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cInstitució Catalana de Recerca i Estudis Avançats (ICREA),
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Abstract: We extend our previous analysis of holographic heavy ion collisions in non-

conformal theories. We provide a detailed description of our numerical code. We study col-

lisions at different energies in gauge theories with different degrees of non-conformality. We

compare four relaxation times: the hydrodynamization time (when hydrodynamics becomes

applicable), the EoSization time (when the average pressure approaches its equilibrium

value), the isotropization time (when the longitudinal and transverse pressures approach

each other) and the condensate relaxation time (when the expectation value of a scalar oper-

ator approaches its equilibrium value). We find that these processes can occur in several dif-

ferent orderings. In particular, the condensate can remain far from equilibrium even long af-

ter the plasma has hydrodynamized and EoSized. We also explore the rapidity distribution

of the energy density at hydrodynamization. This is far from boost-invariant and its width

decreases as the non-conformality increases. Nevertheless, the velocity field at hydrody-

namization is almost exactly boost-invariant regardless of the non-conformality. This result

may be used to constrain the initialization of hydrodynamic fields in heavy ion collisions.
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1 Introduction

“Holographic Heavy Ion Collisions”, namely shockwave collisions in an asymptotically AdS

spacetime, have provided interesting insights into the far-from-equilibrium properties of

hot, strongly-coupled, non-Abelian plasmas that are potentially relevant for the quark-

gluon plasma (QGP) created in heavy ion collision experiments (see e.g. [1] for a review).

Until recently, all such holographic studies (see e.g. [2–8]) were performed in models dual
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to conformal field theories (CFTs). One notable lesson of this body of work is that “hy-

drodynamization”, the process by which the plasma comes to be well described by hydro-

dynamics, can occur before “isotropization”, the process by which all pressures become

approximately equal to one another in the local rest frame.

We have recently begun the study of holographic collisions in non-conformal theories [9,

10] based on the set of models introduced in [11].1 One crucial difference between the

conformal and the non-conformal cases is that in the latter the equation of state, namely the

relation between the energy density and the average pressure, is not fixed by symmetry, and

hence it needs not be obeyed out of equilibrium. The relaxation process therefore involves

an additional channel, namely the evolution of the energy density and the average pressure

towards asymptotic values related by the equation of state. This process was dubbed

“EoSization” in [9], and once it has taken place we say that the system has “EoSized”.

The main result of [9] was that EoSization and hydrodynamization can occur in any order.

The models of [11] are dual to CFTs deformed by a source Λ for a dimension-three

operator. The source breaks scale invariance explicitly and triggers a non-trivial Renormal-

ization Group (RG) flow. In this paper we will examine the relaxation process by which the

expectation value (the condensate) of this scalar operator approaches its equilibrium value.

We refer to the time at which this happens as the “condensate relaxation time”, tcond. It

is particularly interesting to compare this relaxation time to the hydrodynamization, Eo-

Sization and isotropization times, thyd, tEoS and tiso. The reason is that the latter three

times refer to the approach to equilibrium of conserved charges (energy and momentum),

whereas the former refers to the relaxation of a non-conserved quantity (the expectation

value of the scalar operator). In all the collisions that we have examined we find that

isotropization happens last, reinforcing the intuition from conformal collisions that this

process is extremely slow. For this reason, in most of the paper we will focus on the other

three times and we will come back to tiso in section 6. In contrast, we find that the other

three times can occur in several different orderings. In particular, tcond can be much longer

than thyd and tEoS. This shows that one-point functions of non-conserved operators can

remain far from equilibrium long after a plasma has hydrodynamized and EoSized.

We also examine the physics away from mid-rapidity. For this purpose we compute

the rapidity profile of the energy density at hydrodynamization. Just like in the conformal

case [3, 14], this profile is not boost-invariant but Gaussian. The width of this Gaus-

sian decreases as the degree of non-conformality increases. Although the energy profile

is determined by far-from-equilibrium physics beyond hydrodynamics, this decrease seems

correlated with the bulk viscosity in our models. Indeed, as the non-conformality increases

the bulk viscosity grows, which reduces the longitudinal expansion and hence the width of

the region where energy is deposited.

A remarkable result of our away-from-mid-rapidity analysis is the fact that, although

the energy density profile is far from boost-invariant, the velocity field is almost exactly

boost-invariant even for the most non-conformal collisions. For CFTs this was first observed

1Some second-order transport coefficients [12] and the entanglement entropy [13] have been computed

for these models.
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in [14]. Therefore our result implies that, although the non-conformality has a large effect

on the energy density profile at hydrodynamization, it leaves the velocity field essentially

unmodified.

This paper is organized as follows. In section 2 we introduce our non-conformal models,

along with its thermodynamic and transport properties. In section 3 we describe the

numerical procedure used to evolve the corresponding equations, and in section 4 we present

tests on the numerical code we have developed to this end. In section 5 we perform a

detailed study of shockwave collisions in our models. We conclude with a general discussion

in section 6.

2 Setup

2.1 The model

We will consider dynamics in a five-dimensional holographic model consisting of gravity

coupled to a scalar field with a non-trivial potential. The action for our Einstein-scalar

model is

S =
2

κ25

∫
d5x
√
−g
[

1

4
R− 1

2
(∇φ)2 − V (φ)

]
. (2.1)

The dynamic equations resulting from it read

Rµν −
R

2
gµν = 8πTµν , (2.2)

�φ =
∂V

∂φ
, (2.3)

where

8πTµν = 2∂µφ∂νφ− gµν
(
gαβ∂αφ∂βφ+ 2V (φ)

)
, (2.4)

and κ5 is the five-dimensional Newton constant. The potential V (φ) encodes the details of

the dual gauge theory. We choose a simple potential characterised by a single parameter,

φM, which reads

L2V (φ) = −3− 3

2
φ2 − 1

3
φ4 +

(
1

2φ4M
+

1

3φ2M

)
φ6 − 1

12φ4M
φ8 , (2.5)

where L is a length scale. Note that V (φ) is negative, possesses a maximum at φ = 0 and

a minimum at φ = φM > 0. A detailed study of this model’s thermodynamics and near-

equilibrium properties was presented in [9]; here we will briefly recall the most important

points.

The motivation for choosing the potential (2.5) is that it has three important proper-

ties. First, the resulting vacuum solution is asymptotically AdS5 in the UV with radius L,

since V (0) = −3/L2. Second, the second derivative of the potential at φ = 0 implies that

the scalar field has mass m2 = −3/L2 therein. This means that, in the UV, this field is

dual to an operator in the gauge theory, O, with dimension ∆UV = 3. Third, the solution

near φ = φM is again AdS5 with a different radius

LIR =

√
− 3

V (φM)
=

1

1 + 1
6φ

2
M

L . (2.6)
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In this region the effective mass of the scalar field differs from its UV value and it is given by

m2
IR =

12

L2

(
1 +

1

9
φ2M

)
=

12

L2
IR

(
1 + 1

9φ
2
M

)(
1 + 1

6φ
2
M

)2 . (2.7)

As a consequence, the operator O at the IR fixed point has dimension

∆IR = 2 + 2

√
1 +

m2
IRL

2
IR

4
= 6

(
1 +

φ2M
9

)(
1 +

φ2M
6

)−1
. (2.8)

To compute the vacuum state of these theories, one needs to first set an ansatz for the

solution. In Fefferman-Graham (FG) coordinates, the solution with translation invariance

and no horizon can be written in the following form,

ds2 =
L2

u2FG

du2FG + e2aFG(uFG)ηµν dx
µdxν , (2.9)

with aFG(uFG) and φ(uFG) the non-trivial fields characterising the solution and uFG the

holographic coordinate. The computation of the vacuum state can be simplified when the

potential is derived from a super-potential as

V (φ) = −4

3
W (φ)2 +

1

2
W ′ (φ)2 , (2.10)

which for the potential selected (2.5) will be

LW (φ) = −3

2
− φ2

2
+

φ4

4φ2M
. (2.11)

In this case, the scalar profile φ(uFG) and the metric coefficient aFG(uFG) can be obtained

from the equations

uFG

d aFG

duFG

=
2

3
W, uFG

dφ

duFG

= −∂W
∂φ

, (2.12)

and normalizability boundary conditions. Luckily enough, the equations have an analytic

solution for the super-potential chosen,2

e2aFG =
φ20L

2

φ2

(
1− φ2

φ2M

)φ2M
6

+1

e−
φ2

6 , (2.13)

φ =
φ0 uFG√

1 +
φ20
φ2M
u2FG

, (2.14)

where φ0 is an arbitrary constant with dimensions of mass that controls the magnitude

of the non-normalizable mode of the scalar field. As we will see below, φ0 is equal to the

source of the dimension-three operator O in the dual gauge theory:

Λ = φ0 . (2.15)

The presence of this source breaks conformal invariance explicitly. Throughout the paper

we will use a redundant notation since we will use φ0 when we wish to emphasize the

gravitational description and Λ when we wish to emphasize the gauge theory scale.

2Note that with respect to our conventions in [11] we have Lφ
[here]
0 = φ

[there]
0 .
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2.2 Gauge theory quantities

Noticing that the small field behaviour of the superpotential (2.11) is identical to that of the

GPPZ flow [15], we can readily determine the expectation values of the stress tensor and

the scalar operator. We begin by expanding the metric and the scalar field in powers of uFG

in the uFG → 0 limit. Following [16], we write the 5-dimensional metric for asymptotically

AdS geometries in generic FG form

ds2 =
L2

u2FG

(
du2FG + gµν dx

µdxν
)
, (2.16)

and we write the power expansions of the metric and the scalar field as3

gµν = ηµν + g(2)µν u
2
FG + g(4)µν u

4
FG + . . . , (2.17)

φ = φ0uFG + φ(2)u3FG + . . . . (2.18)

The expectation values of the field theory operators are then given by

〈Tµν〉 =
2L3

κ25

[
g(4)µν +

(
Λφ(2) − Λ4

18
+

Λ4

4φ2M

)
ηµν

]
, (2.19)

〈O〉 = −2L3

κ25

(
2φ(2) +

Λ3

φ2M

)
. (2.20)

As expected, equations (2.19) and (2.20) imply the Ward identity for the trace of the stress

tensor 〈
Tµµ
〉

= −Λ 〈O〉 , (2.21)

and we adopt a renormalization scheme such that 〈Tµν〉 = 〈O〉 = 0 in the vacuum. Hence-

forth we will omit the expectation value signs and work with the rescaled quantities(
E , JE , Pxi ,V

)
=

κ25
2L3

(
− T tt , T zt , T x

i

xi ,O
)
. (2.22)

In these variables the Ward identity takes the form

E − 3P̄ = ΛV , (2.23)

where

P̄ =
1

3

∑
i

Pxi (2.24)

is the average pressure. Out of equilibrium the average pressure is not determined by

the energy density because the scalar expectation value V fluctuates independently. In

equilibrium, however, V is determined by the energy density and the Ward identity becomes

the equation of state

P̄ = Peq(E) , (2.25)

with

Peq(E) =
1

3

[
E − ΛVeq(E)

]
. (2.26)

3Note that with respect to our conventions in [11] we have φ
(2)

[here] = Λφ
(2)

[there].

– 5 –



J
H
E
P
0
6
(
2
0
1
7
)
1
5
4

0.1 0.5 1.0 5.0 10.0 50.0100.0
0.0

0.2

0.4

0.6

0.8

1.0

L�Π T

Hs
R
L1
�3

0.1 1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

L�Π T

Hs
R
L1
�3

Figure 1. Ratio of entropy density to temperature for φM = 3 (left) and φM = 10 (right) as a

function of the inverse temperature. The dashed line shows LIR/L.

2.3 Thermodynamics and transport

To explore the thermal physics of our model, we search for static black brane solutions of

the action (2.1) following the approach of [17]. Since for these solutions the scalar field

is a monotonic function of uFG, we may use it as a coordinate when solving the dynamic

equations. The value of φ at the black brane horizon, φH, univocally characterises the black

brane solution. Therefore, by imposing the appropriate “horizon” boundary conditions at

different φH values one can compute all the equilibrium geometries. Finding the thermo-

dynamics then amounts to finding a family of black brane solutions parametrized by φH,

and obtaining their Hawking temperatures T and entropy densities s. This construction is

done is detail in [11], to where we refer the interested reader.

For our purposes here, it is enough to note that we find a set of values (φH, T, s) for

each model, i.e. for each φM. With these, one can compute all thermodynamic quantities

of interest as well as the bulk viscosity ζ. In figure 1 we plot the dimensionless quantity

sR =
κ25

2π4L3

s

T 3
, (2.27)

as a function of the inverse temperature for two different values of φM. Since the theory is

conformal both at the UV and at the IR, the high and low temperature behaviour of the

entropy density must coincide with that of a relativistic conformal theory and scale as T 3.

In the intermediate region, this scaling is not fulfilled and therefore we can interpret this

quantity as a measure of the non-conformality of the gauge theory.

For a relativistic CFT, s/T 3 is proportional to the number of degrees of freedom in the

theory, which for an SU(N) gauge theory with matter in the adjoint representation scales

as N2. For example, for N = 4 SYM

s

T 3
=
π2

2
N2, (2.28)

but the precise coefficient depends on the specific theory. In terms of the parameters of

the dual gravity description this quantity becomes

s

T 3
=

2π4L3

κ25
. (2.29)
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Figure 2. Equilibrium pressure as a function of energy density for φM = {2 , 3 , 5 , 20}.

In our bottom-up setup, the above argument allows us to define the number of degrees of

freedom at the fixed points in terms of the effective AdS radius. In particular, the quantity

sR should approach 1 at high temperature and (LIR/L)3 at low temperature, which is

confirmed by the plots in figure 1.

Another quantity that one can compute from T and s is Peq(E), introduced in (2.26),

also known as the equation of state. This quantity gives another measure of the degree

of non-conformality of the gauge theory, and will also be necessary later on for the hy-

drodynamic estimations. For the representative cases of φM = 2 , 3 , 5 , 20, this quantity

can be seen in figure 2. As expected, both at high and low energies the physics becomes

approximately conformal and Peq asymptotes to E/3.

The transport properties of the dual gauge theory plasma also reflect the non-conformal

behaviour observed in the equation of state. Due to the isotropy of the plasma, at leading

order in gradients transport phenomena are controlled by only two coefficients: the shear

viscosity η and the bulk viscosity ζ. Because of the universality of the shear viscosity to

entropy ratio [18] in all theories with a two-derivative gravity dual, we are ensured that this

ratio in our model takes the same value as in the conformal N = 4 theory, i.e. η/s = 1/4π.

On the other hand, the bulk viscosity (which would vanish identically in a CFT) is non-zero

in our model. Following [19] we determine the bulk viscosity by studying the dependence

of the entropy on the value of the scalar field at the horizon

ζ

η
= 4

(
d log s

dφH

)−2
. (2.30)

The temperature dependence of this ratio is shown in figure 3 for different values of φM.

2.4 Shockwave metric

In the Fefferman-Graham frame it is possible to find a quasi-analytic solution for a single

travelling shockwave on a vacuum background. The metric form will simply correspond to

– 7 –
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0.0
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0.2
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T/Λ

ζ
/η

Figure 3. Bulk viscosity ζ over shear viscosity η as a function of temperature for φM = {20, 5, 3, 2}.
For each φM we obtain max(ζ/η) = {0.19, 0.26, 0.32, 0.37} at the respective temperatures

T/Λ = {0.218, 0.220, 0.230, 0.299}.

the vacuum metric (2.9) plus the addition of the term f(uFG)h(x±)dx2±:

ds2 =
L2

u2FG

du2FG + f(uFG)h(x±)dx2± + e2aFG(uFG)
(
−dx+dx− + dx2

⊥
)

, (2.31)

where x± = z ± t, z is the direction of propagation of the shockwave, and x⊥ are the

perpendicular directions to it. The function h(x±) is an arbitrary function for the waveform.

The propagation of the shockwave at the speed of light does not alter the vacuum pro-

files of aFG and φ, thus the only remaining function to be determined is be f . The equation

for f(uFG) is a second-order differential equation coming from the Einstein’s equations

whose solution can only be obtained numerically:

− f

[
2

(
u2FG

∂2aFG

∂u2FG

+ uFG

∂aFG

∂uFG

)
+ 4

(
−uFG

∂aFG

∂uFG

)2
]

+ u2FG

∂2f

∂u2FG

+ uFG

∂f

∂uFG

= 0. (2.32)

From the differential equation one can derive the equivalent integral expression

f(uFG) = 4 e2aFG(uFG)

∫ uFG

0

dũ

ũ
e−4aFG(ũ). (2.33)

An additional difficulty for the computation of the function f(uFG) is that it grows expo-

nentially with uFG. However, inspection of (2.33) shows that this can be circumvented by

computing the redefined function

g(uFG) = e2aFG(uFG)f(uFG) , (2.34)

which takes values between 0 and 1.

Solving equation (2.33) order by order, we see that f(uFG) behaves as

f(uFG) = u2FG +
u4FGφ

2
0

9
+O

(
u6FG

)
. (2.35)
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With this expression, the metric (2.31), and the vacuum profile of the scalar field (2.14), one

obtains from (2.19)–(2.20) the dual gauge theory quantities of such a shockwave, namely

E = PL = ±JE = h(x±) , PT = 0 , V = 0 , (2.36)

where PL is the longitudinal pressure (along the z direction), and PT the transverse pressure

(along the transverse directions x⊥).

3 Numerical procedure

In this section we set L = 1 for notational simplicity.

3.1 Evolution equations

We follow the notation of [2] and begin by writing the following 5D metric ansatz in

Eddington-Finkelstein (EF) coordinates

ds2 = −Adt2 + Σ2
(
eBdx2

⊥ + e−2Bdz2
)

+ 2dt(dr + Fdz) , (3.1)

where A, B, Σ, and F are functions of the radial coordinate r, time t and z. The shocks

will be propagating along z, and x⊥ denotes the two perpendicular directions x⊥ = x1, x2.

Note that t is a null time coordinate (usually called v in EF coordinates), i.e. constant-t

surfaces are not spacelike but null.

Written in this form, the metric is invariant under the following transformation

r → r̄ = r + ξ(t, z) ,

Σ→ Σ̄ = Σ ,

B → B̄ = B ,

A→ Ā = A+ 2∂tξ(t, z) ,

F → F̄ = F − ∂zξ(t, z) .

(3.2)

Upon plugging the metric (3.1) in (2.2) the resulting system conveniently obeys a

particular nested structure, consisting of a sequence of radial ODEs at each t = const null

slice that can be solved in order, see e.g. [20] and references therein.

The equations of motion for our present case are given by

Σ′′ = −1

6
Σ
(

3
(
B′
)2

+ 4
(
φ′
)2)

, (3.3a)

Σ2F ′′ = Σ
(

6Σ̃B′ + 4Σ̃′ + 3F ′Σ′
)

+ Σ2
(

3B̃B′ + 2B̃′ + 4φ̃φ′
)
− 4Σ̃Σ′ , (3.3b)

12Σ3Σ̇′ = e2B
[
Σ2
(

4B̃F ′ − 4
(

˜̃B + φ̃2
)
− 7B̃2 + 2F̃ ′ +

(
F ′
)2)

+ 2Σ
(

Σ̃
(
F ′ − 8B̃

)
− 4˜̃Σ

)
+ 4Σ̃2

]
− 8Σ2

(
Σ2V (φ) + 3Σ̇Σ′

)
, (3.3c)

6Σ4Ḃ′ = e2B
[
Σ2
(
−B̃F ′ + B̃2 + ˜̃B − 2F̃ ′ + 4φ̃2 −

(
F ′
)2)

+ Σ
(

Σ̃
(
B̃ + 4F ′

)
+ 2˜̃Σ

)
− 4Σ̃2

]
− 9Σ3

(
Σ̇B′ + ḂΣ′

)
, (3.3d)

– 9 –
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2Σ3φ̇′ = −3Σ2
(

Σ′φ̇+ Σ̇φ′
)
− e2BΣ

(
2B̃φ̃− φ̃F ′ + ˜̃

φ
)
− e2BΣ̃φ̃+ Σ3V ′(φ) , (3.3e)

6Σ4A′′ = 3e2B
(

Σ2
(

4
(

˜̃B + φ̃2
)

+ 7B̃2 −
(
F ′
)2)

+ 8Σ
(

2B̃Σ̃ + ˜̃Σ
)
− 4Σ̃2

)
+ 2Σ4

(
−9ḂB′ + 4V (φ)− 12φ̇φ′

)
+ 72Σ̇Σ2Σ′ , (3.3f)

2Σ2Ḟ ′ = −Σ2
(

2B′
(
Ã+ 2Ḟ

)
+ 2Ã′ + 6ḂB̃ + 4 ˜̇B + 8φ̇φ̃+A′F ′

)
+ 2Σ

(
Σ′
(
Ã+ 2Ḟ

)
− 6ḂΣ̃− 4˜̇Σ− 3Σ̇F ′

)
+ 8Σ̇Σ̃ , (3.3g)

6Σ2Σ̈ = e2B
(

Σ
(

2B̃
(
Ã+ 2Ḟ

)
+ ˜̃A+ 2 ˜̇F

)
+ Σ̃

(
Ã+ 2Ḟ

))
+ Σ2

(
3Σ̇A′ − Σ

(
3Ḃ2 + 4φ̇2

))
, (3.3h)

where, for any function g, we define

g̃ ≡ (∂z − F∂r) g , (3.4)

g′ ≡ ∂rg , (3.5)

d+g ≡ ġ ≡
(
∂t +

A

2
∂r

)
g . (3.6)

Note that these equations are all of the general form

[αg(r, t, z)∂rr + βg(r, t, z)∂r + γg(r, t, z)] g(r, t, z) = −Sg(r, t, z) , (3.7)

where g = Σ, F, d+Σ, d+B, d+φ, A, d+F . These are solved imposing reflecting boundary

conditions at the AdS boundary u = 1/r = 0, which take the form

A(u, t, z) =
1

u2
+

2ξ(t, z)

u
− 2∂tξ(t, z) + ξ(t, z)2 − 2φ20

3
+ u2a4(t, z)

− 2

3
u3(φ0∂tφ2(t, z) + 3a4(t, z)ξ(t, z) + ∂zf2(t, z)) +O(u4) , (3.8a)

B(u, t, z) = u4b4(t, z) +O(u5) (3.8b)

Σ(u, t, z) =
1

u
+ ξ(t, z)− φ20u

3
+

1

3
φ20u

2ξ(t, z)

+
1

54
φ0u

3
(
−18φ0ξ(t, z)2 − 18φ2(t, z) + φ30

)
+O(u4) , (3.8c)

F (u, t, z) = ∂zξ(t, z) + u2f2(t, z)

+ u3
(

4

15
(φ0∂zφ2(t, z)− 6∂zb4(t, z))− 2f2(t, z)ξ(t, z)

)
+O(u4) , (3.8d)

φ(u, t, z) = φ0u− φ0u2ξ(t, z) + u3
(
φ0ξ(t, z)2 + φ2(t, z)

)
+ u4

(
−φ0ξ(t, z)3 − 3ξ(t, z)φ2(t, z) + ∂tφ2(t, z)

)
+O(u5) , (3.8e)

d+B(u, t, z) = −2u3b4(t, z) +O(u4) , (3.8f)

d+Σ(u, t, z) =
1

2u2
+
ξ(t, z)

u
+

1

2
ξ(t, z)2 − φ20

6

+
1

36
u2
(
18a4(t, z) + 18φ0φ2(t, z)− 5φ40

)
+O(u3) , (3.8g)
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d+φ(u, t, z) = −φ0
2

+ u2
(
φ30
3
− 3

2
φ2(t, z)

)
+O(u3) , (3.8h)

d+F (u, t, z) = ∂tzξ(t, z)− uf2(t, z) +O(u2) . (3.8i)

The subleading coefficient of the scalar field in EF coordinates φ2, introduced in equa-

tion (3.8e), is related to its FG counterpart, φ(2), through

φ(2) = φ2 −
1

6
φ30 . (3.9)

The function ξ(t, z) encodes our residual gauge freedom, whereas the functions a4(t, z) and

f2(t, z) are constrained to obey

∂ta4 = −4

3
(∂zf2 + φ0∂tφ2) , (3.10a)

∂tf2 =
1

4

(
−∂za4 − 8∂zb4 +

4

3
φ0∂zφ2

)
, (3.10b)

with b4 read off from B through (3.8b) and both φ2 and ∂tφ2 read off from φ through (3.8e).

To solve the resulting system we follow the general approach of [2, 21], with some

important differences that we will outline below.

3.2 Expectation values from evolution variables

With the near-boundary behaviours above, together with the Fefferman-Graham expan-

sions (2.17) and (2.18), one finds the coordinate transformation relating the fall-off co-

efficients in each frame. With these, and the expectation values (2.19) and (2.20), one

can write the expressions for the gauge theory values in terms of our evolution variables

(b4, a4, f2, φ2) as

E = −
(

3

4
a4 + φ0φ2 +

9− 7φ2M
36φ2M

φ40

)
, (3.11)

PL = −a4
4
− 2b4 +

φ0φ2
3

+

(
− 5

108
+

1

4φ2M

)
φ40 , (3.12)

PT = −a4
4

+ b4 +
φ0φ2

3
+

(
− 5

108
+

1

4φ2M

)
φ40 , (3.13)

JE = f2 , (3.14)

V = −2φ2 +
φ30
3
− φ30
φ2M

, (3.15)

where PL and PT are the longitudinal and transverse pressures.

3.3 Gauge fixing

We start with the procedure to fix the residual gauge freedom (3.2). A convenient choice is

treating ξ(t, z) as another evolved variable and choosing its evolution equation by requiring

that the position of the apparent horizon lie at some constant radial coordinate r = rh.

We thus want to impose

Θ|r=rh = 0 , ∂tΘ|r=rh = 0 , (3.16)
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at all times, where Θ is the expansion of outgoing null geodesics for the metric (3.1). At

surfaces r = const, Θ is given by

Θ = −1

2
e2BF (3F∂rΣ− 2∂zΣ) + e2BΣ (2F∂zB + ∂zF )− 3Σ2d+Σ . (3.17)

A simple way to impose the conditions (3.16) numerically is the following

(∂tΘ + κΘ) |r=rh = 0 , (3.18)

where κ is a positive parameter typically chosen to be 1. The advantage of imposing such

a condition is that it is constructed to drive the Θ = 0 surface back to r = rh whenever

numerical errors accumulate. This turns out to work very well in practice.

Equation (3.18), when expanded, gives us an equation for ∂tξ of the form[
αξ(t, z)∂zz + βξ(t, z)∂z + γξ(t, z)

]
∂tξ(t, z) = −Sξ(t, z) , (3.19)

to be evaluated at r = rh. This is a second-order, linear ODE in the coordinate z, which

we solve imposing periodicity in z.

3.4 Field redefinitions and evolution algorithm

To integrate the resulting system subject to the boundary conditions (3.8), it is very con-

venient to introduce u = 1/r as our radial coordinate and redefine the evolved variables so

that the divergent pieces at u = 0 are absent.

Motivated by (3.8), we make the following definitions

B(u, t, z) ≡ u4Bg1(u, t, z) (3.20a)

≡ Bg2(u, t, z) , (3.20b)

Σ(u, t, z) ≡ 1

u
+ ξ(t, z)− uφ

2
0

3
+ u2

φ20
3
ξ(t, z) + u3Σg1(u, t, z) (3.20c)

≡ 1

u
+ ξ(t, z) + Σg2(u, t, z) , (3.20d)

F (u, t, z) ≡ ∂zξ(t, z) + u2Fg1(u, t, z) (3.20e)

≡ ∂zξ(t, z) + Fg2(u, t, z) , (3.20f)

A(u, t, z) ≡ 1

u2
+

2ξ(t, z)

u
− 2∂tξ(t, z) + ξ(t, z)2 − 2φ20

3
+ u2Ag1(u, t, z) (3.20g)

≡ 1

u2
+

2ξ(t, z)

u
− 2∂tξ(t, z) + ξ(t, z)2 − 2φ20

3
+Ag2(u, t, z) , (3.20h)

φ(u, t, z) ≡ uφ0 − u2φ0ξ(t, z) + u3φ30φg1(u, t, z) (3.20i)

≡ φ0φg2(u, t, z) , (3.20j)

d+Σ(u, t, z) ≡ 1

2u2
+
ξ(t, z)

u
+
ξ(t, z)2

2
− φ20

6
+ u2Σ̇g1(u, t, z) (3.20k)

≡ 1

2u2
+
ξ(t, z)

u
+
ξ(t, z)2

2
− φ20

6
+ Σ̇g2(u, t, z) , (3.20l)

d+B(u, t, z) ≡ u3Ḃg1(u, t, z) (3.20m)
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≡ Ḃg2(u, t, z) , (3.20n)

d+φ(u, t, z) ≡ −φ0
2

+ u2φ30φ̇g1(u, t, z) (3.20o)

≡ −φ0
2

+ φ̇g2(u, t, z) , (3.20p)

d+F (u, t, z) ≡ ∂tzξ(t, z) + uḞg1(u, t, z) (3.20q)

≡ ∂tzξ(t, z) + Ḟg2(u, t, z) . (3.20r)

Our equations are then rewritten in terms of the “g1” and “g2” variables above. g1 variables

are adapted to the AdS boundary u = 0. The corresponding resulting equations, however,

are extremely long and carry terms with huge powers of the coordinate u. Upon trying to

solve this system in the whole grid, we were finding that numerical errors would accumulate

very early on in the evolution, quickly spoiling the convergence of the solution. We then

decided to make use of the system g1 only in the vicinity of u ∼ 0 (grid1, spanning u ∈
[0, u0]) — where a much simpler series expanded version of the aforementioned equations

was used — and another grid (grid2, spanning u ∈ [u0, uh]) was introduced where the much

simpler system of equations g2 was used instead.

Our numerical grid thus consists of a double grid in the u direction u ∈ [0, u0]∪ [u0, uh],

where u0 is typically chosen to be 0.1, and uh = 1/rh is typically chosen to be 2 or 3. We

integrate the g1 equations with boundary conditions given by (3.8) in grid1; we then read

off the integrated values at u = u0 and use these as boundary conditions for integrating the

g2 equations in grid2. Note, however, that we also need to deal with the junction point u0 in

our u-dependent hyperbolic equations ∂tB(u, t, z) and ∂tφ(u, t, z), given by equation (3.6).

We explain this procedure in appendix A.

We are now in possession of all the necessary equations for the evolution procedure.

The evolution algorithm is then as follows:

1. at any given time tn (which can be the initial time after having performed the trans-

formation (3.2) that puts the apparent horizon at constant u) we know B(u, tn, z),

φ(u, tn, z), ξ(tn, z), a4(tn, z) and f2(tn, z);

2. successively solve the elliptic equations (3.3) (or rather, the corresponding system

obtained in terms of the redefined “g1” and “g2” functions) in the order Σg1,2 , Fg1,2 ,

Σ̇g1,2 , Ḃg1,2 , φ̇g1,2 , Ag1,2 , which are a sequence of radial ODEs subjected to the bound-

ary conditions (3.8);

3. equation (3.19) is solved to get ∂tξ(tn, z) and afterwards ∂tBg1,2(tn, u, z) and

∂tφg1,2(tn, u, z) can be obtained through equation (3.6) with (3.20g) and (3.20h) (see

also appendix A);

4. obtain ∂ta4(tn, z) and ∂tf2(tn, z) through (3.10) and, together with the already ob-

tained ∂tξ(tn, z), ∂tBg1,2(u, tn, z), ∂tφg1,2(u, tn, z), advance all these quantities to time

tn+1 with a Runge-Kutta procedure or equivalent.

5. GOTO 1.

– 13 –



J
H
E
P
0
6
(
2
0
1
7
)
1
5
4

3.5 Discretization

Equations (3.3) are written in a form that decouples the coordinates u and z (the collision

axis) and can therefore be solved as ODEs in the u direction for each point in z. For this

reason, both coordinates can be treated separately. The z direction is discretized on a

uniform grid where periodic boundary conditions are imposed, while along the u direction

we make use of two grids, grid1 spanning [0, u0] and grid2 spanning [u0, uh]. Both u grids

are Lobatto-Chebyshev grids with Nu + 1 points. The collocation points, given by

Xi = − cos

(
π i

Nu

)
(i = 0, 1, . . . , Nu) , (3.21)

are defined in the range [−1 : +1], and can be mapped to our physical grid by

ui =
uR + uL

2
+
uR − uL

2
Xi (i = 0, 1, . . . , Nu) , (3.22)

where uL and uR are the limits of each of the grids.

As the differential equations are solved in u for each z point, the only important oper-

ation performed in the z direction are the partial derivatives present in the equations (3.3).

To evaluate these we use a fourth-order accurate (central) finite difference approximation.

Also in this direction, we find spurious high-frequency noise common to any finite differ-

encing schemes. In order to remove it we add numerical dissipation to damp these modes.

We have therefore implemented the usual Kreiss-Oliger dissipation operator of order 6 [22]

whereby, after each time step, all our evolved quantities f ∈ {Bg1,2 , φg1,2 , a4, f2, ξ} are

added a term of the form

DKOfi ≡
σ

64
(fi−3 − 6fi−2 + 15fi−1 − 20fi + 15fi+1 − 6fi+2 + fi+3) , (3.23)

where i labels the grid point in the z direction and σ is a tuneable dissipation parameter

which must be smaller than 1 for stability, and which we have typically fixed to be 0.2.

This procedure effectively works as a low-pass filter.

In the radial direction u, the use of the Chebyshev-Lobatto grid allow us to use pseudo-

spectral collocation methods [23]. These methods are based in the approximation of our

solutions in a basis of known functions, Chebyshev polynomials Tn(X) in our case, but, in

addition to the spectral basis, we have an additional physical representation and therefore

we can perform operations in one basis or the other depending on our needs. Discretization

using the pseudo-spectral method consists in the exact imposition of our equations at the

collocation points of the Lobatto-Chebyshev grid. Thanks to the trigonometric represen-

tation of the Chebyshev polynomials, we can use the Fast Fourier Algorithm (FFT) for

changing from one basis to the other. One of the uses of these method is high-accuracy

interpolation of any function f to values of u not present in our grid. This can be computed

using the standard spectral representation of the function

f(u) =

N∑
k=0

f̂k Tk(X(u)) , (3.24)
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where f̂k are the coefficients of the spectral basis that are computed from the values of

the function in the collocation points through the FFT. The cost of the FFT algorithm

scales as O (Nu logNu), in contrast with the matrix transformation from the physical and

spectral representations, which scales as O
(
N2
u

)
.

As we mentioned previously, cf. equation (3.7), the radial equations for solving the

metric coefficients can be written in the form

[αg(u, t, z)∂uu + βg(u, t, z)∂u + γg(u, t, z)] g(u, t, z) = −Sg(u, t, z) ,

where, again, g represents the metric coefficients previously mentioned. Once our coordi-

nate is discretized, the differential operator becomes an algebraic one acting over the values

of the functions in the collocation points taking the form[
αig(t, z)Dijuu + βig(t, z)Diju + γig(u, t, z)

]
gj(t, z) = −Sjg(t, z) ,

where Duu, Du represent the derivative operator for a Lobatto-Chebyshev grid in the

physical representation and i, j indices in the u coordinate. We now construct the operator

defined inside the brackets and then invert it to solve the function g. Boundary conditions

are imposed by replacing full rows in this operator by the values we need to fix. In the

general case, for a second order operator we replace the lines j = 0, j = N by the value of

the function and its derivative at u = 0 in the case of grid1 and at u = u0 in the case of

grid2. At grid1, we obtain the boundary conditions from (3.8); at grid2 these are read off

from the obtained values at grid1.

Another useful feature of the spectral methods is the possibility of filtering. As we

did with the dissipation in the direction z, we can damp high order modes but in this case

directly in the spectral representation. After each time step, we apply an exponential filter

to the spectral coefficients of our u-dependent evolved quantities f̂ ∈ {B̂g1,2 , φ̂g1,2}. The

complete scheme is

{fi }
FFT−→

{
f̂k

}
−→

{
f̂k e

−α(k/Nu)γNu
}

FFT−→ {fi} (3.25)

where α and γ are tuneable parameters which we typically fix to α = 36.0437, γ = 8. This

effectively dampens the coefficients of the higher-order Chebyshev polynomials.

3.6 Initial data

Our chosen formulation of Einstein’s equations, known as the characteristic formulation,

allows one to specify the initial data needed for an evolution through freely setting the

functions B(u, z), φ(u, z), ξ(z), a4(z) and f2(z). For our intended applications, we wish to

have initial data resembling an ultra-relativistic projectile, such as the shockwave metric

in AdS. The starting point to construct such initial data is thus the shockwave metric in

FG coordinates (2.31). Once the function f(uFG) therein is computed, one can proceed to

transform the metric to the EF frame (3.1) in which the numerical integration is performed.

Owing to the fact that both the FG and the EF metrics have an explicit Killing vector,

one can use the following ansatz for the coordinate transformation between the two frames

xFG
⊥ = xEF

⊥ , uFG = u+ λ1(u, t+ z) ,

x+ = t+ z + λ2(u, t+ z) , x− = t− z + λ3(u, t+ z) ,
(3.26)
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for a left-moving shock [21]. The differential equations for the transformation functions

λ1(u, z), λ2(u, z), and λ3(u, z) are obtained by simply taking the slots guu, gut, and guz
from the equation

gEF = ΛgFGΛT . (3.27)

Equivalently, one might use the fact that the EF coordinate u is a non-affine parameter for

ingoing null geodesics

∂2uk
µ(u) + Γµαβ∂uk

α(u)∂uk
β(u) = F (u)∂uk

µ , (3.28)

where kµ(u) is the parametrized geodesic, and F (u) = −2
25u is a non-affinity function set

to meet the desired EF frame with gtr = 1. The geodesic equation has the advantage of

being explicitly dependent on t + z and therefore its solution reduces to a set of ODEs

parametrised by the boundary point z for t = 0. We thus write our initial data for a

left-moving shock as follows:

h(z) =
µ3

ω
√

2π
e−

(z−z0)
2

2ω2 , (3.29)

E(z) = E0 + h(z) , (3.30)

f2(z) = h(z) , (3.31)

φ(u, z) =
φ0uFG√

1 +
u2FG
3φ0

(
φ30 − 6φ2

) , (3.32)

e3B(u,z) =
e2aFG(uFG)

∂zλ21
u2FG
− (∂zλ2 + 1) (∂zλ3 − 1) e2aFG(uFG) + (∂zλ2 + 1)2 f(uFG)h(z)

, (3.33)

where uFG, λ1,2,3 are functions of u and z obtained from (3.26). Recall that the function

h enters the metric (2.31) and specifies the energy density, the longitudinal pressure and

the energy flux in the initial state according to (2.36). The choice (3.29) corresponds to

a Gaussian profile with width ω and height µ3/ω
√

2π. E is the energy density per unit

volume of the boundary field theory and µ3 is the energy density per unit transverse area.

As usual [2–4, 9, 24] we have added a “regulator” E0, namely a background thermal bath

with energy density much smaller than all other scales of interest, in order to avoid the

large gradients that develop in the deep IR. Given E0, we know the solution in the absence

of shocks, which has B = 0. In particular, we know the subleading coefficient φ2 of the

scalar operator as a function of E0, and this is the value that features in equation (3.32).

An important point is that the z-independent equilibrium value φ(u) in FG coordinates

is only known numerically. Equation (3.32) is a good approximation to this numerical

solution. The advantage of having an analytic approximation is that, in order to locate

the apparent horizon in EF coordinates in the presence of the shocks, it is necessary to

know the value of the scalar field in FG coordinates slightly beyond the position of the

horizon in those coordinates. Equation (3.32) provides a good approximation to this value

simply by declaring that it applies beyond the horizon. We have verified that the analytic

form (3.32) quickly relaxes upon time evolution and therefore that this way of initializing
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our code has no effect whatsoever on the collision dynamics. We choose the initial value

for a4 by comparing (3.11) and (3.30). Finally, the function ξ(z) is initialized by imposing

that the apparent horizon lie at a constant value of the u coordinate.

4 Code tests

We implement the above construction in a standalone C code, where we use the GNU

Scientific Library [25] to solve the linear system (3.3), the FFTW3 library [26] for FFTs,

and use a fourth-order Adams-Bashforth method to integrate the functions B(u, z), φ(u, z),

a4(z), f2(z) and ξ(z) forward in time, using the procedure outlined in section 3.4. The

code is trivially parallelized with OpenMP. The resulting code is quite fast, being able to

evolve a configuration with

φM = 10 , φ0ω = 0.32 ,
µ3

φ40 ω
√

2π
= 1 , E0 = 0.02φ40 , (4.1)

with 12 + 48 u-points and φ0 ∆z = 1/20 (400 z-points) from t = 0 to φ0 t = 1 in 3 minutes

using two cores Intel i7-4820K CPU @ 3.70GHz.

4.1 Quasi-normal modes

In order to test the code and our numerical implementation we have recovered some quasi-

normal frequencies reported in [11]. For these tests, we evolved a φM = 10 z-independent

configuration where the energy density was set to E/φ40 = 0.379686. a4 and φ2 were

initialised to their corresponding equilibrium values, whereas B and φ were set to

B = 0.1u8 , (4.2)

φ = φ0u+ φ2u
3 . (4.3)

Since this configuration is not in equilibrium, b4 and φ2 will oscillate and relax, allowing

us to compute the quasi-normal modes (QNM) of the system.

Gravitational set-ups containing a single scalar field will typically show two scalar,

independent, gauge invariant types of perturbations, each one with its own tower of modes.

Hence, the system will have two independent channels to relax to equilibrium. In the

model studied in this work, the two channels control independently the fluctuations of the

anisotropy and the trace of the stress-energy tensor of the dual plasma respectively. Since

b4 only contributes to the anisotropy and φ2 only to the trace, their fluctuations will be

governed by different towers of modes. Therefore, the frequencies extracted from b4 should

match the anisotropy tower frequencies’ and the ones from φ2 should match the trace, or

“bulk”, tower [11].

In figure 4, we have fitted numerical data with damped sinusoidals of the form

f(t) = C +A1e
−ω(1)

i t cos
(
ω(1)
r t+ ϕ1

)
+A2e

−ω(2)
i t cos

(
ω(2)
r t+ ϕ2

)
. (4.4)

In order to recover the frequencies we employed the following strategy. First, we look for

the lowest frequency mode. For that, we set A2 = 0 in equation (4.4) and fit this function
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to our numerical data. We perform a series of fits to the data, each fit starting at a later

time: we start by using the whole signal, then use only the portion φ0t ∈ [1,∞[ (say) of the

signal, then only the portion φ0t ∈ [2,∞[ and so on. The frequencies ω(1) thus obtained

in each fit eventually converge to some value, the longest lived mode, which we are able

to isolate through this process. We then fix the C, A1, ω
(1)
r , ω

(1)
i , ϕ1 fitting parameters

obtained; the corresponding fit is labelled “fit1” in figure 4. Having fixed these parameters

we then repeat the process using equation (4.4), where this time we only allow for the A2,

ω
(2)
r , ω

(2)
i , ϕ2 parameters to vary. We thus obtain the frequencies ω(2); the final resulting

fit is labelled “fit2” in figure 4.

The results obtained with this procedure are displayed in figure 4. For the non-

conformal mode (top panel) we have obtained

ω(1)
r = 2.31305φ0 , ω

(1)
i = 1.26432φ0 , (4.5)

ω(2)
r = 4.03φ0 , ω

(2)
i = 2.93φ0 , (4.6)

which are to be compared with

ω(1) = (2.313106 + 1.264367i) φ0 , ω(2) = (4.108 + 2.93141i) φ0 (4.7)

obtained in [11]. For the anisotropic mode (bottom panel), we have obtained

ω(1)
r = 3.03932φ0 , ω

(1)
i = 2.12048φ0 , (4.8)

ω(2)
r = 4.9φ0 , ω

(2)
i = 3.6φ0 , (4.9)

which are to be compared with

ω(1) = (3.03944 + 2.120404i) φ0 , ω(2) = (4.934 + 3.7393i) φ0 (4.10)

obtained in [11].

We emphasise that the numbers from [11] and those of this section were obtained in a

completely independent way, and the excellent agreement between them (of up to 0.004%

for the lowest frequency) validates both the code presented herein as well as the method

of [11].

4.2 Convergence analysis

Numerical simulations using finite differencing techniques typically approximate the contin-

uum solution of the problem with an error that depends polynomially on the grid spacing h,

f = fh +O(hn) . (4.11)

Different numerical implementations will give different convergence orders n. In our case,

since we make use of fourth-order finite difference stencils, we expect to see n = 4. One

simple way to check for consistency of a code is evolving the same configuration with coarse,

medium and fine resolution, hc, hm and hf . One can then compute a convergence factor

given by

Q ≡ fhc − fhm
fhm − fhf

=
hnc − hnm
hnm − hnf

, (4.12)
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Figure 4. φ2 and b4 as functions of time for a z-independent configuration with φM = 10 and

E = 0.379686φ40, with initial data as specified in (4.2). The solid blue curve corresponds to data

from the code, the dash-dotted green curve corresponds to a fit to the data using one QNM, and

the dashed red curve corresponds to a fit using two QNMs as explained in the text.
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Figure 5. Energy density at φ0t = 20 (top panel) and correspondent convergence analysis (bottom

panel) for a configuration with φM = 10, φ0 ω = 0.64, 24µ3

φ4
0

√
2πω

= 1, E0 = 0.02
24 φ40. We plot the

absolute differences between the coarse and medium resolution (blue solid line) and the medium

and fine (red dashed line) resolution run. The latter has been re-scaled by the factor Q = 5.94

expected for fourth order convergence.

where fh is a chosen evolved variable obtained with numerical resolution h. Since in the

radial direction we make use of pseudo-spectral methods, our error will be dominated by

the resolution used in the z direction, to which the grid spacing h alludes to. For the

analysis done in this section we therefore always make use of the same resolution in the

radial direction.
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We show in figure 5 the convergence properties of our code obtained for a “typical”

shockwave collision with physical parameters (cf. section 3.6)

φM = 10 , φ0 ω = 0.64 ,
24µ3

φ40
√

2πω
= 1 , E0 =

0.02

24
φ40 (4.13)

This configuration was evolved with φ0 hc = 40, φ0 hm = 60 and φ0 hf = 80; the

expected convergence factor expected for fourth order convergence would therefore be Q ≈
5.94. Plotted in the figure are the results obtained for the energy density at φ0 t = 20, where

the differences |fhm − fhf | have been amplified by Q = 5.94. The results show fourth-order

convergence. We have further verified that the values obtained for our medium resolution

run are within ∼ 0.4% of the fourth-order Richardson-extrapolated ones, giving us an

estimate of the error incurred in the simulation.

5 Non-conformal collisions

5.1 Time evolution

Using the numerical procedure described in section 3 we are now ready to explore and

characterise shockwave collisions in different non-conformal theories. As in the analysis of

conformal shockwave collisions in [2, 3, 24], we employ Gaussian energy density profiles in

the longitudinal direction, Equation (3.29). We choose t = 0 as the time at which the two

incoming shocks would exactly overlap in the absence of interactions.

In a CFT scale invariance guarantees that the physics can only depend on the dimen-

sionless product of the transverse energy scale and the width of the shock, µω. In contrast,

in a non-conformal theory with an intrinsic scale Λ the physics will also depend on the ratio

µ/Λ. We will see that, by varying this last ratio for a fixed shock profile (µω = const), we

can study the collision dynamics from low to high energies. Indeed, our model is specified

by the value of the parameter φM, which controls the degree of non-conformality of the dual

gauge theory. For any value of φM, when µ and Λ are of the same order, the formation and

relaxation of the plasma happens in the most non-conformal region, while for large µ/Λ,

the early time evolution is approximately as that in a CFT. We will consider two different

values µω ' 0.30 and µω ' 0.12, corresponding to what were dubbed “1/2-shocks” and

“1/4-shocks” in [3].

Using equations (2.22) and (3.11)–(3.14) we extract the stress tensor from our nu-

merical evolution for different values of µ/Λ. Following the standard Landau matching

procedure, we define the local energy density and a velocity field by determining the time-

like eigenvalue of the stress tensor.

Tµνuν = −Elocuµ , uµu
µ = −1 . (5.1)

As a consequence of z-reflection symmetry, at z = 0 the local and collision frames coincide

and the local energy density is given by E . Given the energy density, we can assign a value

of the transport coefficients ζ(E) and η(E) to each spacetime point after the collisions.

Since ζ vanishes in a conformal theory, we can use the assigned ratio ζ/η as a measure of

non-conformality.
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Figure 6. Early-time evolution of the ζ/η ratio for runs with φM = 20 and µω = 0.30. The times

shown include times before and after hydrodynamization.

In figure 6 we plot4 the time dependence of this ratio of viscosities at z = 0 for several

representative values of µ/Λ. For large µ/Λ values, the energy deposited by the collision

in this central region is also large and the system is close to conformality. As the system

expands, the energy decreases proving regions of larger and larger ζ/η. For smaller values

of µ/Λ the system stays in the non-conformal region from an earlier time. Although after

a collision the energy at z = 0 is continuously decreasing, we have not extended our

simulation long enough to recover conformal dynamics at late time, as we would expect to

happen from the IR behaviour of our model.

The assigned values of transport coefficients also control the dynamics of the stress

tensor soon after the collision. In other words, hydrodynamics becomes applicable. At first

order in the gradient expansion the hydrodynamic stress tensor may be expressed as

T hyd
µν =

[
Eloc + Peq (Eloc)

]
uµuν + Peq (Eloc) gµν − η (Eloc)σµν − ζ (Eloc) Π∆µν , (5.2)

where g is the Minkowski metric and Peq (Eloc) is the equilibrium pressure, σµν and Π are

the shear and bulk tensors constructed from gradients of the velocity field, and ∆µν is the

projector on the fluid rest frame. As we will see, at sufficiently late times this expression

approximates well the evolution of the full stress tensor.

To illustrate the non-conformal nature of the collision dynamics, in figure 7 we show

the time evolution of the transverse (top) and the longitudinal (bottom) pressures at z = 0

for a collision with µ/Λ = 0.77 and µω = 0.30 in the φM = 20 model (black solid lines).

We compare these evolutions with the first-order hydrodynamic prediction (5.2) turning

on sequentially the two non-conformal properties in the hydrodynamic approximation,

namely the non-conformal EoS and the non-zero ζ. As represented by the solid red curve

4For this plot and for all the results in this section we use several values of the energy density E0, ranging

between E0 = µ3
√
2πω

(0.005, 0.02), and we check that the effects of this regulator are small and in the linear

regime. Furthermore, we extrapolate all physical results to E0 = 0 checking that first and second order

extrapolations converge to the same value.
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Figure 7. Time evolution of the pressures, in units of Λ4, for φM = 20, µ/Λ = 0.77 and µω = 0.30.

The evolution is compared to the hydrodynamic prediction via the constitutive relations Equa-

tion (5.2) in different approximations: P hyd
L,T (ζ = 0,EoS) corresponds to a conformal fluid with

Peq = E/3 and ζ = 0; P hyd
{L,T}(ζ = 0) includes the correct, non-conformal equation state but still

ζ = 0; P hyd
L,T includes the correct, non-conformal equation of state and the non-vanishing ζ. and

including all non-conformal dynamics P hyd
L,T . After a time tΛ = 2.12 (4.65) the transverse (lon-

gitudinal) pressure is described by non-conformal hydrodynamics with better than 10% accuracy.
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P hyd
L,T (ζ = 0,EoS), we see that assuming a conformal EoS and ζ = 0 fails to reproduce the

time evolution. The inclusion of the correct equation of state, represented by the dashed

red curve P hyd
{L,T}(ζ = 0), brings the hydrodynamic prediction closer to the true evolution.

Finally, the inclusion of bulk viscosity, represented by the blue solid curve P hyd
L,T , increases

the convergence of the first order hydrodynamic prediction to the evolution of the pressures.

As stated, the post collision dynamics in this regime is intrinsically non-conformal.

5.2 Hydrodynamization and EoSization

Inspection of figure 7 indicates that hydrodynamics provides a good description of the

evolution of the stress tensor even when the difference between the longitudinal and the

transverse pressures is large, which signals the presence of large gradient corrections. This

fact, first noted for conformal systems in [2, 27], led to the concept of “hydrodynamization”,

i.e. the process by which hydrodynamics comes to describe the dynamics of an interacting

system, even if the system is far from local thermal equilibrium. In this section we system-

atically explore this process for different collision energies in four different non-conformal

theories, parametrized by four values of the parameter φM.

As is common in the literature, we define the hydrodynamization time as the time

beyond which both pressures are described by hydrodynamics within a given accuracy.

However, in contrast to conformal dynamics, where the tracelessness of the stress tensor

fixes the relation between the longitudinal and the transverse pressure, in an non-conformal

theory the evolution of these two quantities is unconstrained. For this reason, we introduce

independent hydrodynamization criteria for each of the pressure components. As in [9] we

define the hydrodynamization time thyd as the time beyond which the difference between

the true pressures and the first-order hydrodynamics prediction is less than 10%,∣∣∣∣∣PL,T − P
hyd
L,T

P̄

∣∣∣∣∣ < 0.1 . (5.3)

Note that we have used the average pressure P̄ as the characteristic scale of the stress

tensor, which agrees with the criterium used in [3] in the conformal case.

As noted in [9] hydrodynamization is only sensitive to particular combinations of the

shear and bulk contributions to the pressure, which we denote Pη and Pζ . Since the shear

tensor is traceless and the bulk tensor is diagonal in the local rest frame, we can write

P hyd
L = Peq + Pη + Pζ , (5.4)

P hyd
T = Peq −

1

2
Pη + Pζ . (5.5)

Form this decomposition it is clear that the average hydrodynamic pressure is only sensitive

to bulk gradients. Furthermore, as discussed in section 2.2, the equation of state relates

the average pressure of the system to the energy density via the equilibrium value of V, the

thermal expectation value of the dimension-three operator which deforms the dual gauge

theory. For this reason in [9] we introduced the EoSization time tEoS as the time beyond
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Figure 8. Hydrodynamization and EoSization times as a function of the hydrodynamization

temperature for collisions of shocks with µω = 0.32 for φM = {20, 5, 3, 2}. The horizontal grey line

lies at thydThyd = 0.56 and corresponds to the conformal limit of the 1/2 shocks. From left to right,

the first three vertical grey lines indicate the hydrodynamization temperatures for the collisions

with the minimal value of Thyd/Λ, the maximum value of thydThyd, and the maximum value of

the ratio tEoS/thyd. The rightmost vertical grey line indicates the high-temperature crossing at

which tEoS = thyd. The temperatures and the values of the ζ/η ratio at these vertical lines for

each value of φM is as follows. For φM = 20 we have Thyd/Λ = {0.141, 0.184, 0.346, 0.374} and

ζ/η = {0.31, 0.36, 0.30, 0.22}. For φM = 5 we have Thyd/Λ = {0.129, 0.193, 0.202, 0.322, 0.366} and

ζ/η = {0.23, 0.31, 0.32, 0.26, 0.22}. For φM = 3 we have Thyd/Λ = {0.129, 0.170, 0.185, 0.279, 0.302}
and ζ/η = {0.16, 0.21, 0.23, 0.26, 0.25}. And for φM = 2 we have Thyd/Λ = {0.101, 0.275, 0.366} and

ζ/η = {0.05, 0.18, 0.17}.

which the average pressure agrees with the equilibrium pressure with a 10% accuracy,∣∣∣∣ P̄ − Peq

P̄

∣∣∣∣ < 0.1 . (5.6)

In figure 8 we plot the hydrodynamization time, thyd, (red dashed line with stars

for each run) and the EoSization time, tEoS, (purple full line with dots for each run)

for the different non-conformal theories. There are two observable effects. First, the

hydrodynamization time increases with the non-conformality. Second, hydrodynamization

can happen before EoSization. The conformal value of the hydrodynamization time is

indicated in each panel of figure 8 with a horizontal line at thydThyd = 0.56. For a slightly

non-conformal theory the increase of thyd with respect to the conformal value is minimal,
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as illustrated in the φM = 2 temperature scan. In this case the maximal increase is just

a factor of 1.43 larger than the conformal value. For φM = 3 (φM = 5) the increase of

the hydrodynamization time is a factor of 2.05 (2.38), and it takes place for a collision for

which the ratio ζ/η at the time of hydrodynamization is 0.21 (0.31). The expected increase

of the hydrodynamization time is maximal in the φM = 20 temperature scan. In this case

the maximum occurs for a collision with Thyd/Λ = 0.184 and the increase is a factor of 2.6

with respect to the conformal result. This maximal hydrodynamization time is reached

with a bulk viscosity over entropy density ratio of ζ/η ≈ 0.36. We have verified that the

φM = 20 results are almost identical to those corresponding to φM = 30 or φM = 100. This

is consistent with the fact that thermodynamic and transport properties such as the bulk

viscosity and the speed of sound squared saturate with big positive values of φM.

We see that for sufficiently large µ/Λ the EoSization time becomes negative, meaning

that the average and the equilibrium pressures differ by less than 10% even before the

shocks collide. The reason is simply that in these cases the energy density in the Gaussian

tails in front of the shocks, which start to overlap at negative times, becomes much higher

than Λ. At these energy densities the physics becomes approximately conformal and the

equation of state becomes approximately valid as a consequence of this symmetry.

The equilibrium pressure and the average pressure are not within 10% of one another

for a wide range of runs with φM = {20, 5, 3, 2}. For runs for which the EoSization criterion

is fulfilled at all post-collision times the extracted EoSization time is either null or negative.

Those specific runs show negligible non-conformal effects for the created plasma. The

reason for the sharp rise of the EoSization times at low temperatures is due to a cut-off

effect of the fixed 10% criterion. Runs with a slightly higher temperature do easily reach

> 5% non-conformal effects, but do not yet trigger a later EoSization time extraction. The

shockwave literature [3, 21] typically uses a hydrodynamization criterion between 15% and

20%, whereas here we have settled for 10%. We found that changing this number implies

no qualitative changes to our conclusions.

Reference [9] showed that, in the model with φM = 10, hydrodynamization precedes

EoSization for collisions in a certain range of hydrodynamization temperatures. Figure 8

shows that this also happens in the models with φM = {20, 5, 3}. For φM = 20 this

ordering is maintained up to the highest hydrodynamization temperature, Thyd/Λ ≈ 0.37.

Since the models with φM = 20 and φM = 5 have approximately the same thermodynamic

properties [11] at T/Λ ≈ 0.4, at the crossing of the EoSization and the hydrodynamization

times the bulk viscosity-to-entropy ratio is also approximately the same, ζ/η ≈ 0.22. For

φM = 3 one notices that at the high-temperature crossing between the two times the ratio

is ζ/η ≈ 0.25. Models with φM = 2 and φM = 1 (not shown explicitly) show no crossing.

For φM = 2 the maximal ratio is ζ/η ≈ 0.18. For φM = 5, the low-temperature crossing has

ζ/η ≈ 0.32 and for φM = 3 one gets ζ/η ≈ 0.23, but the lower crossing is not yet reached

with φM = 20 at the minimal temperature with ζ/η ≈ 0.31. These differences are explained

by the accumulating effects of the bulk viscosity along the entire evolution of the collision.

We therefore confirm our prior conservative estimate [9] of ζ/s & 0.025 in order to have

hydrodynamization before EoSization.
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Figure 9. Spacetime evolution of the scalar condensate, in units of Λ3, in a collision in the φM = 20

model with µω = 0.30 and µ/Λ = 0.93.

Furthermore, the maximal value for the ratio tEoS/thyd ≈ {0.684, 1.10, 2.07, 2.87} with

φM = {2, 3, 5, 20} is reached at Thyd/Λ ≈ {0.275, 0.279, 0.322, 0.346}. The resulting tem-

perature of the maximal values, when comparing the different non-conformal theories,

increases. This again shows evidence for the accumulating effect of the bulk viscosity. It is

important to stress that the non-conformal equation of state has to be taken into account

for more than twice the hydrodynamization time with a bulk viscosity over entropy ratio

of ζ/s ≥ 0.025.

5.3 Dynamics of the scalar condensate

As we have seen, the dynamics of the longitudinal, transverse and average pressures pro-

vides information about different process in the evolving plasma. To clarify further the

process of EoSization we focus here on the evolution of the scalar expectation value V,

since inspection of Equation (2.23) and Equation (2.26) shows that EoSization is in part

controlled by how V approaches its equilibrium value. In figure 9 we show the spacetime

evolution of the condensate for a characteristic collision.

In analogy with the hydrodynamization and EoSization times, we define the conden-

sate relaxation time tcond as the time beyond which the normalized difference of the true

expectation value of the scalar operator, V, and its equilibrium value Veq, is less than 10%:∣∣∣∣V − VeqV

∣∣∣∣ < 0.1 . (5.7)

This time is a measure of how fast this one-point function reaches its equilibrium value.

We explore tcond for the different collision configurations studied in the previous section.

The scalar condensate is fully out of equilibrium for most of the studied shockwave

collisions. In most cases, the condensate V takes a much longer time to equilibrate than the
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system takes to hydrodynamize. With three different relaxation times — hydrodynamiza-

tion, EoSization and condensate relaxation — one can in theory find six possible orderings

between these times. However, we have found no configuration in which hydrodynamiza-

tion comes last. Since there seems to be no obstacle of principle for this, the reason is

presumably that our collisions do not generate a sufficiently large anisotropy; we will come

back to this point in section 6. Thus, our models give rise to the following four orderings:

1. EoSization → Hydrodynamization → Condensate relaxation,

2. Hydrodynamization → EoSization → Condensate relaxation,

3. Hydrodynamization → Condensate relaxation → EoSization,

4. Condensate relaxation → Hydrodynamization → EoSization.

Each of these cases is illustrated by one of the plots in figure 10. The fact that hydrody-

namization and EoSization can happen in any order was the main result of [9]. Here we

see that the situation is richer once condensate relaxation is included. We note in figure 10

that the energy of the collision, µ/Λ, or equivalently the hydrodynamization temperature,

Thyd/Λ, decrease monotonically from case 1 to case 4. The reason is that at T � Λ the

condensate grows as ΛV ∼ Λ2T 2 [11], whereas the stress tensor grows as T 4. As a conse-

quence the relative magnitude of the V-induced correction in the average pressure through

the Ward identity (2.23) decreases and the dynamics of the condensate decouples from the

dynamics of the stress tensor. Indeed, using equations (2.23), (2.25) and (2.26) we see that

3
(
P̄ − P̄eq

)
= Λ (V − Veq) . (5.8)

For EoSization to take place the left-hand side must be small in units of P̄ . Dividing this

equation by P̄ and using the scalings above we find that at high temperature

P̄ − P̄eq

P̄
=

Λ

3

(V − Veq)

P̄
∼ Λ2

T 2
� 1 . (5.9)

In this regime the scalar condensate can still very far from its equilibrium value according to

our criterion (5.7), since all terms in (5.7) scale as ΛT 2. In conclusion, at high temperature

the equation of state approaches the conformal equation of state and the Ward identity is

no impediment for the system to EoSize (and hydrodynamize) while the scalar condensate

is still far from its equilibrium value. This possibility is realized in the first two plots of

figure 10. Note that the hydrodynamization temperature in these cases is certainly not

asymptotically high, but it is higher than the temperature at which the non-conformal

effects are maximal, which for φM = 20 is T ∼ 0.2Λ, as indicated in the caption of figure 3.

This seems to suffice for the asymptotic argument above to apply.

In contrast, at T ∼ 0.2Λ the product ΛV can be numerically larger than 3P̄ . For this

reason it is possible for the right-hand side of (5.8) to be smaller than 0.1 in units of ΛV
while the left-hand side is larger than 0.1 in units of P̄ . This is why at temperatures at

which non-conformal effects are sufficiently large scalar relaxation can precede EoSization

(and also hydrodynamization, since the latter can precede EoSization). This is illustrated
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Figure 10. Comparison between the time evolution of the true scalar condensate V at z = 0 and

the equilibrium value Veq(E) that would correspond to the instantaneous energy density, in units

of Λ3, for collisions in the model with φM = 20 with µω = 0.30 and µ/Λ = {1.85, 1.33, 0.93, 0.46}
from top to bottom and from left to right. The vertical lines indicate the hydrodynamiza-

tion time (red dashed), the EoSization time (purple solid) and the condensate relaxation

time (orange dotted). These times, in units of 1/Λ, take the following values in each panel.

(1) tEoS = −0.134 < 0 < thyd = 1.34 < tcond = 6.10. (2) thyd = 2.27 < tEoS = 5.25 < tcond = 7.26.

(3) thyd = 3.82 < tcond = 6.85 < tEoS = 10.5. (4) tcond = 6.31 < thyd = 7.91 < tEoS = 10.3.

by the last two plots in figure 10, for which the hydrodynamization temperature is close to

the value at which non-conformal effects are maximal.

In figure 11 we explore the relaxation dynamics for two collisions with the same incident

transverse energy, µ/Λ = 0.62, but with different widths, µω = 0.12 (left) and µω = 0.30

(right). In both cases, at late times V approaches its equilibrium value (green dashed) from

above. As in figure 10, we see that the equilibrium value V(E) begins to rise before t = 0

and reaches its maximum shortly after t = 0. This is simply because this value tracks the

energy density, which begins to rise before t = 0 because of the forward tails of the Gaussian

shocks. Instead, the true condensate would be exactly undisturbed by a single shock, and

therefore it begins to respond only once a significant amount of collision dynamics has

taken place. For this reason, the true condensate begins to rise almost exactly at t = 0.
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Figure 11. Comparison between the time evolution of the true scalar condensate V at z = 0 and

the equilibrium value Veq(E) that would correspond to the instantaneous energy density, in units

of Λ3, for collisions in the φM = 20 model of shocks with the same transverse energy µ/Λ = 0.62

but different widths µω = 0.12 (left) and µω = 0.30 (right). The vertical lines indicate the hydro-

dynamization time (red dashed), the EoSization time (purple solid) and the condensate relaxation

time (orange dotted). These times, in units of 1/Λ, take the following values in each panel. Left:

thyd = 4.82 < tcond = 6.66 < tEoS = 10.42. Right: thyd = 6.64 < tV = 7.07 < tEoS = 10.6.

Shortly after the collision the spike in the equilibrium value reflects the initial large energy

density of the passing shocks, which is larger in the narrower shocks since the transverse

energy density is fixed. In contrast, the peak in the true condensate is very similar in both

collisions. As in the conformal case [3], the final hydrodynamization temperature is mostly

determined by the transverse energy scale, and therefore Thyd is almost identical for the two

collisions. This is remarkable, since ζ/η at that Thyd is almost maximal, indicating large

non-conformal effects. We observe that a similar statement holds true for the EoSization

time, which is essentially the same in both cases, and less accurately but still approximately

so for the relaxation times of the scalar condensate. It may be possible to understand these

effects as finite-resolution effects, as discussed in [4].

On general grounds, in a CFT one would expect the time at which the true condensate

reaches its peak value, tpeak, to be given by

tpeak ∼
c

πThyd
, (5.10)

with c an order-one constant. The intuitive reason on the gravity side is that it takes a time

of order 1/πThyd for the effects of the dynamics near the horizon that forms deep in the

bulk when the shocks collide to reach the boundary. This delay is also observed in e.g. the

true drag force on a quark compared to the force that it would experience in an equilibrium

plasma with the same instantaneous energy density [28, 29]. In a non-conformal theory

one would expect c to be constant for high-energy collisions in which non-conformal effects

are small but to deviate from a constant for collisions in which non-conformal effects are

significant. These expectations are confirmed in our model, as illustrated by figure 14,

where we plot πtpeakThyd and, for comparison, also πtpeakTcond and πtpeakTEoS. We see

that the latter two vary significantly as a function of the collision energy (represented here
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Figure 12. Condensate relaxation times and hydrodynamization times for collisions with µω = 0.30

in models with φM = {20, 5, 3, 2}. The leftmost (rightmost) grey vertical line indicates the lowest

(highest) temperature that we probed. The other grey vertical lines indicate either points at which

tcond = thyd or points at which the ratio tcond/thyd is maximal. The positions of these lines in each

panel is as follows. Top left: Thyd/Λ = {0.141, 0.165, 0.208, 0.807}. The highest temperature in this

case is the one at which the ratio tcond/thyd is maximal. Top right: Thyd/Λ = {0.143, 0.964, 4.80}.
Bottom left: Thyd/Λ = {0.124, 0.807, 0.965}. Bottom right: Thyd/Λ = {0.169, 0.695, 1.52}.

by its proxy, Thyd) and do not become constant at high energies. Also, in these cases one

must bear in mind that Tcond and TEoS are only well defined when hydrodynamization

precedes scalar relaxation and EoSization, respectively. In contrast, we see that πtpeakThyd
does approach a constant of order c ' 0.8 at high energies, and that it deviates slightly

from it at low energies.

In figure 12 we compare the hydrodynamization time and the condensate relaxation

time, in units of Λ−1, as a function of the hydrodynamization temperature. Both times

attain their maximum values at the lowest temperatures we were able to probe, where non-

conformal effects are large. Comparing different theories, we see that the maximal thydΛ

happens for φM = 3. For φM = 20 we observe a crossing of the scalar relaxation time and the

hydrodynamization time, as illustrated above in figure 10, meaning that condensate relax-

ation can precede hydrodynamization or vice versa. In contrast, models with φM = {5, 3, 2}
show scalar relaxation times that are always significantly longer than the corresponding

hydrodynamization times. In particular, for small non-conformality (small φM) and small
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Figure 13. Condensate relaxation times and hydrodynamization times for collisions with µω =

0.30 in models with φM = {20, 5, 3, 2}. The bottom horizontal grey line lies at thydThyd = 0.56

and corresponds to the conformal limit of thyd for 1/2 shocks. The top horizontal line lies at

thydThyd = 2.9 and corresponds to the conformal limit of tcond for 1/2 shocks. The leftmost

(rightmost) grey vertical line indicates the lowest (highest) temperature that we probed. The other

grey vertical lines indicate either points at which tcond = thyd, points at which the ratio tcond/thyd
is maximal, or points at which tcondThyd is maximal. The positions of these lines in each panel is

as follows. Top left: Thyd/Λ = {0.141, 0.165, 0.208, 0.610, 0.807}. The highest temperature in this

case is the one at which the ratio tcond/thyd is maximal. Top right: Thyd/Λ = {0.143, 0.610, 0.964}.
Bottom left: Thyd/Λ = {0.124, 0.611, 0.807, 0.965}. Bottom right: Thyd/Λ = {0.169, 0.695}. The

maximal values of tcondThyd and tcond/thyd take place at the same temperature.

temperatures the condensate may still be out of equilibrium at hydrodynamization. Also

for small non-conformality (φM = 2) the oscillations in the scalar condensate cause jumps

in the relaxation times extracted with the constant criterion (5.7). From this scan we

can extract two characteristic numbers: the maximal value of tcondΛ ≈ 18.8 is reached at

low temperatures with φM = 3, whereas the maximal value for the ratio tcond/thyd ≈ 6.09

occurs for φM = 3 and is reached at Thyd/Λ ≈ 0.81.

One conclusion of figure 12 is that both the condensate relaxation time and the hydro-

dynamization time, when measured in units of the intrinsic scale in the theory, decrease

as the energy of the collision, or equivalently the hydrodynamization temperature. In fact,

these values approach zero at asymptotically high energies, as is clear from the top-right

panel in figure 12, where we have extended the range of the horizontal axis to high values
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Figure 14. Comparison of the delay in the peak of the scalar condensate, tpeak, and the effective

temperatures at the times of hydrodynamization, scalar relaxation and EoSization.

in order to illustrate this effect. In figure 13 we show these times measured in units of the

hydrodynamization temperature itself. These plots clearly show how at high temperatures

the systems behaves effectively as a conformally invariant system. Indeed, if T � Λ the

temperature becomes the only relevant scale and both tcondThyd and thydThyd approach

constant values. Furthermore, these asymptotic values are the same in all four models,

which reflects the fact their UV properties are identical. Nevertheless, the temperature at

which this asymptotic sets in depends on the model. As discussed around equation (5.8),

at high temperatures the dynamics of the condensate decouples from the dynamics of the

stress tensor. The fact that in this asymptotic regime tcondThyd is 5.18 times larger than

thydThyd explicitly shows that a hydrodynamized plasma can be far from equilibrium, since

between thyd and 5thyd hydrodynamics provides a good description of the stress tensor but

the expectation value of the scalar operator is still far from its equilibrium value.

5.4 Rapidity profile

Up to now we have focused on the mid-rapidity region, z = 0. We will now study the

energy deposition along the collision axis. To make contact with hydrodynamic simulations

of ultra-relativistic heavy ion collisions, we explore the local energy density in the fluid rest

frame, Eloc, at a fixed proper time τ = thyd, with thyd the hydrodynamization time at z = 0,

as a function of the spacetime rapidity y, with

τ =
√
t2 − z2 , y =

1

2
ln
t+ z

t− z
. (5.11)

In figure 15 we show the rapidity distribution of the local energy density (normalised

to the central energy density) for different collision energies in the φM = 20 model. For

comparison, we also show the same distribution for collisions in N = 4 SYM [3, 14]. As in

that conformal case, here the deposited energy density exhibits a strong rapidity depen-

dence which is well approximated by a Gaussian within a 1-2% accuracy. The width of the
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Figure 15. Rapidity distribution of Eloc at fixed proper time τ = thyd, with thyd the hy-

drodynamization time at z = 0 in the φM = 20 model for collisions with µω = 0.30 and

µ/Λ = {0.29, 0.77, 1.9}.
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Figure 16. The component of the four-velocity field along the proper time direction at fix proper

times for the most non-conformal configuration of figure 15, φM = 20 and µ/Λ = 0.29.
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Gaussian, however, depends on the transverse energy scale µ/Λ. For smaller values of the

collision energy, the hydrodynamization temperature is also smaller and the non-conformal

behaviour is more pronounced. As the collision energy increases, the rapidity width of the

energy deposition grows, approaching the conformal distribution asymptotically at large

collision energies. Although this energy density profile is controlled by non-hydrodynamized

dynamics, the observed dependence with Thyd is consistent with the expectations from bulk

viscosity. Similarly to the reduction of transverse expansion observed in hydrodynamic

simulations of ultra-relativistic plasmas [30], the bulk viscosity reduces the longitudinal

pressure, reducing the transport of energies at large rapidities. It is interesting that the

increase in the width of the energy rapidity profile is in qualitative agreement with the

rapidity distribution of matter in heavy ion collisions as a function of
√
s.

Despite the fact that the system is manifestly non-boost invariant, specially in the

most non-conformal region, to a very good approximation the initial velocity field at hy-

drodynamization is. In figure 16 we show the component of the velocity field along the

proper time direction,

uτ = cosh (y)ut − sinh (y)uz , (5.12)

as a function of rapidity for several proper times after τ = thyd. The fact that uτ is so close

to 1 in the two units of rapidity that we have plotted shows that the four-velocity field is well

aligned with the proper time direction, with small deviation at the sub-percent level. This

result was first observed in shockwave collisions in conformal gauge theories [14] for a variety

of initial Gaussian shock widths. What we are observing here is that this result survives

the introduction of large non-conformal effects, even though those same effects do cause

a narrowing of the energy density rapidity distribution. At later times, the fact that the

rapidity deposition of energy is not boost-invariant will change the velocity field, increasing

the rapidity component of the velocity; nevertheless, this change is completely predicted by

hydrodynamics. Our simulations imply than even for non-conformal dynamics, in order to

completely predict the stress tensor dynamics in different configurations only the rapidity

distribution of energy density needs to be specified at hydrodynamization, since the initial

velocity field is given, to a very good approximation, by uτ = 1. This observation can be

translated into consequences for hydrodynamic modellers of heavy ion collisions: even for

configurations with significant rapidity dependence the initialization of the velocity field

after the collision in a boost-invariant manner is well supported by our simulations.

6 Discussion

Following the procedure described in section 3 we have simulated 565 shockwave collisions in

the gravity-plus-scalar models of [11]. Via holography, we have used the results to perform

a thorough analysis of the out-of-equilibrium dynamics of the dual set of non-conformal

gauge theories with different degrees of non-conformality.

One of the most astonishing results of this analysis is the tremendous success of hy-

drodynamics to describe the out-of-equilibrium evolution. This fact has been extensively

studied in many settings for conformal theories in the past, where it was found that, at

strong coupling, hydrodynamization typically precedes isotropization. We have verified
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that this is also the case in our non-conformal plasmas. In fact, in all the collisions that we

have examined we have found that isotropization is always the last process to take place of

the four that we have considered. To illustrate this quantitatively, we note that the ratio

PT /PL at the latest of the three equilibration times shown in each of the four panels of

figure 10 is 2.0, 1.9, 1.9 and 1.7, respectively. In other words, at the latest equilibration time

shown in the panels the transverse pressure is still at least 70% larger than the longitudinal

one, indicating that the plasma is still significantly anisotropic.

It is remarkable that hydrodynamics works so well even with a non-trivial equation of

state. In particular, in our most non-conformal models the number of degrees of freedom

changes by several orders of magnitude between the high- and the low-temperature phases

— three in the φM = 10 case shown in figure 1(right). Yet, the dynamics of the system is

well described very soon after the collision by a hydrodynamic expansion around this non-

trivial equation of state. The break-down of the different components of the hydrodynamic

estimator displayed in figure 7 clearly illustrates this point. The success is such that in

our extensive exploration of the parameter space of non-conformal collisions we have never

encountered a case in which the hydrodynamization time exceeds the value in the conformal

case by factor larger than 2.6. This is in agreement with the expectations based on the

near-equilibrium analysis in terms of quasi-normal modes [11, 31].

The success of hydrodynamics is even more surprising in cases in which hydrody-

namization precedes all other equilibration processes. In these cases, which correspond to

the panels 2 and 3 of figure 10, hydrodynamics provides an accurate description of the

evolution of the plasma despite the fact that “everything else is far from equilibrium”,

meaning that the average pressure and the condensate are still far from their equilibrium

values and the plasma is still highly anisotropic.

Focusing on the particular ordering of hydrodynamization and EoSization, our re-

sults confirm that the former precedes the latter as long as the system is sufficiently

non-conformal. What is perhaps surprising is that, as measured by the bulk viscosity-

to-entropy ratio, a “sufficient” degree of non-conformality requires only a fairly moder-

ate value ζ/s & 0.025, as estimated in [9]. This indicates that similar phenomena may

also occur in real-world heavy ion collisions, where both calculations [32–35] and data-

driven parametrization [30, 36] yield larger values than this estimate in a significant part

of the time evolution of the resulting plasma. It would be interesting to extend existing

phenomenological studies [37–42] of the effect of bulk viscosity in heavy ion collisions to

investigate the possibility that hydrodynamization may precede EoSization.

Although the Ward identity (2.23) implies that EoSization and condensate relaxation

are related, we have seen that nevertheless these two processes can occur in any ordering.

The reason for this is easy to understand in two limits, one in which the temperature is

much higher than the intrinsic scale in the theory and another in which it is comparable

to this scale. In the first case the different scalings with the temperature of P̄ ∼ T 4 and

of ΛV ∼ Λ2T 2 imply that at high temperature the contribution of the condensate to the

Ward identity is subleading, and the dynamics of the stress tensor decouples from that of

the condensate. Thus, in this limit the system can EoSize and hydrodynamize while the

condensate remains far from equilibrium. This is clearly illustrated by figures 8 and 13, in
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which we see that in the high-temperature limit

ThydtEoS → 0 , Thydthyd → 0.56 , Thydtcond → 2.9 . (6.1)

Our simple example suggests that other one- or higher-point functions of non-conserved

operators may take a long time to relax even in an almost-conformal, hydrodynamized and

EoSized plasma — for example, a similar delay in the relaxation of fluctuations in a non-

conformal plasma undergoing a process of isotropization has been analysed in [43]. This

may have important implications for processes depending on non-hydrodynamic properties

of the plasma created in heavy-ion collisions, such as emission rates and the reaction of

the plasma to probes, which are typically assumed to be quantified in terms of equilibrium

plasma properties. It would be interesting to explore the deviations from equilibrium of

these phenomenologically relevant quantities with holography.

In the second case, when the temperature is close to the value at which the non-

conformal effects are maximal, the value of the pressures and of the condensate are all

parametrically the same. However, numerically we find that in some situations ΛV > 3P̄

at t = tcond. This means that at this time the condensate is within 10% of its equilibrium

value but its contribution though the Ward identity still causes a larger-than-10% deviation

between the average pressure and its equilibrium value.

In section 5.3 we determined the possible orderings once the three times thyd, tEoS and

tcond are simultaneously considered. We found that in our model only the four orderings

illustrated in figure 10 seem to be realized. Out of the six orderings that are logically

possible, the two missing ones are

5. EoSization → Condensate relaxation → Hydrodynamization,

6. Condensate relaxation → EoSization → Hydrodynamization,

namely the two orderings in which hydrodynamization happens last. Presumably the

reason is simply that our collisions do not produce a plasma that is sufficiently anisotropic.

Indeed, EoSization, and indirectly condensate relaxation through the Ward identity, is

controlled by the bulk gradient corrections to the equilibrium pressure. Therefore it is

conceivable that, in a dynamical situation in which shear corrections are much larger than

bulk corrections, the average pressure and the condensate may relax to their equilibrium

value at a time at which the difference between the pressures is still not well predicted by

hydrodynamics.

Throughout the paper we have adopted a “10%” criterion to define the hydrody-

namization, EoSization and condensate relaxation times in (5.3), (5.6) and (5.7). Since

this criterion is arbitrary, it is interesting to ask what happens if the 0.1 in these equations

is replaced by, say, 0.15 or 0.2. The result is summarised in figure 17, which shows the

three equilibration times with a 15% criterion or a 20% criterion. Comparison with the

10% criterion yields the following qualitative conclusions:

• Although not shown in figure 17, the isotropization time is still the longest.
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Figure 17. Hydrodynamization, EoSization and condensate relaxation times for collisions with

µω = 0.30 for the model with φM = 20 with the “10%” criterion of equations (5.3), (5.6) and (5.7)

replaced by a 15% criterion (left) or a 20% criterion (right). Regions with different orderings are

separated by grey vertical lines. (These numerical simulations were performed with a 1% regulator.)

• The conclusion that the two times tEoS and tcond can occur in any ordering remains

true for any criterion.

• The three times thyd, tEoS and tcond can still occur in several different orderings, but

which specific orderings are realized depends on the criterion. With the 15% criterion

these orderings are 1, 4, 5 and 6, whereas with the 20% criterion we get 4, 5 and 6,

and almost 1. However, it is possible that in a model with more general dynamics

(larger gradients, larger bulk viscosity, etc) all possible orderings may be realized for

a given criterion.

• Hydrodynamization can precede EoSization with a 15% criterion (as with the 10%

criterion) but not with a 20% criterion. This is not surprising since the moderate

bulk viscosity of our model is only able to produce moderate deviations of the average

pressure from its equilibrium value. For example, for the collisions examined in [9]

this deviation at thyd was about 18%.

• With the two new criteria there is no collision in which hydrodynamization precedes

all other equilibration processes. In other words, the orderings 2 and 3 are only

realized with a 10% criterion. Again, we expect that these orderings would be realized

for less stringent criteria in a model with more general dynamics.

For simplicity, we have considered a model with a single scalar field, i.e. we have

focused on the dynamics in the sector in which only the conserved stress tensor and one non-

conserved scalar operator are included. In a model in which several non-conserved operators

are considered, the Ward identity (2.23) would relate the trace of the stress tensor to the

sum of the sources times the condensates of all the non-conserved operators. Therefore

any other linearly independent combination of these operators would be unconstrained by

the Ward identity. It would be interesting to study a model of this type, since presumably

the dynamics would be even richer than in our one-field model.
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We have also studied the post-collision deposition of energy as a function of rapidity.

As in conformal collisions, the initial longitudinal flow field is, to a surprising degree of accu-

racy, boost invariant. Even for the most non-conformal collisions that we have studied the

size of the longitudinal gradients is insufficient to alter the longitudinal expansion of the cre-

ated matter. This, together with similar results found in conformal collisions [14], may be

viewed as dynamical evidence in support of initializing hydrodynamic simulation of heavy

ion collisions with a boost invariant flow field, even at relatively small collision energies.

Concerning the rapidity profile of the energy density, we have found that non-conformal

effects make the rapidity distribution of the collision debris narrower than for a conformal

collision with identical collision parameters. On the one hand, this is perhaps unsurprising

since, at least in the hydrodynamized regime, this may be expected from the friction

induced by the bulk viscosity. On the other hand, this feature highlights a main difference

between the non-conformality of our model and that of QCD: in our model the theory flows

at high energies to a strongly coupled fixed point, whereas QCD flows to a free fixed point.

In other words, as any model that can be fully described by classical gravity [44], our model

fails to reproduce asymptotic freedom. In QCD this property makes the energy rapidity

profile broader and broader as the collision energy increases, since in this asymptotic regime

the physics mostly responsible for setting this profile is pre-hydrodynamic weakly coupled

physics. In contrast, in our model the rapidity profile saturates at high energies to that of

a strongly coupled conformal theory, which is known to result in a narrower profile [14, 45].

It would be interesting to develop hybrid approaches, perhaps along the lines of [46, 47],

able to address separately the strongly coupled regime at energies around Λ via holography,

and the weakly coupled regime at much higher energies via a different description.
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A Matching the hyperbolic equations

Let us consider the evolution equations for the metric variable B (the corresponding ones

for φ are entirely analogous). As outlined in section 3.4, we have two grids, grid1 and grid2,

where we need to evolve Bg1 and Bg2 (algebraically related with the metric coefficient B).

The two grids can overlap, but we assume for simplicity that they merely touch at point

u = u0, i.e., grid1 covers the region u ∈ [0, u0] and grid2 covers u ∈ [u0, umax], the AdS

boundary being at u = 0.

From equation (3.6), the evolution equation for Bg1 (the case for grid2 is entirely

analogous) takes the form

∂tBg1 =
(4Bg1 + u∂uBg1)

(
−2u2∂tξ +Ag1u

4 + (1 + uξ)2
)

+ 2Ḃg1
2u

− φ20
3
u(4Bg1 + u∂uBg1) , (A.1)

which has the generic form

∂tBg1 = cg1(u, z)∂uBg1 + Sg1(u, z) , (A.2)

with

cg1(u, z) = −u2∂tξ +
1

2
Ag1u

4 +
1

2
(1 + uξ)2 − φ20

3
u2 . (A.3)

cg1(u, z) is locally the propagation speed and in the vicinity of u = u0 we can formally

write the solution of this equation (ignoring from now on the z dependence) as

Bg1(t, u0) ' f(u0 + cg1t) +

∫
Sg1

for any given function f .

Therefore, for cg1 > 0 (cg1 < 0), information is propagating from grid2 to grid1 (grid1

to grid2). In order to consistently solve this system, the procedure will then be to use

equation (A.1) (and the corresponding one for Bg2 on grid2) on all interior points (i.e.,

points where u 6= u0) and for the junction point u = u0 one checks the propagation speed

at each z point and copies the values according to the propagation direction:

• cg1 > 0

∂tBg2 |u=u0 = cg2(u0)∂uBg2 |u=u0 + Sg2(u0) , (A.4)

∂tBg1 |u=u0 =
1

u40
∂tBg2 |u=u0 , (A.5)

i.e., we copy the modes leaving grid2 to grid1.

• cg1 < 0

∂tBg1 |u=u0 = cg1(u0)∂uBg1 |u=u0 + Sg1(u0) , (A.6)

∂tBg2 |u=u0 = u40∂tBg1 |u=u0 , (A.7)

i.e., we copy the modes leaving grid1 to grid2.
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