WT and OPN4 variants in 
HEK293T cells labelled with anti-OPN4 antibody (red) and DAPI nuclear stain (blue). Scale bar 10 µm
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indistinguishable from untransfected cells, F(2,15) = 2.31, 
p = 0.134 (One-way ANOVA), suggesting that these muta-
tions render OPN4 protein non-functional.

The remaining OPN4 variants appeared to produce func-
tional melanopsin protein capable of coupling to a Gαq/11 
signalling pathway, as shown by light-induced elevations 
of intracellular calcium levels (Fig. 3a). Whilst the majority 
of OPN4 variants showed response amplitudes similar to 
that observed for OPN4 WT controls, there was a significant 
main effect of genotype on response amplitude for functional 
variants, F(14, 93) = 7.44, p < 0.001 (One-way ANOVA). A 
Dunnett’s post hoc test revealed this was driven by three 
OPN4 variants with significantly attenuated or elevated 
responses compared to OPN4 WT (Fig. 3c). Both OPN4 
S308F (p < 0.001) and G208S (p = 0.011) showed a signifi-
cant reduction in response amplitude compared to OPN4 
WT, with this effect observed consistently across all biologi-
cal replicates. Only one variant, SNP P10L, demonstrated 
an overall elevation of response amplitude (p = 0.009). 

However, the increased response of P10L relative to OPN4 
WT was not consistently observed across all biological 
replicates.

Comparison of response kinetics identified several 
OPN4 variants with modified response properties (Fig. 4). 
There was a significant main effect of genotype on rate of 
response onset, measured as time to peak fluorescence, 
F(14,93) = 4.73, p < 0.001 (One-way ANOVA), which 
a Dunnett’s test revealed was due to slower response 
onset in five OPN4 variants, G208S (p < 0.001), G216R 
(p < 0.001), S308F (p < 0.001), V213 M (p = 0.038), and 
H345Q (p = 0.025) (Fig. 4b). As a measure of response 
decay, normalised fluorescence values were compared 
at the end of the recordings (120 s after first light expo-
sure). Only a single OPN4 variant, S308F, demonstrated 
a faster response offset compared to OPN4 WT controls 
(p < 0.001) (Fig. 4c) as determined using a Dunnett’s post 
hoc test to explore the significant main effect of genotype 
on response decay, F(14, 93) = 5.73, p < 0.0001 (one-way 

Fig. 3  Melanopsin variants 
show abnormal intracellular 
calcium responses to light. 
Intracellular calcium levels 
of HEK293T cells transiently 
transfected with pcDNA3.1 
OPN4 WT and OPN4 vari-
ants were monitored using the 
fluorescent calcium indicator 
Fluo4-AM. Melanopsin-driven 
light responses were triggered 
by the first light exposure 
used for fluorescent imaging 
(485 ± 6 nm). a Mean response 
amplitude (maximum ΔF/F0) 
for OPN4 WT and each OPN4 
variant tested. Dashed grey line 
shows OPN4 WT response. b, 
c Traces showing the kinet-
ics of intracellular calcium 
responses recorded from b 
non-functional OPN4 variants 
(red) and c OPN4 variants with 
significantly attenuated (blue) 
or elevated (green) intracellular 
calcium responses compared to 
OPN4 WT (black). N = 6 bio-
logical replicates for all groups 
except OPN4 WT (N = 24). 
Asterisk indicates signifi-
cant Dunnett’s post hoc test (p 
> 0.05) compared to OPN4 WT. 
NTC is no transfection control. 
Error bars show standard error 
of mean. Where error bars are 
smaller than symbol, error 
bars are not shown
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ANOVA). A summary of the functional phenotypes 
observed from all OPN4 variants tested in vitro is shown 
in Table 3. 

Discussion

Here, we show that bioinformatic approaches using sequence 
alignment combined with in vitro calcium imaging provide 
a high-throughput method for identifying non-synonymous 
human OPN4 mutations which result in altered melanop-
sin signalling. By focusing on variants located at highly 

conserved sites or those leading to a significant change in 
amino acid biochemical properties, we prioritised 16 of 
96 recorded missense OPN4 variants for in vitro screen-
ing. Immunocytochemistry demonstrated that all 16 mel-
anopsin variants were successfully trafficked to the plasma 
membrane, while assessment of melanopsin-driven cal-
cium responses identified several variants with abnormal 
responses to light.

Fig. 4  OPN4 variants have 
abnormal response kinetics. 
a Parameters used to define 
response kinetics. Data were 
first normalised to baseline 
(Baseline = 0, ΔF/F0), then 
normalised to maximum for 
comparing response kinetics 
(Baseline = 0, maximum = 1, 
ΔF/Fmax). Response onset 
was measured as time to peak 
fluorescence (s). Response 
offset was measured as relative 
fluorescence recorded at end 
of recording (120 s after the 
first light exposure). b Mean 
response onset for each OPN4 
variant tested. c Mean response 
offset for each OPN4 variant 
tested. Dashed grey line shows 
OPN4 WT response. N = 6 bio-
logical replicates for all OPN4 
variants and N = 24 biological 
replicates for OPN4 WT con-
trol. Asterisk and triple asterisk 
represent significant post hoc 
Dunnett’s tests (p < 0.05 and p 
< 0.001 respectively) compared 
to OPN4 WT. NTC is no tran-
fection control. Error bars show 
standard error of the mean. 
Where error bars are smaller 
than symbol, error bars are not 
shown
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Identification of OPN4 variants with abnormal 
functional phenotypes

Of the seven variants that showed abnormal calcium 
responses, four are particularly strong candidates for key 
functional residues in the melanopsin protein. Introduc-
tion of mutations Y146C and R168C in OPN4 abolished 
responses to light, and two further variants, S308F and 
G208S reliably demonstrated attenuated response ampli-
tude and delayed onset compared to OPN4 WT controls. 
Furthermore, these deleterious variants occur at sites highly 
conserved between different classes of opsin (and GPCRs 
in general), providing likely mechanisms by which these 
mutations cause loss-of-function. For example, R168C is 
part of the E/DRY motif found in nearly all GPCRs. The 
“ionic lock” between these residues and a conserved nega-
tive-changed amino acid in transmembrane helix 6 (TM6) 
is necessary for maintaining the inactive conformation of 
GPCRs [47, 77, 79, 80]. S308F is part of the xWxPY motif 
located within TM6, acting as a “rotamer toggle switch” [77, 
84], which facilitates rotation of TM6 into the active confir-
mation following photoisomerisation of retinal chromophore 
[77, 85]. Given that variation at these sites attenuates or 
abolishes melanopsin activity, it is highly likely that these 
motifs perform similar functions in melanopsin.

A third deleterious variant, Y146C, occurs at a conserved 
opsin site in TM3. In vertebrate opsins, this site represents 
the glutamic acid counterion, a negatively charged amino 

acid that counteracts the positive charge of the Schiff base 
that binds the chromophore to the opsin apoprotein allow-
ing absorption of photons in the visible spectrum [49, 86]. 
In invertebrate opsins, this site is occupied by a conserved 
tyrosine, and the glutamic acid counterion is displaced to 
extracellular loop 2 [87]. Interestingly, melanopsin possesses 
an invertebrate-like conformation of residues at these two 
positions. It is, therefore, surprising that variation at the ver-
tebrate counterion location causes a total loss of melanopsin 
function. This site cannot act as the melanopsin counterion 
as tyrosine is not negatively charged; however, it is possible 
that this site still critically interacts with the Schiff base and 
disrupts retinal binding or isomerisation when mutated.

Human OPN4 variants inform melanopsin 
structure–function relationships

Overall, we find that the most damaging OPN4 variants 
occur at highly conserved residues in the opsin chromo-
phore-binding pocket. In contrast, substitutions in more vari-
able protein domains have no observable effect even if they 
substantially alter hydrophobicity or charge of amino acid 
residues, such as R186H and G266E located in intracellular 
loops 2 and 3 respectively. Notably, none of the critical resi-
dues identified in the in vitro screen appear specific to mel-
anopsin. In fact, of the five OPN4 variants tested for which 
there is no equivalent residue in rhodopsin, none appear to 
be important for normal melanopsin function.

Table 3  Summary of key features and phenotype of 16 screened OPN4 variants

Variant Key features Observed phenotype (relative to OPN4 WT)

Normal
T83M Change in polarity No difference
F95L Conserved in all species No difference
S183P Conserved in most species change in polarity No difference
R186H Change in hydrophobicity No difference
G266E Change in charge and hydrophobicity No difference
W283C Change in polarity No difference
T394I SNP associated with abnormal NIF behaviour in humans. Con-

served in all species as S/T
No difference

R408C Change in charge No difference
Non-functional
Y146C Conserved in all species No response
R168C Conserved in all GPCRs. Change in charge and hydrophobicity No response
Abnormal function Amplitude Onset Offset
P10L SNP associated with abnormal NIF behaviour in humans. Elevated No difference No difference
G208S Conserved in all species change in polarity Attenuated Delayed No difference
V213M Conserved in all species as l/V No difference Delayed No difference
G216R Conserved in all species change in polarity and hydrophobicity No difference Delayed No difference
S308F Conserved in all species change in charge Attenuated Delayed Faster
H345Q Change in polarity and hydrophobicity No difference Delayed No difference
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Interestingly, neither OPN4 T394I nor P10L, two SNPs 
previously associated with abnormal and attenuated NIF 
behaviour in humans [30–35], showed melanopsin loss-of-
function in vitro. Instead, we observed no difference between 
T394I and WT. Overall, we found significantly larger cal-
cium responses for P10L compared to OPN4 WT, although 
this was not consistent between all biological replicates. 
Based on its position in the N-terminus and the loss of a pro-
line, there has been some speculation that P10L has a similar 
effect on melanopsin as the P23H mutation in rhodopsin, 
which leads to severe protein misfolding [82, 88]. However, 
our cellular localisation data suggest this is not the case, 
with no evidence of protein misfolding observed for P10L. 
As such, there is currently no clear mechanism to explain 
how P10L might be associated with an increased risk of 
seasonal affective disorder as previously reported [33–35].

It remains possible that the T394I or P10L SNPs, as 
well as other OPN4 variants, may cause subtle phenotypes 
not captured by the in vitro calcium imaging screen used 
in this study. More detailed analysis using a range of light 
intensities and or stimulation protocols may reveal further 
phenotypes, such as reduced activation thresholds, altered 
responses to dim light, or changes in maximal responses 
elicited by saturating levels of light. However, it is also clear 
that in vitro cell line expression systems do not fully rep-
licate the cellular environment of ipRGCs [58] and may, 
therefore, limit the study of OPN4 variants with roles in 
ipRGC-specific aspects of melanopsin protein function, such 
as regulatory motifs or post-translational modification sites. 
Examining the function of OPN4 variants following targeted 
expression into ipRGCs of the mouse retina, potentially via 
AAV delivery and Cre-lox based approaches [39, 40], would 
more closely replicate the native signalling environment of 
melanopsin proteins and permit in-depth functional analysis 
of melanopsin-specific functions, such as temporal integra-
tion, chromophore bistability, or contribution to multiple 
active states [60]. Nevertheless, functional characterisation 
of melanopsin variants in vivo is both time-consuming and 
expensive, and is, therefore, not suitable for screening large 
numbers of variants. The in vitro approach used here pro-
vides a relatively high-throughput and effective method for 
preliminary screening to identify OPN4 SNP variants with 
altered functional properties.

Implications of OPN4 variants for the human 
population

The identification of naturally occurring OPN4 missense 
mutations resulting in deleterious functional properties 
suggests that individuals with non-functional or severely 
impaired melanopsin activity may exist within the human 
population. Given the frequency of these deleterious vari-
ants, it would seem that individuals homozygous for these 

mutations (or carrying copies of two different deleterious 
variants) will be extremely rare. These observations alone 
suggest that a strong selective pressure exists to maintain 
normal melanopsin function. Therefore, an important 
consideration is whether humans either heterozygous or 
homozygous for these mutations will exhibit significant 
disruption of melanopsin-dependant behaviours. Screening 
such individuals for circadian disruption or abnormal non-
image forming responses to light could help to determine 
the role of melanopsin in human physiology, and whether 
altered melanopsin light perception is associated with human 
disease.

However, based on our current understanding of the mel-
anopsin system and studies of mice with genetically ablated 
melanopsin [7–14], we may expect that even highly deleteri-
ous OPN4 variants will only result in minimal behavioural 
phenotypes. In the healthy retina, melanopsin-expressing 
ipRGCs receive synaptic input from rods and cones and act 
as a conduit for passing outer retina light signals to NIF 
centres [89]. The overlapping roles of rod, cone, and melan-
opsin-driven light responses in ipRGC function likely mini-
mises the behavioural effect of melanopsin missense muta-
tions. For example, previous reports have demonstrated that 
the NIF responses to light of melanopsin knockout mice are 
typically attenuated, but not abolished—with modest defi-
cits typically observed only under bright light conditions. 
However, it has also become increasingly clear that melano-
psin provides a greater contribution to ipRGC function and 
NIF responses to light under more physiological conditions, 
including control of steady-state pupil size under constant 
environmental illumination [90].

Recent evidence has revealed additional roles for mel-
anopsin within the classical visual system [16–20], with 
melanopsin-driven light responses contributing to bright-
ness discrimination [91, 92], contrast sensitivity [17, 18], 
and adaptation of visual responses [93, 94], via both retro-
grade signalling within the retina and modulation of dopa-
mine signalling pathways [19, 95–99], as well as through 
direct projections of ipRGCs to visual centres [16, 17]. Fur-
thermore, people with abnormal melanopsin function could 
exhibit other symptoms related to the role of melanopsin 
during postnatal development, including the patterning of 
retina vasculature [100], and the refinement and segregation 
of retinogeniculate projections to visual areas of the brain 
[20, 21], potentially influencing visual acuity in adulthood 
[21]. It is, therefore, possible that humans possessing del-
eterious OPN4 variants may experience a range of behav-
ioural symptoms related to abnormal melanopsin function, 
including circadian disruption, attenuated pupil constriction, 
reductions in contrast sensitivity, and attenuated adaptation 
of visual signalling pathways to changes in environmental 
light conditions.
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Conclusion

In conclusion, we have identified several previously unchar-
acterised naturally occurring missense variants in the human 
OPN4 gene that result in melanopsin proteins with a sig-
nificant loss-of-function phenotype. These data indicate that 
individuals with abnormal or abolished melanopsin activity 
may exist within the human population, and although rare, 
may be at increased risk of sleep and circadian disruption, 
as well as potential visual deficits. The growing availability 
of next-generation sequencing data is likely to lead to the 
identification of further rare genetic variants of the human 
OPN4 gene. The methods described here for identification 
and in vitro functional characterisation of deleterious OPN4 
variants will be highly applicable for future investigations 
of OPN4 mutations and defining structure–function relation-
ships of the melanopsin protein.
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