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Abstract

We study the probability distribution of the ratio between the second smallest and smallest
eigenvalue in the n x n Laguerre Unitary Ensemble. The probability that this ratio is greater
than r > 1 is expressed in terms of an n x n Hankel determinant with a perturbed Laguerre
weight. The limiting probability distribution for the ratio as n — oo is found as an integral
over (0,00) containing two functions ¢;(z) and ga2(x). These functions satisfy a system of two
coupled Painlevé V equations, which are derived from a Lax pair of a Riemann-Hilbert problem.
We compute asymptotic behaviours of these functions as rz — 04 and (r — 1)z — oo, as well
large n asymptotics for the associated Hankel determinants in several regimes of r and x.

1 Introduction and main results

The Laguerre Unitary Ensemble (LUE) consists of the space of n x n complex positive definite
Hermitian matrices endowed with the distribution

1
——(det M)*e "M gpr, a>—1, (1.1)

n,a

where Zn,a is the normalisation constant and dM is the Lebesgue measure

dM =[JdmM; ] dReMydImM;. (1.2)
i=1 1<i<j<n

The probability measure ([L.I]) is invariant under unitary conjugation and induces a joint probability
distribution on the eigenvalues A1, ..., A, on (R*)™ given by

n

AN TT e ™ A xwer (M)A, (1.3)
i=1

1

(VA

where A, (\) denotes the Vandermonde determinant

An(N) = An(Ay ) = [ =N (1.4)

1<i<j<n
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and xg+ Is the characteristic or indicator function with support on the positive half line. The
normalisation constant Z, ,, also known as the partition function, is given by

. 1 oo oo n
7 .= _/ / A2 TT e ™ A2d,. L5
’ n' 0 0 ( ) 11211 ( )

The theory of random matrices has enjoyed a growing interest and study for a number of decades
in part due to the surprising number of connections between it and seemingly unrelated topics, see
for example [I§]. Some classical references in the fields are [Il 2, 21, 27]. Probably the earliest
appearance of random matrix theory dates back to Wishart in 1928 in the context of multivariate
data analysis [30]. He was studying matrices of the form X*X, where X is an m X n matrix (m > n)
whose entries X;; are independent and identically distributed complex Gaussian variables

1
ReXij,IHlXij NN (0,0’2 = %> 5 (16)

and X* is the conjugate transpose of X. Such positive semi-definite matrices, called Wishart
matrices, possess eigenvalues which are also distributed according to (I3l), where & = m —n is an
integer. Since then, the LUE has been studied a lot, and has found applications in different areas,
for example in finance (see e.g. [5], Section 12.2).

Some known results

The limiting mean eigenvalue density function is given by the Marchenko-Pastur [20] law

B 1 4 —x
o7 T

du(x) = p(x)dx dx, (1.7)
supported on the interval [0, 4]. Besides the eigenvalue density, other quantities of interest are re-
lated to the extreme value statistics of the eigenvalues. The most well-known extreme value statis-
tics in the field of random matrix theory is the Tracy-Widom distribution [28] which describes the
properly rescaled fluctuations of the largest (or smallest) eigenvalue of a matrix from the Gaussian
Unitary Ensemble (GUE). This distribution is given by Fh(z) = exp (= [7°(s — 2)u*(s)ds) and u
is the Hastings-McLeod [I7] solution of the Painlevé II equation u”(s) = su(s) + 2u(s)? satisfying
the boundary condition u(s) ~ Ai(s) as s — oo, where Ai is the Airy function. For the case of
the LUE, the distribution of the rescaled fluctuations of the largest eigenvalue at the soft edge, at
x =4, is also given by the Tracy-Widom distribution ﬁ’g.

In this paper we focus on the hard edge, at x = 0, where the distribution of the smallest
eigenvalue (denoted by Apin) is given by another distribution F,(x) in terms of a transcendent of
the Painlevé V equation, also proved by Tracy and Widom [29]. More precisely, one has

Fala) = lim P (4nAnin > @) = exp (—i [ 1o (%) q2<£>d£> (18)

where ¢(x) is the solution of the equation

q 2 2 q
2q(1 - ¢%) (zqq) + 2 <(33q/)/ + Z> (1-¢*)" +2%¢(qd")” = azz, (1.9)
with boundary condition (&) ~ J,(v/€) for £ — 04, and J, is the Bessel function of the first kind
of order « (see [22] Section 10.2 and and Section 10.7] for definition and properties of this function).



That ¢(§) is indeed a transcendent of the Painlevé V equation can be seen from the following
transformation

1 4y(x)
1—y(x)’
from which it can be readily checked that y(z) is a solution to the Painlevé V equation with suitable

chosen coefficients.
Another quantity of interest is the gap probability

2
§= a7,

q(&)

Gna(d) = Pro (Asmin — Amin > d) , d>0, (1.10)

between the smallest and second smallest (denoted by Agmin) €igenvalue of the LUE. Some results
were obtained in [I6], where it was shown that the density of G (7) = lim;, ;00 G o (7 ) exists and
is characterised by the solution of a Painlevé III equation and its associated linear isomonodromic
system. For results on the gap probability but at the soft edge, see [23] and [31I]. In [24], using
heuristics arguments and numerical simulations, the authors generalized the results obtained in [23]
to a more general context.

The main focus of this paper is the distribution of the ratio

A

Qna(r) =Pnq ( > r> . o>, (1.11)
)\min

between the second smallest and the smallest eigenvalue of the LUE. Note that the ratio distribution

Qn,« cannot be straightforwardly related to the gap G, and the distribution of the smallest

eigenvalue, since the three variables Apmin, Asmin — Amin and );\S“‘i“ are not independent.

min

Our techniques differ from the techniques used in [16], [23] and [3I]. We express the ratio
probability in terms of a Hankel determinant and then apply well-known rigorous techniques from
Riemann-Hilbert (RH) problems analysis to derive asymptotics. We obtain a description of this
quantity in terms of a solution (qi,¢2) to a system of two coupled Painlevé V equations arising
from a Lax pair of a RH problem.

Statement of results

We begin the calculation of the ratio probability between the second smallest and smallest eigen-
value for general a > —1 by writing the quantity @, (r) as an integral over a Hankel determinant.
For r > 1, by definition of (3] we have

o) o) 0o n—1
Qnolr)=n / e Wy / / 1 A2 (N He‘")"')\f‘()\i—y)Zd)\i dy,
0 yr yr n!Zn,a i1

where y can be interpreted as the smallest eigenvalue. By changing variables n\; = (n — 1)5\,-, we
can then write

. (n—1)(n+14+a) roo
Qn,a(T) = L <n 1) / yae_nyZn—l,a <%y7 T> dy, (1'12)
0 _

Zmoa n

where we defined Z,, o(y;r) by

n

1 [ee] o0 o —n\s
Znaliir) = [ [ AR T[ O = wPAze (113)
tJyr yr i=1



Note that Z,, o(y;7) is the Hankel determinant ([25, equations (2.2.7) and (2.2.11)]) with respect
to the weight w(z) defined by

2 .a_—nx

’LU(:E) = (:E - y) re X[yr,oo)(:p)y (114)
where X[y oc)(7) is the characteristic function of [yr, o), i.e. we have
Znaliir) = et ( [ty . (1.15)
yr i,j=0,....n—1

Our main results concern asymptotics for the Hankel determinants Z,, o(y;r) and the limiting
distribution as n — oo of the ratio probability @y «(r) which can be expressed in a compact form
through a solution (¢1,¢2) of a system of coupled Painlevé V equations.

Asymptotics for the Hankel determinant 7, ,(y;r)

Let us define s := 4n?y, which is a rescaling of y. We provide large n asymptotics for Z, o (y;7) in
three different regimes:

Case 1: (s,r) are in a compact subset of (0,00) x (1, 00), (1.16)
Case 2: rs — 0, (1.17)
Case 3: g — 0 and (r — 1)s — oc. (1.18)

Theorem 1.1 Let a > —1 be fizred. Asn — oo and simultaneously s and r satisfy one of the three

cases presented in (LI0)), (LI7) and (LI8]), we have

O™,  for Case 1,
log Zp, o (4%2#) 108(Znar2) = I(s;7) +{ On™? for Case 2, (1.19)

2

( TZ) ), for Case 3,

where

1

oir) = =3 [ (ahasr) + rabtair) tog () da (1.20)

The functions ¢3(z;7) and q3(x;r) are real and analytic for x € (0,00) and r € (1,00), and they
satisfy the following system of coupled Painlevé V equations:

2

wq1<1 - icﬁ-) i(wqjq})’ + [w ((mqi)’ + %) + %} <1 - jZ:qJ) +x q1<Zq]q]> = %,
q2<1—2q>z q;d;) + ((Q)+—><1—§2:2->2+ ? (Z "-> _oe (1.21)
T j xq;4; z | (zgy 1 q; T q2 j:1q]q] 4 0\

Jj=1

where primes denote derivatives with respect to x. Furthermore, the functions q1 and qs satisfy the
following boundary conditions: as (r — 1)x — oo, we have

gi(z) = ﬁ +0 (ﬁ) : (1.22)

oy =12 2 1




and as rr — 0, we have

0@) = |1+ 0w, (124

— 1 o
2(w) = (1= 1) Joa(VIE)(1 + (1)) = gl V(14 Or)) (1.25)

Remark 1.2 We will prove in the present paper that the system ([2I]) with boundary conditions
(C22), (C23), (I24]) and (I25]) possesses at least one solution (g1,q2), but there is no guaranty of
uniqueness of this solution. Therefore, ¢; and ¢o are not defined through this system, but they
are explicitly constructed from the solution of a model Riemann-Hilbert problem, whose solution
(denoted @) exists and is unique. This Riemann-Hilbert problem is presented in Section [

Remark 1.3 In the regime as (r — 1)z — oo in ([L23]), there are different cases. For example, note
that if # — oo and r — 1, then the O(((r —1)z)~!) term is larger than (ra)~ Y2 if (r —1)/z — 0.
In this case, (I.23]) can be rewritten as

9 2

1
qQ(x):l—W—i—(’)(m), as ¢ — oo,7 — 1 and (r —1)y/z — 0. (1.26)

Remark 1.4 The system ([.2I]) are two coupled Painlevé V equations. It is worth to compare it
with the Painlevé V equation given by (L9), and also to compare (L20) with the Tracy-Widom
distribution (L8]). This system is similar to the one obtained in [7], where the authors obtained a
system of k (k € Ng) coupled Painlevé V equations. The main difference here lie in the ¢; 3 extra
term in the first equation of the system (.2]]), and in the small rx asymptotics of g1, which does
not involve Bessel functions.

Corollary 1.5 Asrs — 0, we have

—S

I = 539

(1+O(rs)). (1.27)
As s — 0o and r is in a compact subset of (1,00), we have

I(s;r) = —Cl—s + avrs +2¢/(r —1)s + O(log s). (1.28)
Proof. To obtain (LZ1), it suffices to substitute asymptotics (L24) and (25) into (L20)). To

prove large s asymptotics of I(s;7) given by ([L28]), we decompose the integral into several parts
as follows

I(s;r) = L+ L+,
L = —i /OW(Qf($;T) + 73 (w;7)) log (2) dx,
I, = —i /j(ﬁ(w;r)Jrrq%(:v;T))log (%) dz, (1:29)
Iy = —i /;(Qf(w;r)Jrrqg(fv;T))log G) dx,

where M is a sufficiently large but fixed constant. Asymptotics (I.24]) and (L.25) allow us to write
|I;] = O(log s), as s — oo. For Iy, the parameters (z,r) which appear in the functions ¢; and ¢



lie in a compact subset of (0,00) x (1,00), and thus we also have |Is| = O(log s) as s — oo. Over
the domain of integration of I3, the parameters x and r inside ¢; and ¢s satisfy xr > M, and thus
we can use ([L22)) and (23] to estimate it. We obtain

I3 = —%+ax/ﬁ+2\/(r—1)s—l—0(logs), as s — 00, (1.30)
which finishes the proof. O

Remark 1.6 Theorem [[.1] and Corollary provide asymptotics for Z,, o (ﬁ; 7‘) and I(s;r) in
various regimes of n, s and r, which are useful to prove Theorem [[.7] below for the limiting distribu-
tion of the ratio. Note that asymptotics (L28]) hold for s — oo and r in a compact subset of (1, c0),
and not in the more general situation of (r — 1)z — oco. The reason for that is, as it can be seen
in the proof of Corollary [L5 and more particularly in (L.29]), to estimate Iy we also need to find
asymptotics for ¢i(x;r) and ga(z;7) in the two following cases: a) xr = O(1) and simultaneously
r — 1 and b) xr = O(1) and simultaneously r — oo. These asymptotics are also needed to obtain
asymptotics as r — 1 and as r — oo for the limiting probability distribution of the ratio. These
cases deserve another long and separate analysis and we intend to pursue this in another paper.
We expect these asymptotics to be described in terms of a transcendental function, solution of a
differential equation similar to the Painlevé V equation given by (L9]).

Limiting probability distribution of the ratio @

min

Theorem 1.7 Let a« > —1 and r > 1 be fized. As n — oo, the limit Qu(r) := li_)m Qn,a(r) ezists
n—oo

and is given by

1 >~ a I(x;r)
« = 5 1.31
Qalr) 4a+1r(a+1)r(a+2)/0 vhede (1:31)

where I(x;r) given in Theorem [Tl

Remark 1.8 Let p,(x1,x2) denote the joint density for the first two smallest eigenvalues at Apin =
21 and Agmin = 22, which can be straightforwardly obtained by integrating (L3]), and is given by

e—n(xl—i-xg) (

pn(1,22) = (n $1:13)2,Z £2 = %1) / / H (Aj=Ai) H TN (w1 =) (w2 Ni) d .

2 3<i<j<n

The ratio probability @, () is expressed in terms of p, by the relation

Qnalr / / palys y)dyady. (1.32)
yr

In [I5], the authors expressed the density p, in the special case where « is an integer, as a deter-
minant involving the Laguerre polynomials, they obtained [I5] formula (3.20)]

—n(x n—1)x €z “
pn(21, 32) = nte M@t (n—1)z2) <$—i> (29 — x1)* Dy (21, T2), (1.33)
where
i+k—2) 7 (—a+1
815] )Lg{+n_1)(t)‘t——nx2:| i=1,...,a
a+1)(a+2 R
D1, w2) = (—1) 2 det k=102 L (L3
8(j+k—2)L(—a+1) (t)‘
t a+n—1 t:—n(xg—xl) j=1,2
k=1,...,a+2



and L§a) is the generalized Laguerre polynomial of degree j and index a. These polynomials are
defined for o € R (not necessarily for o« > —1) through the recursive relations

N N N 2% +1+a—2) L\ @) — (k+ o)L
L((] )(:1:) =1, Lg )(x) = l+a—2x, and L,(H)l(:n) = ( ) 2_1(_:131) th+a) k_l(x), k>1.

By combining ([32) and (L33]), this gives a determinantal representation for @, (r) if a € N.
Also, in [I5, equations (3.34) and (3.35)], they obtain the following determinantal expression for
the limiting density of the two smallest eigenvalues:

. 1\? s1 89 et 59\
povn = Jin () (i 7m) = T () Dlovoa) ()

where

N

s 51\ 2 s s p o Lat2

. 2 — 81 1 2 k=g

D ~ 1 D (— —) — det — s\ 2

(817 82) nl—>n;o ( 4n? > " 4n?’ 4n? ¢ <82 81> '—k+2(\/ S9 — 81)
j=1,2

k=1,...,a+2

From the change of variables y = ;77 and yo = ;% in (L32) and then taking the limit n — oo, we

have
Q (7’) = lim | — / / Dn (— —2> dsods = / / p(s Sg)dSQdS (1 36)
0 s 7 0 rs 7 . '

The fact that the limit exists and can be interchanged with the integrals is not direct, and can be
justified as in [I6, Proposition 5.11]. The formulas (I35 and (36 give an explicit determinantal
representation for Q4 (r) in terms of Bessel functions if o € N.

Outline

In Section 2 we introduce a family of monic orthogonal polynomials in terms of which the Hankel
determinant Z,, ,(y;r) can be expressed. We also use the RH problem for orthogonal polynomials
introduced by Fokas, Its and Kitaev [I4] and derive a differential identity in y for Z, o (y;r).

We apply the Deift/Zhou steepest descent method [12] [10} [IT] on this RH problem in Section
to obtain large n asymptotics of Z, o(y;r) uniformly in y small enough.

In the analysis we will need a non standard model RH problem, which we introduce in Section
Bl We derive a system of two coupled Painlevé V equations using a Lax pair in Section Ml and
show asymptotic properties of certain solutions of these equations as (r — 1)x — oo and rz — 0 in
Section Bl

Finally we give a proof of Theorem [[.1] and Theorem [I.7] in Section [ and B respectively, by
integrating the differential identity and using equation (LI2]).

2 Differential identity for the Hankel determinant 7, ,(y,r)

In this section we relate the Hankel determinant Z, ,(y;r) to a RH problem by making use of
orthogonal polynomials. We consider a family of monic orthogonal polynomials p; of degree j
characterised by the relations

/ Pj(x)pm(x)w(z)de = hjdjm, j,m=0,1,2,..., (2.1)
y

T



where the weight w is defined in (I.I4]) and h; is the squared norm of p;, which can be expressed
in terms of Hankel determinants (see [25 equations (2.1.5) and (2.1.6)]) as follows:
- Zj-i-l,a(y; T)
T Zialysr)
It will prove useful for the later analysis to consider Y (z) = Y,,(z;y,r) the matrix valued function
defined by,

Y(z) = <_ 2mi (2) — 2mi (z)> ) (2.3)

hon_ 1 Pn—1 By dn—1

Zoo(y;r) == 1. (2.2)

where ¢; is the Cauchy transform of p; defined by

q5(z) = L /Oo pi@u(@) ;. (2.4)

C2mi ), T —z
The function Y can be characterised as the unique function satisfying a set of conditions [14]
equations (3.19)-(3.21)], known as the RH problem for Y, which are as follows:
RH problem for Y
(a) Y :C\ [yr,o0) — C?*2 is analytic.

d

yq@):y4@<éiﬁ@>, 2 € (yr, 00). (2.5)

(c) Y(2) = (I +0O(271))2"% as z — oo, where 03 = <(1) _01>

0 a2
(d) Y(2) =Yy (2) ((1) ot | %(y )

is taken, and where Y,.(2) is analytic in a neighbourhood of yr.

> as z — yr, where the principal branch of the logarithm

Remark 2.1 Since Y is discontinuous on (yr, 00), the function zTr (Y ~(2)Y”(2)03) is not analytic
in a neighbourhood of co. Nevertheless, since w(z) which appear in the jumps for Y becomes
exponentially small for large z, the non-analytic part of zTr (Y ~'(2)Y’(2)03) in a neighbourhood
of oo is also exponentially small in z. In fact, from (2.3)), we have

Y'(2) = <gag + (’)(2_2)) 2", as z — 00, (2.6)
and thus
2Tr (Y_l(z)Y’(z)Jg) =2n+ % +0(27?), as z — oo. (2.7)

for a certain ¢; € C. This constant will play a role in Lemma below.

In [32] 33], the authors considered a similar but different RH problem, where they perturbed
the classical Jacobi ensemble by adding n-dependent singularities to the weight. Having introduced
the above objects we are now in a position to state the following lemma which is central for the
asymptotic analysis of Z, ,(y;r). The identity ([2.8)) and its proof are similar to the one performed

in [4].



Lemma 2.2 The following identity holds,

n?+ (a+2)n  no

Oylog Zy o(y;7r) = — , 2.8

) 108 Zooli7) : - (2.8
where ¢y is given in (2.7).
Proof. We begin by making the substitution \; = y¢; in (ILI3)), which gives

n?+(a+2)n >

Znaly;r) =y O T, oysr), (2.9)
where

" 1 %) %) n .

Tnalir)i= o [ [ 80@2 TL — 175 0, (2:10)

sJr r j=1

The above quantity may be computed by introducing monic orthogonal polynomials p; satisfying
S ~
/ De(2) P ()W (2)dx = hedpm, w(z) = (z — 1)%x%e ™2, (2.11)
T

Analogously to ([2.2)), for j = 0,1,2,... we have

iy _
h] — -Zj_l’i(y’r)j ZO,a(y;T) = 1. (212)
Zja(yi7)

From the orthogonality conditions for p; given in ([2.1]), we easily obtain

i) =y pi(yx),  hy =y BTn, (2.13)

A similar calculation for the Cauchy transform g; appearing in (Z3]) shows that

~ 1 ® pi(x)w(x it
() = o [ P gy iy ), (214)

Summarising, if we define

?(Z) = <—~2£nj§i)—1(2) _~2n7gffq(i)_l(z)> 5 (2.15)

we obtain the relationship

a+2

Y(2) =y "oy~ Y (y2)y T (2.16)

We now use the well known relation, which can be straightforwardly deduced from ([212]),

Zn,a(y; r) = HE, (2.17)

(2.18)

~
Il
o



Note that
Oy = / Bi(2)20, () dz, (2.19)

where in the above line we have used the fact that p; and d,p; are orthogonal. Combining the
above expressions then yields,

dyhi = — / " o (2)2(2)da (2.20)

Using the above in (2ZI8)) we have,

9,108 Zn.o(y;7) = —n / w(x)zpi({) da. (2.21)
r i=0 i

The summation can now be removed by use of the Christoffel-Darboux formula (see [25], equation
(3.2.4)])

= ~ . (2.22)

n—1 ~ ~ ~ ~ ~
pi(x)z Pn(@) Pn1(x) — Pp—1(z) P ()
ZZ:% h; hn—1

In order to simplify by a contour deformation the integral in the right-hand side of ([2.21]), we will
use the formula

w(zx) Z ﬁl(f)z S <Tr (}7;1(33)}74’_(33)03) —Tr (57__1(3:)}7_/ (m)03>> , x € (r,00), (2.23)

47e

which can be obtained from (Z22)) and from the relation Y, (z) = Y_(x) <(1) w(la:)> for z € (1, 00),

and where ffi correspond to the limiting values of Y from above and below (r,00). We now obtain,

0y log Zma(y; r) = 41 /TOO x <Tr (?Jl(x)fﬁ(:n)ag) —Tr (17__1(:17)17i (:1:)03)) dz. (2.24)

i
Note also that (ZI0) implies that

Te(Y ' (2)Y(2)03) = yTe(Y  (y2)Y' (y2)o3). (2.25)
Therefore, combining ([2.24]) with ([2.20]) gives after a change of variables

Oy log Zn,a(l/% r) = 4:2'11 /OO z (Tr (Y;1($)Y_;_($)O'3) —Tr (Y__l(aj)YL (z)o3)) dz. (2.26)

Consider the integral of zTr (Y ~!(2)Y’(2)o3) over the contour C shown in Figure [l As Y is
analytic in C\ [yr, 00) and C does not enclose any singularities of Y, this integral is zero. Therefore,
we have

/ 2Tr (Y_l(Z)Y/(Z)O'g) dz = —/ ZTr (Y_l(z)Y/(z)Jg) dz. (2.27)
cluc_ CcHCh

Property (d) in the RH problem for Y implies that Y ~1(2)Y’(2) = O((log(yr — 2))?) as z — yr,
and thus we have

lim [ 2Tr (Y_l(z)Y'(z)ag) dz = 0. (2.28)
e—0 Ce

10



L —
yr yr+ R

Figure 1: The contour C = C. U Cy U Cr U C_ used in establishing a differential identity for the
Hankel determinant Z,, o (y, 7).

Thus, by Remark 2. and by taking first ¢ — 0 and then R — oo in (2.27])), only the term containing
¢1 in (7)) contributes to the limit, one has

/00 z (Tr (Y (@)Y (2)o3) — Tr (Y2 ' (@)Y (2)03) ) do = —2micy,

T

and equation (Z.20) becomes
ncy
2y

The result follows from (29I O

Oy log Zma(y; r) = (2.29)

3 A Riemann-Hilbert problem related to the system of ODEs

We first introduce some notations for the sake of convenience. We define the piecewise constant
function

“Z%:{ ti iiiﬁiigj (3.1)
and for t € R, we define also
I, for — 28 <arg(z—t) < %,
Hy(z) = <_elm-a (1)> , for 2 <arg(z—t) <m, (3.2)

: 0 27
<e—7ria 1> , for —w<arg(z—1t) < —Z

where the principal branch is chosen for the argument, such that arg(z —t) = 0 if z > ¢. In the
course of computing the asymptotics for the Hankel determinants Z,, o(y;7), one is led to consider
a model RH problem, which we will denote by ® its unique solution. The matrix-valued function
® depends on parameters x > 0 and a > 1. In the RH analysis of Y in Section [0l  and a will be
related to y and r through the relations

z=n%f(y) and a= Fyr) (3.3)

fly)’

11



Figure 2: The jump contours appearing in the Riemann-Hilbert problem for ®. The arcs X,
7 =1,2,3,4 depend on z and a. For convenience, they are chosen such that they do not contain

—ax, —x and 0.

where f is a conformal map from 0 to a neighbourhood of 0, satisfying f'(0) = 4, see (6.44]) and
645). In particular, if we can write y = 1.z for a fixed s, and if r is fixed, equation B3) implies

that as n — oo, we have

r=s5+0(n"?), a=r+0(mn?).

RH problem for ®(z) = ®(z;z,a)

(3.4)

(a) ®:C\ Xy 40 — C?*2 analytic, with ¥, 4, = UP_ | X; U {—az, —,0} as illustrated in Figure 2

(b) @ has continuous boundary values ®4(z) as z € ¥, 45 \ {—ax, —z,0} is approached from the

left (+) or right (—) side of ¥, 4., and they are related by

1 0
2. =) (o 1) e,
0 1
O, (2) =D _(2) <_1 0) , z € Yo,
1 0
2 =), ). sexs,
Dy (2) = D_(z)e™73, z € Xy.

(3.5)
(3.6)

(3.7)

(3.8)

(¢) As z — oo, there exist functions p(x), ¢(x) and v(z) (these functions also depend on a), such

that ® has the asymptotic behaviour

@(Z) = <I + l@l(x) _|_ 0(2—2)> Z—io’g]\762;70-37
z

. 0 1
where N = %(I—i—wl), o1 = <1 0> and

81(2) = ( a(a) w(m))

ip(r) —q()

12
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(d) As z — —ax, ® has the asymptotic behaviour

L i
q)(z) _ 0(1) (é OE log(lz + aa:)> ETG(Z)USH_am(Z). (310)

As z — —x, ® has the asymptotic behaviour

B(2) = O(1)e 205 (5 4 7). (3.11)
As z — 0, ® has the asymptotic behaviour

O(z)=0(1)z =2 . (3.12)

Remark 3.1 It can be verified by deleting the jumps around the singularities that the O(1) terms
in asymptotics (3.10), (B.11]) and [BI2]) are analytic functions.

Remark 3.2 The uniqueness of the solution ® follows by standard arguments, based on the fact
that det ® =1 (see e.g. [0, Theorem 7.18]). It is in general a more difficult task to prove existence
of a given RH problem, this relies on showing a so-called “vanishing lemma”. The existence of
® has been proved for @ > 0 in [3, Lemma 2.6] (our situation corresponds to I = (—o0, —ax),
B ={-2,0},d ,=1 d = 5 and 70 = —% in the language of [3]). Nevertheless, the proof
of the vanishing lemma [3, Lemma 2.6] does not require the assumptions o > 0 and holds more

generally for & > —1. Thus, ® exists and is unique for o > —1.

Remark 3.3 The fact that ®;(z) is traceless follows immediately from det ® = 1.

Remark 3.4 Since a € R, we can check that 03®(Z)o3 is also a solution of the RH problem for
®. Thus, by uniqueness of the solution (see Remark 3.2]), we have

O(2) = 03P(Z)0s. (3.13)

In particular, this implies that all the functions p(x),¢(z) and v(z) are real.

4 The Lax pair and two coupled Painlevé V equations

To derive the system of two coupled Painlevé V equations (IL2I]), we will use a well-known method
of isomonodromic deformation theory [I3]. We begin by making the transformation

~ 1 O g s}
O(z;z,a) = ( w(@?) 1) :E736703<I>(x2z;:172,a). (4.1)

The jump contour for Cf(z) is ¥1, and is independent of x, while its asymptotic expansion as
z — o0 is given by

~ 1 0 ~ T ’
O(2) = ( v(x?) 1) <I + %CI);[(:U) + (’)(2_2)> ¢T3, 193 N o273 (4.2)
where
N q(mj) _v(z?)
Cpl(x) - pmmZ) q(£2) (4 3)
3 T2
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By standard arguments of RH analysis, ® is analytic in z € (0,00). The Lax pair (A,B) =
(A(z;x,a), B(z;x,a)) is defined by,
0.9(2) = A(2)®(2), (4.4)

9,®(2) = B(2)®(2). (4.5)

The fact that det ® is constant implies that A and B are traceless. Also, since the jump matrices for
EI;(Z) are independent of z and x, A and B are analytic on C\ {—a,—1,0}. Using the asymptotic
behaviour of :Is(z) as z —» 0, z - —1, 2z — —a and z — o0, it is easy to show that A(z) is
meromorphic on C with single poles at —a, —1 and 0 while B(z) is an entire function. One has

A(z) = A o) + Ag1 ()2 + Aps(@)(z + 1) + Agr(2) (2 +a) 7t (4.6)
—20'(2?)2? + v(2?)? — 2¢(2?) + v(a?
B(z) = <z—|—(f)u(x) (1)> , where u(z) = 2v(a7)a” + ol :32 2a(@7) v )7 (4.7)

the matrices Ag 1(z), A1 1(x), Ag1(x) are analytic in « € (0,00) and A o(z) = <8 8) There are
2

infinitely many non-trivial relations between the functions appearing in ([4.2]). They can be found
using the fact that B is entire. For example, by expending Bis(z) as z — oo using (£2]), we find

—v(22)? + v(z?) + 2q(2?) — 2220 (2?)
2z

Bia(z) =1+ +0(27?), as z — 00, (4.8)

from which we obtain the relation ¢(z) = $(2zv'(z) +v?(z) — v(2)), and thus u(z) can be rewritten
1)’ 'We now turn to the compatibility condition

more simply as u(z) = —2 (v(z?)z~
0.0, = 9,0.P, (4.9)
which upon rewriting the derivatives in terms of the Lax matrices becomes

0,A—0.B+ AB — BA = 0. (4.10)

If we parameterise A as

Az z,a) = <d<z?$’a) blz: 2,0) > (4.11)

c(z;x,a) —d(z;x,a)

then (AI0) is equivalent to three coupled ODEs,

d=-3, (4.12)
/!

c:(z+u)b—5, (4.13)

d =142(z+u)d, (4.14)

where primes denote again derivatives with respect to z, and where the dependence of the functions
in z, x and a have been omitted. The first two equations provide d and c in terms of b. Taking the
determinant of A yields

bb//
7 .

det A = — (bf — (2 +u)b® + (4.15)
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From (4.6)) we have that b(z) is of the form
b(z) =boz ' 4+ b1(z+ 1)+ ba(z +a)7t (4.16)

where by, by and be only depend on x and a. Note that Remark B.4] implies that A(z) € R and
B(z) € R for z € R. In particular, by, by and by are real. Equation ([AI6]) together with (£I5]), allow
us to compute the asymptotics of det A at z =0, 2 = —1, 2 = —a and z = oo in terms of by, by
and by. Alternatively, we may compute det A at these four points using the asymptotic expansion
of ®. Equating these asymptotics with those expressed in terms of by, b1 and by we arrive at the
equations

OZ2

o bo(x)ulz) - ibg(:nf + %bo(x)bg’(m) ~0, (4.17)
b (@)2(1 — u(z)) — ib’l(az)2 + %bl(x)b’l’(x) +1-0, (4.18)
bo(2)2(a — u(x)) — %bg(xf + %bg(az)b’z’(az) o, (4.19)
%2 — (bo(x) + b1(x) + ba(z)) * = 0. (4.20)

By expanding the expression Aj2(z) = b(z) in a Laurent series about z = oo, we get the following
identities between bg, b1, by and v':

bo(z) + by (z) + ba(z) = g (4.21)

bi(x) + aby(x) = —xv' (22). (4.22)

Note that (£2])) is a better version of (A20]). If we express by and u in terms of b; and by from

I7) and (#21)), and if we define

_ 20i(V7)

Vo
we obtain the system ([L21]) with @ = r from (£I8]) and [@I9). The same change of functions (£.23))
was used in [7], where the authors obtained a system of k (k € Ny) coupled Painlevé V equations.

HED)

i=1,2, (4.23)

5 Further properties of the special solutions

Our main goal in this section is to get asymptotics for by(z), b1 (z) and be(z) as (a — 1)z — oo and
ar — 04.
5.1 Asymptotic analysis when (a — 1)z — oo
5.1.1 Re-scaling of the model problem
In order to have a jump contour independent of x, we make the transformation C(z;z,a) =
(ax)%"?’(I)(a:Ez; x,a). C is the solution of the following RH problem:
RH problem for U
(a) C:C\ S, -1; = C**? s analytic.

15



(b) C has the following jumps

Ci(z) = C_(2) (ewlm (1)> , sev, (5.1)
Co(2) = C_(2) (_01 é) , 2 €T, (5.2)
€)= ) (i 1) e, 53)
Cy(z) = C_(z)e™7s, z € Xy. (5.4)

(¢) As z — o0,

1 1
C(z) = <I +~Ci(w;0) + 0(2—2)> 2 Ti08 NeVarz2os, (5.5)
where
q(x;a) W(Ii%
Cl(x;a) = (ip(amw;a) (a;v()m;a)> : (56)
(ax)S/Q - axr

(d) As z — —1, C has the asymptotic behaviour

C(Z) _ O(l) ((1) ﬁ logl(z + 1)> 6%6(2)03[{_1(2). (57)

As z — —a~!, C has the asymptotic behaviour
C(z) = O(1)e"2 078 (5 4 a7 1) (5.8)

As z — 0, C has the asymptotic behaviour

aogy

O(z) = O1)2" 5 (5.9)

5.1.2 Normalisation at co of the RH problem

We define the g-function by

g(z) =Vz+1 (5.10)
where the principal branch is taken for the square root. As z — 00, g has the asymptotic behaviour
1
9(2) =22+ 01272+ 0T, g = (5.11)
Now we define
we = (. ' V) o)e e, (5.12)
1g1vax 1
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RH problem for W
(a) W:C\ X,-11 — C¥*? is analytic.

(b) W has the following jumps:

1 0
We o) = W-3) (gt 1) sex, (5.13)
Wo(z) = W_(2) (_01 é) : 2e T, (5.14)
1 0
W+(Z) = W_(Z) <e_ﬂ_iae_2\/ﬂg(z) 1> s z € 23, (515)
Wi(z) = W_(z)e™7s, z € Yy. (5.16)

(¢) As z — 0,
Wi(z) = (I + %Wl(x;a) + O(z_2)> z_%USN, (5.17)

where

iv(z;a)

(Wi(z;a))12 = Jaz

+ig1vax. (5.18)

(d) As z — —1,
log(z+1) ria
W(Z) — O(l) <(1) 2iri > ETG(Z)USH_l(Z)e_\/HQ(Z)US‘ (519)
As z — —a™ 1,
W(z) = 0(1)e™2 037 (5 44717 (5.20)
As z — 0,
W(z) =0(1)z2". (5.21)

For z € ¥1UX3, Re(g(z)) > 0 and therefore the jumps of W on ¥ UX3 are exponentially close to the
identity matrix as (a — 1)z — oo. Since g(—1) = 0, this convergence is not uniform as z approaches
—1. Therefore we will construct a global parametrix which will be a good approximation of W as
z stays away from a neighbourhood of —1, and a local parametrix around —1.

5.1.3 Global parametrix

Ignoring exponentially small entries in the jumps and a small neighbourhood of —1, we are led to
consider the following RH problem.

17



RH problem for P(>)
(a) P):C\ R~ is analytic.

(b) P(*) has the following jumps on R™:

P =6 (O ). € (o0, 1),
P () = P a)eme, 2€(-L0)\ {—a7"},

(¢) As z — o0,
(09) () — LNES) “ov\ Loy
P>)(z) = I—I—ZP1 (a) +O(z77) ) 27493 N.

(d) As z — —1,

P2 =0 ((z + 1)—1/4) .

As z — —a™ !,

P(OO)(Z) _ O(l)e%ﬁ(z)aa (Z + a—l)US '
As 2z — 0,

aocsy

P> (z)=01)z =2 .
We can check that the solution of this RH problem is explicitly given by

P(z) = <¢<a+2\/1m> (1)> (175N

vVz+1-—1

where the principal branch has been chosen for each root. Note that
(P (a))12 = i(a+2v/1—a1).

5.1.4 Local parametrix near —1

y <\/z+—1+1>‘3"3 <\/z—|—1+\/1—a—

Vz+1l—v1—-a

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

>_ . (5.28)

(5.29)

We want to construct a function P(~1) defined in a open disk D_; around —1 of radius %(1 —a 1)

which satisfies the following RH conditions.

RH problem for P(-1)
(a) PV D_y\ ¥,-11 is analytic.

18



(b) P has the following jumps:

—1 —1 1 0
P_g_ )(Z) = P£ )(Z) <eﬂ_iae_2\/ﬂg(z) 1> s z € El N D_l, (530)
Pj_—l)(z) _ Pﬁ_l)(Z) <_01 é) , = 22 N D_l, (531)
PV () = PV ! 0 ze€X¥3ND (5.32)
+ - = e—wiae—2\/ﬂg(z) 1)’ 3 -1 )
P (z) = PO (z)emioos, z€XND. (5.33)

(¢) As z — oo,

PED() = (140 (((a = 1)2)712) ) POI(2) (5.34)
uniformly for z € D _1.
(d) As z — —1,
P (z) = 0(1) (é & ) "2 0B H_ (z)emVor9()os, (5.35)

The solution of this RH problem can be constructed in terms of the Bessel model RH problem with
parameter a = 0, which is presented in the appendix (see Subsection 0.2]), and whose solution is
denoted Y. The local parametrix is given by

POV (2) = E(2)TO (azf(2))e 2 ()03 ~Vazg()os, (5.36)
where
f(z)=gz)2 =241 and E(z) = P (2)e” 5 0Es N1 f ()T (q)1. (5.37)

It can be verified that E is analytic in D_;.

5.1.5 Small norm RH problem
Define

R(z) = { W(2)P>®)(2)~1, for z € C\ (D_; UX; UX3), (5.38)

W(z)PV(2)~1, for z € D_;.
Since W and P(—1) have the same jumps inside D_; and the same behaviour near —1, R is analytic
inside D_;. Also, W and P have the same jumps on R™, and the same behaviour near —a "
and 0. Therefore, R is analytic on C\ ((0D_1UX1UX3)\ D_1). Let us put the clockwise orientation
on 9D_y. On dD_; by (5:34), we have R_(z) 'Ry (2) = I+ O (((a — 1)2)~'/?) and by (GI3) and
GIH), on (21 UX3)\ D1, R_(2)"'Ry(2) = I + O(e~*V(@=1%) where ¢ > 0 is a constant. From
(5I7) and (5:24)), as z — oo one has R(z) = I + O(z~'). By small norm theory for RH problems,
it follows that R exists for sufficiently large (a — 1)z and satisfies R(z) = I + O(((a — 1)x)~/?)
uniformly in z € C\ ((0D_1 U¥;UX3)\ D_;) and as z — oo,

Ry(z;a)

R(z) =1+ -

+0("%), R(z)=0 <((a - 1)3;)—1/2) (5.39)
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We have in particular that Ry (z;a) = O(((a — 1)x)~'/?). For z € C\ (D_; UX; UX3), we have
W (z) = R(2)P>)(2) and therefore

Wi(z;a) = Ry (z;a) + P (a) = P (a) + O(((a — 1)z)1/2), (5.40)
Using (5.18)), (5:29) and (5.40]), we obtain
v(x) = —%aw+(a—|—2\/1—a—1)\/ﬁ—l—0((1 — a7V, as (a — 1)z — 0. (5.41)

For the asymptotics for by and by, from (&), (£I1)) and (£I0), we can use

bo(Vx) = lii)r%i\/iz [8Z<I>(a:nz; z,a)d Y azxz; z, a)] 19 (5.42)
b1 (V) = Z_l)i_n;i1 iVE(z+a™") [0:®(axz; ,0) @ (axz; 2, 0)], - (5.43)

To compute these limits, we will need the global parametrix. For z € C\ (D_; U3 U 33), by the
definition of C' given at the beginning of Subsection (.11l (5.12)) and (5.38]), we have

. _ -3 1 0 (00) Vazrg(z)os
O(arz;x,a) = (ax)” 4 (_%m 1> R(2)P'*(2)e . (5.44)
Using the definition of the global parametrix given by (5.28]), together with the asymptotics for
R (539) and the above equation, the limits (5:42]) and (0.43) are straightforward to compute. As
(a — 1)z — oo, we find

bo(VT) = % (1 +O (((a - 1)x)_1/2>) , (5.45)
b (VE) = \/alj (1+0(((a—D2)?)). (5.46)
Asymptotics for by can be obtained directly from the relation (LZ1]), as (a — 1)x — oo we have
I Y g
be(vVz) = NG \/m+0<(a—l)\/5>' (5.47)

Large (a — 1)z asymptotics for ¢;(z)? and go(x)? are immediate to obtain from (#23)), (5.46) and
(547) and are given in (L22]) and (L23]) with a = 7.
We will need later the asymptotics for ®(z;x,a) when z — oo and simultaneously (a — 1)z — oo.

Note that the global parametrix P(*) defined in (5.28)) only depends on a, and is such that its
behaviour at co (0.24) has the form

P (2) = (I + O(z_l))z_%‘””N, as z oo and (a—1)x — oo. (5.48)

Thus from (5.12)), (5.38) and the definition of C' given at the beginning of Subsection E.I.1] we have

as = — oo and simultaneously (a — 1)z — oo that

<I>(z;:17,a) = ((1:17)_(%3 <_%1 » ? (I—I—O(%)) (%)_% Ne\/z+axa3’
az aT (5.49)
_ (_llax 2) <1+< o) oW/F) >N€ma3‘
W o)) or)



\/_

Furthermore, if we assume that — 00, we have

oy _ 0(<“—”i>2> o(%)
o S

2z z

I

~—

e
Thus, if z — 00, (a — 1) — oo and simultaneously % — 00, (B:49) becomes
2

ax |2 az
Baia) = % (H (Og(ﬁ) ; o (=

o((#)°)

5.2 Asymptotic analysis when ax — 0

) NevVzs, (5.51)

o( (%)

In order to have the rays 7 and Y3 of the jump contour independent of a and x, we make the
following transformation on &:

W(z) = ®(2)H_gp(2) " Hy(2). (5.52)

It is easy to verify that W satisfies the following RH problem.

RH problem for W
(a) W:C\ Yo,0 — C?*2 is analytic.

(b) W has the following jumps

W) = - o 1) arg(z) = o (5.53)
W (2) = W_(2) (_01 é) , 2 € (o0, —az), (5.54)
W) =) (e 1) arg(z) = o, (5.55)
Wo(z) = W_(2) (ej; e_?m> , 2 € (—az,0) \ {—z}. (5.56)

W(z) = <I + %@1(:5) + (’)(2‘2)> 2o Nettos, (5.57)

(d) As z — —ax, W has the asymptotic behaviour

W(z) = 0(1) <é %) S0 (), (5.58)
As z — —=,

W (2) = O(1)e 20 (2 4+ 2)73 Hy (2). (5.59)
As z =0,

W(z) = O(1)2 2 Hy(2). (5.60)

In equations (B.58]), (559) and (5.60), the O(1) are analytic functions in a neighbourhood of
their respective point.
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5.2.1 Global parametrix

As az — 0, the length of (—ax,0) tends to 0 and the pole at —z, the algebraic singularity at 0,
as well as the logarithmic singularity at —ax, are merging together. Therefore, for z outside of a
neighbourhood of 0, we expect that the Bessel model RH problem of order o + 2 (presented in the
appendix, see Subsection [0.2]) will be relevant to construct the global parametrix P(*) In a small
neighbourhood of 0 and we will construct a new local parametrix around the origin.

RH problem for P(>)
(a) P) . C\ Xy is analytic.

(b) P has the following jumps on ¥ o:

P (z) = P1(z) <_01 (1)> : z€R™, (5.61)
PP () = P (2) <€7}m ?) , arg(z) = o, (5.62)
PJ(FOO) (2) = PEOO)(Z) <e‘1”'°‘ (1)> , arg(z) = —2?%. (5.63)

P(OO) 1 3
P () =1+ 12 +0(z72) | 27173 Ne?? 3, (5.64)
(d) As z —0,
i
(@ |Z|a_+2 |Z|_a_+2> , for — %’r < arg(z) < %’T,
o z| ™2 z 2
P(z) e et (5.65)
@) Cat2 Cate |, for arg(z) € (—m, —27”) U (%’T,ﬂ).
o= 2]

The only solution of this RH problem is well-known and given by
P (z) = 1@F2)(z), (5.66)

where T(@+2) ig the solution of the Bessel model RH problem, presented in Subsection Note
that if we don’t specify condition (d) in the RH problem for P(°), the solution is not unique. From
a mathematical point of view, we remark that T(® or T4 for example could have also been a
suitable choice for P(>), but T(**2) is the only one which satisfies condition (d) and which allows
us to create a local parametrix around 0 respecting the matching condition (5.74]). By (@.12]), we
have

00 i
(PP)yy = g(a+2)7 —). (5.67)
In the construction of the local parametrix in a neighbourhood of 0, we will need a more explicit
knowledge of the behaviour of P(>) at the origin. It can be verified (see [4]) that P(°) can be
written as

a+2

P (z) = POOO)(Z)ZTU3 (1 h(z)

0 1 ) HQ(Z), zeC \ 2070, (568)
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where Péoo) (2) = O(i:)(z) is an entire function in z for every a while

1
ST Z
_ 2isin(mwa)? @ ¢ ’
hz) = { (C1)7 logz, «e€lZ. (5.69)

21

5.2.2 Local parametrix near 0
We want to construct a function P(O)Ndeﬁned in a fixed open disk Dy around 0 which satisfies
exactly the same RH conditions than W on Dy and matches with P(°) on dDy.
RH problem for P
(a) PO :Dy\ X is analytic.

(b) P has the following jumps

PO = PO() <e7}m ?) , s e {arg(z) - %” A Dy, (5.70)

PO(z) = PO () <_01 é) , 2 € (=00, —az) N Dy, (5.71)

PO = PO(2) <e—1rm ?) , e {arg(z) _ —%”} A Dy, (5.72)

PO () = PO() <ej; e_%) , 2 € (—az,0)\ {—z}. (5.73)
(c) As az — 0,

PO () = (I + O(az)) P> (2) (5.74)

uniformly for z € dDy.

(d) As z — —ax, PO has the asymptotic behaviour

log(z+ax) ric
PO(2) =0(1) ((1) T ) e 0@ (7). (5.75)
As z — —=,
PO(2) = O(1)e 037 (5 + 2)78 Hy(2). (5.76)
As z — 0,
PO(2) = O(1)2"2" Hy(2). (5.77)

We can check that the solution of this RH problem is explicitly given by:

PO (z) = P (2) <Z+—$>US <(1) / (Zl; ””)> PR (é h(f)> Hol(2) (5.78)

z

where

0 ot
f(z;x) = _—Z2 iais. (5.79)

27 )y S — %
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5.2.3 Small norm RH problem
Define
W(z)P)(2)~t, for z € C\ Dy,

Rlz) = { W(z)PO(2)~!, for z € Dy. (5.80)

By definition of W, P() and PO R is analytic on C \ 0Dy. Let us put the clockwise orientation
on 0Dy. The jumps of R on 0Dy are given by

R_(2)'Ry(2) = PO (2)P>®) (2)7 = I + O(ax), as ax — 0, (5.81)

where we have used (574). Also, from (557) and (5.64), as z — oo we have R(z) = I + O(z71).
Thus, by standard theory for small norm RH problems, R exists for sufficiently small ax and
satisfies

R(z) =1+ O(azx), R'(z) = O(ax), (5.82)
as ax — 0 uniformly in z € C\ 0Dy. Also, as z — oo, we have
Ry(z;a)
z

where Ry (z;a) = O(az) as az — 0. For z € C\ Dy, we have W (z) = R(z)P)(z) and therefore

we obtain

R(z) =1+ + 0(272), (5.83)

Q4 (z;a) = 1(00) + Ri(z;a). (5.84)
In particular, from (5.67) and (5:84)), as ax — 0 we obtain
v(z;a) = v(0) + O(ax), (5.85)

with v(0) := $(4(a + 2)? — 1). To obtain asymptotics for by and by, we will proceed similarly as
done in Subsection (.1.5] but instead of the global parametrix, we will need the local parametrix.

From (£4), (£I1]) and (£I6]), we have

b1 (V) = zl—i>n—11 iVo(z 4+ 1) [0.9(zz; x, a)® N (zz;z, a)] 19 (5.86)
bo(Vx) = Zl_i)n_lai\/i(z +a) [0:®(xz;2,0)®  (z232,0)] |, - (5.87)

On the other hand, from (G.52), (5.78) and (5.80), we have as az — 0 and for z € Dy

O(z2;,0) = R(zz) P (x2) <izl>03<(1) / (“f;“)> (xz)“T“UsG h(“”fz)>H_m(z). (5.88)

Thus, by the estimate (5.82]) and a direct calculation, we have

by(VT) = ivZ(1 + O(ax)) [ng°> (0) (8 3) Pé”’(@)—l} . asazr —0, (5.89)
12
where in the above equation
* = Zl_i)n_la(z +a) (2 ;1)2 0.f(xz;x) (5.90)
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Therefore, (5.89]) becomes

1— —1\2 o
ba (V) = (2+)\/§(ax)a+2pg7n) (0)2(1 + O(az)),  asazx — 0. (5.92)
To compute Pé?ﬁ) (0), we can use (B68) and [@II). For z € {z € C : |arg(z)| < 2} we have
00 _at2
BT (2) = Valaa(V2)2 ™ 2 (5.93)

Taking the limit z — 0 in (5.93]), and using the small z expansion of I,;2(2) (see [22, formula

10.30.1]) we obtain Po(iol)(O) = W% Inserting this value in (5.92]), we have as ax — 0 that
(1 a1 ya(an)
bo(Vx) = 2T (0 + 3)2 (1+ O(ax)) (5.94)
1—a 1)z
- %Jgﬁ(\ﬁagp))u + O(az)). (5.95)

Similarly, from (5.86]) and (5.88]), we have as az — 0 that
bu(Va) = ivE [P (0002 (0)7!] | (1+0(aa)) = —2ivaR(T) (0)FF) (0)(1+0(ax)). (5.96)

Again, from (@.I1]) and (5.68]), we obtain for z € {z € C: |arg(z)| < %’T} that

Py () = # as2(V2)2" T = Py (2)h(2)2072, (5.97)

By taking the limit z — 0 and using [22] formulas 10.30.2], this gives Péi‘é) (0) = ﬁZO‘HF(a +2),
and by ([£.96) we have
bi(VT) = a\fZ(l + O(ax)), as ax — 0. (5.98)

With the change of functions ([{.23)), we obtain from (5.95]) and (5.98]) the small az asymptotics for
q1(z;a) and g2(x; a) given in (L24]) and ([I25]). We will also need later the asymptotics of ®(z;z, a)
as z — oo and simultaneously axz — 0. This can be obtained from (£.52)), (5.64]), (5.80) and (5.83)),
and by the fact that the global parametrix (5.66]) is independent of a and x, we have

1
®(z;w,a) = (1 +0(%)) (I + O(z_l))z_i”?’Neﬂ”S, as z — 0o and ax — 0,

1
=T+ O(z_l))z_%”?’NeﬂUs, as z — oo and ax — 0. (5.99)

6 Steepest descent analysis of Y as nyr — 0

An essential ingredient in the steepest descent analysis is the equilibrium measure p, which in our
case is the unique probability measure which minimizes

o0 o0 1 ~ ~ o0 B
/0 /0 logmdu(:v)du(y)Jr/o ydi(y), (6.1)

among all Borel probability measures i on (0,00). The unique solution g of the minimization
problem (6] is supported on S, where S := (0,4), and its density is known as the Marchenko-
Pastur law:

dp(z) 1 J4-z
dz —p(a;)—27T x

(6.2)
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The equilibrium measure p satisfies the following identities [26], known as the Euler-Lagrange
variational conditions:

2/Slog |z —ylp(y)dy —x =¥, x€S, (6.3)

2/810g lx —ylp(y)dy —x < €, x€ (4,00), (6.4)
where ¢ = —2. We define the g-function by

o) = [ log(z = 2)d(e). (65)

where the principal branch of the logarithm is taken, meaning ¢ is analytic on C\ (—o00,4]. The
g-function possesses the following properties

g4+(z)+g-(z) —x—L=0, z €S, (6.6)
2g9(x) —x — £ <0, x € (4,00),
g+ () — g—(z) = 2mi /4 p(s)ds, x €S, (6.8)
g+ (z) — g—(z) = 2mi, ) z € (—00,0). (6.9)
Let us also define
(z)=—m AZ p(s)ds for z € C\ (—o0,4], (6.10)
where the integration path does not cross (—oo,4], and where p(z) = 5=1/2% is analytic in C\ S
and such that pi(z) = +ip(x) for x € S. By (6.6]) and (G.8) we have,
2+(r) = £(94(2) —g-(2)) = 29+(x) —z L,  z€S. (6.11)

By analytically continuing £ — g on the whole complex plane from the above expression, we obtain
the identity

26(z) =2¢9(z) — 2z — ¢, z € C\ (—o0,4]. (6.12)

The jumps of ¢ follow from those of g, we have

E+(x) +&-(2) =0, z €S, (6.13)
2¢(x) <0, x € (4,00), (6.14)

4
Ei(z)—E-(z) = 2772'/ p(s)ds, r €S, (6.15)
Er(x) — & (x) = 2mi, x € (—00,0). (6.16)

6.1 Transformation to constant jumps

The weight (I.I4]) is defined on (yr,00). We consider its natural extension
w(z) = (z —y)*2% ™,  z€C\ (—00,0], (6.17)

w3

where the principal branch is taken for the root, and we define ¥(z) = Y (2)w(z)2 . The matrix

function W satisfies the following RH problem.
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RH problem for ¥
(a) ¥:C\ ((—o0,0]U{y} Ulyr,o0)) — C2*? is analytic.

(b) Let jy(2) :== ¥ _(2)"'¥,(2). Then,

ju(z) = (é }) , 2 € (yr,o0). (6.18)

ju(z) = ™o z € (—00,0). (6.19)

(c) U(z)=(I+ (’)(z‘l))z("JraTH)”e_%"f’ as z — 00.

(d) ¥ has the following behaviour near 0, y and yr:

U(z) = O(1)z2, as z — 0, (6.20)

U(z) = O(1)(z —y)7, as z — v, (6.21)
1 _log(yr‘—z)

U(z) =0O(1) <O %m ) , as z — yr, (6.22)

where in the three above asymptotics it can be verified that the O(1) terms are analytic in a
neighbourhood of their respective point.

6.2 Opening of the lenses

We now perform the step of opening the lenses. Since the jumps for ¥ are constant, the lens
contours are unconstrained. In a subsequent transformation we will use the g-function to normalise
the RH problem at infinity, at which point the lens contours will be required to stay within a region
in which they converge to the identity matrix as n — oo. Let Dy and D, denote small but fixed
open discs centred at 0 and 4 respectively and U = Dy U Dy. Note that since nyr — 0 as n — oo,
the points 0, y and yr lie in Dy for sufficiently large n. Let us define v = (yr,4). We now make the
transformation

S(z) =V (2)K(2) (6.23)

where K is a piecewise function designed to open the lens,

I, for z € C\ (QLUQY),
10 X
K(2) = <—1 1> ’ for z € 94, (6.24)
10 §
<1 1) , for z € Q.

The regions ] and Q7 are shown in Figure Bl as well as their boundaries 9Q] = X7 U~ and
007 = X7 U~. The function S satisfies the following RH problem.

RH problem for S

(a) S:C\ ((—o0,0]U{y} U[yr,00) UX?) — C**? is analytic, where X7 = ¥7 U X7 is shown in
Figure Bl
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Figure 3: Jump contours for the RH problem for S. The lens contours are labelled E:’r and X7
while the upper and lower lens regions are labelled Ql and Q7.

(b) Let js(z) := S_(2)"1S,(2). We have,

. 0 1

Jjs(z) = <_1 0> , z €7, (6.25)
js(z) = <(1) }) , 2 € (4,0), (6.26)
js(z) = e™aos, z € (—00,0), (6.27)
js(z) = <1 (1)> , z €37, (6.28)

at2 nz

(¢) S(2) = (I +0(z1)z"H2)73e=5 3 a5 2 — 0.

(d) Near 0, y, yr and 4, the behaviour of S takes the form
(z) = O(1)22%, as z — 0,
(Z) = 0(1)(’2 - y)US’ as z — Y,
1 —loglyr—z) (6.29)
S(z) =0(1) < im' ) K(z), asz—uyr,

S(z) = 0(1)K(z), as z — 4,

where in the above asymptotics the O terms are analytic in a neighbourhood of their respective
point.

6.3 Normalisation at infinity

The next transformation takes the form,

nlo —n&(z)os  if C\TU
T(z) :e_#S(z) X {e , fz2€CA\U,

. (6.30)
1, if ze U.

The above transformation has the effect of normalising the problem at infinity.
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RH problem for T

(a) T:C\ ((—o0,0] U{y} U [yr,o0) UXYUOU) — C?*2 is analytic.

(b) Let jr(z) = T_(z)" T4 (2). Then,
jr(2) = js(2),
(_01 )
o= (1 ),
(

1 0
e_2n§(z) 1 ’

TIOO3

jT(Z) =€ )
(2) = e,

jr(z) =

JT

z € ((—00,0) U
zey\U,

€ (4,00)\ U,
z€ X\ U,

z € (—00,0),
z € oU,

where the orientation of QU is clockwise.

(¢) As z — o0,

a+2

T(z) = (1+O("1)z 3.

(d) Near the endpoints, the behaviour of 7" takes the form

T(2) = 01257,

T(2) = O()(z — )
(=00 (} 71(1 -
I(2) = O()

6.4 Global parametrix

as z — 0,
as z — v,
2mi >K(z), as z — yr,

as z — 4.

(yr,o00) UXT) N

(6.31)

(6.32)

Finally we define the global parametrix as a function P(®) satisfying the following RH problem.

RH problem for P(>)

(a) P(>®):C\ (—o0,4] — C?*? is analytic.

(b) P(*) has the jump relations
(00) () — p(o) 0 1
P =P (1) ).
P (z) = P9 (z)emion,

(¢) As z — 0,

z€S

z € (—00,0).

P (2) = (I +0O(z71))2 7 .

(d) As z — 2 € IS ={0,4}, we have

P)(z) = O((z — 2)71).
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The solution is explicitly given by
a+2

_93
() = N1 (224 ° E_oN 7
PE(z) =N < - > ng(2 1) , (6.37)

where ¢(2) = z + v/22 — 1 is analytic in C\ [—1,1]. We now need to construct local parametricies
valid in the fixed open discs Dy and D4 around 0 and 4.

6.5 Local parametrix near 4
RH problem for P®
(a) PW: Dy\ (27 UR) — C?*? is analytic.

(b) P® has the jump relations

PJ(r4)(Z) = P£4)(z) <_01 (1)> , on (—00,4) N Dy,
PY(z) = PY(2) (é i) . on (4,00) N Dy, (6.38)

PJ(:D (2) = P£4)(z) <1 (1)> , on X7 N Dy.
(c) As z — 4, PW(2) = 0(1).
(d) Asn — 00, PW(2) = (I + O(n1)) P (2)en€()9s uniformly for z € OD;.

The solution P™® can be constructed in term of the solution T of the Airy model RH problem
parametrix, which is presented in the appendix, see Subsection The local parametrix inside
Dy can then be written as

PW(z) = B(2)T(n*?f(2)), (6.39)

where f(z) is given by

Fz) = (—§s<z>)2/3. (6.40)

From the definition of £ given by (G.10]), f is a conformal map from a neighbourhood of 4 to a
neighbourhood of 0. The matrix function F is defined in Dy by
E(z) = P ()N f(z)Tn, (6.41)

where the principal branch is taken for ()i It can be directly verified from the RH problem for
P(*) and the definition of f that E is analytic in Dy, and from the properties of T (presented in
Subsection @) that P™ given by (6.39) satisfies indeed the above RH problem.

6.6 Local parametrix near 0

Inside Dg we require a local parametrix satisfying the following RH problem.
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RH problem for P
(a) PO : Dg\ ((—o0,0] U {y} U [yr,c0) UXY) — C2*? is analytic.

(b) PO has the jump relations

0 0 0 1
PJ(r )(z) =P )(z) <_1 0> , on (yr,00) N Dy,
PJ(FO) (2) = PEO)(z)e’Tm"S, on (—o00,0) N Dy, (6.42)

PJ(FO) (2) = P_O)(z) <1 (1)> , on X7 N Dy.

(¢) Near 0, y and yr, the behaviour of P(9) takes the form

PO(2) = 0(1)22, as z — 0,

PO(z) = 0(1)(z — y), as z =y, (6.43)
0 1 _log(yr‘—z)

Pl )(z) =0(1) <0 im > K(z), asz—yr,

where in the above asymptotics the O terms are analytic in a neighbourhood of their respective
point.

(d) As n — oo, PO (2) = (I + 0(1)) P (2)e€(2) uniformly for z € dDy.

The solution P©) uses the model RH problem ® presented in Section B with the parameters = and
a chosen such that

x=nf(y) and a= (6.44)

where f is given by

f(2) = —(&(2) — £(0))*. (6.45)

From the definition of £ given by (G.I0), f is a conformal map from a neighbourhood of 0 to a
neighbourhood of 0, and satisfies f'(0) = 4. Note that since nyr — 0 as n — oo, this implies that
z =4ny(1+ O(y)) and a = (1 + O(yr)) as n — co.

Lemma 6.1 Asn — oo and simultaneously nyr — 0, the matriz function

i

PO(2) = B(2)o30(—n*f(2);nf(y), f(yr)/ f(y))oze 2 07 (6.46)

satisfies the RH problem for PO, where E is the analytic function in Dy given by

_ i

E(2) = (=1)"P) (2)e= "2 @B N(—f(2))TnT, (6.47)

the function f is given by ([©40), and ®(z;x,a) is the model RH problem introduced in Section [3.
The o(1) in the condition (d) of the RH problem for P) can be specified as

O(n™Y), if (n®y,r) are in a compact subset of (0,00) x (1,00),

O(max{n~t,nry}) =< On™Y), ifn’ry—0, (6.48)
O (nry), ifnry — 0 and (r — 1)n’y — oo.
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Proof. The analyticity of E inside Dy follows from the RH problem for P(*) and the definition
of f. By definition of ® (see Section [Bl), PO gatisfies the RH problem for PY. The explicit forms
of o(1) given by ([€.48)) follow from ([B.9) (for (z,a) in a compact subset of (0,00) x (1,00)), (599
(for ax — 0) and (B.5I) (for (@ — 1)z — oo and %* — 0). O

Finally, we define R(z) as follows

T(2)P>®)(2)~!, for € C\ T,
T O ()1, for z € Dy, (6.49)
T(2)PW(2)~t,  for z € Dy.

Using the above definition we can derive the following RH problem for R.
RH problem for R
(a) R:C\ Xg — C?*2is analytic, where ¥ g = ((4,00) USYUAU) \ U.
(b) Let jr(z) :== R_(2) 'Ry (2). We have

- 00 1 0 00 — 77
jr(z) = P)(z) (e_znaz) 1) P)(z), e\ T, (6.50)
) - 1 e2n8(2) o)/ A —
jr(z) = PO (2) <0 ¢ 1 > P)(z)71, z € (4,00) \ Dy, (6.51)
: @ (67 0 pleoy iy
jr(z) = PW(2) < 0 e"g(z)> P ()7, z € 0Dy, (6.52)
: O (€ 0 peoyy
Jjr(z) = PV (2) 0 on€(2) P ()7, z € 0Dy. (6.53)
Rl 2
(¢) As z — oo, we have R(z) =1 + ~ +O(z7%). (6.54)

(d) As z — b€ {0,y,yr, 4}, R(z) = O(1).

From ([637)), (639]) and (6-46]), as n — oo we have

Jr(2) = I + O(max{n~! nry}), uniformly for z € 9Dy, (6.55)
Jr(z) =T +0(n™), uniformly for z € 9Dy, (6.56)
Jr(z) =14+ 0(e™ "), uniformly for z € Xy \ OU. (6.57)

where ¢ > 0 is a constant independent of n. It follows from standard theory for small norm RH
problem that R exists for n sufficiently large and satisfies

R(z) = I + O(max{n~! nry}) and d.R(z) = O(max{n~t nry}), (6.58)

uniformly for z in compact subsets of C \ Xg.
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6.7 Computation of R,

The quantity R; can be computed via a perturbative calculation. From ([6.55) and (6.56]) we can
write for z € Xp,

ja(2) =T+ “h(z) +0m™), 0o, (6.59)
where the matrix Jj(z) is non-zero only on dU, satisfies Ji(z) = O(1) uniformly for z € 9D, and

Ji(z) = O(max{1,n*ry}), uniformly for z € 9Dy. (6.60)
Therefore, by a perturbative analysis of R, we have

R(z) =1+ RY(2)n™" + O(max{n~2, (nry)?}), z2ecC\Zg, (6.61)
where

RW(z) = O(max{1,n’ry}), uniformly for z € C\ Xg. (6.62)

The quantity R (z) may be expressed in terms of .Ji(z) by substituting (659) into the jump
relation Ry (z) = R_(2)jr(2), from which we obtain the following RH problem for R(!.

RH problem for R
(a) RV :C\ U — C**? is analytic,
(b) R (z) = RY(2) + Ji(z) for z € 0U,
(¢) RW(2) = 0 as z — oo.

The above RH problem can be solved explicitly in terms of a Cauchy transform,

RW(z) = = / Jl—@dg, (6.63)

T 2mi Joy £ — 2

where the integral is taken entry-wise. Explicit computations using ([3.9), ([6.40) and (653]) gives
for z € 9Dy

o f W): F(ry)/FW)) piee —1 i TN e -
) =2 f&%/ D pee) (oo ) P (6.64)

The function v is the special function appearing in the model problem ®. By using (6.39)), (G.52)
and ([@.2)), the term Jy(z) on 9Dy is given by,

A b (5 L) peoa-
)= gmPee (T ) P (6.69

Putting ([6.64) and (6.63]) in (6.63]) gives (after a residue calculation)

RO (2) = v(n? f(y): f(ry)/ f(y)) <1 i > L5 (—1 z>

2z i 1) T 12242\ i 1
L 1—4(a+2)? L(12(a+2)2 +24(a +2) + 11
i 16(z —4) (% (12(a +2)? — 24(a + 2) + 11) 3 4a+2)2 -1 )> - (6.66)
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Therefore, we have

Ry = lim 2(R(z) - I) = v(n?f(y); f(ry)/ f () C i ) .

Z—00 2n -1
1 1 —4(a +2)? L(12(a +2)? + 24(a 4+ 2) + 11 B
16n <§' (12(c + 2)? — 24(v + 2) + 11) i Ma+2)? -1 )> +O(max{n~2, (nry)?}).
(6.67)

In particular, one has

Te(Ri03) = v(n?f(y); f(ry)/ £ (1)) — v(0) + O(max{n~,n~ (rn’y)*})  asn — oo, (6.68)

where v(0) = £ (4(a +2)2 — 1).

7 Proof of Theorem [1.1]

Let us define s := 4n?y, which is a rescaling of y. In order to use Lemma [2.2], we need to compute
large n asymptotics for Tr(Y ~1(2)0.Y (2)o3) uniformly for z in a neighbourhood of co. The large
n analysis for Y done in Section [ is valid when the parameters y and r satisfy fall in one of the

three cases presented in (LI6]), (II7) and (LI8). For large z, by ([6.23), (630), (6.37) and (6.49),

we have

nlog

Y(2)=e2

93

R(z) P (2)e3)73q(2)~ 2 (7.1)

Using the above expression for Y, we obtain

Tr(Y 1(2)0.Y (2)03) = —0.logw(z)+ 2nd.&(z2)
+Tr(P) (2)719, P (2)03)
+Tr(P) (2) " R(2) '8, R(2) P\ (2)03).

Using (6.37), as z — oo we have

Tr (P ()79, P (2)03) =

Similarly, (6I0) and ([GI7) give

1 1 a+2 2y _3
~9,1 mdE(z) =2n -+ =) — - ,
0. logw(z) + 2n0,¢(2) n<z+z2> p g O0(z7), asz— o0 (7.3)
Also, by ([6.37) and ([654]), we have
T
Te(PC) (2) " R(2) L9, R(2) P (2)03) = —% +OE),  asz o oo (7.4)

Using the above expressions and Lemma gives,

2(a+2) +2n -2y — Tr(Ry03)
z
Oylog Zy, o(y;1) = n+ %ﬁ(R103). (7.6)

2Tr(Y 7 H(2)0,Y (2)03) = 2n + +0(z7%), asz— o0, (7.5)
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By using (6.68)) in (Z.6)) and rewriting it in terms of s = 4n%y, we have as n — oo that

1

S
0,108 Zn (W;r> = —+5 D Ty(Ryo),

= 2—13< ( 2f(52); 4’“) ) O(max{n~", L}), (7.7)

= 2—18(1)(3;74) v(0)) + - (’)(max{n , Tfl }.

Let us fix r. By integrating the left-hand side of (1) from e > 0 to a certain s > € we obtain

Zna(iz;r) 5 T
1 T dn2r ) 1 log Z o (= . )
og (ZW(L.TQ /ea 08 Zn, (W r)d:z: (7.8)

An2>
Since the function y € [0,00) — Z, o(y;7) is continuous, and since
Zn,a(o;r) = 2n,o¢+2 >0, (7.9)

the left-hand-side of (Z.8)) is bounded as ¢ — 0, and thus the same is true for the right-hand side.
In order to use (1) in (Z8)), it is important to note that O term of (1) is uniform when s is in
a compact subset of (0,00) and also as s — 0. Thus, we obtain

Zn,a+2 2

Zn,o( g I rs
log (M) = —/ [v(z;7) —v(0)] d;x + O(max{n', %}) (7.10)
0
By an integration by parts, we have

I(s;r):= /08 [v(z;7) — v(0)] ;l—i = %/Osv (z;7)log ( ) dx = —% /OS (q%(w;r)—l—rq%(x;r)) log ( ) dz,

where for the last equality we have used ([£22]) and ([£23)). This completes the proof of Theorem
LIl Note that (ZI0) can be rewritten as

Zn,a<4$ﬁ;r) = Z\n 426 I(sim) (1 + O(max{n_l, @})) . (7.11)
8 Proof of Theorem [1.7]

From (LI2]) by changing variables = := 4(n — 1)ny, we obtain

Z\n—l a2 (n _ 1>(n—1)(n+1+a) L /oo 2%~ ( T >
nal(r) = —= 4(n —1)n Y —Zh ta|l———=;7]dx. (8.1
Qnalr) =m0 [ (g ) e )

Zmoa n
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It is known that (see [21] formula 17.6.5])

= 1 R

T = Hn—*—a" [T56 + ), (8.2)
j=1
and therefore we have
Zn— 1012  (n=1)*"T(n+a+1) no O\ ten
Za  (=DI'(a+1I(a+2) \n-1 ’ <3
7 20+2 n“+an ( . )
= i i (1+O(n_1)) as n — oo.
MNa+1)I'(a+2) \n—-1 ’
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We can thus simplify expression (81]) as

1+0(n 1)

@nalr) = 401 (o 4+ DI (e + 2)

(1 + I2), (8.4)

where

M 0o a —Z
I :/ e vl @ gy T :/ rer g0 Q<L;r> dz, 8.5
e T Iu Zn—1,0+2 P\ 4 - 12 (55)

and M > 0 is a constant. The asymptotics (L.28)) implies that for any € > 0, we have

Zn—l,a( ni 25 T)
i 4(n—1) _ O(e—(%—e)rm)y as rr — 0, (r — 1)1’ — Q. (86)
Zn—1,0+2 "

Note that because of the restriction =% — 0, this asymptotic formula alone is not sufficient to

estimate I5. Nevertheless, we can derive the following inequality

rT

Zn—l,a(mvr) (n—l)!_l o o 2 ? a, —(n=1)\;
— :Ai/r / H( 7)2> A (1A gy

Zn—l,a+2 Zn—l,a+2 ﬁ ﬁ
1
1 00 00 n— VN
: / / An—l()\)2 H )\?—1—26 (n 1))\zd)\i
(n - 1) Zn 1La+2 4(n 11)2 4(7:f1)2 =1
rx
= Prt1a42 </\min > m

(8.7)

It is well-known [29] that the above quantity is bounded by e~“*" for sufficiently large x as n — oo
(this is a large deviation principle), and where C' > 0 is a constant. Combining (8.6]) and ([87]), we
thus have

I, < / 2% e O dy < e_%Mr, (8.8)
M
if M is chosen big enough. Therefore we obtain,
1 M el
li na(r) = %'\ ) .
A, @na(r) 40T (o + 1T (o + 2) /0 dz +0(e72) (8.9)

Letting M — oo in (89) finishes the proof of Theorem [[.71

9 Appendix
9.1 Airy model RH problem
(a) T(z):C\ X4 — C2*2 is analytic where ¥4 is shown in Figure gl

(b) T has the jump relations

Ty(z) = T_(2) <_01 é) on R,

Th(z) = T_(2) <1 1) . onRY,
Ti(2)=T_(2) é %) . ones R, oy
Ty(z) = T_(2) G ?) R
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Figure 4: The jump contour ¥4 for T.

(¢) As z — oo, we have

T(z) = AN <I + SL/zi‘l + 0(2—3)> e_%za/zag7
z

with

(d) As z— 0, T(z) = O(1).
The following matrix-valued function solves the above Airy model RH problem (see [8 []):
, for0<argz<2§,

e~ 508 (_11 (1)> , for %” <argz <,

3 —wW2Aj s
<A'1 2) w Al(wz)> e~ 603 <1 O> , for —w<argz < —2—”,

e 673, for — %’T <argz <0,

with w = e%, Ai the Airy function and

My = \/271'6% <(1) O.) .

—1

9.2 Bessel model RH problem
This RH problem depends on a parameter o € R.

(a) T =7 C\ Xp is analytic.
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(9.4)



(b) T has the following jumps on ¥ \ {0}:

To(z) =T (2) (_01 é) , e S, (9.6)
To(z) =T (2) (ejm ?) , Zex, (9.7)
To(z) =T (2) (e_}m (1)> , e, (9.8)

(d) As z — 0,
(i) Ifa <0, T(z) =0 <I
) B - log|z| log|z|
(i) If a =0, T(2) = O <1og 2| loglz])’

(iii) If a > 0,

<|z| |1~ > for — %’r < arg(z) < %’T,
T(z) = ;j ’” -4 (9.10)
(9( a>, for arg(z) € (—m, —Z) U (&, 7).
s () € (-7, ) U (%)

The solution of this RH problem is explicitly given in terms of the Bessel functions (see [19] or [4]),
one has

1 0 1/2 i 1/2
T(a)(z):<i<4a2+3> 1) o ia(z ) el ) Ho(2), (9.11)
] Tz /2I;(zl/2) —zl/QK&(zl/Q)
and
(T1), = é(2a—1)(2a—|—1). 9.12)
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