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Abstract Many software model checkers only detect counterexamples with deep loops after
exploring numerous spurious and increasingly longer counterexamples. We propose a tech-
nique that aims at eliminating this weakness by constructing auxiliary paths that represent
the effect of a range of loop iterations. Unlike acceleration, which captures the exact effect of
arbitrarily many loop iterations, these auxiliary paths may under-approximate the behaviour
of the loops. In return, the approximation is sound with respect to the bit-vector semantics of
programs. Our approach supports arbitrary conditions and assignments to arrays in the loop
body, but may as a result introduce quantified conditionals. To reduce the resulting perfor-
mance penalty, we present two quantifier elimination techniques specially geared towards our
application. Loop under-approximation can be combined with a broad range of verification
techniques. We paired our techniques with lazy abstraction and bounded model checking,
and evaluated the resulting tool on a number of buffer overflow benchmarks, demonstrating
its ability to efficiently detect deep counterexamples in C programs that manipulate arrays.

Keywords Model checking · Loop acceleration · Underapproximation · Counterexamples

1 Introduction

The generation of diagnostic counterexamples is a key feature of model checking. Coun-
terexamples serve as witness for the refutation of a property, and are an invaluable aid to the
engineer for understanding and repairing the fault.

Counterexamples are particularly important in software model checking, as bugs in soft-
ware frequently require thousands of transitions to be executed, and are thus difficult to
reproduce without the help of an explicit error trace. Existing software model checkers, how-
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ever, fail to scale when analysing programs with bugs that involve many iterations of a loop.
The primary reason for the inability of many existing tools to discover such “deep” bugs is
that exploration is performed in a breadth-first fashion: the detection of an unsafe execution
traversing a loop involves the repeated refutation of increasingly longer spurious counterex-
amples. The analyser first considers a potential error trace with one loop iteration, only to
discover that this trace is infeasible. As consequence, the analyser will increase the search
depth, usually by considering one further loop iteration. In practice, the computational effort
required to discover an assertion violation thus grows exponentially with the depth of the bug.

Notably, the problem is not limited to procedures based on abstraction, such as predicate
abstraction or abstractionwith interpolants. Boundedmodel checking (BMC) is optimised for
discovering bugs up to a given depth k, but the computational cost grows exponentially in k.

The contribution of this paper is a new technique that enables scalable detection of deep
bugs. We transform the program by adding a new, auxiliary path to loops that summarises the
effect of a parametric number of iterations of the loop. Similar to acceleration, which captures
the exact effect of arbitrarily many iterations of an integer relation by computing its reflexive
transitive closure in one step [4,8,11], we construct a summary of the behaviour of the loop.
By symbolically bounding the number of iterations, we obtain an under-approximationwhich
is sound with respect to the bit-vector semantics of programs. Thus, we avoid false alarms
that might be triggered by modeling variables as integers.

In contrast to related work, our technique supports assignments to arrays and arbitrary
conditional branching by computing quantified conditionals. As the computational cost of
analysing programs with quantifiers is high, we introduce two novel techniques for sum-
marising certain conditionals without quantifiers. The key insight is that many conditionals
in programs (e.g., loop exit conditions such as i ≤ 100 or even i �= 100) exhibit a certain
monotonicity property that allows us to drop quantifiers.

Our approximation can be combined soundly with a broad range of verification engines,
including predicate abstraction, lazy abstraction with interpolation [19], and bounded soft-
ware model checking [5]. To demonstrate this versatility, we combined our technique with
lazy abstraction and the Cbmc [5] model checker. We evaluated the resulting tool on a large
suite of benchmarks known to contain deep paths, demonstrating our ability to efficiently
detect deep counterexamples in C programs that manipulate arrays.

2 Outline

2.1 Notation and preliminaries

We restrict our presentation to a simple imperative language comprising assignments,
assumptions, and assertions. A program is a control flow graph 〈V, E, λ〉, where V and
E are sets of vertices and edges, respectively, and λ is a labelling function mapping vertices
to statements. Procedure calls are in-lined and omitted in our presentation. The behaviour
of a program is defined by the paths in the control flow graph (CFG). A path π of length m
is a sequence of contiguous edges e1 e2 . . . em (ei ∈ E , 1 ≤ i ≤ m). Abusing our notation,
we use the corresponding sequence of statements λ(e1); λ(e1); . . . λ(em) to represent paths
(where ; denotes the non-commutative path concatenation operator). We use ε to denote the
path of length 0 and inductively define πn as π0 = ε and πn+1 = πn;π (for n ≥ 0). In
accordance with [20], π1

�
π2 represents the non-deterministic choice between two paths,

i.e.,

π1

π2 . The commutative operator
�

is extended to sets of paths in the usual manner.
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Table 1 Predicate transformers for simple program statements and paths

Path Strongest postcondition Weakest liberal precondition
π sp(π, P) wlp (π, Q)

ε / skip P Q

x:=e ∃�x . (x = e[x/�x]) ∧ P[x/�x] Q[x/e]
x:=* ∃�x, v . (x = v) ∧ P[x/�x] ∀v . Q[x/v]
[R] P ∧ R R ⇒ Q

assert(R) P ∧ R R ⇒ Q

π1 ;π2 sp(π2, sp(π1, P)) wlp (π1, wlp (π2, Q))

π1
�

π2 sp(π1, P) ∨ sp(π2, P) wlp (π1, Q) ∧ wlp (π2, Q)

Q[x/e] denotes that all free occurrences of x in Q are replaced with the expression e

We use first-order logic (defined as usual) with background theories commonly used in
software verification (such as arithmetic, bit-vectors, arrays and uninterpreted functions) to
represent program expressions and predicates. T (F) represents the predicate that is always
true (false). We use * to indicate non-deterministic values. The semantics for statements
and paths is determined by the predicate transformers in Table 1 (see [20]). A Hoare triple
{P} π {Q} comprises a pre-condition P , a pathπ , and a post-condition Q such that sp(π, P)

implies Q. Given a set X = {x1, . . . ,xk} of k variables, we introduce corresponding sets
�X = {�x1, . . . ,

�xk} and X′ = {x′
1, . . . ,x

′
k} of primed variables to refer to variables in prior

and subsequent time-frames, respectively (where the term time-frame refers to an instance of
π inπn).We useX〈i〉 = {x〈i〉

1 , . . . ,x〈i〉
k } to refer to the variables in a specific time-frame i . The

transition relation of π is the predicate ¬wlp
(
π,

∨k
i=1 xi �= x′

i

)
[20] and relates variables

of two time frames (for example, for k = 2 and the path π = [x1 < 0]; x1 = x2 + 1 we
obtain (x1 < 0) ∧ (x′

1 = x2 + 1) ∧ (x ′
2 = x2)).

2.2 A motivating example

A common characteristic of many contemporary symbolic software model checking
techniques (such as counterexample-guided abstraction refinement with predicate abstrac-
tion [1,10], lazy abstraction with interpolants [19], and bounded model checking [5]) is that
the computational effort required to discover an assertion violation may increase exponen-
tially with the length of the corresponding counterexample path (c.f. [16]). In particular,
the detection of assertion violations that require a large number of loop iterations results in
the enumeration of increasingly longer spurious counterexamples traversing that loop. This
problem is illustrated by the following example.

Example 1 Figure 1 shows a program fragment derived from code permitting a buffer
overflow (detected by the assertion) to occur in the nth iteration of the loop if i reaches
(BUFLEN− 1) and the branch [ch = ′ ′] is taken in the (n − 1)th iteration. The verification
techniques mentioned above explore the paths in order of increasing length. The shortest
path that reaches the assertion does not violate it, as

sp((i := 0; [i �= BUFLEN}];ch := ∗; [ch �= ′ ′]),T) ⇒ (i ≤ BUFLEN) .

In a predicate abstraction or lazy abstraction framework, this path represents the first in
a series of spurious counterexamples of increasing length. Let π denote the path empha-
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u

v

i := 0

[i = BUFLEN]

ch := *

[ch = ]

[ch = ]

i := i+1

ch := *

assert(i ≤ BUFLEN)

i := i+1

[i = BUFLEN]

n := *

[i+(n − 1) < BUFLEN]

i := i+n

Fig. 1 CFG with path π (bold) and approximated path
�
π (dashed)

sised in Fig. 1, which traverses the loop once. The verification tool will generate a family of
spurious counterexamples with the prefixes i := 0;πn (where 0 < n ≤ BUFLEN

2 ) before it
detects a path long enough to violate the assertion. Each of these paths triggers a computa-
tionally expensive refinement cycle. Similarly, a bounded model checker will fail to detect a
counterexample unless the loop bound is increased to BUFLEN

2 + 1.

The iterative exploration of increasingly deeper loops primarily delays the detection of
assertion violations (c.f. [16]), but can also result in a diverging series of interpolants and
predicates if the program is safe (see [12]).

2.3 Approximating paths with loops

We propose a technique that aims at avoiding the enumeration of paths with an insufficient
number of loop iterations. Our approach is based on the insight that the refutation of spurious
counterexamples containing a sub-path of the form πn is futile if there exists an n large
enough to permit an assertion violation. We add an auxiliary path that bypasses the original
loop body and represents the effect of πn for a range of n (detailed later in the paper). Our
approach comprises the following steps:

1. We sensitise an existing tool to detect paths π that repeatedly traverse the loop body B
(as illustrated in the left half of Fig. 2). We emphasise that π may span more than one
iteration of the loop, and that the branches of B taken by π in different iterations may
vary.

2. We construct a path
�
π whose behaviour under-approximates

�{πn | n ≥ 0}. This
construction does not correspond to acceleration in a strict sense, since

�
π (as an under-

approximation) does not necessarily represent an arbitrary number of loop iterations.

Section 3 describes techniques to derive
�
π .
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while (P) {
B;

}

u

v

[¬P ]

π

B

Detect path π that repeatedly
traverses the loop body B

while (P) {
if(*) {

π ;
} else {

B;
}

}

u

v

[¬P ]

πB

Augment loop body with a branch
containing the approximation π

Fig. 2 Approximating the natural loop with head u and back-edge v → u. Path π is a path traversing the
body B at least once, and may take different branches in B in subsequent iterations

3. By construction, the assumptions in
�
π may contain universal quantifiers ranging over

an auxiliary variable which encodes the number of loop iterations. In Sect. 4, we discuss
two cases in which (some of) these quantifiers can be eliminated, namely (a) if the
characteristic function of the predicate¬wlp (πn,F) ismonotonic in the number of loop
iterations n, or (b) if πn modifies an array and the indices of the modified array elements
can be characterised by means of a quantifier-free predicate. We show that in certain
cases condition (a) can be met by splitting π into several separate paths.

4. We augment the control flow graph with an additional branch of the loop containing
�
π

(Fig. 2, right). Section 5 demonstrates empirically how this program transformation can
accelerate the detection of bugs that require a large number of loop iterations.

The following example demonstrates how our technique accelerates the detection of the
buffer overflow of Example 1.

Example 2 Assume that the verification tool encounters the node u in Fig. 1 a second time
during the exploration of a path (u is the head of a natural loop with back-edge v → u).
We conclude that there exists a family of (sub-)paths πn induced by the number n of loop
iterations. The repeated application of the strongest post-condition to the parametrised path
πn for an increasing n gives rise to a recurrence equation i〈n〉 = i〈n−1〉 + 1 (for clarity, we
work on a sliced path omitting statements referring to ch):

sp(π1,T) = ∃i〈0〉 . (i〈0〉 < BUFLEN) ∧ (i = i〈0〉 + 1)
sp(π2,T) = ∃i〈0〉,i〈1〉 . (i〈0〉 < BUFLEN) ∧ (i〈1〉 < BUFLEN)∧

(i〈1〉 = i〈0〉 + 1) ∧ (i = i〈1〉 + 1)
...

sp(πn,T) = ∃i〈0〉 . . .i〈n−1〉 .
(∧n−1

j=0(i
〈 j〉 < BUFLEN) ∧ (i〈 j+1〉 = i〈 j〉 + 1)

)

where i〈n〉 in the last line represents i after the execution of πn . This recurrence equation
can be put into its equivalent closed form i〈n〉 = i〈0〉 + n. By assigning n a (positive)
non-deterministic value, we obtain the approximation (which happens to be exact in this
case):
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�
π = n := ∗; [∀ j ∈ [0, n) .i + j < BUFLEN];i := i + n.

Let us ignore arithmetic over- or under-flow for the time being (this topic is addressed in
Sect. 3.4). We can then observe the following: if the predicate i + j < BUFLEN is true for
j = n − 1, then it must be true for any j < n − 1, i.e., the characteristic function of the
predicate is monotonic in its parameter j . It is therefore possible to eliminate the universal

quantifier and replace the assumption in
�
π with (i+ (n − 1) < BUFLEN). The dashed path

in Fig. 1 illustrates the corresponding modification of the original program. The resulting
transformed program permits the violation of the assertion in the original loop body after a

single iteration of
�
π (corresponding to BUFLEN-1 iterations of π).

The following presents techniques to compute the under-approximation
�
π .

3 Under-approximation techniques

This section covers techniques to compute under-approximations
�
π of

�{πn | n ≥ 0} such
that

�
π is a condensation of the CFG fragment to the right. Formally, we only require that

sp(
�
π , P) ⇒ ∃n ∈ N . sp(πn, P) for all P .

u v

.

.

.

π
π;π

π;π;π

πn

The construction of
�
π has two aspects. Firstly, we need to make sure that all variables

modified in
�
π are assigned values consistent with πn for a non-deterministic choice of n.

Secondly,
�
π must only allow choices of n for which ¬wlp (πn,F) is satisfiable, i.e., the

corresponding path πn must be feasible.
Our approximation technique is based on the observation that the sequence of assignments

in πn to a variable x ∈ X corresponds to a recurrence equation (c.f. Example 2). The goal is to
derive an equivalent closed form x := fx(X, n). While there is a range of techniques to solve
recurrence equations, we argue that it is sufficient to consider closed-form solutions that have
the form of low-degree polynomials. The underlying argument is that a super-polynomial
growth of variable values typically leads to an arithmetic overflow after a small number of
iterations, which can be detected at low depth using conventional techniques.

The following sub-section focuses on deriving closed forms from a sequence of assign-
ments to scalar integer variables, leaving conditionals aside. Section 3.2 covers assignments
to arrays. Conditionals and path feasibility are addressed in Sect. 3.3. Section 3.4 addresses
bit-vector semantics and arithmetic overflow.

3.1 Computing closed forms of assignments

3.1.1 Syntactic matching

A simple technique to derive closed forms is to check whether the given recurrence equation
matches a pre-determined format. In our work on loop detection for predicate abstraction [16,
17], we apply the following scheme:

x〈0〉 = α, x〈n〉 = x〈n−1〉 + β + γ · n � x〈n〉 = α + βn + γ
n · (n + 1)

2
, (1)
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where n > 0 and α, β, and γ are numeric constants or loop-invariant symbolic expressions
and x is the variant. This technique is computationally cheap and sufficient to construct the
closed form i〈n〉 = i〈0〉 + n of the recurrence equation i〈n〉 = i〈n−1〉 + 1 derived from the
assignment i := i + 1 in Example 2.

3.1.2 Constraint-based acceleration

The disadvantage of a syntax-based approach is that it is limited to assignments following a
simple pattern. Moreover, the technique is contingent on the syntax of the program fragment
and may therefore fail even if there exists an appropriate polynomial representing the given
assignments. In this section, we present an alternative technique that relies on a constraint
solver to identify the coefficients of the polynomial fx.

Let X be the set {x1, . . . ,xk} of variables in π . (In the following, we omit the braces {} if
clear from the context.) As previously, we start with the assumption that for each variable x
modified in π , there is a low-degree polynomial in n

fx(X
〈0〉, n)

def=
k∑

i=1

αi · x〈0〉
i +

(
k∑

i=1

α(k+i) · x〈0〉
i + α(2·k+1)

)
· n + α(2·k+2) · n2 (2)

over the initial variables x〈0〉
1 , . . . ,x〈0〉

k which accurately represents the value assigned to x
in πn (for n ≥ 1). In other words, for each variable x ∈ Xmodified in π , we assume that the
following Hoare triple is valid:

{
k∧

i=1

�xi = xi

}
πn {

x = fx(
�x1, . . . ,

�xk, n)
}

(3)

For each x ∈ {x1, . . . ,xk} we can generate 2 · k + 2 distinct assignments to x〈0〉
1 , . . . ,x〈0〉

k ,
and n in (2) which determine a system of linearly independent equations over αi , 0 <

i ≤ 2 · k + 2. If a solution to this system of equations exists, it uniquely determines the
parameters α1, . . . , α2·k+2 of the polynomial fx for x. We will now examine the details of
this construction and prove that it allows us to generate polynomial closed forms.

Lemma 1 A set of vectors X = {x1, . . . , xn} in vector space V is linearly independent if a
projection of X onto a subspace W is linearly independent.

Proof Let Y = {y1, . . . , ym} be the projection of X onto W . Assume for contradiction that
X is linearly dependent, then there is a set of scalars a1, . . . , an such that

∑
i aixi = 0.

But when we project onto W we have
∑

i aiyi = 0, contradicting the assumption that Y is
linearly independent. ��
Theorem 1 We can uniquely determine the coefficients for a polynomial over k variables by
evaluating the loop at 2k + 2 points with n ≤ 2.

Proof Our polynomial is of the form

k∑
i=1

αi · xi +
k∑

i=1

α(k+i) · xi · n + α(2·k+1) · n + α(2·k+2) · n2

There are 2 · k + 2 undetermined coefficients αi (1 ≤ i ≤ 2k + 2) that we need to find.
We need to generate a system of 2k + 2 linearly independent equations to uniquely fix these
coefficients. This is equivalent to finding a set of 2k + 2 vectors

123



82 Form Methods Syst Des (2015) 47:75–92

(x(i,1), . . . , x(i,k), ni ) where 1 ≤ i ≤ 2 · k + 2

such that the set
{
(x(i,1), . . . , x(i,k), x(i,1) · n, . . . , x(i,k) · n, ni , n

2
i ) | 1 ≤ i ≤ 2 · k + 1

}

is linearly independent. We generate this set inductively.

Basis For k = 1, the set generated by

(x(1,1) = 1, n1 = 0)
(0, 1)
(1, 1)
(1, 2)

is

(x(1,1) = 1, x(1,1) · n = 0, n1 = 0, n21 = 0)
(0, 0, 1, 1)
(1, 1, 1, 1)
(1, 2, 2, 4)

which is linearly independent.

Induction Assume we have a linearly independent set of 2 · k + 2 equations for k variables.
We can extend the vectors by setting xk+1 = 0 in the vectors with n = 0 and n = 1, and by
setting xk+1 = 1 in the vector with n = 2. By Lemma 1 this maintains linear independence.

Subsequently, we add two new vectors generated by

(n(2·k+3) = 0, x(2·k+3,k+1) = 1, x2·k+3, j �=k+1 = 0) and
(n(2·k+4) = 1, x(2·k+4,k+1) = 1, x(2·k+4, j �=k+1) = 0) .

The resulting 2 · k + 4 vectors are still linearly independent, which can be seen by projecting
onto the space (xk+1, xk+1 · n, n, n2)—the only way to generate the 0 vector is by taking
combinations of vectors all of which have xk+1 = 0. But that set is a subset of the 2 · k + 2
equations we started with, which are linearly independent, and so the extended set is also
linearly independent by Lemma 1. So we have 2 ·k+4 = 2 · (k+1)+2 linearly independent
vectors and the induction is complete. ��

In particular, the satisfiability of the encoding from which we derive the assignments
guarantees that (3) holds for 0 ≤ n ≤ 2. For larger values of n, we check the validity of (3)
with respect to each fx by means of induction. The validity of (3) follows (by induction over
the length of the path πn) from the validity of the base case established above, the formula
(4) given below (which can be easily checked using a model checker or a constraint solver),
and Hoare’s rule of composition:

{
k∧

i=1

(�xi = xi
) ∧ x = fx(

�x1, . . . ,
�xk, n)

}
π

{
x = fx(

�x1, . . . ,
�xk, n + 1)

}
(4)

If for one or more x ∈ {x1, . . . ,xk} our technique fails to find valid parameters

α1, . . . , α2·k+2, or the validity check for fx fails, we do not construct
�
π .

Remark The construction of under-approximations is not limited to the two techniques dis-
cussed above and can be based on other (and potentially more powerful) recurrence solvers.
that are commonly applied in compiler construction [23] and in the context of invariant gener-
ation (see [14], for instance).While techniques such as [7] support a larger class of recurrence
equations, our approach suffices cover the most common cases like linear counters. Given
that we restrict acceleration to intervals in which overflows can be ruled out (see Sect. 3.4),
there is no necessity to handle loop counters that increase exponentially, as these cases can
be handled efficiently by traditional unwinding.
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3.2 Assignments to arrays

Buffer overflows constitute a prominent class of safety violations that require a large number
of loop iterations to surface. In C programs, buffers and strings are typically implemented
using arrays. Let i be the variant of a loop which contains an assignment a[i]:=e to an
array a. For a single iteration, we obtain

sp(a[i] := e, P)
def= ∃�a .a[i] = e[a/�a] ∧ ∀ j �= i .

(
a[ j] = �a[ j]) ∧ P[a/�a] (5)

Assume further that closed forms for the variant i and the expression e exist (abusing our
notation, we use fe to refer to the latter). Given an initial pre-condition P = T, we obtain
the following under-approximation after n iterations:

∀ j ∈ [0, n) .a〈n〉[ fi(X〈0〉, j)] = fe(X
〈0〉, j) ∧

∀i ∈ dom a .
(
∃ j ∈ [0, n) . i = fi(X

〈0〉, j)
)

︸ ︷︷ ︸
membership test

∨
(
a〈n〉[i] = a〈0〉[i]

)
, (6)

where the domain (dom a) of a denotes the valid indices of the array. Condition (6) under-
approximates the strongest post-condition, since there may exist j1, j2 ∈ [0, n) such that
j1 �= j2 ∧ fi(X〈0〉, j1) = fi(X〈0〉, j2) and (6) is unsatisfiable. A similar situation arises if a
loop body π contains multiple updates of the same array.

Notably, the membership test determining whether an array element is modified or not
introduces quantifier alternation, posing a challenge to contemporary decision procedures.
Section 4 addresses the elimination of the existential quantifier.

3.3 Assumptions and feasibility of paths

The techniques discussed in Sect. 3.1 yield polynomials and constraints representing the
assignment statements of πn , but leave aside the conditional statements which determine the
feasibility of the path. In order to guarantee that only states that are reachable in the original

program can be reached via accelerated paths, we need to make sure that
�
π is only feasible

for values of n for which πn is also feasible. We achieve this by computing a pre-condition

for
�
π that rules out values of n for which πn is not feasible. In the following, we demonstrate

how to derive such a pre-condition ¬wlp (πn,F) using the polynomials fx for x ∈ X.

Let fX(X, n)
def= { fx(X, n) |x ∈ X} and let Q[X/ fX(X, n)] denote the simultaneous sub-

stitution of all free occurrences of the variables x ∈ X in Q with the corresponding term
fx(X, n). Accordingly, given a path π modifying the set of variables X and a corresponding
set fX of closed-form assignments, we can construct an accurate representation of πn as
follows:

[ ∀ j ∈ [0, n) . (¬wlp (π,F)) [X/ fX(X, j)] ]︸ ︷︷ ︸
satisfiable if πn is feasible

; X := fX(X, n)︸ ︷︷ ︸
assignments of πn

(7)

The construction of ¬wlp (πn,F) is based on the following lemma:

Lemma 2 The following equivalence holds:

wlp
(
πn,F

) ≡ ∃ j ∈ [0, n) . (wlp (π,F)) [X/ fX(X, j)]
Proof Intuitively, the path πn is infeasible if for any j < n the first time-frame of the suffix
π(n− j) is infeasible. We prove the claim by induction over n. Due to (3) and (4) we have
fX(X, 0) = X and fX( fX(X, n), 1) = fX(X, n + 1) (for n ≥ 0).
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Base case wlp (π,F) ≡ ∃ j ∈ [0, 0) . (wlp (π,F)) [X/ fX(X, j)] = F

Induction step We start by applying the induction hypothesis:

wlp (πn,F) ≡ wlp
(
π,

(
wlp

(
πn−1,F

)))
≡ wlp (π, ∃ j ∈ [0, n − 1) . (wlp (π,F)) [X/ fX(X, j)])

We consider the effect of assignments and assumptions occurring in π on the post-

condition Q
def= (∃ j ∈ [0, n − 1) . (wlp (π,F)) [X/ fX(X, j)]) separately.

– The effect of assignments in π on Q is characterised by Q[X/ fX(X, 1)]. We obtain:

Q[X/ fX(X, 1)] ≡ ∃ j ∈ [0, n − 1) . (wlp (π,F)) [X/ fX( fX(X, 1), j)]
≡ ∃ j ∈ [1, n) . (wlp (π,F)) [X/ fX(X, j)]

– Assumptions in π contribute the disjunct wlp (π,F).

By combining both contributions into one term we obtain

wlp
(
πn,F

) ≡ (wlp (π,F)) [X/ fX(X, 0)] ∨ ∃ j ∈ [1, n) . (wlp (π,F)) [X/ fX(X, j)] ,

which establishes the claim of Lemma 2. ��
We emphasise that our construction (unlike many acceleration techniques such as [11])

does not restrict the assumptions in π to a limited class of relations on integers. The con-
struction of the path (7), however, does require closed forms of all assignments in π . Since
we do not construct closed forms for array assignments (as opposed to assignments to array
indices, c.f. Sect. 3.2), we cannot apply Lemma 2 if wlp (π,F) refers to an array assigned in

π . In this case, we do not construct
�
π .

For assignments of variables not occurring in wlp (π,F), we augment the domain(s) of
the variables X with an undefined value ⊥ (implemented using a Boolean flag) and replace
fx with ⊥ whenever the respective closed form is not available. Subsequently, whenever
the search algorithm encounters an (abstract) counterexample, we use slicing to determine
whether the feasibility of the counterexample depends on an undefined value ⊥. If this is the

case, the counterexample needs to be dismissed. Thus, any path
�
π containing references to

⊥ is an under-approximation of πn rather than an acceleration of π .

Example 3 For a path π
def= [x < 10]; x := x + 1;y := y2, we obtain the under-

approximation
�
π ≡ n:= ∗; [∀ j ∈ [0, n).x+ j < 10];x := x+n;y :=⊥. A counterexample

traversing
�
π is feasible if its conditions do not depend on y.

3.4 Arithmetic overflows

The fact that the techniques in Sect. 3.1 used to derive closed forms do not take arithmetic
overflow into account may lead to undesired effects. For instance, the assumption made in
Example 2 that the characteristic function of the predicate (i+ n < BUFLEN) is monotonic
in n does not hold in the context of bit-vectors or modular arithmetic. Since, moreover,
the behaviour of arithmetic over- or under-flow in C is not specified in certain cases, we

conservatively rule out all occurrences thereof in
�
π . For the simple assignment i := i+ n

in Example 2, this can be achieved by adding the assumption (i + n ≤ 2l − 1) to
�
π (for

unsigned l-bit vectors). In general, we have to add respective assumptions (e1 ⊗ e2 ≤ 2l −1)

for all arithmetic (sub-)expressions e1 ⊗ e2 of bit-width l and operations ⊗ in
�
π .
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While this approach is sound (eliminating paths from
�
π does not affect the correctness of

the instrumented program, since all behaviours following an overflow are still reachable via
non-approximated paths), it imposes restrictions on the range of n. Therefore, the resulting

approximation
�
π deviates from the acceleration π∗ of π . Unlike acceleration over linear

affine relations, this adjustment makes our approach bit-level accurate. We emphasise that
the benefit of the instrumentation can still be substantial, since the number of iterations
required to trigger an arithmetic overflow is typically large.

3.5 Path selection

In the following, we discuss heuristics to select paths π to accelerate. Depending on which
model checking technique we are incorporating acceleration into, several path selection
strategies are available. Some model checkers already come equipped with a strategy for
enumerating paths, for example Impact [19] enumerates paths by iteratively unrolling the
CFG of the program under analysis. During this process, if a path is found to be “looping”
(i.e. some program location is visited repeatedly) then that path is a candidate for acceleration.
By contrast, if we use a model check technique that is not explicitly path based (such as
bounded model checking), we must devise a strategy for selecting paths to accelerate.

A necessary condition for π to be acceleratable is that π2 is feasible, for if it were not,
πn (for n > 1) would be infeasible, resulting in a trivial accelerator. Accordingly, paths π

for which π2 is feasible are promising candidates for acceleration. We can find such paths
by using symbolic execution to build a system of constraints and solving the system with a
SAT solver. Our encoding guarantees that if these constraints have a solution, the solution
includes a path π where π2 is feasible. Our encoding can be easily generalised and applied to
paths πk with a higher number k of iterations, though this results in a higher computational
effort. In practice, choosing k = 2 results in a reliable predictor that enables us to identify
candidates efficiently.

Let L denote the program fragment denoting the loop body. We instrument L with “dis-
tinguisher” and “shadow distinguisher” variables, which indicate which branches are taken.
Concretely, for each statement πi

�
π j in L we create boolean variables di , si , d j , and s j .

We create the instrumented program Instr(L) by prepending the statement di := false,
appending the statement assume(di = si ), and then replacing the statement πi

�
π j with

(di := true;πi )
�

(d j := true;π j )

Instr(L) has the property that when it has finished executing, each of the di will be true
iff the corresponding branch was taken. Furthermore, we have di = si for each i . We now
sequentially compose two copies of this instrumented program:

Instr(L); Instr(L)

We assume that the si are initialised non-deterministically at the beginning of this program
fragment. An example of this construction is shown in Fig. 3.

Since each of the distinguisher variables di is equal to the shadow distinguisher si at the
end of each copy of Instr(L), we know that the only feasible paths through this program
are those in which both copies took the same path. This path is identified by the values
of the si . So if there are any feasible paths through this program, they identify a path π

such that π2 in the original program is feasible. We can identify a feasible path through this
program by appending the statement assert(false) to the end of the program and using
a BMC-based model checker (which ultimately creates a SAT/SMT instance) to check the
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(assume(x > 0); x := x-1)
(assume(x < 0) ; x := x+1)

(d1 := false; d2 := false);
(d1 := true; assume(x > 0); x := x-1)
(d2 := true; assume(x < 0) ; x := x+1);
(assume(d1 = s1); assume(d2 = s2));
(d1 := false; d2 := false);
(d1 := true; assume(x > 0); x := x-1)
(d2 := true; assume(x < 0) ; x := x+1);
(assume(d1 = s1); assume(d2 = s2))

Fig. 3 A program instrumented to enumerate acceleratable paths

safety of the constructed program. We can iterate this process to enumerate candidate paths:
if we have previously found the paths π1, . . . , πn we can add assumptions to the end of our
path-enumerating program to prevent the rediscovery of these πi .

4 Eliminating quantifiers from approximations

A side effect of the approximation steps in Sects. 3.2 and 3.3 is the introduction of quantified
assumptions. While quantification is often unavoidable in the presence of arrays, it is a
detriment to performance of the decision procedures underlying the verification tools. In the
worst case, quantifiers may result in the undecidability of path feasibility.

In the following,wediscuss two techniques to eliminate or reduce the number of quantifiers

in assumptions occurring in
�
π .

4.1 Eliminating quantifiers over monotonic predicates

We show that the quantifiers introduced by the technique presented in Sect. 3.3 can be
eliminated if the predicate is monotonic in the quantified parameter.

Definition 1 (Representing function, monotonicity) The representing function fP of a pred-
icate P with the same domain takes, for each domain value, the value 0 if the predicate holds,
and 1 if the predicate evaluates to false, i.e., P(X) ⇔ fP (x) = 0. A predicate P(n) : N → B

is monotonically increasing (decreasing) if its representing function fP (n) : N → N is
monotonically increasing (decreasing), i.e., ∀m, n .m ≤ n ⇒ fP (m) ≤ fP (n).

We extend this definition to predicates over variables X and n ∈ N as follows: P(X, n) is
monotonically increasing in n if (m ≤ n) ∧ P(X, n) ∧ ¬P(X,m) is unsatisfiable.

Proposition 1 P(X, n − 1) ≡ ∀i ∈ [0, n) . P(X, i) if P is monotonically increasing in i .

The validity of Proposition 1 follows immediately from the definition of monotonicity.

Accordingly, it is legitimate to replace universally quantified predicates in
�
π with their

corresponding unquantified counterparts (c.f. Proposition 1).
This technique, however, fails for simple cases such as x �= c (c being a constant). In

certain cases, the approach can still be applied after splitting a non-monotonic predicate P
into monotonic predicates {P1, . . . , Pm} such that P ≡ ∨m

i=1 Pi (as illustrated in the Figure
to the right). Subsequently, the path π guarded by P can be split as outlined in Fig. 4. This
transformation preserves reachability (a proof for m = 2 is given in Fig. 4).
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x = c

x < c

x > c
xc
0

1
0

1
0

1

This approach is akin to trace partitioning [9], however, our intent is quantifier elimination
rather than refining an abstract domain. We rely on a template-based approach to identify
predicates that canbe split (a constraint solver-based approach is bound to fail if c is symbolic).
While this technique effectively deals with a broad number of standard cases, it does fail for
quantifiers over array indices, since the array access operation is not monotonic.

4.2 Eliminating quantifiers in membership tests for array indices

This sub-section aims at replacing the existentially quantified membership test in Predicate
(6) by a quantifier-free predicate. To define a set of sufficient (but not necessary) conditions
for when this is possible, we introduce the notion of increasing and dense array indices
(c.f. [13]):

Definition 2 (Increasing and Dense Variables) A scalar variable x is (strictly) increasing in
πn iff ∀ j ∈ [0, n) .x〈 j+1〉 ≥ x〈 j〉 (∀ j ∈ [0, n) .x〈 j+1〉 > x〈 j〉, respectively). Moreover, an
increasing variable i is dense iff

∀ j ∈ [0, n) .
(
x〈 j+1〉 = x〈 j〉) ∨

(
x〈 j+1〉 = x〈 j〉 + 1

)
.

Variables decreasing in πn are defined analogously. A variable is monotonic (in πn) if it is
increasing or decreasing (in πn).

Note that if the closed form fx(X〈0〉, n) of a variable x is a linear polynomial, then x is
necessarily monotonic. The following proposition uses this property:

Proposition 2 Let fx(X〈0〉, j) be the closed form (2) of x〈 j〉, where α(2·k+2) = 0, i.e., the

polynomial fx is linear. Then � fx
def= fx(X〈0〉, j + 1) − fx(X〈0〉, j) (for j ∈ [0, n)) is the

(symbolic) constant
∑k

i=1 α(k+i) · x〈0〉
i + α(2·k+1). The variable x is (strictly) increasing in

πn if � fx ≥ 0 (� fx > 0, respectively) and dense if 0 ≤ � fx ≤ 1.

Lemma 3 Let fx(X〈0〉, j) be a linear polynomial representing the closed form (2) of x〈 j〉
(as in Proposition 2). The following logical equivalence holds:

u w v
[P1 ∨ P2] π

sp([P1 ∨ P2];π, Q) ≡
sp(π, (P1 ∧ Q) ∨ (P2 ∧ Q)) ≡

sp(π, P1 ∧ Q) ∨ sp(π, P2 ∧ Q)

u

w1

w2

v

[P1] π

[P2] π

sp(([P1];π) ([P2];π), Q) ≡
sp([P1];π, Q) ∨ sp([P2];π, Q) ≡
sp(π, (P1 ∧ Q)) ∨ sp(π, (P2 ∧ Q))

Fig. 4 Splitting disjunctive assumptions preserves program behaviour
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∃ j ∈ [0, n) .x = fx(X
〈0〉, j) ≡⎧⎪⎨

⎪⎩
((x − x〈0〉) mod � fx = 0) ∧

(
x−x〈0〉
� fx

< n
)

if x is strictly increasing

x − x〈0〉 ≤ (n − 1) · � fx if x is dense
x − x〈0〉 < n if both of the above hold

(8)

The validity of Lemma 3 follows immediately from Proposition 2. Using Lemma 3, we
can replace the existentially quantified membership test in Predicate (6) by a quantifier-free
predicate if one of the side conditions in (8) holds. Given that the path prefix reaches the
entry node of a loop, these conditions � fx > 0 and 0 ≤ � fx ≤ 1 can be checked using a
satisfiability solver.

Example 4 Let π
def= a[x] := x; x := x + 1 be the body of a loop. By instantiating (6), we

obtain the condition

∀ j ∈ [0, n) .a[�x + j] = �x + j ∧ ∀i. (∃ j ∈ [0, n) . i = �x + j
) ∨ (

a[i] = �a[i]) ,

in which the existentially quantified term can be replaced by x − �x < n.

5 Implementation and experimental results

Our under-approximation technique is designed to extend existing verifiers. To demonstrate
its versatility, we implemented Impulse, a tool combining under-approximation with the
two popular software verification techniques lazy abstraction with interpolants (LAwI) [19]
and bounded model checking (specifically, Cbmc [5]). The underlying SMT solver used
throughout was version 4.2 of Z3. Impulse comprises two phases:

1. Impulse first explores the paths of the CFG following the LAwI paradigm. If Impulse

encounters a path containing a loop with body π , it computes
�
π (processing inner loops

first in the presence of nested loops), augments the CFG accordingly, and proceeds to
phase 2.

2. Cbmc inspects the instrumented CFG up to an iteration bound of 2. If no counterexample
is found, Impulse returns to phase 1.

In phase 1, spurious counterexamples serve as a catalyst to refine the current approximation
of safely reachable states, relying on theweakest precondition1 to generate the requiredHoare
triples. Phase 2 takes advantage of the aggressive pathmerging performed byCbmc, enabling
fast counterexample detection.

We evaluated the effectiveness of under-approximation on the Verisec benchmark
suite [18], which consists of manually sliced versions of several open source programs that
contain buffer overflow vulnerabilities. We chose Verisec over the small synthetic bench-
marks in the loop-acceleration category of the competition on software verification [2], since
the Verisec suite is based on real-world vulnerabilities.

Of the 284 test cases ofVerisec, 144 are labelled as containing a buffer overflow, and 140
are labelled as safe.2 The safety violations range from simple unchecked string copy into static
buffers, up to complex loops with pointer arithmetic. The buffer size in each benchmark (c.f.

1 In a preliminary interpolation-based implementation, Z3 was in many cases unable to provide interpolants

for path formulas
�
π with quantifiers, arrays, and bit-vectors.

2 Our new technique discovered bugs in 10 of the benchmarks that had been labelled safe. Satabs timed out
before identifying these bugs.
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Fig. 5 Verification run-times (cumulative) of Verisec benchmark suite, a safe and unsafe, buffer size 10, b
safe and unsafe, buffer size 102, c safe/unsafe, b.-size 103, d unsafe, buffer size 10, e unsafe, buffer size 102

Table 2 Number of accelerated
loops (in 284 programs)

Tool Solved # Loops
accelerated

# Programs
accelerated

Impulse (w/o acc.) 17 0 0

Impulse 102 258 119

Satabs 33 0 0

BUFLEN in Fig. 1) is adjustable and controls the depth of the counterexample. We compared
our tool with Satabs (which outperforms Impulsew/o approximation) on buffer sizes of 10,
100 and 1000, with a time limit of 300s and amemory limit of 2GB on an 8-core 3GHzXeon
CPU. Figures 5a through 5c show the cumulative run-time for the whole benchmark suite,
whereas Fig. 5d and e show only unsafe program instances. Table 2 provides an overview
of the test cases solved by Impulse with or without acceleration compared to the test cases
solved bySatabs, including the number of loops andprograms thatwere accelerated. Further,
our static acceleration tool accelerates loops (with symbolic rather than static bounds) in 42
programs out of the 79 candidates from the 2013 software verification competition.

Finally, on the 8 safe instances from the Verisec benchmark that Impulse can solve
(using interpolants computed via the weakest pre-condition), under-approximation did not
improve (or impair) the run-time on safe instances.
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Fig. 6 Run-time dependency on buffer size for unsafe benchmarks, a singleVerisec test, varying buffer size,
b Satabs w. loop detect on Aeon 0.02a

Figure 6 demonstrates that the time Impulse requires to detect a buffer overflow does not
depend on the buffer size. Figure 6a compares Satabs and Impulse on a single Verisec
benchmark with a varying size parameter, showing that Satabs takes time exponential in the
size of the buffer. Figure 6b provides a qualitative comparison of the loop-detection technique
presented in [16] with Impulse on the Aeon 0.02a mail transfer agent. Figure 6b shows the
run-times of Satabs’06 with loop detection as reported in [16],3 as well as the run-times
of Impulse on the same problem instances and buffer sizes. Satabs’06 outperforms similar
model checking tools that do not feature loop-handling mechanisms [16]. However, the run-
time still increases exponentially with the size of the buffer, since the technique necessitates
a validation of the unwound counterexample. Impulse does not require such a validation
step.

6 Related work

The under-approximation technique presented in this paper is based on our previous
work on loop detection [16,17]. The algorithm in [16], however, does not yield a strict
under-approximation, and thus necessitates an additional step to validate the unwound coun-
terexample. Our new technique avoids this problem.

The techniques in Sect. 3.1 constitute a simple form of acceleration [4,8]. The subsequent

restrictions in Sects. 3.3 and 3.4 on
�
π , however, impose a symbolic bound on the number of

iterations, yielding an under-approximation. In contrast to acceleration of integer relations,
our approximation is sound for bit-vector arithmetic. Sinha uses term rewriting to compute
symbolic states parametrised by the loop counter, stating that his technique can be extended
to support bit-vectors [22].

The quantifier elimination technique of Sect. 4.1 bears similarities with splitter predi-
cates [21], a program transformation facilitating the generation of disjunctive invariants.
Similarly, trace partitioning [9] splits program paths to increase the precision of static analy-
ses. Neither technique aims at eliminating quantifiers.

Loop summarisation [15] and path invariants [3] avoid loop unrolling by selecting an
appropriate over-approximation of the loop from a catalogue of invariant templates. Over-
approximations are also used in the context of loop bound inference [24] and reasoning

3 Unfortunately, loop detection in Satabs is neither available nor maintained anymore.
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about termination [6]. However, over-approximations do not enable the efficient detection of
counterexamples.

Hojjat et al. [11] uses interpolation to derive inductive invariants from accelerated paths.
While this work combines under- and over-approximation, it is not aimed at counterexample
detection. Motivated by the results of [11], we believe that under-approximation can, if
combinedwith interpolation, improve the performance of verification tools on safe programs.
We plan to support interpolation in a future version of our implementation.

Techniques to solve recurrences are frequently used in compiler construction [23]. For
example, van Engelen et al. [7] present an algorithm to compute closed forms for systems of
recurrence equations, which also supports induction variables that are updated conditionally
by introducing a dynamic range for each variable. While it would be straight forward to
incorporate these ideas into our work, the technique discussed in Sect. 3 is sufficient for all
practical purposes if the bounded range of program variables is taken into account (see our
remark at the end of Sect. 3.1.2).

We refer the reader to [17] for a description of additional related work.

7 Conclusion and future work

We present a sound under-approximation technique for loops in C programs with bit-vector
semantics. The approach is very effective for finding deep counterexamples in programs
that manipulate arrays, and compatible with a variety of existing verification techniques. A
short-coming of our under-approximation technique is its lack of support for dynamic data
structures, which we see as a challenging future direction.
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