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Abstract

We study the probability distribution of the ratio between the second smallest and smallest
eigenvalue in the n × n Laguerre Unitary Ensemble. The probability that this ratio is greater
than r > 1 is expressed in terms of an n × n Hankel determinant with a perturbed Laguerre
weight. The limiting probability distribution for the ratio as n → ∞ is found as an integral
over (0,∞) containing two functions q1(x) and q2(x). These functions satisfy a system of two
coupled Painlevé V equations, which are derived from a Lax pair of a Riemann-Hilbert problem.
We compute asymptotic behaviours of these functions as rx → 0+ and (r − 1)x → ∞, as well
large n asymptotics for the associated Hankel determinants in several regimes of r and x.

1 Introduction and main results

The Laguerre Unitary Ensemble (LUE) consists of the space of n × n complex positive definite
Hermitian matrices endowed with the distribution

1

Z̃n,α

(detM)αe−nTrMdM, α > −1, (1.1)

where Z̃n,α is the normalisation constant and dM is the Lebesgue measure

dM =

n∏

i=1

dMii

∏

1≤i<j≤n

dReMijdImMij . (1.2)

The probability measure (1.1) is invariant under unitary conjugation and induces a joint probability
distribution on the eigenvalues λ1, ..., λn on (R+)n given by

1

n!Ẑn,α

∆n(λ)
2

n∏

i=1

e−nλiλα
i χR+(λi)dλi, (1.3)

where ∆n(λ) denotes the Vandermonde determinant

∆n(λ) ≡ ∆n(λ1, ..., λn) :=
∏

1≤i<j≤n

(λj − λi) (1.4)
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B-1348 Louvain-La-Neuve, BELGIUM
†Quantum and Nanotechnology Theory Group, Department of Materials, and Machine Learning Research Group,

Department of Engineering Science, University of Oxford, UK

1



and χR+ is the characteristic or indicator function with support on the positive half line. The
normalisation constant Ẑn,α, also known as the partition function, is given by

Ẑn,α =
1

n!

∫ ∞

0
...

∫ ∞

0
∆n(λ)

2
n∏

i=1

e−nλiλα
i dλi. (1.5)

The theory of random matrices has enjoyed a growing interest and study for a number of decades
in part due to the surprising number of connections between it and seemingly unrelated topics, see
for example [18]. Some classical references in the fields are [1, 2, 21, 27]. Probably the earliest
appearance of random matrix theory dates back to Wishart in 1928 in the context of multivariate
data analysis [30]. He was studying matrices of the form X∗X, where X is an m×n matrix (m ≥ n)
whose entries Xij are independent and identically distributed complex Gaussian variables

ReXij , ImXij ∼ N
(
0, σ2 =

1

2n

)
, (1.6)

and X∗ is the conjugate transpose of X. Such positive semi-definite matrices, called Wishart
matrices, possess eigenvalues which are also distributed according to (1.3), where α = m− n is an
integer. Since then, the LUE has been studied a lot, and has found applications in different areas,
for example in finance (see e.g. [5], Section 12.2).

Some known results

The limiting mean eigenvalue density function is given by the Marchenko-Pastur [20] law

dµ(x) = ρ(x)dx =
1

2π

√
4− x

x
dx, (1.7)

supported on the interval [0, 4]. Besides the eigenvalue density, other quantities of interest are re-
lated to the extreme value statistics of the eigenvalues. The most well-known extreme value statis-
tics in the field of random matrix theory is the Tracy-Widom distribution [28] which describes the
properly rescaled fluctuations of the largest (or smallest) eigenvalue of a matrix from the Gaussian
Unitary Ensemble (GUE). This distribution is given by F̃2(x) = exp

(
−
∫∞
x (s− x)u2(s)ds

)
and u

is the Hastings-McLeod [17] solution of the Painlevé II equation u′′(s) = su(s) + 2u(s)3 satisfying
the boundary condition u(s) ∼ Ai(s) as s → ∞, where Ai is the Airy function. For the case of
the LUE, the distribution of the rescaled fluctuations of the largest eigenvalue at the soft edge, at
x = 4, is also given by the Tracy-Widom distribution F̃2.

In this paper we focus on the hard edge, at x = 0, where the distribution of the smallest
eigenvalue (denoted by λmin) is given by another distribution Fα(x) in terms of a transcendent of
the Painlevé V equation, also proved by Tracy and Widom [29]. More precisely, one has

Fα(x) = lim
n→∞

Pn,α(4n
2λmin > x) = exp

(
−1

4

∫ x

0
log

(
x

ξ

)
q2(ξ)dξ

)
(1.8)

where q(x) is the solution of the equation

xq
(
1− q2

)(
xqq′

)′
+ x

(
(xq′)′ +

q

4

) (
1− q2

)2
+ x2q

(
qq′
)2

= α2 q

4
, (1.9)

with boundary condition q(ξ) ∼ Jα(
√
ξ) for ξ → 0+, and Jα is the Bessel function of the first kind

of order α (see [22, Section 10.2 and and Section 10.7] for definition and properties of this function).
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That q(ξ) is indeed a transcendent of the Painlevé V equation can be seen from the following
transformation

q(ξ) =
1 + y(x)

1− y(x)
, ξ = x2,

from which it can be readily checked that y(x) is a solution to the Painlevé V equation with suitable
chosen coefficients.

Another quantity of interest is the gap probability

Gn,α(d) = Pn,α (λsmin − λmin > d) , d > 0, (1.10)

between the smallest and second smallest (denoted by λsmin) eigenvalue of the LUE. Some results
were obtained in [16], where it was shown that the density of Gα(x) = limn→∞Gn,α(

x
4n2 ) exists and

is characterised by the solution of a Painlevé III equation and its associated linear isomonodromic
system. For results on the gap probability but at the soft edge, see [23] and [31]. In [24], using
heuristics arguments and numerical simulations, the authors generalized the results obtained in [23]
to a more general context.

The main focus of this paper is the distribution of the ratio

Qn,α(r) = Pn,α

(
λsmin

λmin
> r

)
, r > 1, (1.11)

between the second smallest and the smallest eigenvalue of the LUE. Note that the ratio distribution
Qn,α cannot be straightforwardly related to the gap Gn,α and the distribution of the smallest
eigenvalue, since the three variables λmin, λsmin − λmin and λsmin

λmin
are not independent.

Our techniques differ from the techniques used in [16], [23] and [31]. We express the ratio
probability in terms of a Hankel determinant and then apply well-known rigorous techniques from
Riemann-Hilbert (RH) problems analysis to derive asymptotics. We obtain a description of this
quantity in terms of a solution (q1, q2) to a system of two coupled Painlevé V equations arising
from a Lax pair of a RH problem.

Statement of results

We begin the calculation of the ratio probability between the second smallest and smallest eigen-
value for general α > −1 by writing the quantity Qn,α(r) as an integral over a Hankel determinant.
For r > 1, by definition of (1.3) we have

Qn,α(r) = n

∫ ∞

0
e−nyyα

(∫ ∞

yr
...

∫ ∞

yr

1

n!Ẑn,α

∆2
n−1(λ)

n−1∏

i=1

e−nλiλα
i (λi − y)2dλi

)
dy,

where y can be interpreted as the smallest eigenvalue. By changing variables nλi = (n − 1)λ̃i, we
can then write

Qn,α(r) =
1

Ẑn,α

(
n− 1

n

)(n−1)(n+1+α) ∫ ∞

0
yαe−nyZn−1,α

(
n

n− 1
y; r

)
dy, (1.12)

where we defined Zn,α(y; r) by

Zn,α(y; r) =
1

n!

∫ ∞

yr
...

∫ ∞

yr
∆n(λ)

2
n∏

i=1

(λi − y)2λα
i e

−nλidλi. (1.13)
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Note that Zn,α(y; r) is the Hankel determinant ([25, equations (2.2.7) and (2.2.11)]) with respect
to the weight w(x) defined by

w(x) = (x− y)2xαe−nxχ[yr,∞)(x), (1.14)

where χ[yr,∞)(x) is the characteristic function of [yr,∞), i.e. we have

Zn,α(y; r) = det

(∫ ∞

yr
xi+jw(x)dx

)

i,j=0,...,n−1

. (1.15)

Our main results concern asymptotics for the Hankel determinants Zn,α(y; r) and the limiting
distribution as n → ∞ of the ratio probability Qn,α(r) which can be expressed in a compact form
through a solution (q1, q2) of a system of coupled Painlevé V equations.

Asymptotics for the Hankel determinant Zn,α(y; r)

Let us define s := 4n2y, which is a rescaling of y. We provide large n asymptotics for Zn,α(y; r) in
three different regimes:

Case 1: (s, r) are in a compact subset of (0,∞)× (1,∞), (1.16)

Case 2: rs → 0, (1.17)

Case 3:
rs

n
→ 0 and (r − 1)s → ∞. (1.18)

Theorem 1.1 Let α > −1 be fixed. As n → ∞ and simultaneously s and r satisfy one of the three
cases presented in (1.16), (1.17) and (1.18), we have

logZn,α

( s

4n2
; r
)
− log(Ẑn,α+2) = I(s; r) +





O(n−1), for Case 1,
O(n−1), for Case 2,

O
( (rs)2

n

)
, for Case 3,

(1.19)

where

I(s; r) = −1

4

∫ s

0
(q21(x; r) + rq22(x; r)) log

( s
x

)
dx. (1.20)

The functions q21(x; r) and q22(x; r) are real and analytic for x ∈ (0,∞) and r ∈ (1,∞), and they
satisfy the following system of coupled Painlevé V equations:

xq1

(
1−

2∑

j=1

q2j

) 2∑

j=1

(xqjq
′
j)

′ +

[
x
(
(xq′1)

′ +
q1
4

)
+

1

q31

](
1−

2∑

j=1

q2j

)2

+ x2q1

( 2∑

j=1

qjq
′
j

)2

=
α2q1
4

,

xq2

(
1−

2∑

j=1

q2j

) 2∑

j=1

(xqjq
′
j)

′ + x
(
(xq′2)

′ +
rq2
4

)(
1−

2∑

j=1

q2j

)2

+ x2q2

( 2∑

j=1

qjq
′
j

)2

=
α2q2
4

, (1.21)

where primes denote derivatives with respect to x. Furthermore, the functions q1 and q2 satisfy the
following boundary conditions: as (r − 1)x → ∞, we have

q21(x) =
2√

(r − 1)x
+O

(
1

(r − 1)x

)
, (1.22)

q22(x) = 1− α√
rx

− 2√
(r − 1)x

+O
(

1

(r − 1)x

)
, (1.23)
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and as rx → 0, we have

q1(x) =

√
2

α+ 2
(1 +O(rx)), (1.24)

q2(x) = (1− r−1)Jα+2(
√
rx)(1 +O(rx)) =

1− r−1

2α+2Γ(α+ 3)

√
rx

α+2
(1 +O(rx)). (1.25)

Remark 1.2 We will prove in the present paper that the system (1.21) with boundary conditions
(1.22), (1.23), (1.24) and (1.25) possesses at least one solution (q1,q2), but there is no guaranty of
uniqueness of this solution. Therefore, q1 and q2 are not defined through this system, but they
are explicitly constructed from the solution of a model Riemann-Hilbert problem, whose solution
(denoted Φ) exists and is unique. This Riemann-Hilbert problem is presented in Section 3.

Remark 1.3 In the regime as (r−1)x → ∞ in (1.23), there are different cases. For example, note
that if x → ∞ and r → 1, then the O

(
((r− 1)x)−1

)
term is larger than (rx)−1/2 if (r− 1)

√
x → 0.

In this case, (1.23) can be rewritten as

q22(x) = 1− 2√
(r − 1)x

+O
(

1

(r − 1)x

)
, as x → ∞, r → 1 and (r − 1)

√
x → 0. (1.26)

Remark 1.4 The system (1.21) are two coupled Painlevé V equations. It is worth to compare it
with the Painlevé V equation given by (1.9), and also to compare (1.20) with the Tracy-Widom
distribution (1.8). This system is similar to the one obtained in [7], where the authors obtained a
system of k (k ∈ N0) coupled Painlevé V equations. The main difference here lie in the q−3

1 extra
term in the first equation of the system (1.21), and in the small rx asymptotics of q1, which does
not involve Bessel functions.

Corollary 1.5 As rs → 0, we have

I(s; r) =
−s

2(α + 2)
(1 +O(rs)). (1.27)

As s → ∞ and r is in a compact subset of (1,∞), we have

I(s; r) = −rs

4
+ α

√
rs+ 2

√
(r − 1)s +O(log s). (1.28)

Proof. To obtain (1.27), it suffices to substitute asymptotics (1.24) and (1.25) into (1.20). To
prove large s asymptotics of I(s; r) given by (1.28), we decompose the integral into several parts
as follows

I(s; r) = I1 + I2 + I3,

I1 = −1

4

∫ 1
rM

0
(q21(x; r) + rq22(x; r)) log

( s
x

)
dx,

I2 = −1

4

∫ M
r

1
rM

(q21(x; r) + rq22(x; r)) log
( s
x

)
dx,

I3 = −1

4

∫ s

M
r

(q21(x; r) + rq22(x; r)) log
( s
x

)
dx,

(1.29)

where M is a sufficiently large but fixed constant. Asymptotics (1.24) and (1.25) allow us to write
|I1| = O(log s), as s → ∞. For I2, the parameters (x, r) which appear in the functions q1 and q2
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lie in a compact subset of (0,∞) × (1,∞), and thus we also have |I2| = O(log s) as s → ∞. Over
the domain of integration of I3, the parameters x and r inside q1 and q2 satisfy xr ≥ M , and thus
we can use (1.22) and (1.23) to estimate it. We obtain

I3 = −rs

4
+ α

√
rs+ 2

√
(r − 1)s +O(log s), as s → ∞, (1.30)

which finishes the proof. ✷

Remark 1.6 Theorem 1.1 and Corollary 1.5 provide asymptotics for Zn,α

(
s

4n2 ; r
)
and I(s; r) in

various regimes of n, s and r, which are useful to prove Theorem 1.7 below for the limiting distribu-
tion of the ratio. Note that asymptotics (1.28) hold for s → ∞ and r in a compact subset of (1,∞),
and not in the more general situation of (r − 1)x → ∞. The reason for that is, as it can be seen
in the proof of Corollary 1.5, and more particularly in (1.29), to estimate I2 we also need to find
asymptotics for q1(x; r) and q2(x; r) in the two following cases: a) xr = O(1) and simultaneously
r → 1 and b) xr = O(1) and simultaneously r → ∞. These asymptotics are also needed to obtain
asymptotics as r → 1 and as r → ∞ for the limiting probability distribution of the ratio. These
cases deserve another long and separate analysis and we intend to pursue this in another paper.
We expect these asymptotics to be described in terms of a transcendental function, solution of a
differential equation similar to the Painlevé V equation given by (1.9).

Limiting probability distribution of the ratio λsmin
λmin

Theorem 1.7 Let α > −1 and r > 1 be fixed. As n → ∞, the limit Qα(r) := lim
n→∞

Qn,α(r) exists

and is given by

Qα(r) =
1

4α+1Γ(α+ 1)Γ(α + 2)

∫ ∞

0
xαeI(x;r)dx, (1.31)

where I(x; r) given in Theorem 1.1.

Remark 1.8 Let pn(x1, x2) denote the joint density for the first two smallest eigenvalues at λmin =
x1 and λsmin = x2, which can be straightforwardly obtained by integrating (1.3), and is given by

pn(x1, x2) =
e−n(x1+x2)(x1x2)

α(x2 − x1)
2

(n− 2)!Ẑn,α

∫ ∞

x2

...

∫ ∞

x2

∏

3≤i<j≤n

(λj−λi)
2

n∏

i=3

e−nλiλα
i (x1−λi)

2(x2−λi)
2dλi.

The ratio probability Qn,α(r) is expressed in terms of pn by the relation

Qn,α(r) =

∫ ∞

0

∫ ∞

yr
pn(y, y2)dy2dy. (1.32)

In [15], the authors expressed the density pn in the special case where α is an integer, as a deter-
minant involving the Laguerre polynomials, they obtained [15, formula (3.20)]

pn(x1, x2) = n4e−n(x1+(n−1)x2)

(
x2
x1

)α

(x2 − x1)
2Dn(x1, x2), (1.33)

where

Dn(x1, x2) = (−1)
(α+1)(α+2)

2 det




[
∂
(j+k−2)
t L

(−α+1)
α+n−1 (t)

∣∣∣
t=−nx2

]

j=1,...,α
k=1,...,α+2[

∂
(j+k−2)
t L

(−α+1)
α+n−1 (t)

∣∣∣
t=−n(x2−x1)

]

j=1,2
k=1,...,α+2



, (1.34)
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and L
(α)
j is the generalized Laguerre polynomial of degree j and index α. These polynomials are

defined for α ∈ R (not necessarily for α > −1) through the recursive relations

L
(α)
0 (x) = 1, L

(α)
1 (x) = 1+α−x, and L

(α)
k+1(x) =

(2k + 1 + α− x)L
(α)
k (x)− (k + α)L

(α)
k−1(x)

k + 1
, k ≥ 1.

By combining (1.32) and (1.33), this gives a determinantal representation for Qn,α(r) if α ∈ N.
Also, in [15, equations (3.34) and (3.35)], they obtain the following determinantal expression for
the limiting density of the two smallest eigenvalues:

p(s1, s2) = lim
n→∞

(
1

4n2

)2

pn

( s1
4n2

,
s2
4n2

)
=

e−
s2
4

16

(
s2
s1

)α

D(s1, s2), (1.35)

where

D(s1, s2) = lim
n→∞

(
s2 − s1
4n2

)2

Dn

( s1
4n2

,
s2
4n2

)
= det




[Ij−k+2(
√
s2)] j=1,...,α

k=1,...,α+2[(
s2 − s1

s2

) k−j
2

Ij−k+2(
√
s2 − s1)

]

j=1,2
k=1,...,α+2




From the change of variables y = s
4n2 and y2 =

s2
4n2 in (1.32) and then taking the limit n → ∞, we

have

Qα(r) = lim
n→∞

(
1

4n2

)2 ∫ ∞

0

∫ ∞

rs
pn

( s

4n2
,
s2
4n2

)
ds2ds =

∫ ∞

0

∫ ∞

rs
p(s, s2)ds2ds. (1.36)

The fact that the limit exists and can be interchanged with the integrals is not direct, and can be
justified as in [16, Proposition 5.11]. The formulas (1.35) and (1.36) give an explicit determinantal
representation for Qα(r) in terms of Bessel functions if α ∈ N.

Outline

In Section 2, we introduce a family of monic orthogonal polynomials in terms of which the Hankel
determinant Zn,α(y; r) can be expressed. We also use the RH problem for orthogonal polynomials
introduced by Fokas, Its and Kitaev [14] and derive a differential identity in y for Zn,α(y; r).

We apply the Deift/Zhou steepest descent method [12, 10, 11] on this RH problem in Section
6 to obtain large n asymptotics of Zn,α(y; r) uniformly in y small enough.

In the analysis we will need a non standard model RH problem, which we introduce in Section
3. We derive a system of two coupled Painlevé V equations using a Lax pair in Section 4 and
show asymptotic properties of certain solutions of these equations as (r− 1)x → ∞ and rx → 0 in
Section 5.

Finally we give a proof of Theorem 1.1 and Theorem 1.7 in Section 7 and 8 respectively, by
integrating the differential identity and using equation (1.12).

2 Differential identity for the Hankel determinant Zn,α(y, r)

In this section we relate the Hankel determinant Zn,α(y; r) to a RH problem by making use of
orthogonal polynomials. We consider a family of monic orthogonal polynomials pj of degree j
characterised by the relations

∫ ∞

yr
pj(x)pm(x)w(x)dx = hjδjm, j,m = 0, 1, 2, ..., (2.1)
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where the weight w is defined in (1.14) and hj is the squared norm of pj , which can be expressed
in terms of Hankel determinants (see [25, equations (2.1.5) and (2.1.6)]) as follows:

hj =
Zj+1,α(y; r)

Zj,α(y; r)
, Z0,α(y; r) := 1. (2.2)

It will prove useful for the later analysis to consider Y (z) = Yn(z; y, r) the matrix valued function
defined by,

Y (z) =

(
pn(z) qn(z)

− 2πi
hn−1

pn−1(z) − 2πi
hn−1

qn−1(z)

)
, (2.3)

where qj is the Cauchy transform of pj defined by

qj(z) =
1

2πi

∫ ∞

yr

pj(x)w(x)

x− z
dx. (2.4)

The function Y can be characterised as the unique function satisfying a set of conditions [14,
equations (3.19)-(3.21)], known as the RH problem for Y , which are as follows:

RH problem for Y

(a) Y : C \ [yr,∞) → C
2×2 is analytic.

(b) The limits of Y (z) as z approaches (yr,∞) from above and below exist, are continuous on
(yr,∞) and are denoted by Y+ and Y− respectively. Furthermore they are related by

Y+(x) = Y−(x)

(
1 w(x)
0 1

)
, x ∈ (yr,∞). (2.5)

(c) Y (z) = (I +O(z−1))znσ3 as z → ∞, where σ3 =

(
1 0
0 −1

)
.

(d) Y (z) = Yyr(z)

(
1 −w(z)

2πi log(yr − z)
0 1

)
as z → yr, where the principal branch of the logarithm

is taken, and where Yyr(z) is analytic in a neighbourhood of yr.

Remark 2.1 Since Y is discontinuous on (yr,∞), the function zTr
(
Y −1(z)Y ′(z)σ3

)
is not analytic

in a neighbourhood of ∞. Nevertheless, since w(x) which appear in the jumps for Y becomes
exponentially small for large x, the non-analytic part of zTr

(
Y −1(z)Y ′(z)σ3

)
in a neighbourhood

of ∞ is also exponentially small in z. In fact, from (2.3), we have

Y ′(z) =
(n
z
σ3 +O(z−2)

)
znσ3 , as z → ∞, (2.6)

and thus

zTr
(
Y −1(z)Y ′(z)σ3

)
= 2n +

c1
z

+O(z−2), as z → ∞. (2.7)

for a certain c1 ∈ C. This constant will play a role in Lemma 2.2 below.

In [32, 33], the authors considered a similar but different RH problem, where they perturbed
the classical Jacobi ensemble by adding n-dependent singularities to the weight. Having introduced
the above objects we are now in a position to state the following lemma which is central for the
asymptotic analysis of Zn,α(y; r). The identity (2.8) and its proof are similar to the one performed
in [4].
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Lemma 2.2 The following identity holds,

∂y logZn,α(y; r) =
n2 + (α+ 2)n

y
− nc1

2y
, (2.8)

where c1 is given in (2.7).

Proof. We begin by making the substitution λi = yξi in (1.13), which gives

Zn,α(y; r) = yn
2+(α+2)nZ̃n,α(y; r), (2.9)

where

Z̃n,α(y; r) :=
1

n!

∫ ∞

r
...

∫ ∞

r
∆n(ξ)

2
n∏

j=1

(ξj − 1)2ξαj e
−nyξjdξj . (2.10)

The above quantity may be computed by introducing monic orthogonal polynomials p̃j satisfying

∫ ∞

r
p̃ℓ(x)p̃m(x)w̃(x)dx = h̃ℓδℓm, w̃(x) = (x− 1)2xαe−nyx. (2.11)

Analogously to (2.2), for j = 0, 1, 2, ... we have

h̃j =
Z̃j+1,α(y; r)

Z̃j,α(y; r)
, Z̃0,α(y; r) := 1. (2.12)

From the orthogonality conditions for pj given in (2.1), we easily obtain

p̃j(x) = y−jpj(yx), h̃j = y−(2j+α+3)hj . (2.13)

A similar calculation for the Cauchy transform qj appearing in (2.3) shows that

q̃j(z) =
1

2πi

∫ ∞

r

p̃j(x)w̃(x)

x− z
dx = y−(j+α+2)qj(yz). (2.14)

Summarising, if we define

Ỹ (z) :=

(
p̃n(z) q̃n(z)

− 2πi

h̃n−1
p̃n−1(z) − 2πi

h̃n−1
q̃n−1(z)

)
, (2.15)

we obtain the relationship

Ỹ (z) = y−nσ3y−
α+2
2

σ3Y (yz)y
α+2
2

σ3 . (2.16)

We now use the well known relation, which can be straightforwardly deduced from (2.12),

Z̃n,α(y; r) =

n−1∏

i=0

h̃i, (2.17)

from which it follows that

∂y log Z̃n,α(y; r) =

n−1∑

i=0

∂yh̃i

h̃i
. (2.18)

9



Note that

∂yh̃i =

∫ ∞

r
p̃i(x)

2∂yw̃(x)dx, (2.19)

where in the above line we have used the fact that p̃i and ∂y p̃i are orthogonal. Combining the
above expressions then yields,

∂yh̃i = −n

∫ ∞

r
xp̃i(x)

2w̃(x)dx. (2.20)

Using the above in (2.18) we have,

∂y log Z̃n,α(y; r) = −n

∫ ∞

r
xw̃(x)

n−1∑

i=0

p̃i(x)
2

h̃i
dx. (2.21)

The summation can now be removed by use of the Christoffel-Darboux formula (see [25, equation
(3.2.4)])

n−1∑

i=0

p̃i(x)
2

h̃i
=

p̃n(x)
′p̃n−1(x)− p̃n−1(x)

′p̃n(x)

h̃n−1

. (2.22)

In order to simplify by a contour deformation the integral in the right-hand side of (2.21), we will
use the formula

w̃(x)

n−1∑

i=0

p̃i(x)
2

h̃i
= − 1

4πi

(
Tr
(
Ỹ −1
+ (x)Ỹ ′

+(x)σ3

)
− Tr

(
Ỹ −1
− (x)Ỹ ′

−(x)σ3
))

, x ∈ (r,∞), (2.23)

which can be obtained from (2.22) and from the relation Ỹ+(x) = Ỹ−(x)

(
1 w̃(x)
0 1

)
for x ∈ (r,∞),

and where Ỹ± correspond to the limiting values of Ỹ from above and below (r,∞). We now obtain,

∂y log Z̃n,α(y; r) =
n

4πi

∫ ∞

r
x
(
Tr
(
Ỹ −1
+ (x)Ỹ ′

+(x)σ3

)
− Tr

(
Ỹ −1
− (x)Ỹ ′

−(x)σ3
))

dx. (2.24)

Note also that (2.16) implies that

Tr(Ỹ −1(z)Ỹ ′(z)σ3) = yTr(Y −1(yz)Y ′(yz)σ3). (2.25)

Therefore, combining (2.24) with (2.25) gives after a change of variables

∂y log Z̃n,α(y; r) =
n

4πiy

∫ ∞

yr
x
(
Tr
(
Y −1
+ (x)Y ′

+(x)σ3
)
− Tr

(
Y −1
− (x)Y ′

−(x)σ3
))

dx. (2.26)

Consider the integral of zTr
(
Y −1(z)Y ′(z)σ3

)
over the contour C shown in Figure 1. As Y is

analytic in C\ [yr,∞) and C does not enclose any singularities of Y , this integral is zero. Therefore,
we have

∫

C+∪C−
zTr

(
Y −1(z)Y ′(z)σ3

)
dz = −

∫

Cǫ+CR
zTr

(
Y −1(z)Y ′(z)σ3

)
dz. (2.27)

Property (d) in the RH problem for Y implies that Y −1(z)Y ′(z) = O((log(yr − z))2) as z → yr,
and thus we have

lim
ǫ→0

∫

Cǫ
zTr

(
Y −1(z)Y ′(z)σ3

)
dz = 0. (2.28)
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C+

C−
yr yr +R

CR

yr + iǫ

Cǫ

Figure 1: The contour C = Cǫ ∪ C+ ∪ CR ∪ C− used in establishing a differential identity for the
Hankel determinant Zn,α(y, r).

Thus, by Remark 2.1 and by taking first ǫ → 0 and then R → ∞ in (2.27), only the term containing
c1 in (2.7) contributes to the limit, one has

∫ ∞

yr
x
(
Tr
(
Y −1
+ (x)Y ′

+(x)σ3
)
−Tr

(
Y −1
− (x)Y ′

−(x)σ3
))

dx = −2πic1,

and equation (2.26) becomes

∂y log Z̃n,α(y; r) = −nc1
2y

. (2.29)

The result follows from (2.9). ✷

3 A Riemann-Hilbert problem related to the system of ODEs

We first introduce some notations for the sake of convenience. We define the piecewise constant
function

θ(z) =

{
+1 if Imz > 0,
−1 if Imz < 0,

(3.1)

and for t ∈ R, we define also

Ht(z) =





I, for − 2π
3 < arg(z − t) < 2π

3 ,(
1 0

−eπiα 1

)
, for 2π

3 < arg(z − t) < π,
(

1 0
e−πiα 1

)
, for − π < arg(z − t) < −2π

3 ,

(3.2)

where the principal branch is chosen for the argument, such that arg(z − t) = 0 if z > t. In the
course of computing the asymptotics for the Hankel determinants Zn,α(y; r), one is led to consider
a model RH problem, which we will denote by Φ its unique solution. The matrix-valued function
Φ depends on parameters x > 0 and a > 1. In the RH analysis of Y in Section 6, x and a will be
related to y and r through the relations

x = n2f(y) and a =
f(yr)

f(y)
, (3.3)
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2π
3

−ax −x 0

Σ1

Σ3

Σ2 Σ4

Figure 2: The jump contours appearing in the Riemann-Hilbert problem for Φ. The arcs Σj,
j = 1, 2, 3, 4 depend on x and a. For convenience, they are chosen such that they do not contain
−ax, −x and 0.

where f is a conformal map from 0 to a neighbourhood of 0, satisfying f ′(0) = 4, see (6.44) and
(6.45). In particular, if we can write y = s

4n2 for a fixed s, and if r is fixed, equation (3.3) implies
that as n → ∞, we have

x = s+O(n−2), a = r +O(n−2). (3.4)

RH problem for Φ(z) = Φ(z;x, a)

(a) Φ : C \Σx,ax → C
2×2 analytic, with Σx,ax = ∪4

i=1Σi ∪ {−ax,−x, 0} as illustrated in Figure 2.

(b) Φ has continuous boundary values Φ±(z) as z ∈ Σx,ax \ {−ax,−x, 0} is approached from the
left (+) or right (−) side of Σx,ax, and they are related by

Φ+(z) = Φ−(z)

(
1 0

eπiα 1

)
, z ∈ Σ1, (3.5)

Φ+(z) = Φ−(z)

(
0 1
−1 0

)
, z ∈ Σ2, (3.6)

Φ+(z) = Φ−(z)

(
1 0

e−πiα 1

)
, z ∈ Σ3, (3.7)

Φ+(z) = Φ−(z)e
πiασ3 , z ∈ Σ4. (3.8)

(c) As z → ∞, there exist functions p(x), q(x) and v(x) (these functions also depend on a), such
that Φ has the asymptotic behaviour

Φ(z) =

(
I +

1

z
Φ1(x) +O(z−2)

)
z−

1
4
σ3Nez

1
2 σ3 , (3.9)

where N = 1√
2
(I + iσ1), σ1 =

(
0 1
1 0

)
and

Φ1(x) =

(
q(x) iv(x)
ip(x) −q(x)

)
.
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(d) As z → −ax, Φ has the asymptotic behaviour

Φ(z) = O(1)

(
1 1

2πi log(z + ax)
0 1

)
e

πiα
2

θ(z)σ3H−ax(z). (3.10)

As z → −x, Φ has the asymptotic behaviour

Φ(z) = O(1)e
πiα
2

θ(z)σ3(z + x)σ3 . (3.11)

As z → 0, Φ has the asymptotic behaviour

Φ(z) = O(1)z
ασ3
2 . (3.12)

Remark 3.1 It can be verified by deleting the jumps around the singularities that the O(1) terms
in asymptotics (3.10), (3.11) and (3.12) are analytic functions.

Remark 3.2 The uniqueness of the solution Φ follows by standard arguments, based on the fact
that detΦ ≡ 1 (see e.g. [9, Theorem 7.18]). It is in general a more difficult task to prove existence
of a given RH problem, this relies on showing a so-called “vanishing lemma”. The existence of
Φ has been proved for α ≥ 0 in [3, Lemma 2.6] (our situation corresponds to I = (−∞,−ax),
B = {−x, 0}, α̂−x = 1, α̂0 = α

2 and τ∞,0 = −1
2 in the language of [3]). Nevertheless, the proof

of the vanishing lemma [3, Lemma 2.6] does not require the assumptions α ≥ 0 and holds more
generally for α > −1. Thus, Φ exists and is unique for α > −1.

Remark 3.3 The fact that Φ1(x) is traceless follows immediately from detΦ ≡ 1.

Remark 3.4 Since α ∈ R, we can check that σ3Φ(z)σ3 is also a solution of the RH problem for
Φ. Thus, by uniqueness of the solution (see Remark 3.2), we have

Φ(z) = σ3Φ(z)σ3. (3.13)

In particular, this implies that all the functions p(x), q(x) and v(x) are real.

4 The Lax pair and two coupled Painlevé V equations

To derive the system of two coupled Painlevé V equations (1.21), we will use a well-known method
of isomonodromic deformation theory [13]. We begin by making the transformation

Φ̃(z;x, a) :=

(
1 0

− v(x2)
x 1

)
x

σ3
2 e

πi
4
σ3Φ(x2z;x2, a). (4.1)

The jump contour for Φ̃(z) is Σ1,a and is independent of x, while its asymptotic expansion as
z → ∞ is given by

Φ̃(z) =

(
1 0

− v(x2)
x 1

)(
I +

1

z
Φ̃1(x) +O(z−2)

)
e

πi
4
σ3z−

1
4
σ3Nexz

1
2 σ3 , (4.2)

where

Φ̃1(x) =

(
q(x2)
x2 − v(x2)

x
p(x2)
x3 − q(x2)

x2

)
. (4.3)
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By standard arguments of RH analysis, Φ̃ is analytic in x ∈ (0,∞). The Lax pair (A,B) =
(A(z;x, a), B(z;x, a)) is defined by,

∂zΦ̃(z) = A(z)Φ̃(z), (4.4)

∂xΦ̃(z) = B(z)Φ̃(z). (4.5)

The fact that det Φ̃ is constant implies that A and B are traceless. Also, since the jump matrices for
Φ̃(z) are independent of z and x, A and B are analytic on C \ {−a,−1, 0}. Using the asymptotic
behaviour of Φ̃(z) as z → 0, z → −1, z → −a and z → ∞, it is easy to show that A(z) is
meromorphic on C with single poles at −a, −1 and 0 while B(z) is an entire function. One has

A(z) = A∞,0(x) +A0,1(x)z
−1 +A1,1(x)(z + 1)−1 +Aa,1(x)(z + a)−1, (4.6)

B(z) =

(
0 1

z + u(x) 0

)
, where u(x) =

−2v′(x2)x2 + v(x2)2 − 2q(x2) + v(x2)

x2
, (4.7)

the matrices A0,1(x), A1,1(x), Aa,1(x) are analytic in x ∈ (0,∞) and A∞,0(x) =

(
0 0
x
2 0

)
. There are

infinitely many non-trivial relations between the functions appearing in (4.2). They can be found
using the fact that B is entire. For example, by expending B12(z) as z → ∞ using (4.2), we find

B12(z) = 1 +
−v(x2)2 + v(x2) + 2q(x2)− 2x2v′(x2)

x2z
+O(z−2), as z → ∞, (4.8)

from which we obtain the relation q(x) = 1
2(2xv

′(x)+v2(x)−v(x)), and thus u(x) can be rewritten

more simply as u(x) = −2
(
v(x2)x−1

)′
. We now turn to the compatibility condition

∂z∂xΦ̃ = ∂x∂zΦ̃, (4.9)

which upon rewriting the derivatives in terms of the Lax matrices becomes

∂xA− ∂zB +AB −BA = 0. (4.10)

If we parameterise A as

A(z;x, a) =

(
d(z;x, a) b(z;x, a)
c(z;x, a) −d(z;x, a)

)
, (4.11)

then (4.10) is equivalent to three coupled ODEs,

d = −b′

2
, (4.12)

c = (z + u)b− b′′

2
, (4.13)

c′ = 1 + 2(z + u)d, (4.14)

where primes denote again derivatives with respect to x, and where the dependence of the functions
in z, x and a have been omitted. The first two equations provide d and c in terms of b. Taking the
determinant of A yields

detA = −(b′)2

4
− (z + u)b2 +

bb′′

2
. (4.15)
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From (4.6) we have that b(z) is of the form

b(z) = b0z
−1 + b1(z + 1)−1 + b2(z + a)−1, (4.16)

where b0, b1 and b2 only depend on x and a. Note that Remark 3.4 implies that A(z) ∈ R and
B(z) ∈ R for z ∈ R. In particular, b0, b1 and b2 are real. Equation (4.16) together with (4.15), allow
us to compute the asymptotics of detA at z = 0, z = −1, z = −a and z = ∞ in terms of b0, b1
and b2. Alternatively, we may compute detA at these four points using the asymptotic expansion
of Φ̃. Equating these asymptotics with those expressed in terms of b0, b1 and b2 we arrive at the
equations

α2

4
− b0(x)

2u(x)− 1

4
b′0(x)

2 +
1

2
b0(x)b

′′
0(x) = 0, (4.17)

b1(x)
2(1− u(x))− 1

4
b′1(x)

2 +
1

2
b1(x)b

′′
1(x) + 1 = 0, (4.18)

b2(x)
2(a− u(x))− 1

4
b′2(x)

2 +
1

2
b2(x)b

′′
2(x) = 0, (4.19)

x2

4
− (b0(x) + b1(x) + b2(x))

2 = 0. (4.20)

By expanding the expression A12(z) = b(z) in a Laurent series about z = ∞, we get the following
identities between b0, b1, b2 and v′:

b0(x) + b1(x) + b2(x) =
x

2
, (4.21)

b1(x) + ab2(x) = −xv′(x2). (4.22)

Note that (4.21) is a better version of (4.20). If we express b0 and u in terms of b1 and b2 from
(4.17) and (4.21), and if we define

q2j (x) =
2bj(

√
x)√

x
, j = 1, 2, (4.23)

we obtain the system (1.21) with a = r from (4.18) and (4.19). The same change of functions (4.23)
was used in [7], where the authors obtained a system of k (k ∈ N0) coupled Painlevé V equations.

5 Further properties of the special solutions

Our main goal in this section is to get asymptotics for b0(x), b1(x) and b2(x) as (a− 1)x → ∞ and
ax → 0+.

5.1 Asymptotic analysis when (a− 1)x → ∞
5.1.1 Re-scaling of the model problem

In order to have a jump contour independent of x, we make the transformation C(z;x, a) =

(ax)
1
4
σ3Φ(axz;x, a). C is the solution of the following RH problem:

RH problem for U

(a) C : C \ Σa−1,1 → C
2×2 is analytic.
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(b) C has the following jumps

C+(z) = C−(z)

(
1 0

eπiα 1

)
, z ∈ Σ1, (5.1)

C+(z) = C−(z)

(
0 1
−1 0

)
, z ∈ Σ2, (5.2)

C+(z) = C−(z)

(
1 0

e−πiα 1

)
, z ∈ Σ3, (5.3)

C+(z) = C−(z)e
πiασ3 , z ∈ Σ4. (5.4)

(c) As z → ∞,

C(z) =

(
I +

1

z
C1(x; a) +O(z−2)

)
z−

1
4
σ3Ne

√
axz

1
2 σ3 , (5.5)

where

C1(x; a) =

( q(x;a)
ax

iv(x;a)

(ax)1/2

ip(x;a)

(ax)3/2
− q(x;a)

ax

)
. (5.6)

(d) As z → −1, C has the asymptotic behaviour

C(z) = O(1)

(
1 1

2πi log(z + 1)
0 1

)
e

πiα
2

θ(z)σ3H−1(z). (5.7)

As z → −a−1, C has the asymptotic behaviour

C(z) = O(1)e
πiα
2

θ(z)σ3
(
z + a−1

)σ3 . (5.8)

As z → 0, C has the asymptotic behaviour

C(z) = O(1)z
ασ3
2 . (5.9)

5.1.2 Normalisation at ∞ of the RH problem

We define the g-function by

g(z) =
√
z + 1 (5.10)

where the principal branch is taken for the square root. As z → ∞, g has the asymptotic behaviour

g(z) = z1/2 + g1z
−1/2 +O(z−3/2), g1 =

1

2
. (5.11)

Now we define

W (z) =

(
1 0

ig1
√
ax 1

)
C(z)e−

√
axg(z)σ3 . (5.12)
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RH problem for W

(a) W : C \ Σa−1,1 → C
2×2 is analytic.

(b) W has the following jumps:

W+(z) = W−(z)

(
1 0

eπiαe−2
√
axg(z) 1

)
, z ∈ Σ1, (5.13)

W+(z) = W−(z)

(
0 1
−1 0

)
, z ∈ Σ2, (5.14)

W+(z) = W−(z)

(
1 0

e−πiαe−2
√
axg(z) 1

)
, z ∈ Σ3, (5.15)

W+(z) = W−(z)e
πiασ3 , z ∈ Σ4. (5.16)

(c) As z → ∞,

W (z) =

(
I +

1

z
W1(x; a) +O(z−2)

)
z−

1
4
σ3N, (5.17)

where

(W1(x; a))12 =
iv(x; a)√

ax
+ ig1

√
ax. (5.18)

(d) As z → −1,

W (z) = O(1)

(
1 log(z+1)

2πi
0 1

)
e

πiα
2

θ(z)σ3H−1(z)e
−
√
axg(z)σ3 . (5.19)

As z → −a−1,

W (z) = O(1)e
πiα
2

θ(z)σ3
(
z + a−1

)σ3 . (5.20)

As z → 0,

W (z) = O(1)z
ασ3
2 . (5.21)

For z ∈ Σ1∪Σ3, Re(g(z)) > 0 and therefore the jumps of W on Σ1∪Σ3 are exponentially close to the
identity matrix as (a−1)x → ∞. Since g(−1) = 0, this convergence is not uniform as z approaches
−1. Therefore we will construct a global parametrix which will be a good approximation of W as
z stays away from a neighbourhood of −1, and a local parametrix around −1.

5.1.3 Global parametrix

Ignoring exponentially small entries in the jumps and a small neighbourhood of −1, we are led to
consider the following RH problem.
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RH problem for P (∞)

(a) P (∞) : C \ R− is analytic.

(b) P (∞) has the following jumps on R
−:

P
(∞)
+ (z) = P

(∞)
− (z)

(
0 1
−1 0

)
, z ∈ (−∞,−1), (5.22)

P
(∞)
+ (z) = P

(∞)
− (z)eπiασ3 , z ∈ (−1, 0) \ {−a−1}, (5.23)

(c) As z → ∞,

P (∞)(z) =

(
I +

1

z
P

(∞)
1 (a) +O(z−2)

)
z−

1
4
σ3N. (5.24)

(d) As z → −1,

P (∞)(z) = O
(
(z + 1)−1/4

)
. (5.25)

As z → −a−1,

P (∞)(z) = O(1)e
πiα
2

θ(z)σ3
(
z + a−1

)σ3 . (5.26)

As z → 0,

P (∞)(z) = O(1)z
ασ3
2 . (5.27)

We can check that the solution of this RH problem is explicitly given by

P (∞)(z) =

(
1 0

i(α + 2
√
1− a−1) 1

)
(z + 1)−

σ3
4 N

×
(√

z + 1 + 1√
z + 1− 1

)−α
2
σ3
(√

z + 1 +
√
1− a−1

√
z + 1−

√
1− a−1

)−σ3

, (5.28)

where the principal branch has been chosen for each root. Note that

(P
(∞)
1 (a))12 = i(α+ 2

√
1− a−1). (5.29)

5.1.4 Local parametrix near −1

We want to construct a function P (−1) defined in a open disk D−1 around −1 of radius 1
3(1− a−1)

which satisfies the following RH conditions.

RH problem for P (−1)

(a) P (−1) : D−1 \Σa−1,1 is analytic.
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(b) P (−1) has the following jumps:

P
(−1)
+ (z) = P

(−1)
− (z)

(
1 0

eπiαe−2
√
axg(z) 1

)
, z ∈ Σ1 ∩D−1, (5.30)

P
(−1)
+ (z) = P

(−1)
− (z)

(
0 1
−1 0

)
, z ∈ Σ2 ∩D−1, (5.31)

P
(−1)
+ (z) = P

(−1)
− (z)

(
1 0

e−πiαe−2
√
axg(z) 1

)
, z ∈ Σ3 ∩D−1, (5.32)

P
(−1)
+ (z) = P

(−1)
− (z)eπiασ3 , z ∈ Σ4 ∩D−1. (5.33)

(c) As x → ∞,

P (−1)(z) =
(
I +O

(
((a− 1)x)−1/2

))
P (∞)(z) (5.34)

uniformly for z ∈ ∂D−1.

(d) As z → −1,

P (−1)(z) = O(1)

(
1 log(z+1)

2πi
0 1

)
e

πiα
2

θ(z)σ3H−1(z)e
−
√
axg(z)σ3 . (5.35)

The solution of this RH problem can be constructed in terms of the Bessel model RH problem with
parameter α = 0, which is presented in the appendix (see Subsection 9.2), and whose solution is
denoted Υ(0). The local parametrix is given by

P (−1)(z) = E(z)Υ(0)(axf(z))e
πiα
2

θ(z)σ3e−
√
axg(z)σ3 , (5.36)

where

f(z) = g(z)2 = z + 1 and E(z) = P (∞)(z)e−
πiα
2

θ(z)σ3N−1f(z)
σ3
4 (ax)

1
4
σ3 . (5.37)

It can be verified that E is analytic in D−1.

5.1.5 Small norm RH problem

Define

R(z) =

{
W (z)P (∞)(z)−1, for z ∈ C \ (D−1 ∪ Σ1 ∪ Σ3),

W (z)P (−1)(z)−1, for z ∈ D−1.
(5.38)

Since W and P (−1) have the same jumps inside D−1 and the same behaviour near −1, R is analytic
inside D−1. Also, W and P (∞) have the same jumps on R

−, and the same behaviour near −a−1

and 0. Therefore, R is analytic on C\((∂D−1∪Σ1∪Σ3)\D−1). Let us put the clockwise orientation
on ∂D−1. On ∂D−1 by (5.34), we have R−(z)

−1R+(z) = I +O
(
((a− 1)x)−1/2

)
and by (5.13) and

(5.15), on (Σ1 ∪ Σ3) \D−1, R−(z)
−1R+(z) = I +O(e−c

√
(a−1)x) where c > 0 is a constant. From

(5.17) and (5.24), as z → ∞ one has R(z) = I +O(z−1). By small norm theory for RH problems,
it follows that R exists for sufficiently large (a − 1)x and satisfies R(z) = I + O(((a − 1)x)−1/2)
uniformly in z ∈ C \ ((∂D−1 ∪Σ1 ∪ Σ3) \D−1) and as z → ∞,

R(z) = I +
R1(x; a)

z
+O(z−2), R′(z) = O

(
((a− 1)x)−1/2

)
(5.39)
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We have in particular that R1(x; a) = O(((a − 1)x)−1/2). For z ∈ C \ (D−1 ∪ Σ1 ∪ Σ3), we have
W (z) = R(z)P (∞)(z) and therefore

W1(x; a) = R1(x; a) + P
(∞)
1 (a) = P

(∞)
1 (a) +O(((a− 1)x)−1/2), (5.40)

Using (5.18), (5.29) and (5.40), we obtain

v(x) = −1

2
ax+ (α+ 2

√
1− a−1)

√
ax+O((1− a−1)−1/2), as (a− 1)x → ∞. (5.41)

For the asymptotics for b0 and b1, from (4.4), (4.11) and (4.16), we can use

b0(
√
x) = lim

z→0
i
√
xz
[
∂zΦ(axz;x, a)Φ

−1(axz;x, a)
]
12
, (5.42)

b1(
√
x) = lim

z→−a−1
i
√
x(z + a−1)

[
∂zΦ(axz;x, a)Φ

−1(axz;x, a)
]
12
. (5.43)

To compute these limits, we will need the global parametrix. For z ∈ C \ (D−1 ∪ Σ1 ∪ Σ3), by the
definition of C given at the beginning of Subsection 5.1.1, (5.12) and (5.38), we have

Φ(axz;x, a) = (ax)−
σ3
4

(
1 0

− i
2

√
ax 1

)
R(z)P (∞)(z)e

√
axg(z)σ3 . (5.44)

Using the definition of the global parametrix given by (5.28), together with the asymptotics for
R (5.39) and the above equation, the limits (5.42) and (5.43) are straightforward to compute. As
(a− 1)x → ∞, we find

b0(
√
x) =

α

2
√
a

(
1 +O

(
((a− 1)x)−1/2

))
, (5.45)

b1(
√
x) =

1√
a− 1

(
1 +O

(
((a− 1)x)−1/2

))
. (5.46)

Asymptotics for b2 can be obtained directly from the relation (4.21), as (a− 1)x → ∞ we have

b2(
√
x) =

√
x

2
− α

2
√
a
− 1√

a− 1
+O

(
1

(a− 1)
√
x

)
. (5.47)

Large (a− 1)x asymptotics for q1(x)
2 and q2(x)

2 are immediate to obtain from (4.23), (5.46) and
(5.47) and are given in (1.22) and (1.23) with a = r.

We will need later the asymptotics for Φ(z;x, a) when z → ∞ and simultaneously (a− 1)x → ∞.
Note that the global parametrix P (∞) defined in (5.28) only depends on a, and is such that its
behaviour at ∞ (5.24) has the form

P (∞)(z) = (I +O(z−1))z−
1
4
σ3N, as z → ∞ and (a− 1)x → ∞. (5.48)

Thus from (5.12), (5.38) and the definition of C given at the beginning of Subsection 5.1.1, we have
as z

ax → ∞ and simultaneously (a− 1)x → ∞ that

Φ(z;x, a) = (ax)−
σ3
4

(
1 0

− i
2

√
ax 1

)(
I +O

(
ax
z

)) (
z
ax

)−σ3
4 Ne

√
z+axσ3 ,

= z−
σ3
4

(
1 0

− i
2
ax√
z

1

)(
I +

(
O(axz ) O(

√
ax
z )

O
((

ax
z

) 3
2
)

O(axz )

))
Ne

√
z+axσ3 .

(5.49)
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Furthermore, if we assume that
√
z

ax → ∞, we have

Ne
√
z+axσ3 =


I +


 O

((
ax√
z

)2) O
(

ax√
z

)

i
2
ax√
z
+O

((
ax√
z

)3) O
((

ax√
z

)2)



Ne

√
zσ3 . (5.50)

Thus, if z → ∞, (a− 1)x → ∞ and simultaneously
√
z

ax → ∞, (5.49) becomes

Φ(z;x, a) = z−
σ3
4


I +


O

((
ax√
z

)2) O
(

ax√
z

)

O
((

ax√
z

)3) O
((

ax√
z

)2)



Ne

√
zσ3 . (5.51)

5.2 Asymptotic analysis when ax → 0

In order to have the rays Σ1 and Σ3 of the jump contour independent of a and x, we make the
following transformation on Φ:

W̃ (z) = Φ(z)H−ax(z)
−1H0(z). (5.52)

It is easy to verify that W̃ satisfies the following RH problem.

RH problem for W̃

(a) W̃ : C \ Σ0,0 → C
2×2 is analytic.

(b) W̃ has the following jumps

W̃+(z) = W̃−(z)

(
1 0

eπiα 1

)
, arg(z) =

2π

3
, (5.53)

W̃+(z) = W̃−(z)

(
0 1
−1 0

)
, z ∈ (−∞,−ax), (5.54)

W̃+(z) = W̃−(z)

(
1 0

e−πiα 1

)
, arg(z) = −2π

3
, (5.55)

W̃+(z) = W̃−(z)

(
eπiα 0
−2 e−πiα

)
, z ∈ (−ax, 0) \ {−x}. (5.56)

(c) As z → ∞,

W̃ (z) =

(
I +

1

z
Φ1(x) +O(z−2)

)
z−

1
4
σ3Nez

1
2 σ3 . (5.57)

(d) As z → −ax, W̃ has the asymptotic behaviour

W̃ (z) = O(1)

(
1 log(z+ax)

2πi
0 1

)
e

πiα
2

θ(z)σ3H0(z). (5.58)

As z → −x,

W̃ (z) = O(1)e
πiα
2

θ(z)σ3(z + x)σ3H0(z). (5.59)

As z → 0,

W̃ (z) = O(1)z
ασ3
2 H0(z). (5.60)

In equations (5.58), (5.59) and (5.60), the O(1) are analytic functions in a neighbourhood of
their respective point.
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5.2.1 Global parametrix

As ax → 0, the length of (−ax, 0) tends to 0 and the pole at −x, the algebraic singularity at 0,
as well as the logarithmic singularity at −ax, are merging together. Therefore, for z outside of a
neighbourhood of 0, we expect that the Bessel model RH problem of order α+2 (presented in the
appendix, see Subsection 9.2) will be relevant to construct the global parametrix P (∞). In a small
neighbourhood of 0 and we will construct a new local parametrix around the origin.

RH problem for P (∞)

(a) P (∞) : C \ Σ0,0 is analytic.

(b) P (∞) has the following jumps on Σ0,0:

P
(∞)
+ (z) = P

(∞)
− (z)

(
0 1
−1 0

)
, z ∈ R

−, (5.61)

P
(∞)
+ (z) = P

(∞)
− (z)

(
1 0

eπiα 1

)
, arg(z) =

2π

3
, (5.62)

P
(∞)
+ (z) = P

(∞)
− (z)

(
1 0

e−πiα 1

)
, arg(z) = −2π

3
. (5.63)

(c) As z → ∞,

P (∞)(z) =

(
I +

P
(∞)
1

z
+O(z−2)

)
z−

1
4
σ3Nez

1
2 σ3 . (5.64)

(d) As z → 0,

P (∞)(z) =





O
(
|z|α+2

2 |z|−α+2
2

|z|α+2
2 |z|−α+2

2

)
, for − 2π

3 < arg(z) < 2π
3 ,

O
(
|z|−α+2

2 |z|−α+2
2

|z|−α+2
2 |z|−α+2

2

)
, for arg(z) ∈ (−π,−2π

3 ) ∪ (2π3 , π).

(5.65)

The only solution of this RH problem is well-known and given by

P (∞)(z) = Υ(α+2)(z), (5.66)

where Υ(α+2) is the solution of the Bessel model RH problem, presented in Subsection 9.2. Note
that if we don’t specify condition (d) in the RH problem for P (∞), the solution is not unique. From
a mathematical point of view, we remark that Υ(α) or Υ(α+4) for example could have also been a
suitable choice for P (∞), but Υ(α+2) is the only one which satisfies condition (d) and which allows
us to create a local parametrix around 0 respecting the matching condition (5.74). By (9.12), we
have

(P
(∞)
1 )12 =

i

8
(4(α + 2)2 − 1). (5.67)

In the construction of the local parametrix in a neighbourhood of 0, we will need a more explicit
knowledge of the behaviour of P (∞) at the origin. It can be verified (see [4]) that P (∞) can be
written as

P (∞)(z) = P
(∞)
0 (z)z

α+2
2

σ3

(
1 h(z)
0 1

)
H0(z), z ∈ C \ Σ0,0, (5.68)
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where P
(∞)
0 (z) = P

(∞)
0,α (z) is an entire function in z for every α while

h(z) =

{
1

2i sin(πα) , α /∈ Z,
(−1)α

2πi log z, α ∈ Z.
(5.69)

5.2.2 Local parametrix near 0

We want to construct a function P (0) defined in a fixed open disk D0 around 0 which satisfies
exactly the same RH conditions than W̃ on D0 and matches with P (∞) on ∂D0.

RH problem for P (0)

(a) P (0) : D0 \Σ0,0 is analytic.

(b) P (0) has the following jumps

P
(0)
+ (z) = P

(0)
− (z)

(
1 0

eπiα 1

)
, z ∈

{
arg(z) =

2π

3

}
∩D0, (5.70)

P
(0)
+ (z) = P

(0)
− (z)

(
0 1
−1 0

)
, z ∈ (−∞,−ax) ∩D0, (5.71)

P
(0)
+ (z) = P

(0)
− (z)

(
1 0

e−πiα 1

)
, z ∈

{
arg(z) = −2π

3

}
∩D0, (5.72)

P
(0)
+ (z) = P

(0)
− (z)

(
eπiα 0
−2 e−πiα

)
, z ∈ (−ax, 0) \ {−x}. (5.73)

(c) As ax → 0,

P (0)(z) = (I +O(ax))P (∞)(z) (5.74)

uniformly for z ∈ ∂D0.

(d) As z → −ax, P (0) has the asymptotic behaviour

P (0)(z) = O(1)

(
1 log(z+ax)

2πi
0 1

)
e

πiα
2

θ(z)σ3H0(z). (5.75)

As z → −x,

P (0)(z) = O(1)e
πiα
2

θ(z)σ3(z + x)σ3H0(z). (5.76)

As z → 0,

P (0)(z) = O(1)z
ασ3
2 H0(z). (5.77)

We can check that the solution of this RH problem is explicitly given by:

P (0)(z) = P
(∞)
0 (z)

(
z + x

z

)σ3
(
1 f(z;x)
0 1

)
z

α+2
2

σ3

(
1 h(z)
0 1

)
H0(z) (5.78)

where

f(z;x) =
−z2

2πi

∫ 0

−ax

|s|α
s− z

ds. (5.79)
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5.2.3 Small norm RH problem

Define

R(z) =

{
W̃ (z)P (∞)(z)−1, for z ∈ C \D0,

W̃ (z)P (0)(z)−1, for z ∈ D0.
(5.80)

By definition of W̃ , P (∞) and P (0), R is analytic on C \ ∂D0. Let us put the clockwise orientation
on ∂D0. The jumps of R on ∂D0 are given by

R−(z)
−1R+(z) = P (0)(z)P (∞)(z)−1 = I +O(ax), as ax → 0, (5.81)

where we have used (5.74). Also, from (5.57) and (5.64), as z → ∞ we have R(z) = I + O(z−1).
Thus, by standard theory for small norm RH problems, R exists for sufficiently small ax and
satisfies

R(z) = I +O(ax), R′(z) = O(ax), (5.82)

as ax → 0 uniformly in z ∈ C \ ∂D0. Also, as z → ∞, we have

R(z) = I +
R1(x; a)

z
+O(z−2), (5.83)

where R1(x; a) = O(ax) as ax → 0. For z ∈ C \D0, we have W̃ (z) = R(z)P (∞)(z) and therefore
we obtain

Φ1(x; a) = P
(∞)
1 +R1(x; a). (5.84)

In particular, from (5.67) and (5.84), as ax → 0 we obtain

v(x; a) = v(0) +O(ax), (5.85)

with v(0) := 1
8 (4(α + 2)2 − 1). To obtain asymptotics for b1 and b2, we will proceed similarly as

done in Subsection 5.1.5, but instead of the global parametrix, we will need the local parametrix.
From (4.4), (4.11) and (4.16), we have

b1(
√
x) = lim

z→−1
i
√
x(z + 1)

[
∂zΦ(xz;x, a)Φ

−1(xz;x, a)
]
12
, (5.86)

b2(
√
x) = lim

z→−a
i
√
x(z + a)

[
∂zΦ(xz;x, a)Φ

−1(xz;x, a)
]
12
. (5.87)

On the other hand, from (5.52), (5.78) and (5.80), we have as ax → 0 and for z ∈ D0

Φ(xz;x, a) = R(xz)P
(∞)
0 (xz)

(
z + 1

z

)σ3
(
1 f(xz;x)
0 1

)
(xz)

α+2
2

σ3

(
1 h(xz)
0 1

)
H−ax(z). (5.88)

Thus, by the estimate (5.82) and a direct calculation, we have

b2(
√
x) = i

√
x(1 +O(ax))

[
P

(∞)
0 (0)

(
0 ⋆
0 0

)
P

(∞)
0 (0)−1

]

12

, as ax → 0, (5.89)

where in the above equation

⋆ = lim
z→−a

(z + a)
(z + 1)2

z2
∂zf(xz;x) (5.90)

=
−(a− 1)2x2

2πi
lim

z→−a
(z + a)

∫ 0

−ax

x|s|α
(s− xz)2

ds =
(a− 1)2x2

2πi
(ax)α. (5.91)
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Therefore, (5.89) becomes

b2(
√
x) =

(1− a−1)2

2π

√
x(ax)α+2P

(∞)
0,11 (0)

2(1 +O(ax)), as ax → 0. (5.92)

To compute P
(∞)
0,11 (0), we can use (5.68) and (9.11). For z ∈ {z ∈ C : | arg(z)| < 2π

3 } we have

P
(∞)
0,11 (z) =

√
πIα+2(

√
z)z−

α+2
2 . (5.93)

Taking the limit z → 0 in (5.93), and using the small z expansion of Iα+2(z) (see [22, formula

10.30.1]) we obtain P
(∞)
0,11 (0) =

√
π

2α+2Γ(α+3)
. Inserting this value in (5.92), we have as ax → 0 that

b2(
√
x) =

(1− a−1)2
√
x(ax)α+2

22α+5Γ(α+ 3)2
(1 +O(ax)) (5.94)

=
(1− a−1)2

√
x

2
I2α+2(

√
ax))(1 +O(ax)). (5.95)

Similarly, from (5.86) and (5.88), we have as ax → 0 that

b1(
√
x) = i

√
x
[
P

(∞)
0 (0)σ3P

(∞)
0 (0)−1

]
12
(1+O(ax)) = −2i

√
xP

(∞)
0,11 (0)P

(∞)
0,12 (0)(1+O(ax)). (5.96)

Again, from (9.11) and (5.68), we obtain for z ∈ {z ∈ C : | arg(z)| < 2π
3 } that

P
(∞)
0,12 (z) =

i√
π
Kα+2(

√
z)z

α+2
2 − P0,11(z)h(z)z

α+2 . (5.97)

By taking the limit z → 0 and using [22, formulas 10.30.2], this gives P
(∞)
0,12 (0) =

i√
π
2α+1Γ(α+ 2),

and by (5.96) we have

b1(
√
x) =

√
x

α+ 2
(1 +O(ax)), as ax → 0. (5.98)

With the change of functions (4.23), we obtain from (5.95) and (5.98) the small ax asymptotics for
q1(x; a) and q2(x; a) given in (1.24) and (1.25). We will also need later the asymptotics of Φ(z;x, a)
as z → ∞ and simultaneously ax → 0. This can be obtained from (5.52), (5.64), (5.80) and (5.83),
and by the fact that the global parametrix (5.66) is independent of a and x, we have

Φ(z;x, a) =
(
I +O(axz )

)
(I +O(z−1))z−

1
4
σ3Nez

1
2 σ3 , as z → ∞ and ax → 0,

= (I +O(z−1))z−
1
4
σ3Nez

1
2 σ3 , as z → ∞ and ax → 0. (5.99)

6 Steepest descent analysis of Y as nyr → 0

An essential ingredient in the steepest descent analysis is the equilibrium measure µ, which in our
case is the unique probability measure which minimizes

∫ ∞

0

∫ ∞

0
log

1

|x− y|dµ̃(x)dµ̃(y) +
∫ ∞

0
ydµ̃(y), (6.1)

among all Borel probability measures µ̃ on (0,∞). The unique solution µ of the minimization
problem (6.1) is supported on S, where S := (0, 4), and its density is known as the Marchenko-
Pastur law:

dµ(x)

dx
= ρ(x) =

1

2π

√
4− x

x
. (6.2)
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The equilibrium measure µ satisfies the following identities [26], known as the Euler-Lagrange
variational conditions:

2

∫

S
log |x− y|ρ(y)dy − x = ℓ, x ∈ S, (6.3)

2

∫

S
log |x− y|ρ(y)dy − x < ℓ, x ∈ (4,∞), (6.4)

where ℓ = −2. We define the g-function by

g(z) =

∫

S
log(z − x)dµ(x), (6.5)

where the principal branch of the logarithm is taken, meaning g is analytic on C \ (−∞, 4]. The
g-function possesses the following properties

g+(x) + g−(x)− x− ℓ = 0, x ∈ S, (6.6)

2g(x) − x− ℓ < 0, x ∈ (4,∞), (6.7)

g+(x)− g−(x) = 2πi

∫ 4

x
ρ(s)ds, x ∈ S, (6.8)

g+(x)− g−(x) = 2πi, x ∈ (−∞, 0). (6.9)

Let us also define

ξ(z) = −π

∫ z

4
ρ̃(s)ds for z ∈ C \ (−∞, 4], (6.10)

where the integration path does not cross (−∞, 4], and where ρ̃(z) = 1
2π

√
z−4
z is analytic in C \ S

and such that ρ̃±(x) = ±iρ(x) for x ∈ S. By (6.6) and (6.8) we have,

2ξ±(x) = ±(g+(x)− g−(x)) = 2g±(x)− x− ℓ, x ∈ S. (6.11)

By analytically continuing ξ − g on the whole complex plane from the above expression, we obtain
the identity

2ξ(z) = 2g(z) − z − ℓ, z ∈ C \ (−∞, 4]. (6.12)

The jumps of ξ follow from those of g, we have

ξ+(x) + ξ−(x) = 0, x ∈ S, (6.13)

2ξ(x) < 0, x ∈ (4,∞), (6.14)

ξ+(x)− ξ−(x) = 2πi

∫ 4

x
ρ(s)ds, x ∈ S, (6.15)

ξ+(x)− ξ−(x) = 2πi, x ∈ (−∞, 0). (6.16)

6.1 Transformation to constant jumps

The weight (1.14) is defined on (yr,∞). We consider its natural extension

w(z) = (z − y)2zαe−nz, z ∈ C \ (−∞, 0], (6.17)

where the principal branch is taken for the root, and we define Ψ(z) = Y (z)w(z)
σ3
2 . The matrix

function Ψ satisfies the following RH problem.
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RH problem for Ψ

(a) Ψ : C \ ((−∞, 0] ∪ {y} ∪ [yr,∞)) → C
2×2 is analytic.

(b) Let jΨ(z) := Ψ−(z)
−1Ψ+(z). Then,

jΨ(z) =

(
1 1
0 1

)
, z ∈ (yr,∞). (6.18)

jΨ(z) = eπiασ3 , z ∈ (−∞, 0). (6.19)

(c) Ψ(z) = (I +O(z−1))z(n+
α+2
2

)σ3e−
nz
2
σ3 as z → ∞.

(d) Ψ has the following behaviour near 0, y and yr:

Ψ(z) = O(1)z
α
2
σ3 , as z → 0, (6.20)

Ψ(z) = O(1)(z − y)σ3 , as z → y, (6.21)

Ψ(z) = O(1)

(
1 − log(yr−z)

2πi
0 1

)
, as z → yr, (6.22)

where in the three above asymptotics it can be verified that the O(1) terms are analytic in a
neighbourhood of their respective point.

6.2 Opening of the lenses

We now perform the step of opening the lenses. Since the jumps for Ψ are constant, the lens
contours are unconstrained. In a subsequent transformation we will use the g-function to normalise
the RH problem at infinity, at which point the lens contours will be required to stay within a region
in which they converge to the identity matrix as n → ∞. Let D0 and D4 denote small but fixed
open discs centred at 0 and 4 respectively and U = D0 ∪D4. Note that since nyr → 0 as n → ∞,
the points 0, y and yr lie in D0 for sufficiently large n. Let us define γ = (yr, 4). We now make the
transformation

S(z) := Ψ(z)K(z) (6.23)

where K is a piecewise function designed to open the lens,

K(z) :=





I, for z ∈ C \ (Ωγ
+ ∪ Ωγ

−),(
1 0
−1 1

)
, for z ∈ Ωγ

+,
(
1 0
1 1

)
, for z ∈ Ωγ

−.

(6.24)

The regions Ωγ
+ and Ωγ

− are shown in Figure 3, as well as their boundaries ∂Ωγ
+ = Σγ

+ ∪ γ and
∂Ωγ

− = Σγ
− ∪ γ. The function S satisfies the following RH problem.

RH problem for S

(a) S : C \ ((−∞, 0] ∪ {y} ∪ [yr,∞) ∪ Σγ) → C
2×2 is analytic, where Σγ = Σγ

+ ∪ Σγ
− is shown in

Figure 3.
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Ωγ
+

Ωγ
−

0 y yr 4

Σγ
+

Σγ
−

Figure 3: Jump contours for the RH problem for S. The lens contours are labelled Σγ
+ and Σγ

−
while the upper and lower lens regions are labelled Ωγ

+ and Ωγ
−.

(b) Let jS(z) := S−(z)
−1S+(z). We have,

jS(z) =

(
0 1
−1 0

)
, z ∈ γ, (6.25)

jS(z) =

(
1 1
0 1

)
, z ∈ (4,∞), (6.26)

jS(z) = eπiασ3 , z ∈ (−∞, 0), (6.27)

jS(z) =

(
1 0
1 1

)
, z ∈ Σγ . (6.28)

(c) S(z) = (I +O(z−1))z(n+
α+2
2

)σ3e−
nz
2
σ3 as z → ∞.

(d) Near 0, y, yr and 4, the behaviour of S takes the form

S(z) = O(1)z
α
2
σ3 , as z → 0,

S(z) = O(1)(z − y)σ3 , as z → y,

S(z) = O(1)

(
1 − log(yr−z)

2πi
0 1

)
K(z), as z → yr,

S(z) = O(1)K(z), as z → 4,

(6.29)

where in the above asymptotics theO terms are analytic in a neighbourhood of their respective
point.

6.3 Normalisation at infinity

The next transformation takes the form,

T (z) = e−
nℓσ3

2 S(z) ×
{
e−nξ(z)σ3 , if z ∈ C \ U,

I, if z ∈ U.
(6.30)

The above transformation has the effect of normalising the problem at infinity.
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RH problem for T

(a) T : C \ ((−∞, 0] ∪ {y} ∪ [yr,∞) ∪ Σγ ∪ ∂U) → C
2×2 is analytic.

(b) Let jT (z) := T−(z)
−1T+(z). Then,

jT (z) = jS(z), z ∈ ((−∞, 0) ∪ (yr,∞) ∪ Σγ) ∩ U,

jT (z) =

(
0 1
−1 0

)
, z ∈ γ \ U,

jT (z) =

(
1 e2nξ(z)

0 1

)
, z ∈ (4,∞) \ U,

jT (z) =

(
1 0

e−2nξ(z) 1

)
, z ∈ Σγ \ U,

jT (z) = eπiασ3 , z ∈ (−∞, 0),

jT (z) = e−nξ(z)σ3 , z ∈ ∂U,

where the orientation of ∂U is clockwise.

(c) As z → ∞,

T (z) = (1 +O(z−1))z
α+2
2

σ3 . (6.31)

(d) Near the endpoints, the behaviour of T takes the form

T (z) = O(1)z
α
2
σ3 , as z → 0,

T (z) = O(1)(z − y)σ3 , as z → y,

T (z) = O(1)

(
1 − log(yr−z)

2πi
0 1

)
K(z), as z → yr,

T (z) = O(1), as z → 4.

(6.32)

6.4 Global parametrix

Finally we define the global parametrix as a function P (∞) satisfying the following RH problem.

RH problem for P (∞)

(a) P (∞) : C \ (−∞, 4] → C
2×2 is analytic.

(b) P (∞) has the jump relations

P
(∞)
+ (z) = P

(∞)
− (z)

(
0 1
−1 0

)
, z ∈ S (6.33)

P
(∞)
+ (z) = P

(∞)
− (z)eπiασ3 , z ∈ (−∞, 0). (6.34)

(c) As z → ∞,

P (∞)(z) = (I +O(z−1))z
α+2
2

σ3 . (6.35)

(d) As z → ẑ ∈ ∂S = {0, 4}, we have

P (∞)(z) = O((z − ẑ)−
1
4 ). (6.36)
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The solution is explicitly given by

P (∞)(z) = N−1

(
z − 4

z

)−σ3
4

Nϕ
(z
2
− 1
)α+2

2
σ3

, (6.37)

where ϕ(z) = z +
√
z2 − 1 is analytic in C \ [−1, 1]. We now need to construct local parametricies

valid in the fixed open discs D0 and D4 around 0 and 4.

6.5 Local parametrix near 4

RH problem for P (4)

(a) P (4) : D4 \ (Σγ ∪ R) → C
2×2 is analytic.

(b) P (4) has the jump relations

P
(4)
+ (z) = P

(4)
− (z)

(
0 1
−1 0

)
, on (−∞, 4) ∩D4,

P
(4)
+ (z) = P

(4)
− (z)

(
1 1
0 1

)
, on (4,∞) ∩D4,

P
(4)
+ (z) = P

(4)
− (z)

(
1 0
1 1

)
, on Σγ ∩D4.

(6.38)

(c) As z → 4, P (4)(z) = O(1).

(d) As n → ∞, P (4)(z) =
(
I +O(n−1)

)
P (∞)(z)enξ(z)σ3 uniformly for z ∈ ∂D4.

The solution P (4) can be constructed in term of the solution Υ̃ of the Airy model RH problem
parametrix, which is presented in the appendix, see Subsection 9.1. The local parametrix inside
D4 can then be written as

P (4)(z) = Ẽ(z)Υ̃(n2/3f̃(z)), (6.39)

where f̃(z) is given by

f̃(z) :=

(
−3

2
ξ(z)

)2/3

. (6.40)

From the definition of ξ given by (6.10), f̃ is a conformal map from a neighbourhood of 4 to a
neighbourhood of 0. The matrix function Ẽ is defined in D4 by

Ẽ(z) = P (∞)(z)N−1f̃(z)
σ3
4 n

σ3
6 , (6.41)

where the principal branch is taken for (·) 1
4 . It can be directly verified from the RH problem for

P (∞) and the definition of f̃ that Ẽ is analytic in D4, and from the properties of Υ̃ (presented in
Subsection 9.1) that P (4) given by (6.39) satisfies indeed the above RH problem.

6.6 Local parametrix near 0

Inside D0 we require a local parametrix satisfying the following RH problem.
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RH problem for P (0)

(a) P (0) : D0 \ ((−∞, 0] ∪ {y} ∪ [yr,∞) ∪ Σγ) → C
2×2 is analytic.

(b) P (0) has the jump relations

P
(0)
+ (z) = P

(0)
− (z)

(
0 1
−1 0

)
, on (yr,∞) ∩D0,

P
(0)
+ (z) = P

(0)
− (z)eπiασ3 , on (−∞, 0) ∩D0,

P
(0)
+ (z) = P

(0)
− (z)

(
1 0
1 1

)
, on Σγ ∩D0.

(6.42)

(c) Near 0, y and yr, the behaviour of P (0) takes the form

P (0)(z) = O(1)z
α
2
σ3 , as z → 0,

P (0)(z) = O(1)(z − y)σ3 , as z → y,

P (0)(z) = O(1)

(
1 − log(yr−z)

2πi
0 1

)
K(z), as z → yr,

(6.43)

where in the above asymptotics theO terms are analytic in a neighbourhood of their respective
point.

(d) As n → ∞, P (0)(z) = (I + o(1))P (∞)(z)enξ(z)σ3 uniformly for z ∈ ∂D0.

The solution P (0) uses the model RH problem Φ presented in Section 3, with the parameters x and
a chosen such that

x = n2f(y) and a =
f(yr)

f(y)
, (6.44)

where f is given by

f(z) = −(ξ(z)− ξ(0))2. (6.45)

From the definition of ξ given by (6.10), f is a conformal map from a neighbourhood of 0 to a
neighbourhood of 0, and satisfies f ′(0) = 4. Note that since nyr → 0 as n → ∞, this implies that
x = 4n2y(1 +O(y)) and a = r(1 +O(yr)) as n → ∞.

Lemma 6.1 As n → ∞ and simultaneously nyr → 0, the matrix function

P (0)(z) = E(z)σ3Φ(−n2f(z);n2f(y), f(yr)/f(y))σ3e
πiα
2

θ(z)σ3 (6.46)

satisfies the RH problem for P (0), where E is the analytic function in D0 given by

E(z) = (−1)nP (∞)(z)e−
πiα
2

θ(z)σ3N(−f(z))
σ3
4 n

σ3
2 , (6.47)

the function f is given by (6.45), and Φ(z;x, a) is the model RH problem introduced in Section 3.
The o(1) in the condition (d) of the RH problem for P (0) can be specified as

O(max{n−1, nry}) =





O(n−1), if (n2y, r) are in a compact subset of (0,∞)× (1,∞),
O(n−1), if n2ry → 0,
O (nry) , if nry → 0 and (r − 1)n2y → ∞.

(6.48)
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Proof. The analyticity of E inside D0 follows from the RH problem for P (∞) and the definition
of f . By definition of Φ (see Section 3), P (0) satisfies the RH problem for P 0. The explicit forms
of o(1) given by (6.48) follow from (3.9) (for (x, a) in a compact subset of (0,∞) × (1,∞)), (5.99)
(for ax → 0) and (5.51) (for (a− 1)x → ∞ and ax

n → 0). ✷

Finally, we define R(z) as follows

R(z) =





T (z)P (∞)(z)−1, for z ∈ C \ U ,

T (z)P (0)(z)−1, for z ∈ D0,

T (z)P (4)(z)−1, for z ∈ D4.

(6.49)

Using the above definition we can derive the following RH problem for R.

RH problem for R

(a) R : C \ ΣR → C
2×2 is analytic, where ΣR = ((4,∞) ∪ Σγ ∪ ∂U) \ U .

(b) Let jR(z) := R−(z)
−1R+(z). We have

jR(z) = P (∞)(z)

(
1 0

e−2nξ(z) 1

)
P (∞)(z)−1, z ∈ Σγ \ U, (6.50)

jR(z) = P (∞)(z)

(
1 e2nξ(z)

0 1

)
P (∞)(z)−1, z ∈ (4,∞) \D4, (6.51)

jR(z) = P (4)(z)

(
e−nξ(z) 0

0 enξ(z)

)
P (∞)(z)−1, z ∈ ∂D4, (6.52)

jR(z) = P (0)(z)

(
e−nξ(z) 0

0 enξ(z)

)
P (∞)(z)−1, z ∈ ∂D0. (6.53)

(c) As z → ∞, we have R(z) = I +
R1

z
+O(z−2). (6.54)

(d) As z → b ∈ {0, y, yr, 4}, R(z) = O(1).

From (6.37), (6.39) and (6.46), as n → ∞ we have

jR(z) = I +O(max{n−1, nry}), uniformly for z ∈ ∂D0, (6.55)

jR(z) = I +O(n−1), uniformly for z ∈ ∂D4, (6.56)

jR(z) = I +O(e−cn), uniformly for z ∈ ΣR \ ∂U. (6.57)

where c > 0 is a constant independent of n. It follows from standard theory for small norm RH
problem that R exists for n sufficiently large and satisfies

R(z) = I +O(max{n−1, nry}) and ∂zR(z) = O(max{n−1, nry}), (6.58)

uniformly for z in compact subsets of C \ ΣR.
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6.7 Computation of R1

The quantity R1 can be computed via a perturbative calculation. From (6.55) and (6.56) we can
write for z ∈ ΣR,

jR(z) = I +
1

n
J1(z) +O(n−2), n → ∞, (6.59)

where the matrix J1(z) is non-zero only on ∂U , satisfies J1(z) = O(1) uniformly for z ∈ ∂D4 and

J1(z) = O(max{1, n2ry}), uniformly for z ∈ ∂D0. (6.60)

Therefore, by a perturbative analysis of R, we have

R(z) = I +R(1)(z)n−1 +O(max{n−2, (nry)2}), z ∈ C \ ΣR, (6.61)

where

R(1)(z) = O(max{1, n2ry}), uniformly for z ∈ C \ ΣR. (6.62)

The quantity R(1)(z) may be expressed in terms of J1(z) by substituting (6.59) into the jump
relation R+(z) = R−(z)jR(z), from which we obtain the following RH problem for R(1).

RH problem for R(1)

(a) R(1) : C \ ∂U → C
2×2 is analytic,

(b) R
(1)
+ (z) = R

(1)
− (z) + J1(z) for z ∈ ∂U ,

(c) R(1)(z) → 0 as z → ∞.

The above RH problem can be solved explicitly in terms of a Cauchy transform,

R(1)(z) =
1

2πi

∫

∂U

J1(ξ)

ξ − z
dξ, (6.63)

where the integral is taken entry-wise. Explicit computations using (3.9), (6.46) and (6.53) gives
for z ∈ ∂D0

J1(z) =
v(n2f(y); f(ry)/f(y))

2
√

−f(z)
P (∞)(z)

(
−1 −ie−iπαθ(z)

−ieiπαθ(z) 1

)
P (∞)(z)−1. (6.64)

The function v is the special function appearing in the model problem Φ. By using (6.39), (6.52)
and (9.2), the term J1(z) on ∂D4 is given by,

J1(z) =
1

8f̃(z)3/2
P (∞)(z)

(
1
6 i
i −1

6

)
P (∞)(z)−1. (6.65)

Putting (6.64) and (6.65) in (6.63) gives (after a residue calculation)

R(1)(z) =
v(n2f(y); f(ry)/f(y))

2z

(
1 i
i −1

)
+

5

12(z − 4)2

(
−1 i
i 1

)

+
1

16(z − 4)

(
1− 4(α+ 2)2 i

3

(
12(α + 2)2 + 24(α + 2) + 11

)
i
3

(
12(α + 2)2 − 24(α + 2) + 11

)
4(α + 2)2 − 1

)
. (6.66)
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Therefore, we have

R1 = lim
z→∞

z(R(z) − I) =
v(n2f(y); f(ry)/f(y))

2n

(
1 i
i −1

)
+

1

16n

(
1− 4(α + 2)2 i

3

(
12(α + 2)2 + 24(α + 2) + 11

)
i
3

(
12(α + 2)2 − 24(α+ 2) + 11

)
4(α + 2)2 − 1

)
+O(max{n−2, (nry)2}).

(6.67)

In particular, one has

nTr(R1σ3) = v(n2f(y); f(ry)/f(y))− v(0) +O(max{n−1, n−1(rn2y)2}) as n → ∞, (6.68)

where v(0) = 1
8(4(α + 2)2 − 1).

7 Proof of Theorem 1.1

Let us define s := 4n2y, which is a rescaling of y. In order to use Lemma 2.2, we need to compute
large n asymptotics for Tr(Y −1(z)∂zY (z)σ3) uniformly for z in a neighbourhood of ∞. The large
n analysis for Y done in Section 6 is valid when the parameters y and r satisfy fall in one of the
three cases presented in (1.16), (1.17) and (1.18). For large z, by (6.23), (6.30), (6.37) and (6.49),
we have

Y (z) = e
nℓσ3

2 R(z)P (∞)(z)enξ(z)σ3w(z)−
σ3
2 . (7.1)

Using the above expression for Y , we obtain

Tr(Y −1(z)∂zY (z)σ3) = −∂z logw(z) + 2n∂zξ(z)

+Tr(P (∞)(z)−1∂zP
(∞)(z)σ3)

+Tr(P (∞)(z)−1R(z)−1∂zR(z)P (∞)(z)σ3).

Using (6.37), as z → ∞ we have

Tr(P (∞)(z)−1∂zP
(∞)(z)σ3) =

α+ 2

z
+

2α+ 4

z2
+O(z−3) (7.2)

Similarly, (6.10) and (6.17) give

−∂z logw(z) + 2n∂zξ(z) = 2n

(
1

z
+

1

z2

)
− α+ 2

z
− 2y

z2
+O(z−3), as z → ∞. (7.3)

Also, by (6.37) and (6.54), we have

Tr(P (∞)(z)−1R(z)−1∂zR(z)P (∞)(z)σ3) = −Tr(R1σ3)

z2
+O(z−3), as z → ∞. (7.4)

Using the above expressions and Lemma 2.2 gives,

zTr(Y −1(z)∂zY (z)σ3) = 2n +
2(α + 2) + 2n− 2y − Tr(R1σ3)

z
+O(z−2), as z → ∞, (7.5)

∂y logZn,α(y; r) = n+
n

2y
Tr(R1σ3). (7.6)
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By using (6.68) in (7.6) and rewriting it in terms of s = 4n2y, we have as n → ∞ that

∂s logZn,α

( s

4n2
; r
)

=
1

4n
+

n

2s
Tr(R1σ3),

=
1

2s

(
v

(
n2f( s

4n2 );
f( rs

4n2 )

f( s
4n2 )

)
− v(0)

)
+

1

s
O(max{n−1, (rs)

2

n }),

=
1

2s
(v(s; r)− v(0)) +

1

s
O(max{n−1, (rs)

2

n }).

(7.7)

Let us fix r. By integrating the left-hand side of (7.7) from ǫ > 0 to a certain s > ǫ we obtain

log

(
Zn,α(

s
4n2 ; r)

Zn,α(
ǫ

4n2 ; r)

)
=

∫ s

ǫ
∂x logZn,α

( x

4n2
; r
)
dx. (7.8)

Since the function y ∈ [0,∞) 7→ Zn,α(y; r) is continuous, and since

Zn,α(0; r) = Ẑn,α+2 > 0, (7.9)

the left-hand-side of (7.8) is bounded as ǫ → 0, and thus the same is true for the right-hand side.
In order to use (7.7) in (7.8), it is important to note that O term of (7.7) is uniform when s is in
a compact subset of (0,∞) and also as s → 0. Thus, we obtain

log

(
Zn,α(

s
4n2 ; r)

Ẑn,α+2

)
=

1

2

∫ s

0
[v(x; r)− v(0)]

dx

x
+O

(
max{n−1, (rs)

2

n }
)
. (7.10)

By an integration by parts, we have

I(s; r) :=

∫ s

0
[v(x; r) − v(0)]

dx

2x
=

1

2

∫ s

0
v′(x; r) log

( s
x

)
dx = −1

4

∫ s

0

(
q21(x; r)+rq22(x; r)

)
log
( s
x

)
dx,

where for the last equality we have used (4.22) and (4.23). This completes the proof of Theorem
1.1. Note that (7.10) can be rewritten as

Zn,α

( s

4n2
; r
)
= Ẑn,α+2e

I(s;r)
(
1 +O

(
max{n−1, (rs)

2

n }
))

. (7.11)

8 Proof of Theorem 1.7

From (1.12) by changing variables x := 4(n − 1)ny, we obtain

Qn,α(r) =
Ẑn−1,α+2

Ẑn,α

(
n− 1

n

)(n−1)(n+1+α)

(4(n − 1)n)−1−α

∫ ∞

0

xαe−
x
n

Ẑn−1,α+2

Zn−1,α

(
x

4(n − 1)2
; r

)
dx. (8.1)

It is known that (see [21, formula 17.6.5])

Ẑn,α =
1

n!
n−n2−αn

n∏

j=1

j!Γ(j + α), (8.2)

and therefore we have

Ẑn−1,α+2

Ẑn,α

=
(n − 1)α+1Γ(n+ α+ 1)

(n− 1)!Γ(α + 1)Γ(α + 2)

(
n

n− 1

)n2+αn

,

=
n2α+2

Γ(α+ 1)Γ(α + 2)

(
n

n− 1

)n2+αn (
1 +O

(
n−1

))
, as n → ∞.

(8.3)
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We can thus simplify expression (8.1) as

Qn,α(r) =
1 +O(n−1)

4α+1Γ(α+ 1)Γ(α+ 2)
(I1 + I2), (8.4)

where

I1 =

∫ M

0
xαe−

x
n eI(x;r)dx, I2 =

∫ ∞

M

xαe−
x
n

Ẑn−1,α+2

Zn−1,α

(
x

4(n − 1)2
; r

)
dx, (8.5)

and M > 0 is a constant. The asymptotics (1.28) implies that for any ǫ > 0, we have

Zn−1,α(
x

4(n−1)2
; r)

Ẑn−1,α+2

= O
(
e−( 1

4
−ǫ)rx

)
, as

rx

n
→ 0, (r − 1)x → ∞. (8.6)

Note that because of the restriction rx
n → 0, this asymptotic formula alone is not sufficient to

estimate I2. Nevertheless, we can derive the following inequality

Zn−1,α(
rx

4(n−1)2
; r)

Ẑn−1,α+2

=
(n− 1)!−1

Ẑn−1,α+2

∫ ∞

rx
4(n−1)2

...

∫ ∞

rx
4(n−1)2

∆n−1(λ)
2
n−1∏

i=1

(
λi −

x

4(n− 1)2

)2

λα
i e

−(n−1)λidλi

≤ 1

(n− 1)!Ẑn−1,α+2

∫ ∞

rx
4(n−1)2

...

∫ ∞

rx
4(n−1)2

∆n−1(λ)
2
n−1∏

i=1

λα+2
i e−(n−1)λidλi

= Pn−1,α+2

(
λmin >

rx

4(n− 1)2

)
.

(8.7)

It is well-known [29] that the above quantity is bounded by e−Cxr for sufficiently large x as n → ∞
(this is a large deviation principle), and where C > 0 is a constant. Combining (8.6) and (8.7), we
thus have

I2 ≤
∫ ∞

M
xαe−

x
n e−Cxrdx ≤ e−

C
2
Mr, (8.8)

if M is chosen big enough. Therefore we obtain,

lim
n→∞

Qn,α(r) =
1

4α+1Γ(α+ 1)Γ(α + 2)

∫ M

0
xαeI(x;r)dx+O

(
e−

C
2
Mr
)
. (8.9)

Letting M → ∞ in (8.9) finishes the proof of Theorem 1.7.

9 Appendix

9.1 Airy model RH problem

(a) Υ̃(z) : C \ ΣA → C
2×2 is analytic where ΣA is shown in Figure 4.

(b) Υ̃ has the jump relations

Υ̃+(z) = Υ̃−(z)

(
0 1
−1 0

)
, on R

−,

Υ̃+(z) = Υ̃−(z)

(
1 1
0 1

)
, on R

+,

Υ̃+(z) = Υ̃−(z)

(
1 0
1 1

)
, on e

2π
3
i
R
+,

Υ̃+(z) = Υ̃−(z)

(
1 0
1 1

)
, on e−

2π
3
i
R
+.

(9.1)
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2π
3

0

Figure 4: The jump contour ΣA for Υ̃.

(c) As z → ∞, we have

Υ̃(z) = z−
σ3
4 N

(
I +

1

z3/2
Υ̃1 +O(z−3)

)
e−

2
3
z3/2σ3 , (9.2)

with

Υ̃1 =
1

8

(
1
6 i
i −1

6

)
. (9.3)

(d) As z → 0, Υ̃(z) = O(1).

The following matrix-valued function solves the above Airy model RH problem (see [8, 6]):

Υ̃(z) := MA ×





(
Ai(z) Ai(ω2z)
Ai′(z) ω2Ai′(ω2z)

)
e−

πi
6
σ3 , for 0 < arg z < 2π

3 ,
(
Ai(z) Ai(ω2z)
Ai′(z) ω2Ai′(ω2z)

)
e−

πi
6
σ3

(
1 0
−1 1

)
, for 2π

3 < arg z < π,
(
Ai(z) −ω2Ai(ωz)
Ai′(z) −Ai′(ωz)

)
e−

πi
6
σ3

(
1 0
1 1

)
, for − π < arg z < −2π

3 ,
(
Ai(z) −ω2Ai(ωz)
Ai′(z) −Ai′(ωz)

)
e−

πi
6
σ3 , for − 2π

3 < arg z < 0,

(9.4)

with ω = e
2πi
3 , Ai the Airy function and

MA :=
√
2πe

πi
6

(
1 0
0 −i

)
. (9.5)

9.2 Bessel model RH problem

This RH problem depends on a parameter α ∈ R.

(a) Υ = Υ(α) : C \ Σ0,0 is analytic.
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(b) Υ has the following jumps on Σ0,0 \ {0}:

Υ+(z) = Υ−(z)

(
0 1
−1 0

)
, z ∈ Σ2, (9.6)

Υ+(z) = Υ−(z)

(
1 0

eπiα 1

)
, z ∈ Σ1, (9.7)

Υ+(z) = Υ−(z)

(
1 0

e−πiα 1

)
, z ∈ Σ3, (9.8)

(c) As z → ∞,

Υ(z) =

(
I +

1

z
Υ1 +O(z−2)

)
z−

1
4
σ3Nez

1/2σ3 . (9.9)

(d) As z → 0,

(i) If α < 0, Υ(z) = O
(
|z|α2 |z|α2
|z|α2 |z|α2

)
.

(ii) If α = 0, Υ(z) = O
(
log |z| log |z|
log |z| log |z|

)
.

(iii) If α > 0,

Υ(z) =





O
(
|z|α2 |z|−α

2

|z|α2 |z|−α
2

)
, for − 2π

3 < arg(z) < 2π
3 ,

O
(
|z|−α

2 |z|−α
2

|z|−α
2 |z|−α

2

)
, for arg(z) ∈ (−π,−2π

3 ) ∪ (2π3 , π).

(9.10)

The solution of this RH problem is explicitly given in terms of the Bessel functions (see [19] or [4]),
one has

Υ(α)(z) =

(
1 0

i

8
(4α2 + 3) 1

)
πσ3/2


 Iα(z

1/2)
i

π
Kα(z

1/2)

πiz1/2I ′α(z
1/2) −z1/2K ′

α(z
1/2)


H0(z), (9.11)

and

(Υ1)12 =
i

8
(2α− 1)(2α + 1). (9.12)
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[8] T. Claeys, T. Grava, K. T-R McLaughlin, Asymptotics for the partition function in two-cut
random matrix models, Comm. Math. Phys. 339 (2015), no. 2, 513–587.

[9] P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Amer.
Math. Soc. 3 (2000).

[10] P. Deift, T. Kriecherbauer, K.T-R McLaughlin, S. Venakides, and X. Zhou, Uniform asymp-
totics for polynomials orthogonal with respect to varying exponential weights and applications
to universality questions in random matrix theory, Comm. Pure Appl. Math. 52 (1999), 1335–
1425.

[11] P. Deift, T. Kriecherbauer, K.T-R McLaughlin, S. Venakides, and X. Zhou, Strong asymptotics
of orthogonal polynomials with respect to exponential weights, Comm. Pure Appl. Math. 52
(1999), 1491–1552.

[12] P. Deift and X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems.
Bull. Amer. Math. Soc. (N.S.) 26 (1992), no. 1, 119–123.

[13] A.S. Fokas, A.R. Its, A.A. Kapaev and V.Y. Novokshenov, Painlevé Transcendents: The
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equations, Nonlinearity 28 (2015), no. 6, 16331674.

40

http://dlmf.nist.gov/

	1 Introduction and main results
	2 Differential identity for the Hankel determinant Zn,(y,r)
	3 A Riemann-Hilbert problem related to the system of ODEs
	4 The Lax pair and two coupled Painlevé V equations
	5 Further properties of the special solutions
	5.1 Asymptotic analysis when (a-1)x 
	5.1.1 Re-scaling of the model problem
	5.1.2 Normalisation at  of the RH problem
	5.1.3 Global parametrix
	5.1.4 Local parametrix near -1
	5.1.5 Small norm RH problem

	5.2 Asymptotic analysis when ax 0
	5.2.1 Global parametrix
	5.2.2 Local parametrix near 0
	5.2.3 Small norm RH problem


	6 Steepest descent analysis of Y as nyr 0
	6.1 Transformation to constant jumps
	6.2 Opening of the lenses
	6.3 Normalisation at infinity
	6.4 Global parametrix
	6.5 Local parametrix near 4
	6.6 Local parametrix near 0
	6.7 Computation of R1

	7 Proof of Theorem ??
	8 Proof of Theorem ??
	9 Appendix
	9.1 Airy model RH problem
	9.2 Bessel model RH problem


	yr R: 
	0 y yr: 
	4: 


