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Abstract In the early years of the twentieth century, the so-called ‘postulate
analysis’—the study of systems of axioms for mathematical objects for their own
sake—was regarded by some as a vital part of the efforts to understand those objects.
I consider the place of postulate analysis within early twentieth-century mathemat-
ics by focusing on the example of a group: I outline the axiomatic studies to which
groups were subjected at this time and consider the changing attitudes towards such
investigations.
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1 Introduction

In 1940, the number theorist and mathematical populariser E. T. Bell (1883—-1960)
wrote the following in his book The development of mathematics:

The first decade of the twentieth century witnessed a somewhat feverish activity
in the postulational analysis of groups, in which American algebraists produced
numerous sets of postulates for groups, with full discussions of complete inde-
pendence. By 1910, nobody could possibly misunderstand what a group is. (Bell
1940, p.225)

Bell was justifying, for a general reader, the study of axiom! systems in mathematics
(particularly in abstract algebra) for their own sake: the so-called ‘postulational (or
postulate) analysis’ that, as Bell hinted, was all the rage amongst certain American
mathematicians during the early years of the twentieth century. By introducing the
example of a group, systems of axioms for which had seen particularly intense study,
Bell sought to reinforce the view that a thorough study of the axioms that may be used
to define a mathematical object is necessary for a full understanding of that object.
Although as I have noted elsewhere (Hollings 2016), Bell’s stance was somewhat out
of date by the time he was writing, this was nevertheless a point of view that had
prevailed amongst a broad section of the American mathematical community earlier
in the century. Moreover, others shared Bell’s view that the adoption of postulational
methods brought a welcome rigour to algebraic considerations: see, for example, the
remarks of Easton (1902, p.44) in a bibliographical sketch of the development of the
notion of an abstract group, where it is asserted that the postulational approach had
resulted in ‘very exact definitions’.? These positive views of such methods, however,
stand in stark contrast to the modern position, in which, it is probably safe to say,
postulate analysis is thoroughly unfashionable and is even oftentimes regarded with
scorn as mere ‘axiomatic tinkering’. In this paper, I consider the place of postulate
analysis within twentieth-century mathematics by following Bell’s lead and focusing

! In the interests of varying language, I take ‘postulate’ and ‘axiom’ as synonyms, although the postulate
analysts used ‘postulate’ quite consistently. For the most part, I deliberately overlook the fact that the
two words have (or originally had) distinct meanings: a ‘postulate’ was an arbitrary supposition, whilst
an ‘axiom’ was an assumption based upon an empirical source (see also the comments in Huntington
1937, p.484). 1 would suggest, however that, following their experimentation with postulates, the postulate
analysts appear to have gained some intuition for which postulates were sensible ones to take, and which
were not (in this connection, see the Bell quotation in Sect. 6.1 beginning ‘“What is wanted . .."): thus, we
might argue that certain of the conditions that they used to define groups started as postulates and became
axioms.

2 Easton was referring specifically to the definitions of Huntington and Moore that we will meet in Sect. 4.
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‘Nobody could possibly misunderstand what a group is... 411

on the example of a group: I outline the axiomatic studies to which groups were
subjected in the early twentieth century and consider the changing attitudes towards
such investigations.>

Before proceeding any further, let us first set up a ‘standard’ definition of a group,
against which we may then compare the alternative definitions that are to come. Our
standard definition shall be that which it is often found in introductory undergraduate

COUI’SGSZ4

Definition 1 Let G be a set upon which there is defined a binary operation whose
result is denoted by juxtaposition of elements, viz. the result of applying the operation
to g, h € G is gh. We say that G forms a group with respect to this binary operation
if the following conditions are satisfied:

(1) the binary operation is closed: whenever g, h € G, gh € G;

(2) the binary operation is associative: for any g, h, k € G, (gh)k = g(hk);

(3) there exists an identity element for the binary operation: an element e € G such
that, for any g € G,eg = g = ge;

(4) every element of G has an inverse element with respect to the identity element

named in (3): to each g € G there corresponds ¢! € G such that gg=! = ¢ =
-1
§ 8

As a point of clarity, we note that for the purposes of this paper a group will be taken
to be an inherently abstract axiomatically defined object, as specified by Definition 1;
the opposing view (as espoused, for example, by Neumann 2008, pp.170-171) is
that Definition 1 is merely a useful description of a structure that should more natu-
rally be viewed in the context of collections of permutations. The reason for adopting
the former point of view is that this was the way in which groups appear to have
been viewed by (most of) the early-twentieth-century authors whom we will con-
sider.

There is of course much in Definition 1 that might be criticised (indeed, for a
flavour of some of the criticisms that might be levelled against this definition, see
Neumann 1999, pp.286-287). For instance, the ‘binary operation’ has hardly been
defined properly; moreover, if we were to give it a proper definition, then surely we
would specify that it be a mapping G x G — G, in which case condition (1) is
redundant, being already built into the notion of a binary operation. Nevertheless,
there are sound pedagogical reasons for including closure explicitly in the definition
of a group: when we set exercises for students that ask them to verify that a given
structure is a group, closure is one of the things that they must check, so it makes
sense to include it with the other axioms, rather than having it as a property of the

31 hope also that the present paper will complement another recent study of postulate analysis, namely
Barnett (2016); whereas the focus of Barnett’s article is on an individual who worked in this area (E. V. Hunt-
ington), mine is on a particular fopic.

4 We can of course make this definition considerably more formal through the use of predicate calculus, but
we do not do so, since this is not the language that was used by any of the authors whom we will consider
here.
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412 C. D. Hollings

binary operation that must be verified separately.’ Indeed, from the pedagogical point
of view, Definition 1 is probably the ‘best possible’ definition of a group (I do not
attempt to quantify the notion of ‘best possible’): it gives us the basic outline of what
a group is, whilst at the same time providing us with just enough information to be
able easily to prove further elementary facts (uniqueness of the identity, uniqueness
of inverses, the n-fold extension of associativity, and so on). The other versions of
the group definition that we will see below usually require us to do more work before
we can get to these elementary facts. This raises the question, to which I will return
below, of whether this extra work is in any way edifying.

Having hinted above at the existence of ‘alternative definitions of groups’, it is
perhaps beneficial for us to pause here and look at one such definition, as a taste of
what is to come. We consider the ‘one-sided’ notion of a group, first developed by
the American mathematician L. E. Dickson (1874-1954), who will feature heavily
in Sect. 4. For the time being, we give the definition in a form similar to that used
for Definition 1—the slightly more elaborate formulation used by Dickson (1905a,
p- 199) will appear in Sect. 4.5.

Definition 2 Let G be a set upon which there is defined a binary operation whose
result is denoted by juxtaposition of elements, viz. the result of applying the operation
to g, h € G is gh. We say that G forms a group with respect to this binary operation
if the following conditions are satisfied:

(1) the binary operation is closed: whenever g, h € G, gh € G;

(2) the binary operation is associative: for any g, h, k € G, (gh)k = g(hk);

(3) there exists a right identity element for the binary operation: an element e € G
such that, for any g € G, ge = g;

(4) every element of G has an right inverse element with respect to the right identity
element named in (3): to each g € G there corresponds g’ € G such that gg’ = e.

Thus, rather than postulating a two-sided identity, with respect to which there exist
two-sided inverses, we pare the definition down so that we demand only a right identity

5 In this situation, closure will usually fail because the result of applying the binary operation to two
elements of the set under consideration may lie outside the set: the integers do not form a group under
division, for example, because the result of dividing one integer by another may not be an integer. We note,
however, that in this example, the result ‘1/2’, say, does nevertheless exist—the problem for our purposes
is simply that it lies outside our predetermined set of objects of interest. This suggests therefore that there
might be another way in which an operation may fail to be closed: through the non-existence of the required
products, or, to put this a better way, through certain products being undefined (‘1/0’, perhaps?). Taking
this point of view, we see that this is precisely the way in which the composition in a category, or in a
related structure such as a groupoid, fails to be ‘closed’. This also brings up interesting questions about how
to define a binary operation: considering (for simplicity) a category C in its ‘generalised monoid’ guise
(on the two ways of viewing a category, see Hollings 2012, p.417), we see that the operation in C is not
simply a mapping C x C — C because it will not, in general, be defined for all pairs in C x C, merely for
some subset D € C x C. However, our algebraic instincts still lead us to view this operation as a ‘binary
operation’ in some sense. We may perhaps resolve this difficulty by taking the binary operation not to be
a partial mapping on C x C (that is, a mapping defined on a subset of C x C), but rather a fully defined
mapping on D. But here we find ourselves slipping into semantics, not to mention mathematical topics
that lie outside our focus. On the development of category theory, see Corry (1996, 2nd ed., Chap. 8); on
groupoids, see Brown (1987, 1999). For a discussion of the difficulties encountered prior to the eventual
acceptance of partial operations, see Hollings (2014b, §10.2).
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‘Nobody could possibly misunderstand what a group is... 413

and right inverses. To see that such a structure is indeed still a group, we may reproduce
Dickson’s own proof:

Proof We must show that the postulated right identity e is also a left identity for any
element of G and that any right inverse is also a left inverse with respect to e. We know
that g € G has a right inverse g’ such that gg’ = e; similarly, g’ has a right inverse g”
such that g’'g” = e. Then

g=ge=2g(g'e") = (gg)g" =eg”, (1)
using which, we obtain:

"

§g=¢(eg)=(ge)g" =gs" =e.
It follows also that g”g’ = e. Using the latter, and also (1) again, we have:

eg = (ee)g = [e(g"g)1g = (eg")(g'g) = ge = 3.

Just as Definition 2 gives a ‘right-hand’ notion of a group, we may also define a
group in terms of a left identity and left inverses. The combinations left identity/right
inverses and right identity/left inverses, however, do not define a group, although they
do give a structure that has also seen much study, as outlined in Appendix C of the
present paper. The one-sided definition of a group is one that appears only rarely in
textbooks—we will return to this point in Sect. 7.

As well as deriving alternative definitions for groups, such as that given in Defini-
tion 2, the mathematicians whose work we will study here had another major issue in
their sights: independence of axioms. The first author to address this matter directly
was E. V. Huntington (1874-1952), another character who will enjoy a prominent
position in Sect. 4. Indeed, the weeding out of redundancy was one of the motivations
behind the derivation of Definition 2, along with a desire to provide a definition that
was in some way minimal. The latter term is of course rather problematic. The authors
of several of the early papers in the American school of postulate analysis seem to
have been competing with each other to produce definitions with as few postulates as
possible, and yet surely we can always reduce any set of postulates to a single one
simply by taking the conjunction of all statements?® However, as we will see in Sect. 4,
the question of what form a postulate ought to take, and thus what ‘minimal’ ought to
mean, was addressed by E. H. Moore (1862-1932) in a paper of 1902.

One is tempted to look back at the different sets of axioms that were developed for
groups at the beginning of the twentieth century and to question their value: these exotic
definitions rarely appear to be more useful than the ‘standard’ one given in Definition 1.
The benefit of pursuing the ill-defined issue of the independence or minimality of a set
of axioms is also open to doubt. However, I argue that, even at the time of publication,

6 The reduction of the definition of an Abelian group to a single axiom not formed from the conjunction
of simpler statements was achieved by Tarski (1938); a similar characterisation for an arbitrary group
was obtained by Higman and Neumann (1952). These investigations were, however, considerably less
elementary than those of Huntington et al., so we do not consider them here.
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414 C. D. Hollings

the authors of these alternative definitions perceived the latter’s value as lying not in
the axioms themselves, but in the process of their discovery: the unpicking of the group
definition in minute detail facilitated a deeper understanding of the abstract notion—
of what groups were. Independence proofs, on the other hand, featuring examples in
which the group axioms were negated in turn, aided in the understanding of what
groups were not. Thus, although the importance of postulate analysis as a technique
in abstract algebra has waned over the course of the twentieth century, the pursuit of
this topic at the beginning of the century helped to cement the notion of a group, at
least in the American literature. As I will argue in Sect. 7, it served as training for
an abstract way of thinking, regardless of its specific results. The conclusions of this
paper therefore complement those of Scanlan (1991), who contends that the work of
the postulate analysts ‘served to provide both an experimental proof and a reference
point for future researchers in the foundations of mathematics’ (Scanlan 1991, p. 999).”

I suggested above that Definition 1 provides us with ‘just the right amount’ of infor-
mation about a group, at least for pedagogical purposes, and that therefore Definition 1
is to be preferred in this context to other specifications, such as Definition 2. If we
were to start from Definition 2, on the other hand, then we might find it useful (or,
indeed, be forced) first to prove the two-sided nature of the group before proceeding
to the derivation of further properties, indicating that it might have been better sim-
ply to have started from Definition 1 in the first place. I am aware, however, of the
beginnings of a contradiction here: I am suggesting that Definition 1 is ‘better’ than
Definition 2 because it requires less preliminary work to be done before we can begin
to explore the group concept more fully, and yet the overall theme of this paper is that
such derivations from defining axioms were beneficial for the early-twentieth-century
understanding of the abstract group concept. A simple response to this emerging
contradiction is that the question of Definition 1 versus Definition 2 is one for the
pedagogical sphere, whereas the bulk of the axiomatic work to be considered here
took place in the research context. To address the contradiction in a fuller manner,
however, I note that I will attempt to walk a fine line here between those modifica-
tions of the group axioms that provide insight, and those that are rather more artificial.
For instance, given that abstract groups are derived from groups of permutations, and
that intuitively, and speaking very loosely, there is something inherently ‘two-sided’
about the latter (perhaps linked in our perception to the natural invertibility of per-
mutations), I would suggest that Definition 1 provides a more ‘reasonable’ way of
specifying a group, since Definition 2, in its ‘one-sidedness’, takes us ‘too far away’
(at least in comparison to Definition 1) from the most natural groups of all: groups of
permutations. I must acknowledge, however, that, as well as being somewhat vague,
this distinction is of course a very subjective one,® but one that I hope readers will
gain some intuition for (and form their own opinions about) during the course of this

7 In a later paper, Scanlan (2003) links the postulate analysts to the development of model theory, via the
work of Alfred Tarski.

8 Indeed, if one adopts the point of view, noted after Definition 1, that a group is best regarded in the context
of permutations, rather than as an abstract object, then Definition 1 has already taken us away from groups
of permutations by explicitly featuring conditions other than closure.

@ Springer



‘Nobody could possibly misunderstand what a group is... 415

paper. We will return to the question of ‘what to postulate?’, mostly in reference to
the conditions found in Definition 1, in Sect. 3.

The structure of the paper is as follows. In Sect. 2, I outline the development of
the abstract group concept in the nineteenth century, beginning in Sect. 2.1 with the
first definitions of groups (of permutations) at the hands of Evariste Galois (1811—
1832) and Augustin-Louis Cauchy (1789-1857). These were of course not abstract
or axiomatic in any real way, but we may look to these definitions to help us to see
where the first abstract ones came from: Sect. 2.2 outlines the efforts of Arthur Cayley
(1821-1895) in this direction, whilst Sect. 2.3 turns to the work of Heinrich Weber
(1842-1913), and others, who were the first to pin down the abstract axiomatic notion
of a group at the end of the nineteenth century. In Sect. 2, the reader may detect some
overlap with the article Neumann (1999), but nothing, I hope, that is unwarranted.’
Sect. 3 addresses the question of why the nineteenth-century authors discussed in the
preceding section set down the group postulates that they did. Sect. 4 is the main part
of the paper, in which we focus on the American postulate analysts and consider in
some detail—greater detail than in previous treatments of this subject'"—the sets of
axioms that they derived during the heyday of postulate analysis in the first decade
or so of the twentieth century. Section 5 follows with a brief treatment of a few later
forays into such studies, both in the USA and elsewhere. Comments on later opinions
of this topic, from both the research-oriented and pedagogical viewpoints, appear in
Sect. 6, and some concluding remarks may be found in Sect. 7, where I argue for the
subtle influence of postulate analysis on some aspects of (at least the presentation of)
twentieth-century mathematics. Finally, three appendices provide details of further
matters relating to postulate analysis that are not dealt with fully in the main body of
the paper: Appendix A records the rather lengthy list of postulates that Huntington
provided for a group in a paper of 1904 (this links to material found in Sect. 4.4),
Appendix B outlines an alternative approach to group postulates involving a ternary
relation (which also connects to Sect. 4.4), and Appendix C sketches the results of
another strand of postulational investigation that may be viewed as an off-shoot of the
study of groups.

2 The evolution of the abstract group concept
2.1 The first definitions

Although this paper is concerned with the axiomatic group concept, it is beneficial
for us, and also in the interests of completeness, to begin our story with the earliest
origins of the notion of a group in the work of Galois and Cauchy. As we know, these
were not axiomatic definitions, but it is possible to look back upon them and extract
the underlying properties that served to inspire the later abstract concept.

9 An overview of some of the definitions presented in Sect. 2 may also be found in van der Waerden (1985,
pp. 147-154).

10 For example, Franci (1992), which covers some of the same ground as our Sect. 4 and stands as a useful
survey of the various definitions to be treated here.
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416 C. D. Hollings

With the benefit of hindsight, we see that finite Abelian groups had appeared in the
work of Gauss, as he studied binary quadratic forms (Katz 2009, §21.5.1), but we can
hardly credit Gauss with the origination of the group concept. This accolade is usually
reserved for Galois, with honourable mention given also to Cauchy. The reason that
these two authors receive such credit is that the group structures that appeared in their
work emerged from the study or use of collections of permutations/substitutions that
were assumed to be closed under composition.'!

In the case of the latter, it is in a paper of 1845 that we find a definition that appears
to point towards the modern notion of a group. Thirty years earlier (Cauchy 1815),
Cauchy had undertaken to study the permutations of the variables of a function, follow-
ing up on the suspicion that these might be useful in attempts to solve higher-degree
polynomial equations; the result was a theorem (together with a stronger conjecture)
that placed a bound on the number of functions that may result from one of a gen-
eral form upon the permutation of its variables (Stedall 2011, p.205). In 1845, Cauchy
developed the theory of permutations further. Roughly two pages into a section headed
‘Considérations générales’, we find the following definition:

Let us now consider several substitutions

()

with respect to n letters x, y, z . ...  will call derived substitutions all those that
one may deduce from the given substitutions, multiplied one or several times by
one another or by themselves in any order, and the given substitutions together
with the derived substitutions will form what I will call a system of combined
substitutions.'?

The symbols A, B, etc. denote arrangements of the n letters x, y, z . . ., and so Cauchy’s
notation is none other than the familiar ‘two-row’ form of a permutation. Indeed,
Cauchy’s 1815 paper is the place where this notation originated. Note, however, that
in 1845 (but not in 1815), these symbols were to be read from bottom to top: the
arrangement A is mapped to the arrangement B, and so on. It is interesting to observe
that Cauchy’s ‘multiplication’ of substitutions was one of the first times that such a
notion had been applied to mathematical entities that were not pure numbers (see, for

Y win quietly ignore the fact that the terms ‘permutation’ and ‘substitution’ (or, rather, their French
equivalents) were not always employed with their modern meanings in the original texts. In his initial study
of permutations, published in 1815, Cauchy used ‘permutation’ to denote a static arrangement of letters;
the transition from one such arrangement to another was a ‘substitution’ (Cauchy 1815; see Stedall 2008,
p-354). This convention was later adopted by Galois (Stedall 2008, p.362), but then dropped by Cauchy
in his 1845 return to permutations, where both ‘permutation’ and ‘substitution” were used for what had
previously been dubbed ‘substitutions’ (Cauchy 1845a, pp. 595-596; see also Stedall 2008, p.372).

12 Cauchy (1845a, p.605); translation by Stedall (2008, p.372). Note that Cauchy’s term ‘systeme de
substitutions conjuguées’ has also been translated as ‘system of conjoined substitutions’ (Neumann 2011,
p-296), and ‘system of conjugate substitutions’ (Wussing 1969, English transl., p. 132), although the latter is
probably best avoided, given the use of the word ‘conjugate’ in modern group theory. For further discussion
of this translation, see Neumann (2008, pp. 175-176).
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‘Nobody could possibly misunderstand what a group is... 417

example, the comments in Stedall 2008, p.354), and so we might also, in a moment
of extravagance, place Cauchy on the road to the abstraction of the group concept.

Stepping swiftly back from such a bold claim, we note that there is nothing abstract
or, indeed, particularly axiomatic about Cauchy’s definition of his system of combined
substitutions. If we were to contrive to pull out one ‘axiom’ from the above, it could
only be that of closure: the product of any two substitutions (the corresponding ‘derived
substitution’) belongs to the system.'? Thus, on the face of it, Cauchy’s definition bears
little resemblance to our Definition 1. However, as we know perfectly well, in a finite
system of permutations such as Cauchy’s, if not in an abstract system, it is sufficient
merely to demand closure: the other modern axioms follow.'* We note also at this
point that Galois’ notion of a group, insofar as he provided any definition, was again
simply a group of permutations, whose only explicitly stated property was that of
closure under composition: see Neumann (2011, pp. 114-115).

2.2 Cayley and abstraction

As was first shown in detail by Wussing (1969),' the first attempt at an abstract
definition of a group was that offered by Arthur Cayley in a paper of 1854 entitled ‘On
the theory of groups as depending on the symbolic equation 6" = 1’ (Cayley 1854).
Working on caustic curves,'® Cayley had found six distinct transformations under
which such a curve is invariant, and had discovered, moreover, that this collection of
transformations was (as we would say) closed under composition of functions (Stedall
2008, p.374). Evidently recognising a connection between what he had discovered
and the group notion given by Galois, Cayley attempted to pull out those properties
that the two constructions had in common.

Rather than being given in a neat compact form, Cayley’s definition of a group
sprawls over the first few pages of the paper, with certain of the properties that he
required being noted as consequences of previously assumed conditions, when in fact
they must be taken as assumptions themselves. Cayley’s definition is certainly abstract,
but we cannot call it axiomatic. Whatever axioms there are in there are imposed by
our latter-day knowledge, and must be teased out; there is little to suggest that there
was anything axiomatic in Cayley’s thinking.

If any part of Cayley’s work is to be interpreted as an attempt at a definition, it is
the following insufficient, but much-quoted, passage:

13 1t is worth noting in passing that both Cauchy and Galois collected permutations into ‘systémes’ and
‘groupes’, respectively, long before there was any formal notion of ‘set’.

14 Ty see a modern proof of this, suppose that A = {«q, a2, ..., «p} is a finite set of permutations of
some set X, and suppose further that A is closed under composition, that is to say, A forms a semigroup.
An elementary result about finite semigroups is that every element has an idempotent power (Howie 1995,
Proposition 1.2.3). Since the only idempotent permutation is the identity permutation /, we conclude from

. ki
the closure of A that / € A. Furthermore, we have that for each i, ozl.’ = [, for some k; € N, so each «;
. ki—1
has inverse o; .

15 This has subsequently been well documented by other authors: see, for example, Chakraborty and
Chowdhury (2005), Katz (2009), Katz and Parshall (2014) and Neumann (1999), amongst many others.

16 op which, see, for example, Loe and Beagley (1997).
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418 C. D. Hollings

A set of symbols

Lo, B, ...

all of them different, and such that the product of any two of them (no matter in
what order), or the product of any one of them into itself, belongs to the set, is
said to be a group. (Cayley 1854, p. 124)

To the word ‘group’, there is attached the following footnote:

The idea of a group as applied to permutations or substitutions is due to Galois,
and the introduction of it may be considered as marking an epoch in the progress
of the theory of algebraical equations. (Cayley 1854, p. 124)

Nowhere else do we find any reference to prior work, certainly not to Cauchy’s, nor
do we gain any impression that Cayley truly understood Galois’ work, apart perhaps
(as the footnote suggests) from recognising some degree of importance. What Cayley
did with this group concept is a far cry from anything that Galois did with it.

It seems likely that Cayley drew the above group ‘definition’ directly from Galois,
whose notion of group called only for the property of closure. As we have seen, this is
sufficient if one is dealing, as Galois was, with a group of permutations of a finite set,
but with the benefit of hindsight we know that it is not enough to define the appropriate
notion of a group in an abstract setting. Further study of Cayley’s paper suggests that
he may in fact have been on the brink of this realisation himself, but his phrasing is
perhaps not as careful as it might have been. Associativity, for example, appears to
have been taken as implicit. It is certainly noted on the first page of the paper that

... the symbols 6, ¢, ... are in general such that 6.¢x = 6¢.x, &c., so that
0¢ x, ¢ x w, &c. have a definite signification independent of the particular mode
of compounding the symbols ... (Cayley 1854, p. 123)

but thereafter all explicit mention of associativity properties vanishes. We also
encounter here one of the problems with Cayley’s definition that has been flagged
by Neumann (1999, p.290): what are these symbols 6, ¢, etc.? The paper opens with
them as ‘symbols of operation’, i.e., functions, so that the above statement of the
associative property appears not as an assumption, but as an inherent property of the
symbols under consideration. This interpretation falls away as we progress through
the paper (even though the word ‘operation’ is still applied), but associativity remains,
thus presenting us with a problem: are 6, ¢, etc. ‘symbols of operation’, and therefore
automatically associative in their composition, or are they abstract symbols, free of
specific interpretation? If the former, then we may have to strip Cayley of the accolade
of having first defined abstract groups, whereas in the latter case, we must criticise
him for having failed to make the explicit assumption of associativity in the abstract
setting.

Nevertheless, even if we grant Cayley associativity, we see that his definition is still
not adequate to define our modern notion of a group. Again, we find an appropriate
additional property in the paper, but not stated as an assumption—immediately after
the above ‘definition’, Cayley wrote:
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‘Nobody could possibly misunderstand what a group is... 419

It follows that if the entire group is multiplied by any one of the symbols, either
as further or nearer factor [i.e., via multiplication on the left or on the right,
respectively], the effect is simply to reproduce the group ... (Cayley 1854,
p.124)

Cayley expressed this another way by presenting a diagram that is now hailed as the
original ‘Cayley table’, noting that ‘as well each line as each column of the square will
contain all the symbols 1, , B, ...’ (Cayley 1854, p. 124).!7 This is certainly a familiar
property for finite groups, but the problem is that it does not ‘follow’ from the definition
that Cayley had laid down. Cayley’s ‘group’, as defined, was merely a monoid. The
additional structure that emerges upon multiplication by a ‘further or nearer factor’
must be assumed; it cannot be proved—at least in the general situation that Cayley
presented.!8

I refrain from pouring too much criticism on Cayley’s paper here—further critique
may be found in Neumann (1999, p. 290).!> We must of course be careful not to pillory
Cayley for not having immediately written down a definition that in fact took several
decades to coalesce. Nevertheless, his 1854 paper is rather confused in its presentation.

Cayley’s later writings on groups go little further than this initial paper of 1854; for
example, whilst the 1854 paper enumerated all groups of orders 4 and 6, a later paper
dealt with order 8 (Cayley 1859). The definition used barely changed, apart perhaps
from becoming a little more explicit on the questions of associativity and the existence
of an identity (see, for example, Cayley 1878). The symbols used by Cayley, however,
remained ‘functional symbols, each operating upon one and the same number of letters
and producing as its result the same number of functions of these letters’ (Cayley 1878,
p-50). On the whole, Cayley’s work on groups retained its focus on the finding of all
groups of a given order.

2.3 Late nineteenth-century postulates

Just as Cayley is invariably credited in the historical literature with having provided the
initial spark for the growth of the abstract group concept, the two names that usually
appear next in the story are those of Leopold Kronecker (1823-1891) and Heinrich
Weber (1842-1913). Pursuing some ideas connected with the ideal complex numbers

17 Further (circumstantial) evidence that Cayley still had ‘symbols of operation’ in mind is found in the fact
that this prototype Cayley table is the mirror image (in the leading diagonal) of our modern equivalent: left-
hand factors label the columns, and right-hand factors the rows—suggestive of a right-to-left composition
of functions?

18 For example, the nonzero integers under addition obviously have the closure property of Cayley’s initial
definition, but don’t satisfy the left/right multiplication property. Any semigroup S with the property that
S is reproduced upon multiplication of the whole semigroup by an arbitrary element on the left/right is
said to be right/left simple. These properties will appear again in Sect. 5.2.1 and are central also to the
investigations outlined in Appendix C.

19 In the interests of balance, we note that a defence of Cayley may be found in Chakraborty and Chowdhury
(2005).
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of his teacher E. E. Kummer (1810-1893), Kronecker developed the following finite
structure:2°

Let 0/,0”,0", ... be a finite number of elements such that with any two we
may associate a third by means of a definite procedure. Thus, if the result of this
procedure is denoted by f, then, for two arbitrary elements 8’ and 6", which may
be identical, there exists a third 8" equal to (0, 8”"). Moreover, we require that:

f(@/’ 9//) — f(e//, 9/)
f(e/, f(@”, 9///)) — f(f(e/, 9//), 9///)

and if #” and 0" are different, then:
§(6’,0") is different from (', 8").

We see that Kronecker’s defining conditions were precisely the commutative and
associative laws, together with (the contrapositive of) the cancellation law. We know
this to be a (finite) Abelian group, although Kronecker did not use (any cognate of)
that word nor does he appear to have drawn any connection with the prior work of
Galois, Cauchy or Cayley.

The credit for a fully formed general axiomatic definition of a group usually goes
to Weber, in a paper of 1882; the first textbook definition of the same is probably due
to him also (in 1896). In the paper, we find the following:>!

20 “Es seien 6,6”,6", ... Elemente in endlicher Anzahl und so beschaffen, dass sich aus je zweien
derselben mittels eines bestimmten Verfahrens ein drittes ableiten ldsst. Demnach soll, wenn das Resultat
dieses Verfahrens durch f angedeutet wird, fiir zwei beliebige Elemente 6’ und 8", welche auch mit einander
identisch sein konnen, ein 8" existieren, welches gleich: §(8’, 8”) ist. Uberdies soll:

f(9,7 0//) — f(@”,@’)
f(e/’ f(e//’ 0///)) — f(f(g/’ 0//)’ 0///)

und aber, sobald 6” und 6”” von einander verschieden sind, auch:
§(0’, 0") nicht identisch mit £(6’, 0”")

sein.” (Kronecker 1870, pp. 882-883; note that as a concession to typesetting in TgX, the long s used in
places by Kronecker has been replaced by its short equivalent.)

21 ‘Definition. Ein System G von i Elementen irgend welcher Art, @1, O, ..., ©), heisst eine Gruppe
vom Grade h, wenn es den folgenden Bedingungen geniigt:

I. Durch irgend eine Vorschrift, welche als Composition oder Multiplication bezeichnet wird, leitet man
aus zwei Elementen des Systems ein neues Element desselben Systems her. In Zeichen

0,0; = 06y.
II. Esist stets
(®r®s)®l =0y (®s®1‘) = ®r®s®t~

III. Aus @0, = ©0; und aus ©,0 = 0,0 folgt ©, = Oy.” (Weber 1882, p.302)
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Definition. A system G of h elements of any type, @1, @», ..., 0Oy, is called a
group of degree h if the following conditions are satisfied:
I. Via some rule, which is referred to as composition or multiplication, one
derives from two elements of the system a new element of the same system.
In symbols

0,0, = 6.
II. We have
(®r@‘v)®t = ®r (®v®t) = ®r®s®t-

III. From OO, = B0 and from O,0 = B,0 follows B, = Q.

Thus, Weber’s initial definition of a group corresponds to what we would call a finite
cancellative semigroup, which of course we know to be a group;?? indeed, Weber
immediately deduced the existence of an identity and of inverse elements (Weber
1882, p.303). He explicitly cited the prior work of Kronecker in his introduction,
whilst his use of the term ‘Gruppe’, although he made no comment on the matter, is
suggestive of a debt to Galois and/or Cayley.

Several years later, Weber provided an outline of Galois theory in the first volume
of his Lehrbuch der Algebra (Weber 1895, vol. I, §§146—158), during the course of
which he naturally introduced the notion of a Galois group (§156), but it is at the
beginning of the second volume that we find the following abstract definition:*3

A system P of things (elements) of any type will become a group if the following
preconditions are met:
1. A rule is given, according to which from a first and a second element of the
system a completely determined third element of the same system may be
derived.

2 Suppose that S is a finite cancellative semigroup. It follows immediately from cancellation that sS =
S = Ss, forany s € S. From this, we conclude that, for a fixed s, there exists e € S such that se = s. But e
is in fact a right identity for any element of S, since any ¢ € S may be written in the form ¢ = us. It follows
further that e2 = e. Consider the product es, for any s € S. We may write s as eu, for some u € S. Then,
es = etu=eu=s. Thus, e is a two-sided identity for S. As to inverses, it follows from sS = S that there
exists s’ € S such that ss’” = e. Furthermore, ss’s = es = s = se, and so it follows from cancellation that
s's =e.

23 ‘Ein System P von Dingen (Elementen) irgend welcher Art wird zur Gruppe, wenn folgende Voraus-
setzungen erfiillt sind:

1. Esist eine Vorschrift gegeben, nach der aus einem ersten und einem zweiten Elemente des Systems
ein ganz bestimmtes drittes Element desselben Systems abgeleitet wird.

2. das associative Gesetz vorausgesetzt,

3. Es wird vorausgesetzt, dass, wenn ab = ab’ oder ab = a’b ist, nothwendig im ersten Falle b = b,
im zweiten @ = a’ sein muss.” (Weber 1895, vol. II, pp. 3—4)
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2. the associative law is assumed,

3. It is assumed that if either ab = ab’ or ab = a’b, then necessarily, in the
first case, b = b’, and in the second, a = a’.

Although the wording and notation may be slightly different, we see that, barring finite-
ness, this is the same as Weber’s 1882 definition—but in the immediately following
passages, we see some slight modifications, beginning with the following:**

For finite groups, from 1., 2., 3., the consequence follows:
4. If, of three elements a, b, ¢ of P, any two are given, then one can always
determine the third in only one way such that

ab = c.

Weber next proceeded to prove this assertion before commenting, at the bottom of the
same page:>

For infinite groups, this can no longer be inferred. For infinite groups, property
4. must be taken as an additional requirement in the definition.

Thus, the first axiomatic definition of an infinite group was due to Weber. It is easy
to see that the solvability of equations that condition 4. expresses implies, and is
implied by, the existence of an identity and inverses (as, indeed, Weber proved: Weber
1895, vol. II, p. 5). We will see such ‘solvability of equations’ axioms appearing in the
definitions of the American postulate analysts.

Weber’s definitions of a group, however, were not the only ones to appear at the
end of the nineteenth century. We might mention, for example, that given by Walther
Dyck (1856-1934) in an earlier issue of the same volume of Mathematische Annalen
in which Weber published his first definition (Dyck 1882). Dyck famously adopted
a statement from one of Cayley’s papers on groups (Cayley 1878) as a motto for his
own (‘A group is defined by means of the laws of combination of its symbols’: Dyck
1882, p. 1 or Cayley 1878, p.51), and his paper does indeed begin in a similar style to
that of Cayley, in that Dyck’s elements are termed ‘operations’ and are thus implicitly
assumed to obey the associative law. Nevertheless, explicit mention is made of inverses
and the identity in a definition that sprawls over several pages—see the comments in

24 “Fiir endliche Gruppen ergiebt sich aus 1., 2., 3. die Folgerung:

4. Wenn von den drei Elementen a, b, ¢ aus P zwei beliebig gegeben sind, so kann man das dritte immer
und nur auf eine Weise so bestimmen, dass

ab=c
ist.” (Weber 1895, vol. II, p.4)

25 “Fiir unendliche Gruppen kann nicht mehr so geschlossen werden. Fiir unendliche Gruppen wird also
noch die Eigenschaft 4. als Forderung in die Begriffsbestimmung mit aufgenommen.” (Weber 1895, vol. II,
p-4)
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Neumann (1999, pp.290-291). A further prominent author who was also inspired by
Cayley was William Burnside (1852-1927):

Definition. Let
A,B,C, ...

represent a set of operations, which can be performed on the same object or set

of objects. Suppose this set of operations has the following characteristics.

(o) The operations of the set are all distinct, so that no two of them produce the
same change in every possible application.

(B) The result of performing successively any number of operations of the set,
say A, B, ..., K,isanother definite operation of the set, which depends only
on the component operations and the sequence in which they are carried
out, and not on the way in which they may be regarded as associated. Thus,
A followed by B and B followed by C are operations of the set, say D and
E; and D followed by C is the same operation as A followed by E.

(y) A being any operation of the set, there is always another operation A_;
belonging to the set, such that A followed by A_; produces no change in
any object.

The operation A_ is called the inverse of A.

The set of operations is then said to form a Group. (Burnside 1897, pp. 11-12)

Thus, Burnside’s definition made explicit mention of closure, associativity and
inverses; the existence of an identity is deduced shortly after the definition. As with
Cayley’s definition, there are aspects of Burnside’s that we might criticise, but I will
not do so here (see instead Neumann 1999, p.292); Burnside’s definition is presented
here in order to demonstrate that, in contrast to some of the earlier definitions that we
have seen, inverses were beginning to appear explicitly in the group definitions of the
final years of the nineteenth century.

3 What to postulate?

Before moving on to consider the details of the work of the American postulate ana-
lysts, we first pause to consider a question that has not yet been asked explicitly: from
where were the specific postulates that we have seen derived? In treating this question,
we focus on the postulates of Sect. 2, because the problem is easily solved for the pos-
tulates of later sections: later researchers mostly obtained their postulates from some
subset of the authors named in the preceding section’*—such notions as identity and
inverse elements, and the associative law, had been laid down by earlier authors, and
much of the work of the twentieth-century postulate analysts revolved around simple
variations of these. Our analysis here will, by necessity, be both brief and speculative,

26 Within the development of the abstract group concept, Neumann (1999) gives an indication of who read
whose work.

@ Springer



424 C. D. Hollings

for few of the nineteenth-century authors whose work we have surveyed provided any
indication of where their postulates came from.

The usual way of motivating the postulates found in our Definition 1, for example,
would be to point to the fact that any group of permutations possesses these properties.
However, it is worthwhile to subject this assertion to greater scrutiny. As we have
observed already, the only property explicitly mentioned by Galois and Cauchy in
their early notions of a group was that of closure, but even this property had the
potential to be problematic as the group structure came be recognised in a range
of branches of mathematics: in the context of geometrical symmetry, it might be
observed, for example, that the composition of two reflections will give a rotation, and
so it is necessary to form a broader notion of symmetry in order to ensure the closure
of the collection of transformations under consideration. However, I am not aware
of this point having caused any difficulty for nineteenth-century authors, in which
case it seems reasonable to speculate that the presence of closure in the very earliest
definitions of groups made it a familiar and intrinsic part of the developing theory.
Indeed, well into the twentieth century, closure was still referred to by some authors
as ‘the group property’; see, for example, Bocher (1927) and Carmichael (1937).

In moving from groups of permutations to abstract groups, I suggest that the associa-
tivity property is only marginally less obvious than that of closure—it simply needed
someone to extract this property from the context of functions and state it explicitly
in an abstract setting. Indeed, we saw exactly this in Cayley’s early explorations of
the abstract group concept (leaving aside concerns about the nature of his elements).
Moreover, we also find Cayley stating explicitly that his operation is not commutative:
‘0¢ is of course in general different from ¢6° (Cayley 1854, p. 123). This observation
arises easily from the context of functions. I suggest also that Cayley was in a good
position to comment on both the associative and commutative laws in the abstract
setting since he was well versed in the traditions of British symbolical algebra: see,
for example, Crilly (2006, p.349) and Wussing (1969, English transl., pp. 230-232).
Thus, despite the shortcomings of his definition, the idea of what to postulate and what
not has its origin in Cayley’s early contribution to the story. It is true that commutativ-
ity later appeared in Kronecker’s list of axioms, but this is because the context within
which he was working demanded it. Subsequent group-axiomatic work, including that
of the following sections, recognised that commutativity should not be a condition on
groups in general, but that it is the characteristic property of a particular class of groups
that deserve special attention.

We saw in Sect. 2 that explicit demands for an identity or inverse elements did not
feature in the early group definitions, although they usually appeared as elementary
consequences of the chosen axioms. The earliest requirement beyond closure and
associativity was that of Cayley that gG = G = Gg for any element g of a group G.
Although he made no comment on this, we might speculate that the latter condition
was Cayley’s abstract version of Galois’ comment that ‘[t]he permutation from which
one starts in order to indicate substitutions is completely arbitrary’ (Neumann 2011,
p. 115).%7 Cancellation, however, seems to have been an early axiom of preference.

27 See footnote 11 on the distinction between permutations and substitutions.
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Indeed, its origin in this context may have been Cayley’s condition: in the finite case,
cancellation is a (computationally, more convenient?) consequence of the latter.?®

With regard to the identity, it is certainly clear that the identity permutation is a useful
element to have within a particular collection of permutations, but it is perhaps not
obvious a priori that it is a necessary element. Nevertheless this is an easy deduction
to make, and we may catch a glimpse of the growing recognition of the importance of
the identity element in the name given to it by some late-nineteenth-century German
authors: ‘Hauptelement’ (‘principal element’: see, for example, Weber 1882, p.303).
Apart from Cayley’s implicit assumption of its presence, the first author to include the
identity element within his group axioms appears to have been James Pierpont, whom
we shall meet in Sect. 4.1.

The only part of Definition 1 that it remains to consider is the presence of inverse
elements. These clearly go hand-in-hand with the identity, and so as the latter became
an integrated part of the group definition, this paved the way for inverses to appear there
also—although recall that Burnside had stipulated the presence of inverses without any
explicit demand for an identity (but of course this follows). The gradual introduction
of inverses into group definitions accompanied the integration of the theories of finite
and infinite groups (see Wussing 1969, Part III). Although specific comments are
lacking, it seems reasonable to speculate that the explicit demand for inverses furnished
mathematicians with a definition that could be applied equally well to both finite and
infinite groups, rather than using cancellation for the former, whilst noting that it is
insufficient for the latter.

Although, as already noted, the comments here on the question of ‘what to postu-
late?’ can only be speculative, the above sequence of changes in the view of which
conditions were important for the emerging group concept seem to be reasonable.
We will return to this question later in the paper, most particularly in the writings of
E. T. Bell in Sect. 6.1, and in the pedagogical context in Sect. 6.2. For the time being,
however, we note that this mixture of postulates was the starting point for the work
of the postulate analysts. As we will see, they did not stray too far from the various
axioms listed in Sect. 2 and were concerned largely with experiments®’ over which
slight variations and/or combinations of these postulates were the best ones to take;
indeed, in some cases, it was not the axioms themselves that were important to the
postulate analysts, but the connections between them.

4 American postulate analysis

Having seen how the definitions of a group had developed at the end of the nineteenth
century, and thus having described the backdrop to the investigations of the early
twentieth century, we are now in a position to consider the work of the American
postulate analysts. During the early years of the twentieth century, American mathe-
maticians were still being heavily influenced by their German counterparts (indeed,
many American mathematicians at this time had obtained their PhDs in Germany:

28 For suppose that ga = gb, for a, b € G with a # b—but then |G| < |G].

29 On the empirical aspects of choosing postulates, see the comments in footnote 1.
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see Parshall and Rowe 1994), so we would expect the algebraic researchers of the
USA to be well versed in the definitions of Weber and others that were outlined in the
preceding section—and indeed the references given in the papers to be cited in the
present section bear this out.>”

A German influence on the American postulate analysts is in fact visible from the
start, for the main inspiration for this work came from David Hilbert’s 1899 Grund-
lagen der Geometrie and the axiomatisation of geometry contained therein.’! One of
the main protagonists was E. H. Moore of the University of Chicago. Subsequently
hailed as a great proponent of the abstract point of view (Birkhoff 1938, p.284), and
perhaps even as the first American algebraist (Bell 1938, p. 10), Moore established
a seminar in Chicago whose participants set about studying Hilbert’s book (Parshall
and Rowe 1994, p. 383), before going on to consider the axiom systems underpinning
other familiar mathematical structures, with groups being one of the first examples to
which they turned. Contributors to this study, which quickly spread beyond Chicago,
included Dickson, Huntington, and O. Veblen (1880-1960).

4.1 An American precursor: James Pierpont’s groups

As well as being able to look to the work of German mathematicians, the postu-
late analysts could also look back to a home-grown mathematical publication: James
Pierpont’s3? survey of Galois theory, published in two parts at the turn of the cen-
tury (Pierpont 1899-1900, 1900-1901). The first of Pierpont’s articles deals with the
general theory of polynomial equations, including the notion of a Galois group (or
‘Galoisian group’, as Pierpont has it), whilst the second goes in a more abstract direc-
tion, with the introduction of the following definition (Pierpont 1900-1901, pp.47-48):

Suppose a finite number of things or elements 77, T», ..., T, given; we say they

form a group if

(a) A law of composition is given whereby from 7, and T}, taken in a definite
order, a definite 7, is determined. The composition we call multiplication,
and write T,T, = T,.

(b) Multiplication is associative, although not necessarily commutative.

(c) There exists one and only one element 77, for which

TITK:TKTIZTK K=1,2,...,n

This element is called the identical element and is conveniently represented
by 1.

30 1o pick just one example, see, for instance, the detailed references given in the footnotes on p. 182 of
Huntington (1905b).

31 T will not describe the origins of postulate analysis in great detail here; instead, see Corry (2000, §2) (or
Corry 1996, 2nd ed., §3.5), together with Bell (1938), Scanlan (1991) and Schlimm (2011). See also the
wider discussion in Zitarelli (2001). On Hilbert’s Grundlagen der Geometrie, see Hallett and Majer (2004).

32 On Pierpont (1866-1938), see Ore (1939).
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(d) For every element T, exists an element (denote it by TK_I) such that
T ' =T7'T, = 1.

7.7 ! is called the inverse of 7.

Thus, Pierpont provided what is essentially our Definition 1, a definition of a group
that works in both the finite and infinite cases, thanks to the explicit presence of
inverses. He went on to provide three examples that appear to have been designed
to demonstrate a range of types of different groups: substitution groups, groups of
rotations of regular bodies and multiplicative groups of nonzero integers modulo a
prime. Having set up basic notions connected with groups of permutations in the first
paper and the earlier parts of the second, he carried these over to the abstract case:

Definition. All terms used in substitution groups, as subgroups, invariant sub-
groups, order, index, isomorphism, etc., we extend to all those groups, which we
call abstract groups. (Pierpont 1900-1901, p.48)

In the final pages of his paper, Pierpont outlined some of the basic results of the theory
of abstract groups, before returning to the study of polynomial equation with a proof
of the insolubility of the general quintic in radicals. In a list of references at the end
of the paper (‘for those who may wish to do collateral reading or to go deeper into
the subject’: Pierpont 1900-1901, p. 55), he cited Cayley (1854), Jordan (1872—1873),
Holder (1889) and Burnside (1897) as sources for his section (§59) on abstract groups.
Pierpont’s citation of the papers of Jordan and Holder was probably in connection with
the various elementary group-theoretic results that follow his definition. The former
is unlikely to have influenced Pierpont’s particular definition of a group, since no
definition is given there; the latter, on the other hand, contains a group definition that
looks at least a little like Pierpont’s:>3

The results developed in this part are valid for all groups that consist of a finite
number of operations. The kind of operations is irrelevant. Only the group prop-
erties that are summarised by the following are assumed:
1) Any two operations composed (multiplied) in a definite order result in a
uniquely determined operation that belongs to the same collection.
2) The associative law is valid for the composition of operations, although the
commutative law need not be fulfilled.
3) From each of the symbolic equations

AB=AC, BA=CA

33 Die in diesem Theil entwickelten Siitze gelten fiir alle Gruppen, die aus einer endlichen Anzahl von
Operationen bestehen. Die Art der Operationen ist dabei gleichgiiltig. Es wird nur die Gruppeneigenschaft
vorausgesetzt, welche in die folgenden Bestimmungen zusammengefasst werden kann:

1) Je zwei Operationen sollen in bestimmter Aufeinanderfolge zusammengesetzt (multiplicirt) eine ein-
deutig bestimmte Operation ergeben, welche gleichfalls derselben Gesammtheit angehort.

2) Fiir die Zusammensetzung der Operationen soll das associative Gesetz gelten, wihrend das commu-
tative nicht erfiillt zu sein braucht.
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containing the operations A, B, C, it can be concluded that
B=C.

A consequence of these provisions in connection with the finiteness of the num-
ber of operations is that a so-called identity operation J, and indeed only one,
is present, multiplication by which leaves all other operations unchanged, and
that for every operation A there can be found a uniquely determined inverse
operation A~ such that

AAT = A TA=J.

Certain superficial similarities between this last definition and that given by Pierpont
(the clarity over the commutative law), and between Burnside’s definition in Sect. 2.3
and that of Pierpont (use of subscripts) lead us to the speculation that Pierpont’s
notion of group might be a mélange of those of Burnside and Hélder.>* The reference
to Cayley does not appear to have any direct bearing on the content of Pierpont’s paper
(this is the only appearance of Cayley’s name in either of Pierpont’s articles): it may
simply be a token historical reference, possibly derived from Burnside.

Returning briefly to Pierpont’s bibliography, we find another item of interest listed
in his section on general sources, namely Weber (1895). Indeed, Pierpont should have
been intimately familiar with Weber’s textbook, having reviewed it for the American
Mathematical Society (AMS) not long before the publication of the first of his two
papers on Galois theory (Pierpont 1898).33 The thoroughness of his review, together

Footnote 33 continued
3) Aus jeder der beiden die Operationen A, B, C enthaltenden symbolischen Gleichungen
AB=AC, BA=CA

soll geschlossen werden konnen, dass

ist.

Eine Folge dieser Bestimmungen im Zusammenhang mit der Endlichkeit der Operationenzahl ist es, dass
eine sogenannte identische Operation J vorhanden ist, und zwar eine einzige, welche alle anderen bei
der Multiplication unverindert l4sst, und dass zu jeder Operation A eine eindeutig bestimmte umgekehrte
Operation A~ ! sich findet, so dass

AAT = A 1A=1

ist.” (Holder 1889, pp.28-29)

34 We note that although Holder gave no direct source for his notion of group, a footnote within the passage
quoted above directs the reader to ‘see also’ Dyck (1882) ‘[r]egarding the group definition’ (‘Hinsichtlich
der Gruppendefinition vergl. auch ...”: Holder 1889, p.29).

35 The review, dated December 1897, appeared in the February 1898 issue of the Bulletin of the American
Mathematical Society; the two Galois theory articles are dated, respectively, February and August 1900,
although it is not clear exactly when those particular issues of the Annals of Mathematics appeared in print.
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with his evident enthusiasm for its subject,>® suggests that Weber may have been a
further strong influence on Pierpont’s formulation of Galois theory, and on his treat-
ment of groups in particular.?’” Moreover, his reference in the review to the group
definitions of Weber’s papers may be indicative of a general familiarity within the
American mathematical community of the definitions in question:

The definition Weber gives for abstract groups is the familiar one employed in
his various papers in the Annalen and the Acta Mathematica and, indeed, much
that is in the first chapters [of the second volume] is taken from these mémoires.
(Pierpont 1898, p.213)

4.2 First steps into postulate analysis: the definitions of E. V. Huntington

In line with the comments at the beginning of Sect. 4, the first works on postulate
analysis concerned the axioms of geometry (see, for example, Moore 1902a); the first
published work on postulate analysis for algebra appears to have been a paper of
Huntington (1901-1902a),3® whose title ‘Simplified definition of a group’ gives us
a clear and immediate indication of its purpose. Indeed, Huntington (1901-1902a),
p-296) began:

Up to the present time no attempt seems to have been made to prove the indepen-
dence of the postulates employed to define a group, and as a matter of fact the
definition usually given contains several redundancies [here Huntington cited
Weber]. These redundancies are removed in the following note, the number of
necessary postulates being reduced to three, and the independence of these three
being established.

In the Introduction, we have already briefly noted the problem of assigning a sensible
meaning to the phrase ‘number of postulates’. This will be addressed below in the
work of Moore, so we sidestep it for the time being and consider the nature of Hunt-
ington’s investigations, where intuitive ideas as to what constitutes a postulate were at

play.

Foonote 35 continued

As a further piece of information regarding dating, we record the following footnote from the first page of
Pierpont (1899-1900): ‘The following pages consist of a reproduction, with slight alterations, of parts of
a course of lectures delivered in September 1896 at the Buffalo Colloquium held under the auspices of the
American Mathematical Society’.

36 Take, for example, the concluding paragraph of the review (Pierpont 1898, p.234): ‘We will close now
our review regretting its inadequacy to give but a faint idea of the merits of this great work. A classic from
the day of its publication, it is destined to a long and useful career, a monument of honor to its genial author’.

37 Indeed, many years later, Qystein Ore asserted that Pierpont’s lectures on Galois Theory were ‘obviously
inspired by Kronecker’s and Weber’s expositions’ (Ore 1939, p.481).

38 This paper was presented to a meeting of the AMS in New York on 22 February 1902 and published
later that same year. Indeed, it was one of three papers that Huntington presented at this AMS meeting;
the other two also concerned systems of postulates: ‘A complete set of postulates for the theory of absolute
continuous magnitude’ and ‘Complete sets of postulates for the theories of positive integral and positive
rational numbers’ (see Kasner 1902, pp.273-274).
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As one would expect from such a work on the foundations of mathematics, Hunt-
ington took great care over his fundamental concepts, going further in this respect that
any of the other authors we have seen so far. Thus, for example, at the beginning of
the paper he adopted a language that had not been available, for example, to Galois
or Cauchy by setting out the set-theoretic basis for what was to come (Huntington
1901-1902a, pp.296-297):

A class of objects is determined when any condition is given such that every
object in the universe must either satisfy or not satisfy the condition. Every object
which satisfies the condition is said to belong to the class. ...

A class thus defined is usually called, in mathematical parlance, an assemblage
(Menge, ensemble), every object which belongs to the class being called an
element of the assemblage.

A rule of combination in an assemblage is any rule or agreement by which, when
any two elements (whether the same or different) are given, in a definite order,
some object (which may or may not itself belong to the assemblage) is uniquely
determined.

When two different symbols x and y are used to represent the same object, we
indicate this fact by the notation x = y.

A footnote attached to the second parenthetic comment in the passage about the ‘rule
of combination’ directs the reader to Huntington’s lemma 10 (see below). We note
that the language used by Huntington was already quite comfortably ‘abstract’: we
have ‘elements’, for instance, rather than ‘operations’. His group definition follows in
a similar vein (Huntington 1901-1902a, p.297):

Any assemblage in which the rule of combination denoted by o satisfies the three
following postulates we shall call a group with respect to this rule of combination:
1. Given any two elements a and b, there is an element x such thata o x = b.
2. Given any two elements a and b, there is an element y such that y o a = b.
3. Ifa,b,c,aob,boc,andeither (a ob) ocorao (boc) are elements of the
assemblage, then

(@aob)oc=ao(boc).

Thus, Huntington defined his group using conditions (1 and 2) akin to Weber’s pos-
tulate 4 on the solvability of equations within the group. He went on to comment
(Huntington 1901-1902a, p.297):

The usual definition of a group, as given for example in Weber’s Algebra, ...
contains not only these three postulates, but also certain others, which we proceed
now to deduce as consequences of our postulates 1, 2, 3, thus establishing the
equivalence of the two definitions.

There then follows a sequence of ten lemmas in which Huntington proved the existence
of unique left and right identities in a group, the validity of the left and right cancellation
laws, and a closure property whose phrasing (and presence as a deduction from other
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assumptions) looks rather odd to anyone who has learnt that closure is an inherent
property of a binary operation:>°

10. Whatever elements a and b may be, aob is also an element of the assemblage;
that is, there is an element ¢ such thata o b = c.

Indeed, we might argue that in light of this last lemma, Huntington’s ‘rule of combi-
nation’ is not in fact a binary operation in the way in which we understand the term
today—or at least it is not introduced as such, namely as a mapping A x A — A,
where A denotes Huntington’s assemblage, although the above lemma means that this
is what it turns out to be.*’

With his lemmas established, Huntington was next able to justify the assertion
that his definition is equivalent to that given by Weber: Huntington’s postulates 1 and
2, combined with the presence of unique left and right identities, are equivalent to
Weber’s postulate 4, and Huntington’s postulate 3 to Weber’s postulate 2. The latter’s
postulate 1 is Huntington’s tenth lemma, as quoted above, whilst Weber’s postulate 3
is simply left and right cancellation, which Huntington had proved to be valid in his
system. ‘Hence’, Huntington concluded, ‘the two definitions are strictly equivalent’
(Huntington 1901-1902a, p.298). The extremely elementary examples of groups that
Huntington provided at this point (the integers under addition and the positive ratio-
nals under multiplication) remind us how new the abstract group concept still was.
Further elementary examples of non-groups served to demonstrate the independence
of Huntington’s three postulates, ‘by the method now commonly used in such cases’
(Huntington 1901-1902a, p.298), namely the construction of systems in which all
but one of the postulates hold.*! Huntington made no explicit reference here to prior
instances of this ‘commonly used’ method, although he described it in another paper
and cited its earlier use by both Peano and Hilbert (Huntington 1902a, p.278).

At the end of his paper, Huntington turned his attention briefly to the question
of the definition of a finite group, his initial conclusion being that, since any group
may be defined by his three postulates, a finite group is therefore definable by four,
the fourth being the assumption of finiteness.*> That the latter is independent of the
first three is easily shown. Huntington contrasted his set of four postulates with the

39 Huntington (1901-1902a, p. 298). It is perhaps of interest to reproduce Huntington’s proof of this lemma
(where we retain his numbering of equations: (1°), (2°), etc.). Using postulate 1, we take e such thataoe = a
(1°), and b’ such that b o b’ = e (2°). By postulate 2, we may take c such that c o b’ = a (3°). By postulate
1 again, we take 8 such that a o 8 = ¢ (4°), and B’ such that 8 o B/ = e (5°). It follows from (3°) and (4°)
that (@ o 8) ob’ = a and from (1°) and (5°) thata o (B 0 ') = a. By postulate 3, (a0 B) o B’ = (aoB)ob’.
Therefore, by left cancellation, 8/ = b’. Using this, (5°) becomes Bob’ = e, so that, by (2°), Bob’ = bob'.
Therefore, by right cancellation, 8 = b. It follows from (4°) that a o b = ¢, as required.

40 To return to the musings of footnote 5, we note that there is never any doubt that the result of applying
Huntington’s rule of combination to two elements from the assemblage exists (in some sense—the assem-
blage is implicitly assumed to be sitting inside some universal set)—the question, at least initially, is of
where that result lies.

41 For example, the positive integers under the operation a o b = a satisty 2 and 3, but not 1.

2 A point not remarked upon by Huntington is the fact that this fourth postulate is of a rather different
character from the preceding three. In modern language, it either takes Huntington’s system out of the class
of objects that are first-order definable, or else it embeds it in another theory (namely, set theory) where
finiteness is definable.
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definition using five postulates ‘usually given, as for example by Weber’ (Huntington
1901-1902a, p. 300), namely that via closure, left and right cancellation, associativity,
and finiteness; Huntington demonstrated that these five are also independent. The tone
of the final paragraphs of Huntington’s paper suggests that he was rather pleased to
have brought the number of required postulates down to four: but it had apparently
not occurred to him that whilst he had taken left and right cancellation as two separate
postulates, they might easily be combined into a single one, thus making the ‘usual’
definition of a finite group a four-postulate one (as indeed it was for Weber). This raises
again the problem of what should constitute a postulate: Huntington’s postulates are
mostly very compact affairs, consisting of simple statements, suggesting that this was
a deliberate choice on his part. Left cancellation, for example, is just such a simple
statement, whereas two-sided cancellation might easily be viewed as a compound
statement. However, this distinction is still rather imprecise, and even if Huntington
did believe that simple postulates were to be preferred, he made no explicit comment
to this effect.

Huntington’s ‘simplified” definition of a group was to spark a number of responses
from other mathematicians, but not before Huntington himself had provided yet
another definition in a further paper of 1902, presented to the AMS on 26 April
of that year, i.e., almost exactly two months after his similar presentation of his earlier
definition. Whereas the first definition seems to have been derived from Weber’s, the
second was inspired by Burnside’s:

The following note contains a definition of a group expressed in four indepen-
dent postulates, suggested by the definition given in W. Burnside’s Theory of
Groups of Finite Order (1897). The definition presented by the writer at the
February meeting contained three independent postulates, and the definition just
proposed by Professor Moore [see below] contains five independent postulates.
The comparison of these three definitions is therefore very striking. (Huntington
1901-1902b, pp. 388-389)

The definition then follows, without any further preamble (Huntington 1901-1902b,
p-389):

We consider here an assemblage or set of elements in which a rule of combination
denoted by o is so defined as to satisfy the following four postulates:
1. If aand b belong to the assemblage, then aob also belongs to the assemblage.
2. (aob)oc=ao (boc), whenever aob,boc,(aob)ocandao (boc)
belong to the assemblage.
Forevery two elements a and b there is an element a’ such that (aca’)ob = b.
4. Forevery two elements a and b there is an element a” such that bo (a” oa) =
b.

(O8]

We notice immediately that Huntington had abandoned his circuitous handling of
the closure of his rule of combination and now simply had this as a postulate. His
earlier postulates 1 and 2 had been remodelled as the new 3 and 4 with a view to
capturing information not only about identity elements, but also about inverses (this
presumably being what Burnside’s definition ‘suggested’). As Huntington noted, his
new postulates 1, 2 and 3 give rise to the old postulate 1, whilst the new 1, 2 and 4
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give the old 2; hence, the above does indeed define a group. We observe that these
postulates, not too different from the earlier ones,43 are still of the same ‘simple’
type that Huntington seemed to be favouring. He went on (Huntington 1901-1902b,
p-389):

If we wish to distinguish between finite and infinite groups we may add a fifth
postulate, either:

5a. The assemblage contains n elements, where n is a positiv [sic] integer; or
5b. The assemblage contains an infinitude of elements.

Huntington proceeded to demonstrate the independence of 1, 2, 3, 4 and 5b, and also
of 1,2, 3, 4 and 5a in the case where n > 2, before concluding with the observation
that his new postulates 3 and 4 might be replaced by left and right cancellation, but
only in the finite case.

4.3 A first response: E. H. Moore and his ‘three canons’

Huntington’s work set the tone for the subsequent postulate analysis of groups; his
style of listing the postulates, deducing simple consequences, noting equivalence to
previous definitions, and then proving independence, was one that was adopted by
subsequent authors in this area. As we have seen, Moore was one such author: the
last-cited paper by Huntington alluded to, but did not state, a five-postulate group
definition that Moore had ‘just proposed’. Indeed, in this instance, ‘just proposed’
may mean a matter of minutes earlier. As we have noted, Huntington presented his
paper ‘A second definition of a group’ to the AMS meeting of April 1902; the report
of this same meeting also contains a brief account of a talk given by Moore (then
president of the AMS), entitled ‘A definition of abstract groups’ (Cole 1902, p.373).
Moore subsequently wrote up this lecture for publication (the manuscript was received
by the AMS on 17 September 1902), and it appeared in print, under the same title, as
Moore (1902b), to which paper we now turn our attention.

As one might expect, Moore’s work followed on directly from that of Huntington;
his first paragraph reads:

Dr. E. V. HUNTINGTON has recently given two different definitions of abstract
groups by sets of respectively three and four independent postulates; these def-
initions were perhaps suggested by those given by WEBER and by BURNSIDE.
(Moore 1902b, p.485)

However, the immediately following paragraph provides a hint that Moore had in fact
been interested in these definitions for some time:

43 We note a further minor difference: the ‘or’ in his earlier version of associativity became ‘and’ here.
Whereas before, a, b, ¢, a o b and b o ¢, together with either of (a o b) o c or a o (b o ¢), were assumed
to belong to the set in question, now the assumption covered all of these elements (implicitly for a and b).
Huntington probably noticed that, in fact, the equality in the earlier version ensured (trivially) that (aob) oc
and a o (b o ¢) must both belong to the set, and so the phrasing could be simplified. We will see in Sect. 4.3
that Moore seized upon the ‘or’ of Huntington’s earlier associativity condition as a means of breaking the
postulate down into simpler parts.
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Some years ago Professor J. PIERPONT and I independently hit on a type of
definition very desirable from the grouptheoretic [sic] standpoint. (Moore 1902b,
p.485)

Moore gave no reference here to his own work, so we may assume that it was never pub-
lished. Quite what Moore meant by the phrase ‘very desirable from the grouptheoretic
standpoint’ is open to debate, but I would suggest that this is a reference to the fact
that Pierpont’s definition could be applied both to finite and to infinite groups. The
appearance of the compound word ‘grouptheoretic’ also opens up some speculation
as to the origins of Moore’s investigations: does it point to a German influence (cf.
the German ‘gruppentheoretisch’), or is it simply a typo? Its appearance later in the
paper, more than once, would seem to be evidence against the latter.

I'have already indicated that the problem of what should constitute a postulate is one
that Moore attempted to tackle, and his efforts in this direction began with the paper
under consideration: in the first of the passages quoted above, a footnote is attached
to the word ‘three’, which reads:

In fact, four, for the third postulate consists of two parts, each of which is used
in the development of the theory. (Moore 1902b, p.485)

Recall that in Huntington’s three-postulate definition of a group, the third is a form of
the associative law, in which ‘either (@ ob) oc ora o (boc)’ is an element of the set in
question (Huntington not having postulated closure); it appears that Moore advocated
breaking this postulate into two: one part each for when (a ob) oc ora o (boc) belongs
to the set.** Moore elaborated on the issue of the form of postulates later in the paper,
but, in most other respects, he followed the pattern already laid down by Huntington:
formulation of definition, proof of independence, relation to other definitions. Moore’s
first definition was one by five postulates, but in the final parts of the paper he gave a
further definition in terms of six:

... T am led to a slightly modified definition ... by means of six postulates,
which, even from the standpoint of abstract logic, seems to me simpler than
either of those of Dr. HUNTINGTON. (Moore 1902b, p.485)

Moore’s comments on this latter definition will bring us back to the discussions of the
Introduction concerning a ‘best possible’ group definition.

Moore introduced his five-postulate definition as follows (Moore 1902b, pp.485—
486):

We have for consideration a set of elements and a multiplication-table or rule
of combination whereby to every two elements a, b taken in the definite order
a, b there corresponds a definite so-called product, in notation a o b, or, when
without confusion, more simply, ab; this product may or may not be an element
of the set. This set of elements, as related by the multiplication-table, constitutes
a group in case the following postulates are fulfilled, viz.,

(1) For every two elements a, b the product ab is an element of the set.

44 See the comments in Moore (1902b, p- 485, footnote §); see also footnote 43 of the present paper.
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(2) The associative law is fulfilled, that is, (ab)c = a(bc), for every three
elements a, b, ¢ such that the products ab, bc, (ab)c and a(bc) are elements
of the set.

(3;7) There exists a left-hand identity element, that is, an element #; such that, for
every element a, ija = a.

(3;) There exists a right-hand identity element, that is, an element i, such that,
for every element a, ai, = a.

(4;) If there exists a right-hand identity element, then for some such element i,
it is true that for every element a there exists a left-hand reciprocal element,
that is, an element ¢, such that ¢ja = i,.

To these five postulates of definition of abstract groups in general the addition

of a sixth postulate (5.) or (5g) serves to discriminate between the groups of the

various finite orders and those of infinite order: N = n, N = o0; viz.:

(5¢) The number of elements is a certain finite integer n.

or

(5p) The set contains an infinitude of elements.

Note that the fact that Moore’s ab ‘may or may not be an element of the set’ means that
his operation is not a priori a binary operation in our sense, although his postulate (1)
takes care of this. Notice also the slightly peculiar phrasing of his postulate (2): the
preceding postulate ensures that ab, bc, (ab)c and a(bc) are all elements of the set,
so the ‘such that’ seems misplaced.*> To compare the above with our Definition 1, we
see that the only thing missing from Moore’s definition is the demand for left inverses
(with respect to a right identity, for symmetry with (4;))—but, as we know, this follows
from the conditions given. It is also easy to show that in fact {; and i, are uniquely
determined and that i; = i,; these results are amongst the ‘auxiliary theorems’ that
Moore proved in his following section. Other such theorems include (Moore 1902b,
p.487):

(9, 9”) For every two elements a, b there exists one (theorem 9’) and only one
(theorem 9”) element x such that ax = b.
(10, 10”) For every two elements a, b there exists one and only one element y
such that ya = b.
(117, 11”) For every two element a, b there exists an element z and there exists an
element w such that (az)b = b, b(wa) = b.

Note that, separated from (9”), (9”) corresponds to left cancellation; similarly, (10”)
is right cancellation.

With the above postulates appropriately labelled, Moore was able to embark upon
the most systematic comparison of group definitions that we have seen so far; to begin
with, he gave labels to the following systems of postulates (Moore 1902b, p.487):

45 Another very minor peculiarity of the definition lies in the postulates (5¢ ) and (5): Moore distinguished
between different finite orders, but not between different infinite orders. However, although the distinction
between different finite orders became important later on when Moore came to enumerate the number of
steps needed to verify different sets of postulates, this was not something that he could extend to the infinite
case, so there was no need for him to distinguish between different infinite orders.
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(W) :(1,2,9,97, 10, 107);
W2)n=n : (1,2, 97, 10", Sa);
(H)  :(2.9.10):

(Hp) 2 (1,2,11,117),

where (2) is essentially the same as Huntington’s original associativity postulate
(Moore 1902b, p.485):

(2") For every three elements a, b, ¢ such that the products ab, bc and either
(ab)c or a(bc) are elements of the set the associative law is fulfilled.

It is not too difficult to see that (W) is Weber’s 1896 textbook definition of a group,
whilst (W5) is its slight modification in the finite case; (H;) and (H>) are the two defini-
tions given by Huntington. As Moore remarked, Huntington had previously shown the
equivalence (in Moore’s notation) of (W1 Hy; H>) in general, and of (Wa; Hy; H2)N=n
in the finite case; he had also shown the independence of the postulates in all
instances.

To the above list of group definitions, Moore next added the following:

(WD) = (1,2,9,10;

(M) = (1,2,31,3,, 4);
(M,) : (1725 3[73}”4154}”);
(P) :(1,2,3,3%4,5q),

where (3) postulates the existence of a two-sided identity, (3*) its uniqueness and (4)
asserts the existence of two-sided inverses with respect to that identity; these last three
labels appear only in a footnote by way of enabling Moore to write down Pierpont’s
(and his own earlier) definition in the same form as the others, namely (P). Definition
(M) is of course the definition with which Moore began his 1902 paper: definition
(M) with the redundant postulate (4,) removed.

Moore provided some commentary on these various definitions; for example, he
claimed that

... (Wl’ ) is from the grouptheoretic [sic] standpoint a more convenient modifi-
cation of ... (Wy) than is (Hp). (Moore 1902b, p.487)

In order to assess this assertion, we must first unpack the definitions: Weber’s original
(Wy) is via closure, associativity, and left and right cancellation, whilst Huntington’s
reformulation (Hp) involves a slightly modified associativity, and solvability in the
group of equations ax = b and ya = b; Moore’s alternative reformulation (W)
calls upon closure, associativity and solvability of equations and thus eliminates the
peculiarity that surrounds closure in (H;). Indeed, to return to the discussion in the
Introduction, Huntington’s definition (H1) can perhaps be viewed as an example of an
unhelpful modification of the group definition: we must do extra (unedifying?) work
to prove closure before we can proceed to using the group concept in a deeper manner;
to pick up on another point from the Introduction, the dropping of closure as an explicit
axiom (without having built it into the definition of the binary operation instead) might
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be said to be taking us ‘too far away’ from groups of permutations.*® A question of
aesthetics also lies behind this issue: do we prefer a pared-down definition such as (H1),
or do we baulk at the slightly fiddly postulate (2")? The restoration of closure as an
explicit postulate in (W7) suggests that a reasonable interpretation of Moore’s ‘. . . from
a grouptheoretic standpoint . . ." in the above quotation would be that he took the latter
view. Indeed, Moore’s choice in this regard may have been informed by pedagogical
considerations similar to those noted in the Introduction; there is an indication within
the paper that Moore had been experimenting with different definitions in his teaching:
he tells us (Moore 1902b, p.488) that in his lectures of Autumn 1900, he had employed
the definition (M), whereas a little earlier, in January 1897, he had defined a group
by the system of postulates (1, 2, 3, 4), that is to say, our Definition 1.

The switch from (M") to (1, 2, 3, 4) might be explained by Moore’s general approach
to the ‘proper’ form of postulates. We have already noted his view that Huntington’s
associativity postulate is a compound statement; he made the same observation about
his own (2'): ‘[t]his is a double statement” (Moore 1902b, p. 485, footnote §). Following
this same principle, the postulates (3) and (4) might therefore be viewed as ‘double
statements’ which it is preferable to break down into simpler statements like (3;),
(3;), (4)) and (4,). Following his discussion of the interrelations between the above
definitions, Moore acknowledged the inherent difficulties involved in making such
judgements:

From the standpoint of abstract logic the canons of relative simplicity of equiv-
alent definitions by sets of postulates are not well established. Perhaps the only
established canon is this, that a definition is simplified by the omission of a group
of postulates logically deducible from the remaining postulates. One is tempted
to add this, that every postulate of a desirably simple definition shall be a simple
statement, that is, a single and not a multiple statement. The difficulty here would
arise in the precise formulation of the terms of this second canon, especially in
view of the fact that the same statement may be made in various forms. At least,
a definition is simplified by the substitution, for a postulate consisting of an
aggregate of independent statements, of those statements as distinct postulates.
(Moore 1902b, pp.488-489)

Thus, Moore seems to have justified his own choices of postulates.*’” He went on
to cast doubt on the benefits of adopting a condensed definition such as (Hj), using
language that again fits well with the comments made in the Introduction:

Further one may add as a third canon this, that of two definitions one with the
smaller number of postulates is the simpler. As to this canon the case now in
question seems to show that the definition with the larger number of independent
postulates may reveal more immediately the fundamental properties of the object
of definition. It is, of course, evident that the task of proving the independence

46 Indeed, see the comment in Sect. 3 on closure as ‘the group property’.

47 Around the same time, Moore included further musings on the preferred nature of postulates in his
presidential address to the AMS (Moore 1903, pp.403—405).
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of the postulates presumably increases with the number of postulates. (Moore
1902b, p.489)

Moore proceeded to apply his ‘three canons’ to the definitions (W7), (H1), (H>)
and (M). With regard to the first canon, the last three definitions are independent, this
having been shown for (H;) and (H) by Huntington, and for (M) by Moore in the
final section of his 1902 paper; Moore noted, however, that the independence of (W]’ )
remained open. In connection with simplicity of postulates, Moore reasserted that (2)
breaks down into two parts, which he denoted (27) and (2}), giving rise to the new
system of postulates

(H) :(2),25,9,10),

whose independence is easily established. This canon of simplicity, however, rather
complicates matters for the other definitions, for Moore insisted that postulate (1) must
break down into an ‘aggregate of statements’ (Moore 1902b, p.489)

(1)a.» The product ab of the two elements a, b is an element of the set.

With the exception of (3;), (3,) and (4;), all other postulates in (Wl’), (Hl’) must break
down in a similar manner, because, to employ language not used by Moore, they are
simple universally quantified statements. The intricacies of balancing Moore’s three
canons are illustrated by his observation that if we break down (1) into (1), 5, and so
on, then we lose independence: for example, for any ¢, postulate (9").4..» depends on
(1), (2) and (9'),p. For a nontrivial group, we also go in dramatic fashion against the
third canon: that a smaller number of postulates is to be preferred—but, as the above
quotation suggests, this is not a canon that Moore was fully committed to upholding.

The three postulates (3;), (3,) and (4;) that do not break down in the indicated
manner were deemed by Moore to be of ‘greater intrinsic complexity’ (Moore 1902b,
p-489), and so he sought to replace them by postulates that he considered simpler
(Moore 1902b, pp. 489—490):48

(3”) There exists at least one idempotent element, that is, an element i identical
with its square, ii =i.
(3/) Every idempotent element is a left-hand identity element; that is, for every
element a and every idempotent element i, ia = a.
(3!) Every idempotent element is a right-hand identity element.
(4)) For every element a with respect to every idempotent element i there exists
a left-hand reciprocal element, that is, an element al(l) such that al(')a =1.
Together, (3”), (3/') and (3]) are equivalent to (3;) and (3,), whilst (4;) may be replaced
by (4/) within this framework. Moore was thus able to write down yet another new
definition of a group:

(M//) . (1’ 2, 3//’ 3// 3// 4;/)’

12 9r>

48 Curiously, Moore had postulates labelled (3) and (3”), etc., but no (3’), etc.—perhaps the latter had
appeared in an earlier draft of the paper but was deleted without the numbering being changed?
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which is the six-postulate definition advertised at the beginning of his paper. Indeed,
Moore’s preference for his new definition (M”) is clear: in spite of the loss of inde-
pendence through the decomposition of universally quantified postulates in the above
manner, the postulates employed in (M") are of the simple kind that Moore preferred.
He asserted, moreover, that (3)), (3) and (4;) may now also be decomposed in the
desired manner, although it is difficult to see how, and he did not elaborate. The final
justification of definition (M"") came, however, when Moore applied a modified version
of his third canon to the various definitions under consideration: rather than seeking
to minimise the number of postulates involved in a definition, he sought instead to
minimise the work required to verify each set of postulates:

Finally, it seems worth while in a fairly definite way to apply the third canon of
comparison to the four definitions. As a unit-operation of the determination that a
given set of N elements with a given multiplication-table constitutes a group we
consider the reading from the table of a single entry ab, with necessary checking.
(Moore 1902b, p.491)

Thus, for example, to check the closure of a given system of N elements requires N>
operations; the verification of associativity requires 4N3 operations.*” The number
of operations required to check some of the other postulates falls into a range, rather
than being a definite figure: (3”) might require only one operation, if the element that
we choose to start with happens to be idempotent, or, at the other extreme, it might
require N operations. Proceeding in this way, Moore found a range for the number of
required operations for each of the considered definitions:

at least at most
(W)) 4N3+2N? 6N3
(H)) 4N3+2N? 6N3
(H») 4N3 +2N? 6N3
(M") 4N3+3N —2 4N34+ NZ2+4+2N -2

With regard to the infinite case, Moore made the slightly puzzling statement:

Here it is understood that N, N2, N3, and the symbols of addition and multipli-
cation have a rather definite meaning, even if N = oo, in connection with the
notion of reading from the multiplication-table. (Moore 1902b, p.491)

However, this last comment is to be interpreted, what was clear to Moore from his
table in the finite case was that his (M) would be the easiest definition to verify:

the definition (M”) seems to me to be an advantageous one both from the
grouptheoretic [sic] and the logical standpoints. (Moore 1902b, p.491)

Indeed, although we might question certain elements of Moore’s presentation (such
as the above proble