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ABSTRACT
We have shown previously that a broad correlation between the peak radio luminosity and the
variability time-scales, approximately L ∝ τ 5, exists for variable synchrotron emitting sources
and that different classes of astrophysical sources occupy different regions of luminosity and
time-scale space. Based on those results, we investigate whether the most basic information
available for a newly discovered radio variable or transient – their rise and/or decline rate
– can be used to set initial constraints on the class of events from which they originate.
We have analysed a sample of ≈800 synchrotron flares, selected from light curves of ≈90
sources observed at 5–8 GHz, representing a wide range of astrophysical phenomena, from
flare stars to supermassive black holes. Selection of outbursts from the noisy radio light curves
has been done automatically in order to ensure reproducibility of results. The distribution
of rise/decline rates for the selected flares is modelled as a Gaussian probability distribution
for each class of object, and further convolved with estimated areal density of that class in
order to correct for the strong bias in our sample. We show in this way that comparing the
measured variability time-scale of a radio transient/variable of unknown origin can provide
an early, albeit approximate, classification of the object, and could form part of a suite of
measurements used to provide early categorization of such events. Finally, we also discuss the
effect scintillating sources will have on our ability to classify events based on their variability
time-scales.

Key words: radiation mechanisms: non-thermal – methods: observational – radio continuum:
general – radio continuum: transients.

1 IN T RO D U C T I O N

In the coming years, the next generation of radio telescopes are
expected to survey large areas of sky to a sensitivity that could see
the discovery of hundreds of transient and variable sources (Fender
et al. 2015; Metzger, Williams & Berger 2015). Previous discov-
eries of radio transients proved that relying solely on radio data
makes it extremely difficult to validate both the nature and the re-
ality of the source (Bower et al. 2007; Stewart et al. 2016) and that
it is vital that they are supported by simultaneous multiwavelength
observations or rapid follow-up. On the other hand, with a rate
of transient/variable candidates as high as expected, it will not be
possible to follow up each event with other multiwavelength instru-
ments. However, if the nature of the source is constrained as early
as possible, decision-making strategies can be created to follow up
the type of events relevant to specific science goals.

The importance of the automatic classification of light curves has
been discussed before in the context of deep surveys carried at op-
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tical wavelengths, with attempts to include automatic classification
of transients into optical surveys (Djorgovski et al. 2012; Saglia
et al. 2012). Extended investigations of different ways to approach
this task include developing classification techniques based on ma-
chine learning methods (Richards et al. 2011), Bayesian theory
(Pichara & Protopapas 2013), density approach (eliminating direct
measurements of features such as magnitude or colour; Kügler,
Gianniotis & Polsterer 2015), fitting non-complete light curves
(Lo et al. 2014) and other non-parametric techniques (Varughese
et al. 2015). Those methods have been developed using archival
optical light curves as training data sets, as well as X-ray transients
(Lo et al. 2014, with a supervised learning technique implemented).
For radio data, Rebbapragada et al. (2012) test different classifi-
cation algorithms on simulated light curves in preparation for the
Australian Square Kilometre Array Pathfinder (ASKAP, Johnston
et al. 2008), Survey for Variables and Slow Transients (VAST,
Murphy et al. 2013). Most of these methods, although they work
effectively on sparse and noisy data sets, require the light curve/flare
to be (mostly) complete. In this work, however, we are focused on
investigating whether an initial classification of the source based on
the partial information about its light curve is possible.
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For any transient or variable candidate discovered in a blind
radio survey, the most basic measurable property of the light
curve is its variability time-scale. Here we present a potential
technique of classifying these types of events by measuring the
rise/decline rates of their flares, which could be used as the early
step in a more complex classification pipeline. At the moment how-
ever, due to the relatively small data sample used to develop the
method, it is not a final classification solution.

As we have previously shown (Pietka, Fender & Keane 2015,
hereafter PFK15), there is a correlation between the luminosity (L)
and rise/decline rates (τ ) that exists between different classes of
synchrotron emitting sources, approximately L ∝ τ 5. It covers a
wide range of events, from nearby flare stars to extragalactic super-
massive black holes, with the more massive and luminous objects
displaying variability on progressively longer time-scales. Although
it has been expected previously that more massive and luminous
objects vary on much longer time-scales compared to intrinsically
faint sources (van der Laan 1966), the analysis presented in PFK15
showed a clear distinction between different classes of objects oc-
cupying the luminosity–time-scale parameter space. Because at the
time of discovery of a radio event its distance is unknown (unless
a counterpart at other wavelengths is immediately identified), the
information about the luminosity is not available, and the discussed
relation (fig. 3 in PFK15) is reduced to a distribution of the vari-
ability time-scales. This result offers an opportunity to develop a
method that could be used to perform an initial classification of an
unknown object based on its radio data only. Approximate classifi-
cation by time-scale and luminosity has its analogues in the field of
optical transients (e.g. fig. 1 of Rau et al. 2009).

It should be noted that the results presented in PFK15 were
based on the analysis of a sample of single flaring events, manually
selected from various radio light curves. However, if we were to
base an early classification on those results, the analysis should
be done in a reproducible way, such that the bias introduced by
identifying flares by eye is minimized. In order to do that, we have
developed a basic piece of software that automatically identifies
and selects flaring events from the radio light curves in our sample.
Our routine is based on a simple thresholding approach, where any
variability of the light curve above a chosen flux density threshold
is defined as a ‘flare’. However, this routine is designed to work
specifically on the diverse data set analysed in this study. In future
surveys, where data quality is more consistent, complex algorithms
will be more appropriate to be used as part of the detection pipeline.

An important aspect of the presented analysis that needs to be
carefully addressed is the bias associated with our sample of ra-
dio light curves. The number of objects analysed within each class
represents the frequency and quality of observations rather than the
actual sky density of those sources. Therefore, in order to accurately
predict the probability of finding a given class of objects, this effect
needs to be accounted for. Although the exact areal densities of
analysed classes of objects are not well known, we attempt to esti-
mate those values and convolve them with the obtained distribution
of rise/decline rates across a range of considered classes. This final
distribution provides an initial reference point against which we
can compare the measurements of time-scales taken for any newly
discovered transient/variable candidate.

In Section 2, we describe the sample of light curves used in
the analysis. Section 3 provides details of the simple flare finding
routine we developed to select flares from our sample of light curves,
as well as an overview of alternative methods for the flare selection.
We describe the analysis of selected flares in Section 4 and give
details of the estimation of expected areal densities in Section 5.

Final results are presented in Section 6 and discussed in Section 7.
Conclusions are given in Section 8.

2 DATA

The data included in the analysis span a broad range of radio vari-
able sources, observed at frequencies between 5 and 8 GHz, com-
piled from the literature and the Green Bank Interferometer (GBI)
archive.1 Overall, the analysed light curves originate from a range
of instruments and different observing programmes; therefore, there
is no consistency in their sampling intervals, length of time series
or sensitivities. The number of sources from different classes is as
follows: AGN (28), tidal disruption events (TDEs; 2), supernovae
(SNe; 13), gamma-ray burst (GRB) afterglows (4), classical novae
(7), dwarf nova (DN; 1), X-ray binaries (XRBs; 18), magnetar (1),
RSCVn (3), algol (3), magnetic CVs (2) and flare stars (4), giving
the total number of light curves from synchrotron emitting sources
of 92. A detailed list of sources included in the sample, together
with corresponding references, can be found in PFK15, with the
exception of one TDE not included in the previous work – details
of this source are summarized in Table A1. Additionally, listed in
Tables A2 and A3 are scintillating sources and extreme scattering
events (ESEs). Because the discussed luminosity–time-scale cor-
relation applies to intrinsic variability only, these sources are not
included in the main analysis. However, we use this sample to inves-
tigate the time-scales of extrinsic variability and discuss the extent
of overlap with time-scales of synchrotron flares (Section 7). The er-
rors of the flux density measurements have been provided for all the
GBI data sets, and listed in selected papers. In the cases where the
errors were not specifically stated, we have estimated them based on
the published figures, which, in majority of the cases, meant taking
10 per cent of the flux density measurement.

The following section describes the basic flare finding software,
which automatically selects flaring events from the described sam-
ple of radio light curves, in order to analyse variability time-scales
across the classes of objects.

3 AU TO M AT I C S E L E C T I O N O F F L A R E S

3.1 Overview of flare identification methods

There are a number of possible approaches to measuring time-
scales, and in particular flaring time-scales, in time series data.
Perhaps the simplest and most intuitive approach is to adopt a given
threshold and designate any contiguous sections of the time series
above that threshold as a ‘flare’. A time-scale measurement can
then be obtained by measuring the time spent above the threshold
level, but of course this requires that we wait for the flare to sub-
side. Alternatively, we may attempt to fit a model of some kind
to any data points already recorded. This approach has often been
adopted in the past due to its relative simplicity, robustness and ease
of implementation. Depending on the model-fitting requirements,
the thresholding approach can also be extremely computationally
efficient, and hence suitable for real-time applications.

However, there are several drawbacks to the basic thresholding
approach. First and foremost, finding a suitable threshold level can
be a somewhat arbitrary process. If sources of noise are well char-
acterized, then a threshold can be chosen on the basis of a calculated
false-positive rate, but this may not be possible in all cases. Even if

1 ftp://ftp.gb.nrao.edu/pub/fghigo/gbidata/gdata/

MNRAS 471, 3788–3805 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/471/4/3788/3965833 by Said Business School user on 21 January 2019

ftp://ftp.gb.nrao.edu/pub/fghigo/gbidata/gdata/


3790 M. Pietka et al.

instrument characteristics are well known, an astronomical source
may display low-level intrinsic variability that is qualitatively dif-
ferent from the rapid flux-rise-and-decay characteristic of a flaring
event. As such, it may be necessary to devise some kind of cali-
bration technique (as we do in this work) or even to manually pick
a suitable threshold level. The second problem is that of choosing
a suitable model for flare fitting, which again is often somewhat
arbitrary, although hopefully motivated by knowledge of the phys-
ical processes at work. Additionally, simple thresholding provides
no means of separating multiple superimposed flares, which de-
grades the accuracy of any model fits. Finally, a point-wise thresh-
old will always lose some sensitivity compared to more sophisti-
cated approaches, if enough is known about the flare morphology
to apply an effective matched filter. In the more general context of
time-scale measurement, model-free metrics such as autocorrelation
time and other metrics for aperiodic variability (Findeisen, Cody &
Hillenbrand 2015) can be applied, but typically require a large
amount of variable time series data to work effectively. Since we
are interested in time-scales as an early-time classification tool, we
do not consider these approaches further here.

More advanced change-or-flare-detection techniques typically
take a probabilistic approach. As such, they give a more rigorous
and informative measure of the time series data, at the cost of addi-
tional computational time and complexity. One possibility might be
application of the Bayesian Blocks algorithm (Scargle 1998) for a
model-free probabilistic method of change detection. This sidesteps
the problem of threshold determination, but again does not provide
an early-time estimate of characteristic time-scale. If a reasonable
model can be chosen, then Monte Carlo methods can be applied
to estimate the likelihood of a flare presence with excellent sen-
sitivity (Pitkin et al. 2014), or even to dissect the time series into
multiple superimposed flares (Huppenkothen et al. 2015), though
this requires significant computational time. A thorough investiga-
tion of the relative accuracy and efficacy of such methods would be
interesting, but is outside the scope of this work.

In our case, advanced flare finding techniques are not suitable to
work on the diverse sample of light curves we analyse. For this study,
we apply a thresholding approach with a simple exponential model.
This provides a reasonably robust time-scale estimation for modest
computational effort, albeit with some limitations to applicability,
as detailed below.

3.2 Automatic Flare Finder (AFF) for PFK15 data set

The flare identification routine we tested is simple, but none the
less provided a reproducible means of characterizing flare time-
scales for this work.2 Using more advanced methods discussed in
the previous section would be impractical, since our data sets are
very diverse (Section 2) and do not meet the requirements of such
complex techniques. It should be stressed that, while this simple
method is sufficient to select flares from our sample of light curves,
it is not intended to be used as a generic tool. It uses a simple
thresholding approach, as follows: given a pre-determined quiescent
or background flux level estimate, b, and an estimate of the signal
variation due to noise, σ , the routine first steps through the data

2 The flare finding software along with the subsequent scripts used
to model the probability distributions is available at https://github.com/
4pisky/variability-timescale-analysis-paper.

looking for data points x where the flux fx is more than 5σ above
the quiescent flux:

x : fx > b + 5σ ; (1)

these are referred to as the ‘trigger’ points. Once a trigger is found,
the algorithm searches for the nearest data points before and after
the trigger that have flux less than 1σ above the quiescent flux level,
and these are designated as the flare start and end.

The tricky part of this process is determining a suitable quies-
cent/background flux level, and estimating the levels of signal vari-
ation present when the source is not undergoing an outburst. For a
source that has a well-sampled long-term light curve encompassing
extended periods of quiescence, the first problem – ‘background’
flux level estimation – is straightforward; simply taking the median
flux level provides a reasonable estimate. However, when analysing
a light curve that displays flares for a significant fraction of data
period, the median may overestimate the background level. The sec-
ond problem, estimating the quiescent low-level variance, is harder.
Again considering the ideal case of a well-sampled long-baseline
light curve, at some level we could simply use the formal errors on
the data points and designate anything greater than 5σ above the
median a flare. However, many of the light curves analysed for this
paper display low-level variation that does not subjectively qualify
as a flare, but that is none the less larger than would be expected
from the formal errors, and appears persistent over multiple data
points (e.g. SS 433, as shown in Fig. 1) – we designate this as
intrinsic quiescent variation (though varying telescope systematic
noise levels cannot be ruled out without access to the original raw
data). To avoid the need to manually change the σ threshold for each
data set according to the level of quiescent variation, we required
an alternative method of estimating the low-level variation. For this
purpose, we employed the sigma-clipping routine from Astropy (the
community developed PYTHON package for astronomy; Astropy Col-
laboration et al. 2013), using the default clipping threshold of 3σ ,
and iterating until convergence. This means estimating the median
value of the whole light curve, clipping all the points that are above
3σ and repeating the procedure until there are no points to reject.
We have used median absolute deviation as a measure of the data
variability σ . For some of the light curves we analysed, this does
a good job of masking the high-flux outlier data points represent-
ing flares; however, alternative methods of finding the low-level
variation for light curves that require more specific approach are
discussed in Section 4.1. We then estimate the median and median
absolute deviation of the remaining unmasked ‘quiescent’ data, and
use these quantities for the values of b and σ in equation (1). Fig. 1
shows an example of the flares identified in a GBI light curve for
the XRB SS 433.

4 A NA LY SIS

The quality of the data described in Section 2 varies significantly
across the sample. Data provided by the GBI consist of noisy light
curves for both slowly (AGN) and rapidly varying sources (XRBs,
RSCVn), observed on time-scale of years. Data compiled from
the literature, although much less noisy, in many cases show pre-
selected flares, sometimes with the background emission subtracted
(GRBs, SNe).

The diversity of available light curves presented a substantial
challenge in designing software in a way that would allow us to
detect flaring events with no manual intervention during the process.
Even the simple thresholding method described in Section 3.2 sets
a number of constraints on the light curve that make it difficult
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Figure 1. Example figure showing the detection of flaring events in the radio light curve of the binary SS 433 (GBI). Upper panel, left: light curve of the
source and flaring events selected by the AFF. Marked with the dashed green line is the estimated quiescent flux level (labelled ‘median’ in the key). The blue
and red lines indicate the variation above the quiescent level by 3σ and 5σ , respectively. The black symbols on each flare mark start/end of the flare (triangles),
data point triggering the flare detection (pentagons) and the peak of the flare (stars). Upper panel, right: histogram of flux density values for the light curve
after sigma clipping has been applied. Flare-threshold values of 3σ and 5σ are marked by the blue and red vertical lines, respectively. Curve overplotted in
blue represents a Gaussian distribution with median and median absolute deviation matched to the sigma-clipped data. Curve overplotted in green represents a
Gaussian distribution of the same median, but with quiescent variability matched to the formal error bars on the flux density measurements, clearly showing
that the formal error bars underestimate the low-level variability in this light curve. Lower panel: close-up view of two flares selected from the light curve,
showing clearly the trigger, beginning, peak and end of the flare markers.

to implement across the variety of the data sets. First, it requires
the light curve to be long enough in relation to the duration of
the flare, such that the background flux level (excluding flares) can
be accurately estimated. Secondly, it needs to be sufficiently noise-
free in order to avoid false detections. In this section, we describe the
general adjustments that have been made to the flare identification
routine and/or data sample in order to make the selection of flares
as optimal as possible.

4.1 Data preparation

Testing the AFF on all the available light curves identified a set of
issues that allowed us to divide the whole data sample into four
groups. Those groups, together with list of adjustments made and
example plots, are discussed below.

4.1.1 Short-duration flares selected from GBI (15 per cent of all
light curves; 84 per cent of analysed flares)

Light curves in this group consist of multiple, short-duration
(≈days) flares, observed on a time-scale of years. This set of data as
the only one in our sample presented no issues for the AFF. Fig. 2

Figure 2. An example of a light curve showing multiple short flares for a
periodic XRB LS I +63◦303. Flaring events selected from this 8.3 GHz GBI
light curve by the AFF are marked with the black stars. The background level
has been estimated using sigma-clipping method described in Section 3.2.
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Figure 3. Upper: an example of a light curve showing multiple flares with
the quiescent level insufficiently well characterized for the automatic soft-
ware to identify flares (3C 120; Volvach et al. 2010). Lower: the same
light curve, where the quiescent flux level has been estimated as the 15th
percentile of the flux measurements, and, for calculating the flare-detection-
trigger amplitude, we set σ equal to the mean of the formal error bars on the
flux density measurements.

shows an example of such light curve, with a number of identified
flares.

4.1.2 Flares compiled from the literature (30 per cent of all light
curves; 9 per cent of analysed flares)

This group comprises the light curves of repeating as well as several
cataclysmic events. However, information about the background
level in this sample is limited to the close vicinity of the flares, and
therefore is insufficient for the correct estimation of the background
emission and the low-level variability. In most cases, the automat-
ically estimated values were too high when compared to the peak
flux of the outbursts, and as a result, the flares were not recognized
as varying above chosen (5σ ) threshold. In order to resolve that
problem, we have estimated the quiescent flux level of the light
curve as the 15th percentile of the flux density measurements. For
calculating the flare-detection-trigger amplitude, we set σ equal to
the mean of the formal error bars on the flux density measurements.
An example of such a light curve, showing both original attempt
to select flares by AFF and flares selected with the alternative ap-
proach, is shown in Fig. 3.

Figure 4. Upper: an example of a light curve showing long time-scale
flares (0224+671, GBI). With the background and the quiescent low-level
variability estimated as in the lower panel of Fig. 3, some odd noisy data
points are falsely identified as flares. Lower: the same light curve smoothed,
with one major flare recognized by the software.

4.1.3 Long-duration flares selected from GBI (14 per cent of all
light curves; 2 per cent of analysed flares)

This group of light curves consists of long-duration (≈months)
flares, collected from the GBI data base. As in the previous group,
the data sets did not provide enough information for the estimation
of the background and the quiescent variability, and required both
of these parameters to be calculated in the same way as described
in Section 4.1.2. However, here the additional difficulty was intro-
duced by scattered noise in the data. Some of the noisy data points
have been falsely recognized by the AFF as the beginning and/or
end of the flare. The upper panel of Fig. 4 shows an example of
such false detections. This problem has been solved by smoothing
the data, with a window size of ≈20 d. This size of the window has
been chosen based on the expected time-scale of the AGN intrin-
sic variability. Variabilities in those types of objects, observed on
time-scales shorter than 20 d, are more likely to be associated with
scintillation. Lower panel of Fig. 4 shows the result of smoothing,
with flaring events identified by the AFF.

4.1.4 Pre-selected flares compiled from the literature (41 per cent
of all light curves; 5 per cent of analysed flares)

This group of data sets contains mainly single, pre-selected flaring
events, with no information about the light curve before and after
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Figure 5. Example of a light curve (RS Oph; O’Brien et al. 2006) limited
to the flaring event, with no information about the background flux density.

the outburst. Included here are flares from SNe, GRBs, classical
novae and TDEs. In those cases, we decided to measure rise and
decline time-scales directly (Fig. 5), using the method described in
Section 4.2.

For light curves specified in Sections 4.1.2 and 4.1.3, the
sigma-clipping routine as described in Section 3.2 failed to de-
tect 70 per cent of the flares due to insufficient information about
the background. We note that setting the background level in this
alternative way is a subjective choice and can introduce some bias
in the analysis. Therefore, we have repeated the analysis for a range
of parameters, setting the quiescent level to 10, 15, 20 and 30th
percentile of the flux density. The results were then investigated ‘by
eye’ to decide which approach selected the highest percentage of
flares. While each of those estimations caused some of the flares
to be missed, we found that the 15th percentile was the optimal
choice for the discussed data set. Fig. B1 in Appendix B gives an
overview of flares selected from an example light curve depending
on the background estimation. It shows that setting the threshold
too low can merge poorly separated flares into one, while too high
values result in missing fainter flares. We have also checked how
different choices of the background in those groups of light curves
affect the final results – see Fig. B2 in Appendix B and refer to the
analysis in Sections 4.2 and 5. Since the discussed data sets form
the entire sample of flare stars, as well as most of AGN light curves,
the effects of changing the flare detection threshold are most visible
in those two populations of sources (left-hand panel in Fig. B2).
The centre of the diagram, which is dominated by flares that do not
suffer the background uncertainty (fast GBI light curves, individ-
ual flares from GRBs, SNe and novae), shows minimal difference.
The right-hand panel of Fig. B2 demonstrates that the choice of
background does not have a significant impact on final probability
distributions, due to the affected classes of objects populating the
extreme ends of the time-scale parameter space.

Overall, the automatic selection of flares fails in about
15–20 per cent of cases, missing flares that can be easily identi-
fied by eye. Those are mainly superimposed or close together flares
that cannot be separated with a simple thresholding method, such
as the ones presented in Fig. B2.

4.2 Measuring variability time-scales

We have run the AFF on the whole sample of light curves adjusted as
described in the previous section, selecting 1290 single outbursts for

further analysis, which, together with 38 pre-selected flares, gives
the total number of 1328 flaring events from 86 distinct objects.

In order to measure rise and decline time-scales for each of the
selected flares, we attempted fitting exponential functions to the
data:

F = Aest + B, (2)

where amplitude A, background B and characteristic time-scale s
are the free parameters of the fit. Exponential fits provide distance-
independent measurements of the rise/decline rates and are phys-
ically motivated (van der Laan 1966, where the flux density of a
source is an exponential function of the optical depth). However,
we found that in most cases the exponential fit would fail. One of
the likely reasons for that is the quality of the data, where time
sampling is often insufficient for fitting the three-parameter model.

Therefore, we decided to estimate the background emission and
subtract it from the flare prior to the fit. One obvious choice of this
background is the quiescent flux density level b estimated earlier
for each of the light curves (Sections 3.2 and 4.1). However, for
poorly sampled light curves, the beginning/end of the flare (defined
as in Section 3.2) can sometimes fall below this background level
(for example, the first flare detected in the lower panel of Fig. 3).
Subtracting this background would result in selecting only part of
the flare for further analysis. In order to make sure that the entire
flare is selected, we decided to calculate a separate background level
for each flare bflare either as the first percentile p1st of the flux values
of the light curve (Fall) or the minimum flux density measurement
of a given flare (Fflare):

bflare = min
(
p1st (Fall) ; min (Fflare)

)
. (3)

The background emission calculated in this way is then subtracted
from the flux density measurements of every flare selected by the
AFF. For each single flare, we measure the rise and decline rates,
s, by fitting the linear function in the log-lin space (see fig. 1 in
PFK15):

ln (F − bflare) = st + const. (4)

No measurements have been taken for rise/decline phases consisting
of three data points or less. Excluding flares for which neither rise
or decline phase could be measured decreased the final sample
to 804 flaring events, with 564 rise and 649 decline phases fitted
successfully. Fits to the data have been done using the curve fit
routine from SCIPY.OPTIMIZE package, and include error bars of
the flux measurements. Fig. 6 shows the distribution of χ2

red values
for measurements of rise and decline phases of the flares. It should
be noted that for ≈30 per cent of measurements, the χ2

red is higher
than 10. This might partly be caused by underestimating error bars
of flux measurements. However, we expect that the main reason
is that the simple two-parameter model used in the analysis often
fails to accurately fit the data, which may require more complex
approach.

Having a set of measurements for each flare, consisting of peak
flux density, rise/decline time-scales and reduced χ2

red, we can map
those results with a corresponding class to which the source be-
longs, its distance and the observed frequency. This enables us
to calculate peak radio luminosity of each flare. Results of those
measurements for the rising phase are shown in Fig. 7, where we
plot peak radio luminosity against rise time τ of the event (where
τ = 1/s). The overall correlation of the form L ∝ τ 6 is steeper
than L ∝ τ 5 obtained by manual measurements. In particular, the
relation presented here shows more scatter for relatively lower lu-
minosity classes such as XRBs or RSCVn, than it did in results

MNRAS 471, 3788–3805 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/471/4/3788/3965833 by Said Business School user on 21 January 2019



3794 M. Pietka et al.

Figure 6. Distribution of the log χ2
red values for rise and decline rates cal-

culated as in equation (4).

reported in PFK15. This effect is clearly demonstrated in Fig. 8,
where histograms of the rise rates measured automatically are over-
laid with those corresponding to manual measurements (in the case
of manual measurements, the level of background emission for each
flare has been estimated by eye and subtracted from the flux den-
sity measurements). It should be noted that the scatter observed in
time-scales of the different types of object is partly due to a wide
range of time-scales covered by individual sources. A variation of
Fig. 7 is shown in Fig. B3, where single-source measurements for
several classes are highlighted. We have tested whether rejecting
measurements with high and/or low χ2

red values decreases that scat-
ter; however, neither the final range of the time-scales populated by

each class or the overall time–luminosity relation have been signif-
icantly changed by those constraints. Therefore, we have decided
to include all the measurements. The observed scatter in measured
time-scales is discussed in more detail in Section 7, and a summary
of the manual and automatic results can be found in Table 1.

In the analysis described in this section, we have automatically
reproduced results of the variability time-scale measurements re-
ported in PFK15. From this point, we focus on converting those
results into a method that could be used to perform an initial clas-
sification of radio transient and variable sources.

The diagram shown in Fig. 9 gives an overview of steps included
in the analysis described in this section, as well as a list of remaining
steps that are discussed in Sections 5 and 6.

5 SK Y D E N S I T I E S

We aim to use the results obtained in Section 4.2 as a base for the
probabilistic classification method by modelling the measured time-
scale distributions as Gaussian functions, while assuming that for
each class we have reasonably well measured the width of the dis-
tribution. However, the compiled data set consists of observations
originating from various surveys, performed with a wide range of
instruments with different sensitivities, fields of view and other
parameters that contribute to certain preferences in the available
sample of light curves. As such, the analysed data set does not ac-
curately represent the underlying populations of considered classes
of objects. Although it is not possible to properly account for all
these biases, in this section we attempt to estimate the areal densities
of objects within each class. This correction, although basic, pro-
vides more realistic picture of time-scale distribution for different
populations of radio transient and variable sources.

Figure 7. Peak radio luminosity plotted against exponential rise time-scale for a range of synchrotron emitting sources, approximately of the form L ∝ τ 6.
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Figure 8. Dashed histograms represent distribution of automatically mea-
sured rise rates for a range of classes of objects. For comparison, overplotted
in grey are previously reported (PFK15) manual measurements.

5.1 Method of estimating areal densities

Extragalactic events. Areal density estimates for most of the extra-
galactic classes of objects are available in the literature. Here we

Table 1. Parameters of the fits to the rise and decline phases (with the
following formula: log (Lpeak) = a × log τ + b), for both manual (aM, bM)
and automatic (aA, bA) methods.

aM ± δ aM bM ± δ bM aA ± δ aA bA ± δ bA

Rise 5.21 ± 0.15 31.08 ± 1.84 6.01 ± 0.12 31.49 ± 1.42
Decline 5.09 ± 0.22 29.44 ± 2.88 6.70 ± 0.22 29.11 ± 2.11

Figure 9. Illustration of the process flow showing the main steps of the
analysis presented in Section 4, from the compiled sample of the data to
measuring rise/decline rates. The remaining steps, listed in the lower panel,
are described in Sections 5 and 6. Rectangular frames correspond to parts
of the analysis done manually; automatic steps are listed in rounded frames.

extrapolate these results to our chosen flux density limit of 0.1 mJy,
assuming that events of the extragalactic origin are distributed as

N ∝ S− 3
2 , (5)

where N is the expected number of sources observed with the flux
density limit S.
Galactic objects. Space densities of Galactic objects have been
studied previously and are available in the literature. In order to
convert spatial distribution into areal density, we need to consider
the volume of the Galaxy each class populates. First, we calculate
the maximum distance at which source belonging to considered
class can be observed, with assumed flux density limit. We estimate
a typical radio luminosity of the class and use the following relation
to evaluate the distance:

dmax =
√

L

4πFlim
. (6)

Unlike for extragalactic sources, the space density ρ of Galactic
sources depends on their position in the Galaxy and drops as we
move out of the Galactic plane and away from the Galactic centre.
The density profile can be described as

ρ(z) = ρ0e(−|z|/h), (7)

where z = dsinb is the distance from the Galactic plane (d is distance
to the source and b is the Galactic latitude), h is the scaleheight
(describing a distance over which the number of sources drops by
factor of e) and ρ0 = ρ(0) is the local space density of objects
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Table 2. Estimated areal densities of the studied classes of objects at the 0.1 mJy flux density limit, together with the mean and standard deviation parameters
calculated for each class and used to estimate their Gaussian distribution, for both rise and decline phases.

Class Rate (deg−2) References log μR (d) log σR (d) log μD (d) log σD (d)

AGN 2.3 Thyagarajan et al. (2011) 2.6 0.51 2.57 0.48
TDE 0.52 Frail et al. (2012) 2.07 0.46 2.84 0.25
GRB afterglow 0.052 Frail et al. (2012) 1.11 0.17 1.94 0.46
SN 0.21 Frail et al. (2012) 1.47 0.54 2.43 0.68
SGR 10−8 Olausen & Kaspi (2014), Ofek (2007) – – 0.68 0.43
XRB 2.4 × 10−4 Gallo et al. (2003) 0.0044 0.73 0.07 0.69
DN 0.0013 Pretorius & Knigge (2012), Servillat et al. (2011) – – 0.92 0.43
Classical nova 0.0023 Roy et al. (2012) 1.60 0.32 2.39 0.35
RSCVn 0.011 Williams et al. (2013), Favata et al. (1995), Ottmann & Schmitt (1992) 0.45 0.47 0.46 0.45
Algol 0.062 Duerbeck (1984) 0.031 0.51 0.15 0.50
Flare star 0.0064 Reid et al. (2007), Osten (2008) − 1.85 0.67 − 1.86 0.43
Magnetic CVs:
Polars 0.038 Ramsay et al. (2004), Pretorius et al. (2013) – – – –
IPs 0.0008 Pretorius & Mukai (2014), Pretorius et al. (2013) – – – –
Polars + IPs 0.039 – − 1.81 0.23 − 1.93 0.069

(we assume that the radial dependence of ρ is negligible). With
this assumption, we calculate the volume of space occupied by a
given class of objects within distance d (details of the calculation of
generalized volume of space depending on the density profile can
be found in Tinney, Reid & Mould 1993). Finally, including a duty
cycle estimate for each class of object gives the actual number of
sources visible in the sky in a single snapshot. Table 2 summarizes
areal densities evaluated for each class. Details of the calculations
are described in the following sections.

5.2 Types of transients and variables

5.2.1 Tidal disruption events

There have been several radio detections of TDEs to date; however,
only two of them are sampled well enough to be included in this
analysis. Frail et al. (2012) estimated the sky rate of such events to
be 0.1 deg−2 at the 0.3 mJy flux density limit. Using the method
described in Section 5.1, we estimate that at the 0.1 mJy limit, the
TDE rate is ≈0.52 deg−2.

5.2.2 Gamma-ray bursts

The areal density of orphan GRB afterglows – classical GRBs with
the explosion axis directed away from the line of sight, which should
dominate – is derived by Frail et al. (2012) at the 0.3 mJy flux limit
for a 10◦ beam opening angle. Their result of 0.01 deg−2 scaled
down to 0.1 mJy gives 0.052 deg−2 in a single snapshot.

5.2.3 Supernovae

Frail et al. (2012) give areal densities for SNII, SNIbc and SN
1998bg-like sources. Adding all those sky densities and extrapolat-
ing the results to our flux density limit gives a rate of 0.21 deg−2 at
a single epoch.

5.2.4 Active galactic nuclei

In order to estimate the surface density of radio variable AGN, we
looked at the number of all variable objects found in the Faint Im-
ages of the Radio Sky at Twenty-centimetres (FIRST) survey data.
Out of 1600 variable sources reported by Thyagarajan et al. (2011),

489 were identified to be AGN and variable galaxies. Another 120
are believed to be highly variable quasars. The analysed observa-
tions covered 8444 deg2, at the sensitivity of 0.15 mJy. The source
detection threshold chosen for the analysis was 1 mJy. Extrapolating
this result to 0.1 mJy with the spherical approximation described in
Section 5.1 gives the AGN sky density of 2.3 deg−2 at single epoch.

5.2.5 X-ray binaries

There are about 1000 XRBs within our Galaxy, which, when above
the flux density limit of 0.1 mJy chosen in this work, are in outburst
and can be detected in a radio survey (e.g. Gallo, Fender & Poo-
ley 2003). With the estimated duty cycle of XRBs of ≈1 per cent,
we get ≈10 sources in the sky, at a single epoch. This gives a rate
of about 2.4 × 10−4 deg−2 objects at the 0.1 mJy flux density limit.

5.2.6 Non-magnetic CVs

Dwarf novae. Having only one radio light curve of a DN3 (SS Cyg),
we use the peak radio luminosity measured for that source in order
to estimate the maximum distance to which objects of this class can
be detected at the 0.1 mJy flux density limit. Following the steps
described in Section 5.1, we get dmax = 380 pc. Pretorius & Knigge
(2012) derive space density of non-magnetic cataclysmic variables
to be 4 × 10−6 pc−3 with the scaleheight of 260 pc. The estimated
duty cycle of DNe is 1–15 per cent (Servillat et al. 2011) – here we
assume that it is ≈10 per cent. Applying the method discussed in
Section 5.1, we get the areal density of 0.0013 deg−2.
Nova-likes. Nova-like CVs were until recently not thought to be
radio sources. However, Körding et al. (2011) and Coppejans et al.
(2015) have now shown that several of these systems are radio
sources at a level of less than about 0.2 mJy, with variability de-
tected in two systems. Nova-likes will therefore show up as variable
sources in sensitive radio surveys. We will not consider them here,
however, because we do not expect to see many of them as tran-
sients. The reasons are their low space density (more than an order
of magnitude less than DNe) and the fact that nova-likes do not
show frequent large-amplitude variability.

3 Few additional light-curves of DN sources observed at 10 GHz have re-
cently been reported, see Coppejans et al. (2016).
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5.2.7 RSCVn

The space density of RSCVns is approximately 6 × 10−5 pc−3

(Favata, Micela & Sciortino 1995). The duty cycle of the class is
estimated to be ≈10 per cent and the typical monochromatic radio
luminosity of sources 1016 erg s−1 Hz−1 (Williams et al. 2013).
Converting space density into areal density as in Section 5.1, with
the scaleheight of 325 pc for RSCVns (Ottmann & Schmitt 1992),
we get the sky density of 0.011 deg−2.

5.2.8 Algol binaries

We use a value of ≈5 × 10−6 pc−3 for the space density of algol
binaries, as defined by Duerbeck (1984). To calculate the maximum
distance of detection at the 0.1 mJy flux density limit, we use
the average monochromatic luminosity of objects in our sample
(1.3 × 1017 erg s−1 Hz−1). There are no good estimations of duty
cycle for algol binaries – based on the light curves of sources in
our sample, we estimate it to be ≈23 per cent. Correcting for the
scaleheight of algols, which is ≈400 pc (Duerbeck 1984), we get
the final areal density of 0.062 deg−2.

5.2.9 Novae

The rate of novae in the Milky Way is estimated to be ≈35 yr−1 (Roy
et al. 2012). In order to calculate the maximum distance at which a
nova could be detected, with a limiting flux density of 0.1 mJy, we
assume that the typical radio luminosity it can reach in an outburst is
≈1.2 × 1020 erg s−1 Hz−1, that is, the average peak radio luminosity
of novae in the sample. Because the derived distance is 30 kpc, we
can estimate that approximately all 35 novae per year in our Galaxy
could be detected at the assumed flux limit. The final rate in a single
snapshot is evaluated by multiplying a rate per year by the duration
of nova. Based on the properties of light curves in our sample,
we expect to detect a typical nova in the outburst for ≈1000 d at
5–8 GHz frequency. For the parameters listed above, we estimate
that the areal density of novae is 0.0023 deg−2.

5.2.10 Soft gamma-ray repeaters

The sky density of SGRs is not well constrained. Ofek (2007) gives
the upper limit for the rate of giant flares (similar to SGR 1806-20
event) of 5 × 10−4 yr−1 per SGR. With the number of SGR sources
in the Galaxy reported by Olausen & Kaspi (2014) of 15,4 and the
duration of the radio flare analysed in our sample (∼20 d), we get
the areal density of approximately 10−8 deg−2.

5.2.11 Magnetic CVs

Polars. One of the two magnetic CVs in our sample – V834 Cen –
belongs to the subclass of polar magnetic CVs. With the luminosity
measured in the analysis (2.4 × 1017 erg s−1 Hz−1), we estimate
the maximum distance of dmax = 1.4 kpc. For the space density of
10-6 pc−3 (Pretorius, Knigge & Schwope 2013), duty cycle of 0.5
(Ramsay et al. 2004) and the scaleheight equal to 260 pc (Pretorius
et al. 2013), we estimate the sky density for these types of objects
of 0.038 deg−2.
Intermediate polars. Sky density of IPs is calculated based on the
AE Aqr. With the average measured luminosity of that source

4 http://www.physics.mcgill.ca/∼pulsar/magnetar/main.html

(5.8 × 1016 erg s−1 Hz−1), the estimated maximum distance for
the detection is dmax = 700 pc. With space density of 10−7 pc−3

(Pretorius & Mukai 2014), scaleheight 120 pc (Pretorius et al. 2013)
and duty cycle of 1 (persistent sources), we get the estimated sky
density of 0.0008 deg−2.

5.2.12 Flare stars

Space density of flare stars given by Reid, Cruz & Allen (2007)
is 0.08 pc−3. The average luminosity of flare stars in our sample
is 4.7 × 1013 erg s−1 Hz−1. With such low luminosities, at the
0.1 mJy flux-limited survey they can be detected up to a distance
of dmax ≈ 20 pc. Within that distance, which is relatively small
compared to the size of the Galaxy, we can assume a uniform,
spherical distribution of sources. The duty cycle of flare stars is not
well constrained (Osten 2008, Hilton et al. 2010) – assuming the
upper limit of 10 per cent, we get the areal density of 0.0064 deg−2.

Flare stars can also produce bright coherent bursts, which at the
sub-milijansky detection threshold can be detected from a distance
of several hundred parsecs (Osten 2008). Although these types of
events are quite rare (duty cycle less than 1 per cent), because of
their high brightness, the areal density of coherent flares can reach
approximately 1.2 deg−2 at the 0.1 mJy flux density limit. On the
other hand, they are expected to evolve rapidly (∼ 60 s) and should
only be common in surveys exploring very short time-scales.

6 PRO BA B I L I T Y D I S T R I BU T I O N O F
VARI ABI LI TY TI ME-SCALES

For a transient/variable candidate discovered in a blind radio survey,
it is very unlikely that the information about its distance, and there-
fore the luminosity, will be known (at least immediately). Thus,
all of the earliest information will be contained in the variability
of the light curve and spectral distribution of the source. Corre-
spondingly, if we cannot take into account information about the
luminosity of the source, the relation shown in Fig. 7 is reduced
to a one-dimensional histogram of variability time-scales (Fig. 8),
increasing the uncertainty in separation between different classes of
objects. This result, however, can be converted into the probability
distribution and convolved with the expected areal densities of radio
sources.

In order to represent the variability time-scales as a probability
distribution, for each of the considered classes of objects, we have
calculated the mean value μ and the standard deviation σ (listed
in Table 2) of the variability time-scales τ . Using these values, we
have assigned the following Gaussian probability distribution to
each class:

P (τ ) = 1√
2πσ

e− (τ−μ)2

2σ2 . (8)

The upper panel in Fig. 10 shows the probability distribution of
all the classes of objects in our sample, normalized to 100 per cent.
The dashed line represents the distribution of TDEs, for which
only one flare with well-sampled rise time was available. In this
case, the mean value of the distribution has been approximated
by the variability time-scale measured for that source, while the
standard deviation has been calculated as the mean value of
the standard deviations measured for all the other classes of ob-
jects. The probability distribution obtained in equation (8) depends
strongly on biases in our sample. In order to convert it into the actual
probability distribution, which takes into account expected number
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Figure 10. Upper: relation shown in Fig. 7 converted into the probability distribution of source belonging to a given class of objects based on the rise
time-scale, normalized to 100 per cent. Lower: the same relation, convolved with the estimated sky densities of objects (Table 2). These estimated distributions
have been calculated with the flux density limit of 0.1 mJy.
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of sources in the sky, we multiply the distribution obtained in equa-
tion (8) by the areal density of objects R, estimated in Section 5,

Pcorr(τ ) = R × P (τ ). (9)

Given a small number of light curves representing each sub-
class of magnetic CVs, we add their sky densities and calculate
their combined probability distribution instead of considering them
separately. With this approach, we avoid adding the uncertainties
associated with assigning Gaussian distribution based on approxi-
mated parameters. The lower panel in Fig. 10 shows the probability
distribution of all the types of objects in our sample, corrected for
the estimated sky rates of different classes. It is worth noting that
sources like XRBs or novae, even though they make up a signifi-
cant fraction of the original sample, due to their low expected sky
densities, are very unlikely to be found in a blind radio transient
survey.

The lower panel in Fig. 10 provides a template of the variabil-
ity time-scales that could be used as an indicator of the newly
discovered sources class. At the moment, the number of available
flares used in designing this classification method is uneven across
a range of objects included. However, it can be gradually improved
with new sources detected in future surveys, where additional data
could help to limit the uncertainties of the initial classification. This
would be especially desirable in the case of classes that have few
well-studied light curves to date, such as TDEs, for which at this
point, the variability time-scales are not well constrained. Tables A4
and A5 give the probability information for each of the classes of
objects (for rise and decline phases, respectively) on a time-scale
≈10−4–104 d, with a logarithmic time-step of 0.5.

The presented results depend on a range of parameters, which
we cannot accurately account for in our analysis. Although we have
corrected for the expected areal densities of objects down to 0.1 mJy,
for higher sensitivity surveys intrinsically faint sources will become
progressively more common, with the number of Galactic sources
increasing up to the point where the entire population within the
Galaxy can be detected. The form of the probability distributions
that can be applied to a given survey will also depend on the ob-
serving frequency, which might favour detection of sources show-
ing certain variability time-scales, and – for Galactic populations
– pointing location. At the moment, these have to be considered
separately within a given survey, but in the future might be included
as part of a more advanced pipeline.

7 D ISCUSSION

Fig. 8 shows that creating a simple AFF allowed us to include a
larger number of flares in the analysis, compared with the manual
selection. Although there is an overall agreement between both
methods, comparison of results obtained automatically (Fig. 7) and
manually (fig. 3 of PFK15) shows a higher degree of scatter for
several classes of objects in the automatic approach. Light curves
corresponding to these sources (XRB, RSCVn, algol) consist of
tens of single outbursts, which in the manual analysis we have
limited to those with the best data quality. The flare finding software,
however, had identified all of the flaring events in the same light
curves, increasing the range of obtained time-scales for each source.
Although most of the measurements correspond to real flares, in
marginal cases a false detection has also been included. For example,
an odd noisy data point within a flare can be mistaken for the end of
the respective flare and result in underestimating measured decline
time. In other extreme cases, several outbursts superimposed such
that the flux level does not drop low enough for the AFF to separate

Figure 11. Variation of Fig. 7, where all events originating from syn-
chrotron emission are marked with blue circles, and additional measure-
ments corresponding to scintillating sources and ESEs are plotted in purple
and red, respectively. As discussed in Section 7, scintillating sources together
with ESEs appear to populate most of the time-scale parameter space and
cover the range of rise rates typical for all the classes, from low-luminosity
stars to AGN. Scintillation and ESEs have not been included in the fit.

them will be measured as one long flare rather than single events,
and make the rise/decline times appear longer than they really are.
Because several of those exceptions identified in our analysis could
not be removed other than by manually excluding them, we have
decided to leave them in the final results in order to keep the process
purely automatic. In this way, we also begin to learn what pitfalls
might befall a future automated system.

This work is exploring the parameter space typical for flares
originating from incoherent emission processes. Variability from
sources of coherent emission such as pulsars is usually detected in
high-time-resolution observations, and, with duration of millisec-
onds to seconds, is outside of the time-scales regime considered in
this analysis. However, Coppejans et al. (2015) showed that a flare
from nova-like source TT Ari, evolving on a time-scale of minutes,
is most likely produced by a coherent emission mechanism. The
characteristic exponential rise time of that flare (≈0.005 d) shows
that in some cases, coherent flares can overlap the time-scales of
incoherent events.

One of the main challenges we might come across while clas-
sifying a newly discovered source by its variability rates can be
scintillation. Fig. 11 shows the relation between the time-scales and
peak radio luminosities for our extended sample of objects, where
a sample of scintillating sources and ESEs are plotted along with
the previously shown (Fig. 7) synchrotron events. It shows that the
parameter space of rise rates for these types of sources overlaps
strongly with most of the analysed astrophysical flares. It might be
possible to distinguish between those based on their spectral prop-
erties – while the amplitude of synchrotron flares is lower at lower
frequencies, Rickett, Lazio & Ghigo (2006) show that the observed
variability due to interstellar scintillation can be stronger at lower
frequencies. Similarly, if originating from intrinsic variability, the
light curve should evolve on longer time-scales at lower frequen-
cies, which is not the case for ESEs, where the peak flux density
is observed simultaneously at all wavelengths (Fiedler et al. 1987).
Another way of separating discussed types of events lies in the
shape of the flare – those originating from astrophysical explo-
sions are usually characterized by longer decaying times compared
to their rise times, while in the scintillation both phases are more
symmetrical.
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Although the entire process aims at automating the rise/decline
rate measurements, several steps have been done ‘by eye’ (listed in
rectangular frames in Fig. 9). Those include splitting the complete
sample of light curves into four distinct groups (each of which re-
quired different method of estimating the quiescent flux level) and
applying smoothing for one of them. The remaining steps (listed in
rounded frames in Fig. 9), such as selecting flaring events from the
data and measuring rise/decline rates (including background sub-
traction), have been done automatically. It should be noted that all
the manual adjustments were only required due to the nature of the
compiled sample. The flare finding routine applied to the data set
was necessarily simple; however, even this unsophisticated thresh-
olding approach needed to be somewhat flexible in order to work
on a variety of available light curves. In the future transient/variable
surveys, the observations carried out with an individual telescope
will provide more consistent data sets, and the flare identification
method can be replaced by more advanced techniques, such as those
discussed in Section 3. Additionally, as the aim of presented classifi-
cation method is to give an earliest indication of the source’s nature,
a potential flare should be identified as soon as the variability above
the quiescent flux level arises. With the long-term monitoring of
the background prior to outburst, it is possible that an iteration of
a presented flare finding routine could be used as part of a tran-
sient/variable pipeline; however, the exact form of the software will
depend on the survey design.

At the moment, the analysis is based on a fairly limited sample
of radio flares and an incomplete representation of certain types of
sources. Including more data could restrict the individual distribu-
tions and reduce the resulting overlap, providing clearer classifica-
tion. Alternatively, it cannot be ruled out that extending the number
of flares will lead to even greater scatter of measurements within
respective classes, decreasing the separation of their probability dis-
tributions. At this point, we cannot definitively say which of these
scenarios is more likely. Gradually updating presented result with
new sources might help to provide a more conclusive distribution.

8 C O N C L U S I O N S

This work builds upon the previously reported result, which showed
a clear correlation between the luminosity and time-scale of vari-
able radio objects, ranging from nearby, intrinsically faint to distant
and luminous sources (PFK15). Here we proposed a method of
classifying radio transient and variable sources using the rise and/or
decline rates of their flares. It is based on the analysis of exist-
ing light curves of synchrotron events, where the individual flares
were selected automatically in order to reduce bias associated with
choosing data by hand and make the result easy to reproduce. We
convolved the measurements of rise and decline time-scales with the
expected areal densities of sources down to a 0.1 mJy flux density
limit, providing probability distributions of variability time-scales
for a wide range of classes. We have shown that comparison of the
variability time-scales measured for a transient/variable source with
the presented distribution could point – with a given probability – to
its nature. The result shows that the variability-based classification
can be used – to some extent – to differentiate between classes of
objects. We have also investigated time-scales of variability caused
by propagation effects such as scintillation and ESEs. We showed
that these time-scales partly overlap with the parameter space of
synchrotron events and might require further analysis to separate
from astrophysical flares.

In the future, this method or a derivative could be in-
corporated into automated transient detection pipeline (e.g.
Swinbank et al. 2015) and used as part of a more complex de-

tection/classification software by setting initial constraints on the
class of the newly discovered source. The number of transient and
variable sources found in future Square Kilometre Array (SKA) sur-
veys could reach up to 1000 per week (Burlon et al. 2015; Fender
et al. 2015; Perez-Torres et al. 2015); hence, the initial, time-scale-
based classification might be valuable in the process of selecting
interesting events. This early indication could then be further veri-
fied and narrowed down by including additional information such as
an optical flux measurement (Stewart et al., in preparation), location
in the sky or comparison with the archival data.
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A P P E N D I X A : SO U R C E TA B L E S A N D DATA

Tables A4 and A5 will be maintained for download at 4pisky.org
and updated as new data come in.

Table A1. Additional TDE included in the analysis.

Source Distance (Mpc) Reference Distance reference

ASASSN-14li 90 Alexander et al. (2016) Alexander et al. (2016)

Table A2. Sample of scintillating sources included in the analysis.

Source Distance (Mpc) Reference Distance reference

0917+624 10581 Rickett et al. (1995) MOJAVEa/NEDb

0405−385 9151.6 Rickett (2007) NED
1257−326 8895.6 Jauncey et al. (2003) NED
1328+6221 8573 Koay et al. (2011) NED
1819+3845 3141.8 Dennett-Thorpe & de Bruyn (2003) de Bruyn & Macquart (2015)
J0510+1800 2297.8 Koay et al. (2011) NED
J0958+6533 1951 Koay et al. (2011) MOJAVE/NED
J1734+3857 6452.6 Koay et al. (2011) NED
J1128+5925 13 846.4 Gabányi et al. (2007) NED
1144−379 7103.1 Turner et al. (2012) NED
J0102+5824 3843 Lovell et al. (2003) MOJAVE/NED

Notes. ahttp://www.physics.purdue.edu/astro/MOJAVE/index.html
bhttp://ned.ipac.caltech.edu/
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Table A3. Sample of ESEs included in the analysis.

Source Distance (Mpc) Reference Distance reference

0954 + 658 1951 Fiedler et al. (1987) MOJAVE/NED
AO 0235+164 6142 Senkbeil et al. (2008) MOJAVE/NED

Table A4. Probability distribution of variability time-scales for rising phase of the flare, for a range of measured rise rates (time given on logarithmic scale).
These distributions have been calculated for the flux density limit of 0.1 mJy.

log τ (d) AGN SN XRB GRB Nova RSCVn Flare stars Algol Magnetic CV TDE

−4.0 −3.5 4.3e−26 2.6e−15 0.000 41 4.9e−162 2.3e−54 4e−13 100.0 3.5e−07 1.7e−08 6.8e−28
−3.5 −3.0 5.6e−22 2.1e−12 0.0017 5.7e−129 1.2e−44 3.8e−10 100.0 3.8e−05 0.0022 3.9e−23
−3.0 −2.5 4.1e−18 1e−09 0.0072 1.2e−99 6.9e−36 1.7e−07 95.0 0.0024 5.3 9.6e−19
−2.5 −2.0 2.8e−15 5.8e−08 0.0082 7.9e−75 8.3e−29 7e−06 29.0 0.02 71.0 1.8e−15
−2.0 −1.5 1.1e−11 1.5e−05 0.016 1.8e−52 1.8e−21 0.000 89 6.6 0.39 93.0 1.6e−11
−1.5 −1.0 9e−08 0.011 0.35 1.6e−33 1.1e−14 0.29 24.0 32.0 44.0 2.2e−07
−1.0 −0.5 1.8e−05 0.22 0.47 1.4e−19 4.2e−10 2.3 7.6 89.0 0.23 5.9e−05
−0.5 0.0 0.0021 2.4 0.28 3.2e−09 2.3e−06 6.9 0.61 90.0 3.1e−06 0.0077

0.0 0.5 0.15 20.0 0.19 0.018 0.0019 13.0 0.054 67.0 9.2e−13 0.52
0.5 1.0 2.7 50.0 0.074 15.0 0.083 6.9 0.0029 19.0 4.5e−21 6.8
1.0 1.5 17.0 35.0 0.0088 22.0 0.38 0.66 3.7e−05 1.0 8.5e−32 25.0
1.5 2.0 48.0 15.0 0.001 0.18 0.28 0.035 4.7e−07 0.036 3.2e−44 36.0
2.0 2.5 75.0 3.2 8.1e−05 4.4e−07 0.028 0.000 63 3.2e−09 0.0005 1.1e−58 22.0
2.5 3.0 91.0 0.55 7.6e−06 3.6e−16 0.000 54 7e−06 2.3e−11 5.2e−06 7.3e−75 8.5
3.0 3.5 98.0 0.089 1e−06 9.4e−29 2.1e−06 5.5e−08 2.1e−13 4.6e−08 1.2e−92 2.3
3.5 4.0 100.0 0.015 2e−07 8.6e−45 1.8e−09 3.4e−10 2.6e−15 3.8e−10 4.7e−112 0.46

Table A5. Probability distribution of variability time-scales for declining phase of the flare, for a range of measured decline rates (time given on logarithmic
scale). These distributions have been calculated for the flux density limit of 0.1 mJy.

log τ (d) AGN SN XRB GRB Nova RSCVn Flare star Algol Magnetic CV DN TDE Magnetar

−4.0 −3.5 2.4e−28 3.8e−11 0.01 3.1e−26 2.6e−59 8.2e−13 100.0 1.9e−06 2e−106 2e−19 8.7e−136 3.8e − 22
−3.5 −3.0 1.4e−24 3e−10 0.0046 1.6e−22 7.5e−51 1.7e−10 100.0 3.1e−05 1.2e−48 2.6e−16 4.3e−116 2.6e − 19
−3.0 −2.5 1.1e−20 5.8e−09 0.0051 1e−18 1.1e−42 3.8e−08 100.0 0.000 72 9.9e−13 3.6e−13 1.5e−97 1.9e − 16
−2.5 −2.0 1.8e−17 1e−07 0.0086 1.3e−15 5.7e−36 3e−06 76.0 0.01 24.0 1.1e−10 1.6e−81 3.6e − 14
−2.0 −1.5 1.5e−12 2.5e−05 0.07 6.3e−11 2.8e−27 0.0029 50.0 1.1 49.0 7.4e−07 5.8e−64 1.1e − 10
−1.5 −1.0 7.7e−09 0.0023 0.66 1.8e−07 1.2e−20 0.35 62.0 37.0 4.1e−07 0.000 37 1.4e−49 3.1e − 08
−1.0 −0.5 2.4e−06 0.022 0.67 3e−05 1.2e−15 2.6 4.0 93.0 2.9e−38 0.0095 1.2e−37 4.6e − 07
−0.5 0.0 0.000 46 0.15 0.33 0.0025 3e−11 7.3 0.032 92.0 1.6e−92 0.1 3.9e−27 2.6e − 06

0.0 0.5 0.07 1.5 0.24 0.15 2.2e−07 15.0 0.000 15 83.0 5.9e−169 0.7 4.6e−18 1e − 05
0.5 1.0 5.9 15.0 0.19 4.8 0.000 35 17.0 4.2e−07 55.0 1.5e−267 2.4 1.7e−10 2e − 05
1.0 1.5 46.0 27.0 0.046 15.0 0.016 3.3 2.6e−10 7.8 0.0 1.1 1.9e−05 5.6e − 06
1.5 2.0 78.0 14.0 0.002 7.7 0.086 0.061 7.9e−15 0.12 0.0 0.057 0.042 1.6e − 07
2.0 2.5 86.0 7.0 8e−05 2.3 0.13 0.0005 8.1e−20 0.0011 0.0 0.0012 4.3 1.8e − 09
2.5 3.0 68.0 4.3 3.9e−06 0.41 0.062 2.5e−06 4.4e−25 7.8e−06 0.0 1.5e−05 27.0 1.2e − 11
3.0 3.5 72.0 6.4 3.9e−07 0.081 0.014 1.1e−08 1.6e−30 6.1e−08 0.0 1.5e−07 22.0 6.3e − 14
3.5 4.0 81.0 17.0 8.6e−08 0.017 0.0016 5.9e−11 7.2e−36 7.6e−10 0.0 1.7e−09 1.8 3.8e − 16
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A P P E N D I X B: A D D I T I O NA L F I G U R E S

Figure B1. Selection of flares from a light curve of blazar 0336−019 for four progressively higher estimations of the background level: 10th, 15th, 20th and
30th percentile of the flux density measurements. In each case, dashed lines illustrate the respective parts of flares for which the measurement of rise/decline
time-scale is made. Upper left: two flares mistakenly interpreted as a single outburst, with overestimated decline rate as a result. Upper right and lower left:
individual flares detected separately. Lower right: fainter of the flares below the detection threshold.
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Figure B2. Variation of Fig. 7 and lower panel of Fig. 10 obtained for a number of different background estimation parameters, as discussed in Sections 4.1.2
and 4.1.3: from top to bottom, background estimated as 10, 15, 20, 30th percentile of the flux density values of the light curve.
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Figure B3. Variation of Fig. 7 showing the scatter of measured time-scale of rise rates for individual sources.
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