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Abstract
We describe the use of Bayesian inference for quantitative comparison of voltam-

metric methods for investigating electrode kinetics. We illustrate the utility of the
approach by comparing the information content in both DC and AC voltammetry
at a planar electrode for the case of a quasi-reversible one electron reaction mech-
anism. Using synthetic data (i.e. simulated data based on Butler-Volmer electrode
kinetics for which the true parameter values are known and to which realistic levels
of simulated experimental noise have been added), we are able to show that AC
voltammetry is less affected by experimental noise (so that in effect it has a greater
information content then the corresponding DC measurement) and hence yields more
accurate estimates of the experimental parameters for a given level of noise. Signifi-
cantly, the AC approach is shown to be able to distinguish higher values of the rate
constant. The results of using synthetic data are then confirmed for an illustrative
case of experimental data for the [Fe(CN)6]3−/4− process.

1 Introduction
There are numerous voltammetric techniques and associated methodologies available for
evaluating the electrode kinetics of a simple quasi-reversible reaction of the kind

A
E0,k0,α−−−−⇀↽−−−− B + e−, (1)
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where species A and B are in solution, and E0, k0, and α are the reversible formal poten-
tial, standard heterogeneous charge transfer rate constant at E0 and the charge transfer
coefficient, respectively, assuming that the Butler-Volmer formalism is used to describe
the electron transfer process [3, 12, 26]. With any voltammetric technique, the strategy
adopted to determine the kinetics is to vary the external variable related to time (e.g.
sweep rate in DC voltammetry, frequency in AC voltammetry, electrode rotation rate in
hydrodynamic voltammetry). The direction and extent of variation of the voltammetric
response on the relevant time domain provide the diagnostic criteria for establishing the
type of mechanism involved. Analysis of the current-potential-time (frequency) relation-
ships allow the magnitude of E0, k0 and α to be evaluated [3, 13, 12]. An upper limit on
the measured k0 values is reached when the quasi-reversible theory becomes experimen-
tally indistinguishable from that predicted for a reversible i.e. a Nernstian process [32].
That is, when the electrode kinetics becomes sufficiently fast, the process obeys the laws
of thermodynamics rather than kinetics so the response becomes independent of k0 and
α.

DC cyclic voltammetry is probably the most commonly used technique to determine
k0 values. With this method, in which the DC potential applied to the working electrode
versus a reference electrode is cycled over a designated range at a known scan rate, v [24],
it was demonstrated over 60 years ago that the shape of the voltammetric response and
hence the kinetics are functions of a parameter Λ, defined as

Λ =
k0

(D1−α
A Dα

Bφv)
1
2

, (2)

where DA and DB are the diffusion coefficients of the oxidised and reduced species and
φ = F/RT , where F is Faraday’s constant, R is the universal gas constant, and T is
the absolute temperature. Assuming, as is typically the case, that DA = DB = D, this
reduces to

Λ =
k0

(Dφv)
1
2

. (3)

These authors then introduced the concept of kinetic zone boundaries which they sug-
gested could be summarized as

Reversible (Nernstian) Λ ≥ 15; k0 ≥ 0.3v
1
2 cm s−1

Quasireversible 15 ≥ Λ ≥ 10−2(1+α); 0.3v
1
2 ≥ k0 ≥ 2× 10−5v

1
2 cm s−1 (4)

Totally irreversible Λ ≤ 10−2(1+α); k0 ≤ 2× 10−5v
1
2 cm s−1,

assuming a temperature of 298 K.
Subsequently, it became widely recognized that the magnitudes of the non-faradaic

terms of uncompensated resistance (Ru) and double layer capacitance (Cdl) and hence the
cell time constant (RuCdl) provide significant constraints on the upper limit of k0 that can
be measured by DC cyclic voltammetry [3, 13]. Nevertheless, k0 values of about 1 cm s−1
are accessible at very high scan rates (> 10 KV s−1) when using DC cyclic voltammetry
with microelectrodes with molecular solvents containing sufficiently high concentrations
of supporting electrolyte, and data when analysis is based on detailed comparisons of
simulated and experimental data.

In the technique of electrochemical impedance spectroscopy (EIS) usually a sequence
of phase-randomized small amplitude sine waves are superimposed onto the constant
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potential. This method is also widely used to study electrode kinetics and generally
employs data analysis based on equivalent circuits to evaluate E0, k0, α, Ru, and Cdl.
Again, with this method, the conclusion has been reached that there is an upper limit
of accessible k0 values that can be defined semi-quantitatively (see [3], page 387). The
highest value of ω or shortest time domain that can be used with EIS, where ω = 2πf
(where f (Hz) is the frequency), is determined by the cell time constant which must
remain much smaller than the cycle period of the applied AC waveform. Under these
circumstances and with the diffusion coefficient DA = DB = D, the upper limit condition
is given by k0 ≤ (Dω

2
)
1
2 . Assuming that a frequency of 10 MHz can be used [10], so that

ω = 107s−1 and using a value of D = 10−5 cm2 s−1 reveals that k0 values in the 5 to 10
cm s−1 range should be accessible in aqueous electrolyte media, as indeed is the case [26].

In our laboratories we have expanded the use of AC voltammetry (whereby the linear
sweep used in DC Voltammetry is augmented by the superimposition of a sinusoidally
varying waveform) from its traditional small amplitude form to the case where the DC
components are filtered out and the AC current displayed and analyzed as a function
of DC potential [8] (as also effectively applies in EIS studies). By emphasizing the use
of large amplitude sine waves superimposed onto the DC ramp, we have demonstrated
that this approach provides access to even more powerful tools in quantitative electrode
kinetics [9, 18, 10, 15, 30]. In one approach to electrode kinetic evaluation, the aperiodic
DC component and higher order AC harmonics, that provide a key additional feature of
this form of AC voltammetry, are resolved by Fourier transform methods as part of a data
analysis strategy in which experimental and simulated data for individual harmonics are
compared in order to determine values of Ru, Cdl, E0, k0 and α. Significantly [10, 18], the
resolved higher order AC harmonics are devoid of the background capacitance current that
can severely restrict the use of DC and small amplitude AC voltammetry. Alternatively
the total current (DC plus AC) response derived from large amplitude AC voltammetry
may be directly used in a comparison of simulated and experimential data without the
need to introduce Fourier or any other form of analogue or digital filtering [25, 32]; this
direct approach does however require that the model used to mimic the potential depen-
dence of the double layer capacitance allows a sufficiently accurate representation of the
experimental data to be achieved, or that the magnitude of the background double layer
capacitance current is small, relative to the faradaic current that governs the electrode
kinetics. The frequencies of the applied sine waves we have used in large amplitude AC
voltammetry are usually much lower that the upper ones used in EIS and only in the
10 to 1000 Hz range. On the basis of the widely used time window and accessible rate
constant argument used above it would therefore not be anticipated that under our low
frequency conditions we would be able to measure k0 values approaching the upper limits
reported for DC cyclic voltammetry at microelectrodes with scan rates in the 10 KV s−1
region or by EIS with frequencies extending to the MHz region. The factor that comes
into play with the AC voltammetric method in either Fourier or total AC current versions
is not just the time window, but the very strong dependence of the magnitude of the AC
current, particularly in higher order harmonics, on k0 relative to the situation that applies
in DC cyclic voltammetry. This kinetically sensitive current magnitude feature also is one
that is not accessed in conventional forms of data analysis by EIS.

Having recognized on the basis of experimental observations that AC voltammetry can
be far more sensitive to measurement of fast electrode kinetics than inferred on the basis of
the time window and accessible rate constant type arguments [10], we now quantitatively
explore the relative sensitivity of DC and AC voltammetry on a broader base of argu-
ments. By introducing Bayesian inference methodology, we are able to demonstrate why
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access to very much faster k0 values is inherently possible when kinetic analysis utilizes
direct comparisons of the current-potential-time (frequency) simulated and experimental
responses. In order to provide a directly comparable evaluation of the relative kinetic sen-
sitivity of DC and AC voltammetry, we have undertaken analysis of the mathematically
purer total (AC plus DC) current version of the technique rather than analysis of Fourier
transformed versions of the technique which by definition employ filtered data and reject
noise [15] that introduce data enhancing characteristics not available in the DC method.

Mathematical Theory and Computational Methods

Background - Why Bayesian Methods?

Electrochemical measurement techniques are underpinned by mathematical models. For
any dynamic electrochemical system under study involving current flow, as in voltamme-
try, once a reaction mechanism has been postulated it is usually straightforward to write
down an equivalent system of partial differential equations (when the reactive species
are in solution phase), or ordinary differential equations (when the reactive species are
confined to a surface) [3]. The techniques of electrochemical interrogation (voltamme-
try, amperometry etc) are then modelled in the boundary and initial conditions of the
system. These equation systems can then be solved either analytically or (more com-
monly) numerically, typically to yield the current flowing in the system as a function
of time or (equivalently) potential. The question then arises as to how we best use the
mathematical model to estimate, from experimental data, the key parameters governing
the electrochemical system under interrogation (as described above, these parameters are
typically the rates of all reactions taking place, the corresponding equilibrium potentials
and transfer coefficients, the double layer capacitance and any uncompensated resistance).
This is known as the inverse problem.

Over the last 60 years, much effort has been devoted to deriving quantitative relation-
ships between the measured outputs of voltammetric experiments and the key parameters
governing those experiments in an effort to address this inverse problem. Early meth-
ods typically relied on surrogate metrics (such as the peak current in DC linear sweep
voltammetry or the peak separation in DC cyclic voltammetry) that could be related
algebraically to the system parameters, but such simple summary statistics are typically
very susceptible to both measurement error and experimental noise [3]. Another common
approach is to solve the underlying mathematical equations numerically and then heuris-
tically adjust (or "tune") the parameters in the model (and re-solve) until a "good fit"
to the experimental data is achieved (often judged by eye) [31]. As computing power has
increased over the last 30 years, it has been possible to begin to consider a more auto-
mated approach to the solution of inverse problems in electrochemistry [11]. The paper by
Bieniasz and Speiser [6] gives an excellent review of a wide range of parameter estimation
approaches introduced into the electrochemistry literature, and itself introduces a method
for assessing the statistical errors arising in parameter estimates from DC voltammetric
studies. The usual approach is to set up an objective function which measures the "dis-
tance" between the experimental data (typically a time trace), and data simulated from
a model that uses an initial guess for the parameters of interest. Optimisation techniques
are then used to adjust (automatically) the values of the parameters to minimise this
distance metric (which is usually the Euclidean or least squares distance) and yield the
"best fit" to the experimental data. Whilst this optimisation approach gives (at least
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for "well-posed" problems) the globally optimal solution for the parameters of interest, it
generally gives only point estimates of the parameter values. Whilst these are valuable, no
measure of the accuracy of the values is provided, although one can be estimated by mak-
ing assumptions about the local curvature of the objective function at the optimal value
[6], or by using a bootstrapping technique such as that described previously by Bieniasz
and Rabitz [5] and in one of our previous papers [25]. However, the former case relies on
an assumption of symmetry of the distribution of the parameters (and typically requires
complex symbolic manipulation when dealing with differential equations), and the latter
case (bootstrapping) is computationally very expensive (since it involves repeated solution
of the full inverse problem) unless combined with approximation techniques that obviate
the need to solve the underlying system of differential equations repeatedly [5].

In other fields of science, and in other areas of chemistry [2, 23, 21], an increasingly
common approach is to place the inverse problem in a Bayesian framework. This then
admits the use of computational approaches such as Markov Chain Monte Carlo (MCMC)
methods to provide an estimate not only of the optimal parameter values but also of the
likely spread of those parameters about that optimum; this is achieved by direct sampling
of the joint probability distributions of the parameters and therefore requires only repeated
solution of the forwards problem (albeit typically tens of thousands of times). To our
knowledge, this approach of directly addressing the estimation of the distribution of the
recovered parameters in voltammetric experiments using Bayesian methods has not been
described previously. In an excellent tutorial paper in 2009 on the use of Bayesian methods
for chemistry data, Armstrong and Hibbert [2] included an example (see sections 5.1
and 5.2) involving the use of electrochemical sensing to determine the concentration of
lead in drinking water, but the parameter estimation was based on a simple algebraic
hyperbolic relationship between the system parameters and the measured current, rather
than the solution of an underlying system of differential equations that describes the
physical processes of the whole system, as we describe here. Similarly, in the PhD thesis of
Samuel [29], Bayesian methods are used to recover distributions of surrogate metrics (such
as the peak and minimum current) derived from voltammetric data analysing the effects of
levels of carbon on the electrical output of battery power sources. The Bayesian approach
of parameter estimation using Gaussian Process regression to estimate parameter values
in voltammetric experiments has also been described [33, 7], but again these do not allow
direct sampling of the posterior distributions of the parameters of interest. For a more
comprehensive review of the use of Bayesian approaches in chemistry see [2].

In this paper, we therefore address the direct sampling of the posterior distribution of
the parameters of interest by use of Bayesian approaches. As we will show, our approach
will allow us to quantify the effects of random experimental noise on the values of the
recovered parameters. Bayesian inference also comes equipped with several decades of
theoretical underpinning that allows related problems such as model selection (i.e. which
of two or more competing models best fits the experimental data) and optimal experimen-
tal design (e.g. what is the best input signal to give the optimal amount of information
about a parameter set of interest) to be addressed. This approach is therefore ideal when
attempting to assess the relative information content contained within two signals arising
from different experimental interrogations of the same system, as in the case of comparing
DC and AC voltammetry that is our primary interest here.

In this paper we therefore give an outline of the background theory to the use of
the Bayesian methods in electrode kinetics. We will illustrate the power of the method
by comparing the information content of the current-potental (time) data in the case of
DC and AC voltammetry at a planar electrode for the simplest case of a quasi-reversible
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one-electron reaction mechanism of Eq.1. The power of the Bayesian approach becomes
immediately obvious from this comparison since we are able to show that AC voltammetry
is less affected by purely random experimental noise, so that in effect it has a greater
information content then the corresponding DC measurement, and hence yields more
accurate estimates of the experimental parameters. We also show that the AC approach
can therefore yield accurate estimates across a wider range of experimental parameters,
and in particular can distinguish higher values of the rate constant k0. The results of
using a MCMC approach to solving the inverse problem are given for both synthetic data
(i.e. simulated data for which the true parameter values are known and to which realistic
levels of simulated experimental noise have been added), and for an illustrative case of
experimental data for the one-electron reduction of [Fe(CN)6]3− to [Fe(CN)6]4− [25]. By
using synthetic data, we are also able to quantify (for the first time) the improvements in
accuracy in parameter estimation resulting from using the technique of AC compared to
DC voltammetry in the presence of purely random (in this case, Gaussian) experimental
noise.

2 Experimental methods
Details of the single experimental data set used in this paper has been described previously
in [9, 25]. In summary, this electrochemical experiment was performed in standard three-
electrode cell, using a glassy carbon disk as the working electrode, and all potentials
are reported versus an Ag/AgCl reference electrode. The surface area of the electrode
was estimated as 0.070cm2 from the Randles-Sevcik relationship and data obtained by
measuring DC voltammograms for oxidation of Ferrocene at a known concentration in
acetonitrile 0.1M(n-Bu)4NPF6 electrolyte. The value of the diffusion coefficient, D, of
[Fe(CN)6]

3−/4−was initially determined to be 7.2× 10−6 cm2s−1, by analysis of the semi-
integrals of background corrected DC cyclic voltammograms, taking into account edge
diffusion effect, and then confirmed by simulations of cyclic voltammetric data. In this
paper we make use of data set 1 in reference [25] for the reduction of aqueous 1 mM
[Fe(CN)6]3− in 3M KCl electrolyte.

3 Theory

3.1 Modelling

Throughout this paper, we consider only the single electron transfer process given by Eq. 1,
which is the simplest possible example of an electrochemical reaction, and is the process
governing our chosen experimental system. The mathematical model for this reaction
mechanism is given below. Here we assume that both convection and migration can be
neglected by virtue of using a macrodisk stationary electrode, and an excess of supporting
electrolyte respectively. We assume equal diffusion coefficients for each species A and B
(DA = DB = D) and so need to solve for the concentration of only one of the species
(since the concentrations cA, cB of species A and B respectively, satisfy cA = c∞ − cB,
where c∞ is the bulk concentration of species A) and we choose to solve for species A.
Then by Fick’s second law we obtain the equation

∂cA
∂t

= D
∂2cA
∂x2

, (5)
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where x is distance from the electrode surface and t is time. The initial and boundary
conditions are

cA(x, 0) = c∞

cA → c∞, as x→∞, t > 0. (6)

At the electrode surface, x = 0, for t > 0, we have the conservation and flux conditions

D
∂cA
∂x

=
If
FS

, (7)

along with the Butler-Volmer condition

D
∂cA
∂x

= k0

[
cA exp

(
(1− α)

F

RT
(Eeff(t)− E0)

)
−(1− cA) exp

(
−α F

RT
(Eeff(t)− E0)

)]
.

(8)

Here, If is the faradaic current, S is the electrode area, and Eeff(t) is the effective applied
potential (defined below).

To complete the model, we need to define the potential to be applied at the electrode
surface (x = 0). If we define Eapp(t) to be the applied potential, then for the case of a DC
linear ramp we have

Eapp(t) = Estart + vt, 0 ≤ t ≤ tmax

and for AC voltammetry we have

Eapp(t) = Estart + vt+ ∆E sin (ωt) (9)

where v is the sweep rate, Estart is the initial potential, tmax is the end time of the exper-
iment, and for the AC case, ω is the radial frequency and ∆E the amplitude of the sine
wave. The effective applied potential can now be defined as

Eeff(t) = Eapp(t)− Edrop = Eapp(t)− ItotRu

where Edrop models the effect of uncompensated resistance, Ru. Itot is the total (measured)
current, and combines the faradaic current and the background capacitive current, Ic,
which can be modelled as

Ic = Cdl
dEeff

dt
, (10)

where Cdl is the double layer capacitance (assumed constant in this work), and then

Itot = If + Ic. (11)

As described in the introduction in Eqs. 4, for the case of DC voltammetric methods
the values of k0, D and v determine whether the reaction is fully-reversible (large Λ),
quasi-reversible (intermediate Λ), or irreversible (small Λ).

Equations 5–11 are non-dimensionalised as described in the supplementary informa-
tion. The resulting non-dimensional system of equations is solved using an implicit finite
difference method with an exponentially expanding grid (as we have described in full de-
tail previously - see [31]). Having derived the governing partial differential equations and
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boundary conditions for this simplest problem of the reaction mechanism in Eq. 1 we can
see mathematically that the mechanism is governed by five parameters (k0, E0, α, Ru, Cdl),
and we will collectively denote these parameters by the vector θ. The inverse problem that
we wish to solve can be defined as finding the best possible approximation to θ given our
measured experimental output trace of the current Idatatot , versus potential, together with
an estimate of the effect of experimental noise. This will be achieved by recovering the
marginal posterior distributions of each parameter that are induced by the experimental
noise.

Since this paper addresses the issue of the relative information content of DC and AC
forms of voltammetry and therefore of the relative ability of these two forms of voltamme-
try to address the inverse problem, in Figure 1 we remind the reader of the way in which
each of these four parameters influences the measured current in the DC case (changes
in E0 simply shift the signal to the left or right and so are not included). The similarity
in the effects of some of these parameters is clear, and that differing combinations of
parameters can have similar effects on the overall current should also be clear (we would
highlight, in particular, that changes in both α, and Ru can be seen to be correlated with
changes in k0, i.e. the effect of decreasing k0 will be similar to the effect of increasing
Ru and α by some suitable amount). The equivalent figure for AC voltammetry using a
small amplitude signal is included in the supplementary information (see Figure S1).

In the Supplementary Information of a previous paper [25] we derived this inverse
problem in the least squares sense. The process described in [25] involved making some
initial guess, θ0 say, of the five parameters of interest, and then using these to generate a
simulated output trace, Imodel

tot , by solving our system of Equations 5–11 above. We then
compare how far apart the measured and simulated traces are by taking the least squares
difference between them. Assuming that we have T data points, and we solve for the
simulated current at the same T points, the least squares difference is calculated as

OLS =
T∑
t=1

(
Idatatot,t − Imodel

tot,t

)2
, (12)

where OLS is usually termed the least squares objective function. The inverse problem is
then to find the value of the parameters θ0 that minimises this objective function. This
is an optimisation problem and there is available a wide range of algorithms and software
to solve this type of problem (in our previous work we used a Quasi-Newton method that
is available within the NAG Library [22]).

3.2 Parameter Inference

In describing our approach to the parameter recovery problem we will follow the Bayesian
Inference approach that we have described previously in a paper related to an applica-
tion in cardiac cell biology [23]. To aid our description, we first introduce some simpler
notation. We denote by y = (y1, . . . , yT ) our experimental data trace, that is, the total
measured current Idatatot, t at each time point. Throughout, we assume that all experimen-
tal measurements are subject to normally distributed random noise with mean zero and
standard deviation σ, and that this is the only source of error in our data. In a previous
paper (see Figure 4 and Table S2 of [25]) we demonstrated through analysis of experi-
mental data, that this is a reasonable assumption, and that typical values of the standard
deviation of the experimental noise are in the range 1% to 2% of the peak current.
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Figure 1: Plots that show the effect of changing the designated parameters in simulated
currents obtained as a function of potential from numerical solution of the model equations
in response to a linear sweep of the DC potential. All non-dimensional parameters take
the values k0 = 5, α = 0.5, E0 = 0, Cdl = 0.0037, and Ru = 2.74, unless indicated
otherwise. Assuming values of the diffusion coefficient of D = 2× 10−5 cm2 s−1, electrode
area S = 1 cm2, sweep rate v = 1 V s−1, and c∞ = 1 mM at a temperature of 298 K, these
values correspond to dimensional values of Ru = 26.15 Ω, Cdl = 10−5 F, and k0 = 0.140
cm s−1.
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3.3 Bayes’ rule

We have assumed in developing our model of the underlying electrochemical system cap-
tured in Equations 5 to 11 above that the observed experimental data y is a function of
the parameters of interest θ. We now make the further assumption that the parameters θ
are themselves drawn from a probability distribution, and we frame our inverse problem
as trying to find that probability distribution for θ given the observed values of the data y.
We denote this probability distribution as P (θ|y), with the vertical line indicating that
the values of y are given. In Bayesian inference, the distribution P (θ|y) is termed the
posterior probability density or posterior distribution, since it is the inferred distribution
of θ as a result of having observed the data y, and it is this distribution that we want to
approximate.

With these definitions in place we, we can now make use of Bayes’ rule which states

P (θ|y) =
P (y|θ)P (θ)

P (y)
. (13)

In Equation (13), P (θ) is called the prior distribution of θ and is chosen to give the
best representation of any prior beliefs or knowledge that we have before observing any
experimental data about the distribution of θ.

The distribution P (y|θ) is the probability density of the experimental data y given a
model parameterized with parameters θ, and is termed the likelihood of the data given this
particular set of parameters θ; assuming that we know the distribution of the errors in
the data then this likelihood can be calculated, as described below. P (y) is a normalizing
term (which is the integral of all possible densities P (y,θ) = P (y|θ)P (θ) over all values
of θ)), and ensures that the posterior density P (θ|y) integrates to 1. In practice, the
calculation of this normalising term (which can be very computationally expensive) is
avoided by considering ratios of the likelihood.

3.4 Calculating the prior

In most experimental situations in electrochemistry, a priori we will have only a rough
idea of what the values of the parameters are likely to be. In this situation it is usual
to assume that the possible values of the parameters are distributed uniformly across
suitably chosen intervals large enough that they are known to contain the true parameter
value (that is we are choosing an "uninformative" prior). Their joint prior distribution is
then given by

P (θ) =

{
c, {θ} in some suitably chosen 5-dimensional hypercube,
0, otherwise, (14)

where c is a non-zero finite normalizing constant. In practice, this simply means that we
place sensible physical bounds on our possible choices of the five parameter values to be
investigated. For example, α is limited to the range 0 < α < 1.

3.5 Calculating the likelihood

As noted earlier, we have previously shown the experimental error present in the data from
our voltammetric studies to be normally distributed [25], with zero mean and standard
deviation on the order of 1− 2% of the peak current. Rather than assuming a particular
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value for the standard deviation, σ, of the noise, we can also incorporate it into our
inference problem. Writing the likelihood as

L(θ|y) = P (y|θ), (15)

then Bayes’ rule (in Equation (13)) can be rewritten in terms of the likelihood as

P (θ|y) ∝ P (θ)L(θ|y). (16)

When the prior distribution is assumed to be uniform (as in this study), then we can
make inferences based on just the likelihood, as the prior P (θ) is either constant or zero.

Since we assume that the errors at each time point are independent, the conditional
probability density of observing the whole experimental trace from time sample 1 to time
sample T given the model parameter set θ is simply the product of the probability density
functions at each time point

L(θ|y) =
T∏
t=1

P (yt|θ). (17)

With our further assumption that the experimental noise is also normally distributed with
a mean of zero and variance of σ2, the likelihood can be expressed as

L(θ|y) =
T∏
t=1

N (yt|ft(θ), σ2) =
T∏
t=0

1√
2πσ2

exp

(
−(yt − ft(θ))2

2σ2

)
, (18)

where for notational simplicity we have set ft(θ) = Imodel
tot,t . Since we do not in practice

know the value of σ2, the standard deviation of the experimental noise, we will also find
this additional parameter value as part of the inverse problem (i.e. we actually estimate
six parameters in total).

3.6 Generating synthetic data

In our case ft(θ) is the predicted current at each time point given a particular set of
parameter values, which is calculated by solving Equations 5 to 11. For most of the
results contained in this paper we will make use of "synthetic" experimental data, i.e.
we will generate experimental data sets by solving Equations 5 to 11 for a chosen set of
values of θ, and then we will add randomly generated Gaussian noise at each point with
mean zero and standard deviation proportional to the maximum current (typically we
will chose a standard deviation in the range 0.5% to 2% of the peak current value).

3.7 Maximising the likelihood

Finding the values of the parameters that maximise the likelihood is a classical statistical
method for determining point estimates of parameters. As we described in the earlier
literature review, under certain conditions, we can assume asymptotic normality of these
maximum likelihood estimators and the Fisher Information matrix can be shown to ap-
proximate the covariance matrix of the asymptotic distribution of the maximum likelihood
estimator [27], hence allowing us to to obtain confidence intervals for the parameter es-
timates. However, this approach has two major disadvantages. Firstly, it requires that
we can diffferentiate the likelihood with respect to the parameters; in most cases in elec-
trochemistry where the underlying model is a system of ordinary or partial differential
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equations this is complex and will require the use of automated algebraic manipulation
software, and the calculation will need to be repeated for every possible reaction mecha-
nism. Secondly, this approach assumes that the distributions of the parameter values are
symmetric but we know for the model under consideration here, for example, that the
distribution of k0 will be asymmetric for large enough values of k0. Instead in this paper
we utilise the Bayesian approach to obtaining the posterior distribution P (θ|y) via the
MCMC approach.

3.7.1 Markov Chain Monte Carlo parameter inference

To obtain a sample from the posterior distribution P (θ|y) we choose to use an efficient
method based on the well-known Metropolis-Hastings algorithm [20]. Comprehensive de-
scriptions of the theory of MCMC can be found in the statistics literature (see for example
[17]). However, since this is the first time (to our knowledge) that MCMC methods have
been described in the electrochemistry literature for the estimation of electrode kinetic
parameters in voltammetry, we give a brief outline of how the method works here.

Our aim is to find an approximation to the posterior distribution P (θ|y) by drawing
a finite (but sufficiently large to be accurate) sample from this distribution. To do this
we simulate a Markov Chain whose limiting distribution (as the sample size increases)
is the required posterior distribution using the well-known Metropolis-Hastings algorithm
[20]. In this algorithm, candidate parameter sets are proposed from a proposal distribution
q(θcand|θi) which depends only on the previously accepted parameter set θi. Throughout
this paper we will use a multivariate normal distribution as our proposal distribution.
Any candidate parameter set θcand is then compared to the current parameter set θi by
calculating the ratio of the posterior of the two parameter sets, and the value of the ratio
determines whether or not the proposed parameter set is accepted as part of the MCMC
chain.

If the candidate parameter set has a greater posterior density value than the existing
parameter set then it will be added to the Markov chain, that is θi+1 = θcand. Otherwise,
the parameter set is accepted with a probability equal to the ratio of posterior density
values which can be evaluated using Eq. 16. If the proposed parameter set contains any
parameters outside the range of the prior, or violates any of the conditions on the param-
eters that we have imposed, the parameter set is assigned an acceptance probability of 0,
i.e. it is immediately rejected, and the previously accepted parameter set is added to the
Markov chain — that is, θi+1 = θi. Otherwise, (making use of Eq. 16) a proposed param-
eter set generated from a multivariate normal distribution is accepted with probability, r,
given by

r = min

{
L(θcand|y)

L(θi|y)
, 1

}
. (19)

In the above equation, we have cancelled the prior distribution since it is constant on
parameters that are within range (see Eq. 14). If the proposed parameter set is rejected
(with probability 1− r), then the previously accepted parameter set is again added to the
Markov chain — that is, θi+1 = θi.

Since the likelihoods for large samples are extremely small, in practice we work with the
natural log of the likelihood (which is a monotonic increasing function and is maximised
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by the same value of θ as the likelihood), giving:

l(θ|y) = log(L(θ|y))

= −T
2

log(2πσ2)− 1

2σ2

T∑
t=1

(yt − ft(θ))2

= −T
2

log(2π)− T log(σ)− 1

2σ2

T∑
t=1

(yt − ft(θ))2 (20)

Since the first term on the RHS of Equation (20) is constant for all proposed θ, it will
cancel with itself when we take differences of log-likelihoods in the Metropolis-Hastings
algorithm. We therefore define the simpler log-likelihood as

l(θ|y) = −T log(σ)− 1

2σ2

T∑
t=1

(yt − ft(θ))2, (21)

and this is the quantity that is calculated in the algorithm given in the supplementary
information (note that we retain the terms in σ since this parameter will also be esti-
mated as part of the inference problem). In that algorithm, we use a covariance matrix
adaptive version of the Metropolis-Hastings Algorithm which helps identify the directions
in parameter space which have the highest likelihood values, the algorithm is described
in [19]. At each iteration of the algorithm, the covariance matrix of the multivariate
normal distribution is updated and a scalar value is also updated to define the width of
the distribution. In the results presented in this paper, we run our MCMC chains for
40,000 samples and discard the first 10,000 samples as ‘burn in’ (for an introduction to
MCMC see [17]). To ensure efficiency in our Monte-Carlo sampling, we first find the
location of the optimum using a standard global minimisation algorithm (we use both
the fminsearch algorithm and the cma-es algorithms that are available in the Matlab [1]
software package), which we use as a seed point for the MCMC algorithm as described in
the supplementary information.

In the results section, these samples are shown as histograms which illustrate the
nature of the posterior distribution.

4 Results
To illustrate the advantages of taking a Bayesian approach we first consider its use in
recovering the parameter values of interest from a standard DC linear sweep voltammetry
experiment. We show that by recovering the posterior distribution we have a direct
means of assessing both the accuracy with which each parameter can be recovered from
the data in the presence of known levels of (initially synthetic) noise, and the impact of
increasing levels of experimental noise on that accuracy. This then gives us a direct means
of comparing the information content of standard DC linear sweep voltammetry and AC
voltammetry.

4.1 Bayesian inference in DC linear sweep voltammetry

In the left hand panel of Figure 2 we show the simulated current obtained by solving
Equations 5–11 for the case of linear sweep voltammetry (i.e. in the absence of a sinusoidal
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oscillation). We choose to set the non-dimensional parameters k0 = 5, E0 = 0, α = 0.5,
Ru = 2.74, and Cdl = 0.0037 (with standard values of other parameters, e.g. D = 2×10−5

cm2 s−1, S = 1 cm2, c∞ = 1 mM, and v = 0.1 V s−1, this equates to dimensional values
of k0 ≈ 0.14 s−1, R ≈ 25 Ω, Cdl ≈ 10 µF cm−2) so that we are in the middle of the
quasi-reversible region and so it should be possible to recover all parameters from the
data set. The red curve gives the simulated current and the blue curve shows the same
simulated current but with added Gaussian noise with mean zero and standard deviation
equivalent to 0.5% of the maximum value of the current.
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Figure 2: Current-potential traces obtained by solving 5–11 with non-dimensional param-
eters k0 = 5, E0 = 0, α = 0.5, Ru = 2.74, and Cdl = 0.0037 (with standard values of other
parameters, e.g. D = 2 × 10−5 cm2 s−1, A = 1 cm2, c∞ = 1 mM, and v = 0.1 V s−1,
this equates to dimensional values of k0 ≈ 0.14 s−1, R ≈ 25 Ω, Cdl ≈ 10 µF cm−2). The
left panel shows the case for DC linear sweep voltammtry, and the right trace shows the
case of AC voltammetry where a sinusoidal oscillation with non-dimensional amplitude
∆E = 4.0 and frequency Ω = 16π (corresponding to dimensional values of approximately
150mV and 15 Hz) has been added to the linear ramp. In both cases, the solid red curve
shows the noise-free curve, whilst the the blue curve shows the same simulated current
but with added Gaussian noise with mean zero and standard deviation equivalent to 0.5%
of the maximum value of the current. Note that the red and blue traces are effectively
indistinguishable at the selected resolution for the AC case.

Figure 3 shows the results of using this simulated noisy data trace (i.e. the blue curve
in the left panel of Figure 2) in our MCMC parameter recovery algorithm. The diagonal
of the figure gives the plots of the posterior distributions for each of the five parameters
contained in θ = (k0, α, Cdl, Ru, E0) (we omit the plots of the recovered distribution of
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the standard deviation, σ). Each of these distributions can be seen to be symmetric and
appear approximately Gaussian in shape. On the sub-diagonals of the figure we give
"biplots" of each of the pairs of variables - these allow us to observe whether there are
any significant correlations between pairs of parameters.

In the third row of Table 1, we give the mean values of the recovered parameters
from these posterior distributions (calculated as the mean of the samples shown on the
diagonals in Figure 3), together with their standard deviations to give some measure
of accuracy. As can be seen the values recovered are close to the true values used in
generating the simulated trace. In Figure 4 and Table 1 we illustrate the effect of varying
the amount of experimental noise by reducing the standard deviation of the simulated
experimental noise from 2% of the maximum value of the current, to 1% and then to
0.5%. As can be seen, the width of the recovered posterior distributions decreases as
expected, with the standard deviation of the recovered distribution for k0, for example,
decreasing from approximately 22% of the true value, to 13% to 6% i.e. it roughly halves
as the magnitude of the experimental noise halves.

Noise % k0 (s.d.) α (s.d.) Cdl (s.d.) (×103) Ru (s.d.) E0 (s.d.) σ
2 6.32 (1.08) 0.541 (0.037) 3.663 (0.064) 2.758 (0.031) 0.0176 (0.0105) 0.0199
1 6.13 (0.67) 0.546 (0.023) 3.643 (0.034) 2.764 (0.019) 0.0151 (0.0063) 0.0099
0.5 5.21 (0.30) 0.511 (0.011) 3.718 (0.016) 2.741 (0.010) 0.0046 (0.0040) 0.0050

Table 1: The mean values of the recovered parameters from the posterior distributions
together with their standard deviations (in brackets) for the DC case as the amount of
experimental noise is reduced from 2% of the maximum value of the current, to 1% and
then to 0.5%. Row 3 corresponds to the results shown in Figure 3. The default non-
dimensional values of k0 = 5, α = 0.5, E0 = 0, Ru = 2.74 and Cdl = 0.0037 were used to
generate the synthetic data.

5 Comparison with AC Voltammetry
In this section we give similar results to the DC case but this time using an input signal
with a large amplitude sine wave oscillation added to the linear DC ramp, as illustrated
in the right hand panel of Figure 2. The illustrative case that we choose uses a value of
the sine wave frequency of non-dimensional Ω = 16π in Equation (9), and an amplitude
∆E of 4.0 (in dimensional units assuming a sweep rate of 0.1 V s−1, this corresponds to
a frequency of around 15Hz and an amplitude of about 150 mV - that is a relatively high
frequency and a large amplitude). The optimal choice of AC parameter values is discussed
in the next section. We have again chosen a value of standard deviation of 0.5% of the
maximum current for the experimental Gaussian noise distribution in Figure 5 (although
it should be noted that this is actually a larger absolute level of noise than we used in the
above DC case since the maximum current is 3 times larger in the AC case).

As can be seen in Figure 5, a similar pattern of parameter recovery is observed for
the AC case, although the widths of the recovered distributions are much narrower than
in the DC case. The degree of improvement in the accuracy of the recovered parameters
can be seen in Figure 6 and Table 2, which give the comparable AC results to the DC
results shown in Figure 4 and Table 1. Again, to choose k0 as an example, the standard
deviation of the error for the AC case is just 0.84% of the true value with noise levels at
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Figure 3: The results of the parameter recovery process for the DC case. On the diagonal
are shown the posterior distributions for each of the five parameters of interest. On the
sub-diagonals of the figure we give biplots of each of the pairs of variables. The default
non-dimensional values of k0 = 5, α = 0.5, E0 = 0, Ru = 2.74 and Cdl = 0.0037 were used
to generate the synthetic data.
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Figure 4: The effect of reducing the amount of experimental noise on the DC signal from
2% of the maximum value of the current, to 1% and then to 0.5%. The default non-
dimensional values of k0 = 5, α = 0.5, E0 = 0, Ru = 2.74 and Cdl = 0.0037 were used to
generate the synthetic data.
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Figure 5: The results of the parameter recovery process for the AC case. On the diagonal
are shown the posterior distributions for each of the five parameters of interest. On the
sub-diagonals of the figure we give biplots of each of the pairs of variables.The default
non-dimensional values of k0 = 5, α = 0.5, E0 = 0, Ru = 2.74, Cdl = 0.0037, ∆E = 4.0,
and Ω = 16π were used to generate the synthetic data.
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2% of the maximum current, which drops to just 0.2% with a noise level of 0.5% of the
maximum current. For all parameters, the effect of random noise on the recovered value
is clearly scaling linearly. The results in Tables 1 and 2 also allow us to assess the degree
to which the recovery process for each parameter is affected individually. At the lowest
level of noise, from the DC signal we can recover k0 with an standard deviation of 6% of
the true value, α to 2.2% of its true value, Cdl to 0.42%, and Ru to 0.36%. The equivalent
figures for the AC parameter recovery are 0.21%, 0.14%, 0.02%, and 0.02%, so that the
AC approach is much less affected by realistic levels of experimental noise (by a factor of
between 15 and 30 depending on the parameter).

Noise % k0 (s.d.) α (s.d.) Cdl (s.d.) (×103) Ru (s.d.) E0 (s.d.)
0 4.851 (0.0420) 0.5085 (0.0031) 3.698 (0.0029) 2.734 (0.0028) 0.01058 (0.0026)
1 4.972 (0.0217) 0.4967 (0.0015) 3.699 (0.0014) 2.739 (0.0014) 0.00361 (0.0013)
0.5 4.960 (0.0107) 0.4999 (0.0007) 3.702 (0.0007) 2.738 (0.0007) 0.00080 (0.0007)

Table 2: The effect of reducing the amount experimental noise on the AC signal from 2%
of the maximum value of the current, to 1% and then to 0.5%. Row 3 corresponds to the
results shown in in Figure 5). The default non-dimensional values of k0 = 5, α = 0.5,
E0 = 0, Ru = 2.74, Cdl = 0.0037, ∆E = 4.0, and Ω = 16π were used to generate the
synthetic data.

It should be noted that all of the above results are for single realisations of the process
i.e. we generate a single noise trace from the appropriate Gaussian distribution and then
add this to the simulated trace and recover the parameters using the algorithm given in
the supplementary information. Any single realisation may give slightly biased values
of the recovered parameters or may be unduly affected by random outliers. In Table
3 we give the results of 3 repeated realisations of this process, showing the recovered
values of the mean and standard deviation of the recovered posterior distribution for each
parameter. As can be seen, these show a remarkable degree of consistency across the three
realisations. This consistency can be explained as follows. The simulated experimental
noise is truly Gaussian and is added at every simulated time point. As we explain in the
Supplementary Information, we ensure accuracy in the simulated solution of the partial
differential equation defined in Eq. 5 by using 20000 time points. The recovery process
then fits the best curve through the noisy data trace using the algorithm given in the
Supplementary Information, and this process includes fitting the best fit of the noise
distribution. With (in effect) 20000 samples available from this distribution, we can fit
the noise very accurately, and the average effect of this noise on the other recovered
parameters is relatively small.

The standard deviations on the recovered parameter values are therefore a measure
only of the degree to which random experimental noise affects the recovery process and,
as we have shown, with this number of data points the recovery process, at least for
the AC signals, is very robust to this type of noise. In the Experimental section later
in this paper, we demonstrate that the same is true for experimental data, where the
sampling rate is actually even higher (i.e. we sample at even more time points). It is,
however, worth noting that whilst this Bayesian approach gives us a very robust method
of recovering parameters from noisy data; it does not tell us anything about any other
sources of either stochastic or deterministic variability within the system. This system-
level variability is typically caused by small differences in experimental conditions between
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Figure 6: The mean values of the recovered parameters from the posterior distributions
together with their standard deviations for the AC case as the amount of experimental
noise is reduced from 2% of the maximum value of the current, to 1% and then to 0.5%.
The default non-dimensional values of k0 = 5, α = 0.5, E0 = 0, Ru = 2.74, Cdl = 0.0037,
∆E = 4.0, and Ω = 16π were used to generate the synthetic data.
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repeated runs of the "same" experiment (examples include changes in the electrode surface
due to polishing, slight variations in temperature, changes in concentration due to solvent
evaporation or instability, variations in the potential of a reference electrode etc.), and
these must be investigated separately.

k0 (s.d.) α (s.d.) Cdl (s.d.) (×103) Ru (s.d.) E0

4.993 (0.0109) 0.4969 (0.00079) 3.704 (0.00071) 2.740 (0.00069) 0.0009567 (0.000661)
4.960 (0.0107) 0.4999 (0.00078) 3.703 (0.00073) 2.738 (0.00070) 0.0008020 (0.000659)
4.994 (0.0107) 0.4971 (0.00077) 3.701 (0.00072) 2.740 (0.00069) 0.0003846 (0.000641)

Table 3: The results of 3 repeated realisations of the recovery process for the AC case using
a noise level of 0.5%, showing the recovered values of the mean and standard deviation
of the recovered posterior distribution for each parameter. The default non-dimensional
values of k0 = 5, α = 0.5, E0 = 0, Ru = 2.74, Cdl = 0.0037, ∆E = 4.0, and Ω = 16π were
used to generate the synthetic data.

5.1 Choice of parameter values in AC Voltammetry

In comparing the information content in the DC and AC signals above we have used a
single set of (non-dimensional) parameter values to generate the AC signals (Ω = 16π and
∆E = 4.0). In this section we justify this choice by demonstrating how changes in these
two parameters affect the degree of accuracy in the recovered parameters. In all cases we
use a standard deviation of the Gaussian noise of σ = 0.5% of the maximum current.

In Figure 7 we give the recovered posterior distributions for k0, α, Cdl and Ru as the
frequency of the sinusoidal oscillation is varied from Ω = 4π to 32π, using a value of
∆E = 4.0 in each case (i.e. a large amplitude case). In Table 4 we give the corresponding
values of the means of these distributions and the standard deviations about these mean
values (in the table we also include the recovered distribution for E0). For comparison,
we also include in the first row of Table 4 the equivalent values for the DC signal. As
can be seen, for all values of Ω, the standard deviation of the recovered distribution is
much smaller than for the DC case. In both the AC and DC case, the parameter that
is most affected by experimental noise is k0, and it can be seen that the accuracy of the
recovery of this parameter increases with increasing Ω up to Ω = 16π; by this point the
s.d. of the recovered distribution for k0 is just 0.2% of the true value. To improve the
value further we would need to improve the numerical accuracy of the underlying solution
to the partial differential equation. For example, in the case of Ω = 64π, we doubled the
number of timesteps used in solving Eq. 5 with the result that the standard deviation on
all recovered parameters decreased with, for example, that for k0 decreasing to 0.0056.

The results in Table 4 justify our choice of Ω = 16π, whilst those in Figure 8 and Table
5 justify our choice of ∆E = 4.0 (with, in these cases, all results being generated at a fixed
value of Ω = 16π and σ = 0.5% of the maximum current). Similarly to the variation with
Ω, the accuracy of k0 is the most dependent on ∆E and the improvements in the standard
deviation of the recovered distribution increase with increasing ∆E, but are tailing off by
∆E = 4.0. In the next section, where we look at the effect of changing parameter values
on the parameter recovery process, we restrict ourselves to comparing the DC case with
the AC case using just this single set of values of ∆E = 4.0 and Ω = 16π.
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Figure 7: The effect of varying the frequency, Ω of the AC oscillation on the recovered
parameters distributions. The default non-dimensional values of k0 = 5, α = 0.5, E0 = 0,
Ru = 2.74, Cdl = 0.0037, and ∆E = 4.0 were used to generate the synthetic data.
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Figure 8: The effect of varying the amplitude, ∆E of the AC oscillation on the recovered
parameters distributions.The default non-dimensional values of k0 = 5, α = 0.5, E0 = 0,
Ru = 2.74, Cdl = 0.0037, and Ω = 16π were used to generate the synthetic data.
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Ω k0 (s.d.) α (s.d.) Cdl (s.d.) (×103) Ru (s.d.) E0

0 5.206 (0.2955) 0.5115 (0.0111) 3.718 (0.016) 2.741 (0.0105) 0.004621 (0.0039)
4π 5.028 (0.0296) 0.4992 (0.0009) 3.697 (0.002) 2.742 (0.0024) -0.001325 (0.0005)
8π 5.083 (0.0204) 0.5011 (0.0009) 3.703 (0.001) 2.746 (0.0015) 0.000262 (0.0005)
16π 4.960 (0.0107) 0.4999 (0.0008) 3.703 (0.001) 2.738 (0.0007) 0.000802 (0.0006)
32π 5.013 (0.0078) 0.4997 (0.0008) 3.698 (0.001) 2.740 (0.0003) 0.000213 (0.0008)
64π 5.012 (0.0078) 0.4961 (0.0010) 3.699 (0.001) 2.739 (0.0002) -0.000672 (0.0010)

Table 4: The effect of varying the frequency, Ω of the AC oscillation on the mean and
standard deviation of the recovered parameters. Note that the mean values are all very
close to the true values used in generating the data (as expected). The key point to
note is the change in the standard deviations about the mean values which are a direct
measure of the effect of random noise on the value of the recovered parameter value.
Standard deviations for the AC case are in all cases much lower than for the DC case.
The default non-dimensional values of k0 = 5, α = 0.5, E0 = 0, Ru = 2.74, Cdl = 0.0037,
and ∆E = 4.0, were used to generate the synthetic data.

∆E k0 (s.d.) α (s.d.) Cdl (s.d.) (×103) Ru (s.d.) E0

0.0 5.206 (0.296) 0.5115 (0.0111) 3.719 (0.0163) 2.742 (0.0104) 0.004621 (0.00400)
0.25 4.817 (0.043) 0.4964 (0.0017) 3.712 (0.0033) 2.731 (0.0028) -0.001524 (0.00081)
0.5 4.955 (0.027) 0.4920 (0.0013) 3.703 (0.0019) 2.737 (0.0018) -0.000854 (0.00062)
1.0 5.046 (0.019) 0.4988 (0.0011) 3.701 (0.0012) 2.740 (0.0012) 0.000528 (0.00059)
2.0 4.950 (0.013) 0.4998 (0.0009) 3.703 (0.0009) 2.738 (0.0009) 0.000436 (0.00061)
4.0 4.960 (0.011) 0.4999 (0.0008) 3.703 (0.0007) 2.738 (0.0007) 0.000802 (0.00066)

Table 5: The effect of varying the amplitude, ∆E of the AC oscillation on the recovered
parameters distributions. The default non-dimensional values of k0 = 5, α = 0.5, E0 = 0,
Ru = 2.74, Cdl = 0.0037, and Ω = 16π were used to generate the synthetic data.

5.2 Analysis of the effects of the electron transfer rate constant
on the parameter recovery process

k0 (s.d.) α (s.d.) Cdl (s.d.) (×103) Ru (s.d.) E0

DC 76.37 (18.50) 0.605 (0.061) 3.728 (0.002) 2.745 (0.0051) 0.0038 (0.0014)
AC 50.58 (1.22) 0.504 (0.007) 3.702 (0.0001) 2.740 (0.0008) 0.0012 (0.0006)

Table 6: The means and standard deviations of the recovered parameters for both the
AC and DC cases using a value of k0 = 50 i.e. close to full reversibility. The default
non-dimensional values of α = 0.5, E0 = 0, Ru = 2.74, Cdl = 0.0037, in both the AC
and DC cases, and ∆E = 4.0, and Ω = 16π in the AC case, were used to generate the
synthetic data.

The results that we have presented so far illustrate clearly that the parameter that
is most affected by experimental noise is k0, the electron transfer rate constant. This is
perhaps not surprising since, as explained in the introduction, the value of k0 determines
the nature of the chemical process occurring at the electrode surface; as k0 decreases it
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Figure 9: Comparison of the recovered posterior distributions for both the AC and DC
cases using a value of k0 = 50 i.e. close to full reversibility. The default non-dimensional
values of α = 0.5, E0 = 0, Ru = 2.74, Cdl = 0.0037, in both the AC and DC cases, and
∆E = 4.0, and Ω = 16π in the AC case, were used to generate the synthetic data.
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tends to an irreversible process, and as k0 increases it tends to a fully reversible process.
We would therefore expect that relatively high (particularly) or very low values of k0
would cause difficulty for the parameter recovery technique since, for example, relatively
large increases in k0 result in only marginal changes in the measured current, as shown
in Figure 2. In Table 6 and Figure 9 we show the results of attempting to recover the
parameters from both the AC and DC signals using k0 = 50, i.e. close to full reversibility.
As expected the recovered posterior distribution for k0 is skewed to the right for the DC
case and is much broader than the equivalent AC case - at these high values of k0 it
becomes increasingly difficult to determine k0 as it has much less influence on the overall
current, and this influence decreases further as k0 continues to increase.

The recovery process for the parameters using the DC signal is also affected by pa-
rameter compensation (whereby the changes in two or more parameters can combine to
have identical effects on the output signal and therefore cannot be distinguished) to a
much greater degree; this is manifested by correlations in the changes between the recov-
ered distributions of those parameters. This is clearly illustrated in Figures 10 and 11
which show the recovered distributions and the associated biplots for both the DC and
AC signals respectively for k0 = 50. As can be seen, correlations are apparent between Ru

and k0, and α and E0 in the recovered AC distributions, but these are still occurring over
relatively tight intervals compared to the recovered DC distributions. For the DC signals,
very strong correlations are beginning to appear between several pairs of parameters, with
a particularly strong correlation emerging between k0 and α.

k0 (s.d.) α (s.d.) Cdl (s.d.) (×103) Ru (s.d.) E0

DC 0.04997 (0.00071) 0.5006 (0.00047) 3.646 (0.0262) 2.725 (0.015) -0.004272 (0.0272)
AC 0.04980 (0.00022) 0.4995 (0.00019) 3.700 (0.0004) 2.739 (0.005) -0.002596 (0.0077)

Table 7: The means and standard deviations of the recovered parameters for both the
AC and DC cases using a value of k0 = 0.05 i.e. approaching the fully irreversible case.
The default non-dimensional values of α = 0.5, E0 = 0, Ru = 2.74, Cdl = 0.0037, in both
the AC and DC cases, and ∆E = 4.0, and Ω = 16π in the AC case, were used to generate
the synthetic data.

Finally, we have also considered the case where k0 is lowered so that the electrode
process moves closer to irreversibility. Table 7 and Figure 12 summarise the recovered
distributions from the DC and AC signals for this case, and Figures 13 and 14 give the
corresponding biplots. In this case it can be seen that the recovered parameters for which
there is the most dramatic improvement in using the AC rather than the DC signal are
Ru and Cdl, and for the first time E0 also shows substantial improvement. The biplots
again illustrate parameter compensation, with the correlations between E0 and k0 in the
DC case being particularly striking.

6 Experimental results
As described in the methods section, in this paper we make a preliminary comparison of
our theoretical work described above to a single experimental data set (data set 1) from
reference [25]. We first non-dimensionalise that data set as described in the appendix,
before re-dimensionalising to display the results. This allows us to use exactly the same
simulation and parameter recovery algorithms (and software) to fit the experimental and
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Figure 10: The recovered distributions and biplots for the DC case with k0 = 50 demon-
strating the appearance of parameter compensation as the fully reversible limit is ap-
proached. The default non-dimensional values of α = 0.5, E0 = 0, Ru = 2.74, Cdl = 0.0037
were used to generate the synthetic data.
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Figure 11: The recovered distributions and biplots for the AC case with k0 = 50 demon-
strating that the AC signal is affected to a much smaller degree by parameter compen-
sation. The default non-dimensional values of α = 0.5, E0 = 0, Ru = 2.74, Cdl = 0.0037
and ∆E = 4.0, and Ω = 16π were used to generate the synthetic data.
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Figure 12: Comparison of the recovered posterior distributions for both the AC and
DC cases using a value of k0 = 0.05 i.e. close to full irreversibility. The default non-
dimensional values of α = 0.5, E0 = 0, Ru = 2.74, Cdl = 0.0037, in both the AC and DC
cases, and ∆E = 4.0, and Ω = 16π in the AC case, were used to generate the synthetic
data.
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Figure 13: The recovered distributions and biplots for the DC case with k0 = 0.05 demon-
strating the appearance of parameter compensation as the fully irreversible limit is ap-
proached. The default non-dimensional values of α = 0.5, E0 = 0, Ru = 2.74, Cdl = 0.0037
were used to generate the synthetic data.
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Figure 14: The recovered distributions and biplots for the AC case with k0 = 0.05
demonstrating the appearance of parameter compensation as the fully irreversible limit
is approached. The default non-dimensional values of α = 0.5, E0 = 0, Ru = 2.74,
Cdl = 0.0037, and ∆E = 4.0, and Ω = 16π were used to generate the synthetic data.
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synthetic data. In Figure 15 we show the results of using this same recovery procedure
in analysing the results of two experimental data sets, one using an AC input signal and
the other using a DC signal; other than the parameters used to generate the input signal,
these two data sets use identical conditions in all respects (see section 2 above). To aid
comparison between the widths of the data sets (which is our primary measure of the
information content), the two histograms for each parameter have been centred around
zero. As can be seen, we are able to recover distributions of values for all five experimental
parameters from each of the data sets. It can be seen that a very similar pattern in terms of
accuracy follows through for the experimental cases, with the width of the distributions for
all parameters except E0 being substantially narrower in the AC case. In this publication
we restrict ourselves (due to space considerations) to this qualitative validation of our
theoretical results, leaving a more detailed quantitative comparison between experimental
and synthetic (simulated data), and between the parameter values recovered from multiple
repeats of the same experiment, to a future publication.

7 Conclusions
This detailed study, undertaken on the analysis of DC and AC voltammetric data con-
firms that Bayesian inference facilitates the reliable recovery of parameters relevant to
the thermodynamics and electrode kinetics for a quasi-reversible process in the presence
of uncompensated resistance and double layer charging current. The comparison also has
established the extent to which even the simplest possible AC voltammetric method based
on superimposition of a sine wave onto the DC potential ramp is advantageous. When
the requisite inverse problem is addressed in a Bayesian framework supported by MCMC
methods with simulated data containing experimentally realistic levels of noise, the re-
covered distribution for each of (k0, α, E0, Ru and Cdl) is significantly narrower when
the AC method is employed. The ability to accurately recover the electrode kinetic and
thermodynamic parameters (k0, α, E0), which is also affected by Ru and Cdl, as estimated
by spreads of their distributions is shown to be a function of amplitude and frequency of
the sine wave as well as the kinetic regime (closeness to reversible or irreversible limits
of the quasi-reversible process) as well as Ru and Cdl. The significantly enhanced ability
of the AC method to quantify faster electrode kinetics is related to the greatly enhanced
dependence of current magnitude on k0 and Ru as well as the dual AC and DC time
scales.

A study based on experimental data derived from DC and AC voltammograms for the
reduction of [Fe(CN)6]3− to [Fe(CN)6]4− supports the conclusions reached from analysis of
simulated data containing known levels of noise. On this basis we now suggest that placing
the electrode kinetic inverse problem in a Bayesian framework and exploiting the use of
computational approaches based on MCMC methods to assess the accuracy with which
the inverse problem can be solved for the electrode kinetic and other parameters should
lead to significant advances in quantitative analysis of electrochemical data as has been
found in other branches of science. In particular, whist this study addresses the impact
of random noise only (i.e. the impact of random Gaussian experimental noise on the
accuracy of the recovered parameters), a platform has now been established for the first
time to separate uncertainties in parameter estimates arising from random noise arising
within a single experiment as in this study, and that due to the variability within the
system that can only be assessed using multiple (replicate) experiments. This framework
will also allow us to assess the impact of any inadequacies in the modelling that could, for
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example, arise from use of the Butler-Volmer Model rather than Marcus-Hush electron
transfer relationships [3, 13] to describe the electron transfer process.

We will reserve for a future paper the consideration of multiple repeats of the same
experiment under identical laboratory conditions. This future work will enable a distinc-
tion to be made between the effects of random experimental noise and those due to the
inherent variability of the system, and to quantify the degree of variability in the elec-
trochemical process. Thus we will be in a position (for the first time to our knowledge
in electrochemistry) to separate out the effects of experimental noise from the inherent
variability arising in repeated experiments. This will allow us to demonstrate how much
variation in recovered parameter values we might anticipate between repeated runs of the
same experiment, and to estimate the absolute accuracy with which it might be possi-
ble to estimate parameters such as the electron transfer rate constant, charge transfer
coefficient, or reversible potential from voltammetric experiments.
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Supplementary Information

S1 Non-dimensionalising the equations
Let u = cA/c∞ and ẼDC = θ(EDC) = θ(Estart+vt), where θ = F

RT
. We non-dimensionalise

time t and the sweep rate v according to

t̃ = tθv, (S1)

ṽ = v
tfinal

EDC(tfinal)− EDC(0)
= 1. (S2)

Let x̃ = x/`, where ` = D1/2 (θv)−1/2. Changing variables in equation (5) gives

∂u

∂t̃
=
∂2u

∂x̃2
.

Transforming equation (7) into non-dimensional variables gives

If (t) = FSc∞ (θDv)1/2
(
∂u

∂x̃

)
x̃=0

.

Thus, we arrive at the non-dimensional faradaic current.

Ĩf (t̃) =

(
∂u

∂x̃

)
x̃=0

, (S3)

where Ĩf (t̃) =
(
FSc∞ (θDv)1/2

)−1
If (t).

When non-dimensionalising the period, frequency, and sinusoidal potential we follow
the approach of [14]. We aim to impose the alternating potential as ẼAC = ∆Ẽ sin(ω̃t̃).
Let N be the number of oscillations in the timescale, as this must remain fixed after non-
dimensionalising. Importantly, t̃final is equal to the range of ẼDC , and therefore, also equal
to θErange where Erange is the range of EDC . In dimensional variables tfinal = Erange/v.
The dimensional and non-dimensional periods are thus

P =
tfinal
N

=
Erange
vN

, and P̃ =
t̃final
N

=
θErange
N

,

respectively. Thus, P = (vθ)−1P̃ . The dimensional and non-dimensional frequencies ω
and ω̃ satisfy ω = 2π

P
and ω̃ = 2π

P̃
, so in particular

ω

ω̃
=
P̃

P
= vθ.

It follows that
ω̃ = (vθ)−1 ω.

Now, the ratio of the amplitude of the AC potential, and the range of the DC potential
must be the same after non-dimensionalising. That is

∆Ẽ

Ẽrange
=

∆E

Erange
,
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ẼDC = θEAC , x̃ =
(
D−1θv

)1/2
x,

∆Ẽ = θ∆E, u =

(
1

c∞

)
cA,

Ẽ = θE, t̃ = (θv) t,

ω̃ = (θv)−1 ω,

k̃0 = (θDv)−1/2 k0, C̃dl = v1/2
(
FSc∞ (θD)1/2

)−1
Cdl,

R̃u =
(
θFSc∞ (θDv)1/2

)
Ru, Ĩf =

(
FSc∞ (θDv)1/2

)−1
If .

Table S1: The relation between dimensional and non-dimensional variables in the model

it follows that ∆ẼDC = θ(∆E).
The remaining parameters are non-dimensionalised by considering the relation IC =

Cdl
dEeff

dt
and that the effective potential is Eeff = Eapp−ItotRu where Eapp = EDC +EAC .

We summarise the relation between the dimensional and non-dimensional variables in
Table S1.

The following equations describe the model in non-dimensional variables:

∂u

∂t̃
=
∂2u

∂x̃2
. (S4)

The total current output is Ĩtot = Ĩf + ĨC , where ĨC = C̃dl
dẼeff

dt̃
, and

Ĩf = k̃0

(
u(0, t)e(1−α)(Ẽeff−Ẽ0) − (1− u(0, t))e−α(Ẽeff−Ẽ0)

)
. (S5)

Boundary and initial conditions are given by

x̃ = 0 :
∂u

∂x̃
= Ĩf (t̃);

x̃→∞ : u = 1;

t̃ = 0 : u = 1.

Here, Ẽapp = ẼDC + Ẽac and Ẽeff = Ẽapp − ĨtotR̃u, where

ẼDC =
F

RT
Estart + t̃; and

ẼAC = ∆Ẽ sin(ω̃t̃).

S2 The Metropolis-Hastings Algorithm
As described in section 3.5, in sampling from the posterior distribution for θ we make use
of a Markov Chain Monte-Carlo (MCMC) approach implemented by using the Metropolis-
Hastings algorithm. Typically when using MCMC samplers, a ‘burn-in’ period is intro-
duced within which the proposal distribution can be tuned, and the sampler should find
its way to a region of parameter space with high density. In this way, the effect of the
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Figure S1: The above plots show the effect of changing individual parameters in simulated
currents from numerical solution of the model equations in response to a linear sweep dc
potential. All parameters are k0 = 5, α = 0.5, E0 = 0, Cdl = 0.0037, and Ru = 2.74, unless
indicated otherwise.
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initial start point of the chain is removed. If the proposal distribution is too wide then it
can be the case that lots of steps are rejected and it takes a long time for the chain to ex-
plore parameter space, and similarly, if the distribution is too narrow then the acceptance
rate will be high, but the parameter space will not be explored sufficiently during the
finite time of the run. In practice, an acceptance rate of approximately 0.25 is considered
optimal for parameter space of dimension at least 2. This value has been shown to be
optimal for Gaussian proposal and posterior distributions, but has been accepted more
widely as a rule of thumb in the literature [4, 16, 28].

In the approach that we have implemented, we make use of a multivariate Gaus-
sian proposal distribution, centered at the previous sample point, and utilise an adaptive
covariance matrix method as described in [4], based on [19]. Our adaptive Metropolis-
Hastings sampler of [19] follows the same basic principle as a Metropolis-Hastings sampler
described in section 3.5 using a multivariate Gaussian as the proposal distribution, but
it also continuously updates the covariance matrix within the proposal distribution by
approximating the covariance of the full history of the chain at each step. With this
adaptivity, the chain is no longer strictly Markov, but retains the correct ergodic conver-
gence properties [19]. We used a slight adaptation of this method following [4] in which the
adjustment of the covariance matrix is reduced at each step, with the chain constructed
in such a way as to select the desired overall acceptance rate.

The pseudocode in Algorithm 1 gives the algorithm we have employed. It samples
proposed value of the parameters of interest (in our case θ = (k0, α, E0, Ru, Cdl, σ),
where σ is the standard deviation of the normally distributed noise that is also estimated
as part of the inverse problem) from a multivariate Gaussian distribution centred at the
previous sample point (lines 7 and 22). Initially (lines 6-19) this proposal distribution
has a fixed covariance matrix during a run in period, before switching (lines 20 to 38) to
using a proposal distribution with a covariance matrix that is adaptively refined to ensure
the desired acceptance rate of 25% (with the adaptivity implemented in lines 34 to 36).
In all instances in this paper, the diagonal matrix D used in the run in phase (line 4)
is calculated as one third of the width of the prior distribution for each parameter. The
accepted sample values from the posterior distribution (the θt) are the outputs from the
algorithm, and it is these values that are visualised as histograms in the results presented
in the paper. To ensure that the MCMC algorithm is efficient in terms of computational
time, we have initiated all MCMC simulations at the global optimum of the likelihood
found by minimizing equation (18) using either the cma-es or the fminsearch algorithms
available in Matlab [1]. In this way, we make use of the efficient optimization algorithms to
explore parameter space, locating the mode of the posterior distribution and use MCMC
to sample locally from the posterior distribution. The burn-in period is therefore only
needed in order to allow the chain to converge, and the adaptive covariance method to
achieve the desired acceptance rate. Typically, we ran the chain for 40000 steps and
discarded the first 10000 samples as burn-in.
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Algorithm 1 The adaptive covariance MCMC algorithm used to generate the results
throughout the paper.
1: Set a0 = 1.
2: Set θ0 as determined by global optimization using either CMA-ES or fminsearch.
3: Set µ0 = θ0.
4: Set Σ0 = D, where D is a suitable diagonal matrix.
5: t := 1
6: while t ≤ 1000×(number of parameters) do
7: Given the current parameter state θt, sample θ∗ ∼ N (θt, a0Σ0).
8: if p(θ∗) 6= 0 then
9: Compute r = exp(l(θ∗|y)− l(θt|y)).

10: Sample u ∼ U(0, 1).
11: if u < r then
12: Set θt+1 = θ∗.
13: else
14: Set θt+1 = θt.
15: end if
16: else
17: Set θt+1 = θt.
18: end if
19: t++ i.e. increment t by 1
20: end while
21: loop
22: Set s = t− 1000×(number of parameters).
23: Set γs = (s+ 1)−0.6.
24: Given the current parameter state θt, sample θ∗ ∼ N (θt, as−1Σs−1).
25: if p(θ∗) 6= 0 then
26: Compute r = exp(l(θ∗|y)− l(θt|y)).
27: Sample u ∼ U(0, 1).
28: if u < r then
29: Set θt+1 = θ∗.
30: Set accepted = 1.
31: else
32: Set θt+1 = θt.
33: Set accepted = 0.
34: end if
35: else
36: Set θt+1 = θt.
37: Set accepted = 0.
38: end if
39: Set Σs = (1− γs)× Σs−1 + γs × (θt+1 − µs−1)T (θt+1 − µs−1).
40: Set µs = (1− γs)× µs−1 + γs × θt+1.
41: Set as = exp(log(as−1) + γs × (accepted− 0.25)).
42: t++ i.e. increment t by 1
43: end loop
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