
An end-user pipeline for scrapping and
visualizing semi-structured data over the Web

Gabriela Bosetti1[0000−0002−3968−6738], Sergio Firmenich12[0000−0001−9502−2189],
Marco Winckler3[0000−0002−0756−6934], Gustavo Rossi12[0000−0002−3348−2144],

Ulises Cornejo Fandos1[0000−0003−1474−2083], and Előd
Egyed-Zsigmond4[0000−0002−1218−8026]

1 LIFIA, Facultad de Informática, UNLP.
50th St. and 120th St., La Plata, Argentina
{name.surname}@lifia.info.unlp.edu.ar

2 CONICET, Argentina
3 i3S, Université Nice Sophia Antipolis. 2000, route des Lucioles, bât. Euclide B, BP

121, Sophia Antipolis, France
winckler@i3s.unice.fr

4 Université de Lyon, LIRIS, INSA-Lyon. 7 Av.Jean Capelle, Villeurbanne, France.
elod.egyed-zsigmond@insa-lyon.fr

Abstract. The Web is a vast source of semi-structured data sets that
are made readily available to support the construction of new knowledge.
Information visualization techniques have been demonstrated a suitable
alternative for allowing users to analyze and understand a large amount
of data. However, the steps required for visualizing semi-structured data
obtained from the Web is not straightforward, and it requires proper
treatment before information visualization techniques could be applied.
In this work, we present a visualization pipeline for describing the funda-
mental operations required for visualizing semi-structured data over the
Web. For that, we employ Web Scrapping and Web Augmentation tech-
niques for supporting interactive visualizations and solving tasks without
changing the context of use of the data. Our approach is duly supported
by a framework including scrapping, augmenting and visualization tools
and it has been applied to different kinds of websites to demonstrate its
validity and feasibility. Our ultimate goal is to expand the limits of our
technology for improving the user interaction with websites and creating
new experiences for better understanding large data sets.

Keywords: Infovis, Web augmentation, Web scrapping

1 Introduction

The Web is a massive source of public data sets. NetCraft5 reported over 1.8
billion sites in the World at the beginning of 2017 and the NationalPost predicts6

5 https:/news.netcraft.com/archives/2017/01/12/january-2017-web-server-
survey.html

6 https://nationalpost.com/news/big-data-and-analytics-taking-off-at-brocks-
goodman-school-of-business



2 Bosetti et al.

that by 2020, the amount of data produced annually will increase 4,300%. The
Web not only made easier the access to raw data but also made it available to
everyone. In a recent survey published by data.world7, 63% of citizens explore
and interact with data to achieve a broad spectrum of tasks. The Broadband
Commission for Sustainable Development (set up by the ITU and the UNESCO)
estimates that the number of Internet users will represent half of the world’s pop-
ulation at the end of 2019 at least[1]. In the context of the increasing amount of
data, information visualization might play a role in helping many users to un-
derstand data. Visualization is indeed an important aspect of data analysis that
allows conveying information in a visual format highlighting patterns, trends,
and correlations among data [2].

Information visualization techniques are powerful tools specifically designed
to support the exploration and analysis of large data sets, helping users to deal
with complex decision-making tasks [3][4]. Information visualization techniques
might improve both users’ cognitive abilities and users’ performance with tasks
by relieving the working memory and improving the decision accuracy, even on
elderly people [5]. Many visualization techniques are intended to be used by
specialized users (such as system administrators Mahendiran et al. [6]) but more
and more often information visualization techniques (such as CivilAnalysis [7])
are developed to larger audiences.

Currently, more and more Web sites embed information visualization tech-
niques to present their data in context. Nonetheless, this practice is not widespread
and most Web sites still only display semi-structured data. The operations re-
quired for visualizing semi-structured data obtained from the Web is not straight-
forward, and it requires proper treatment before information visualization tech-
niques could be applied. While the questions related to the design are central
to the development of information visualization techniques, this paper is inter-
ested in the process, the so-called visualization pipeline, that allows transforming
semi-structured data into graphical representations.

This paper investigates problems and possible solutions to build visualiza-
tions for helping end-users to analyze data sets available over the web. Our
ultimate goal is to develop a technology that allows end-users to collect and
visualize semi-structured data directly over the web site that publish the data
sets. As we shall see, the answer to this problem is intimately associated with
the many operations along the visualization pipeline. Hereafter, we present an
approach and a tool that combines Web Scrapping, Web Augmentation, and
Information Visualization techniques. Moreover, we evaluate the validity and
feasibility of the tools by running them over different kinds of websites.

2 Background and Motivation

This section presents the underlying concepts of diverse techniques used in our
approach.
7 https://data.world/data-science-by-the-numbers



Title Suppressed Due to Excessive Length 3

2.1 Information visualization
Many aspects of a visualization design are driven by the type of the data we are
looking at. In order to become understandable by users, data sources are often
transformed along a process (the visualization pipeline) that transforms raw data
into a graphical representation that fit on the user screen. This process is shown
at Figure 1 encompasses four operations: i) data acquisition; ii) filtering; iii)
visual mapping; and, iv) rendering. It is worthy of notice that user interaction
(shown as dashed lines) might affect all operations in the pipeline.

Fig. 1. Information visualization pipeline, adapted from Munzner (2014) [2].

Data acquisition is one of the most complex problems to be solved, mainly
because the data set might be available in various formats and most of visualizing
techniques are specifically designed to handle a particular type of data (such as
tables, cluster or lists). But there are exceptions such as Prefuse [8] which is
an extensible user interface toolkit for crafting interactive visualizations that
can handle both structured and unstructured data. And yet, the visualization
process with Prefuse starts with abstract data represented in some canonical
form (such as unstructured-, graph, and tree data). In most cases, if the data
set is not on the format of the tool, it becomes tough to get benefits of the
visualization technique.

When a data set is loaded into the tool, it might contain information that is
not relevant for solving the problem we are looking at. So that filtering operations
come in place to remove noise, to fix attributes (ex. wrong character encoding),
and to enrich the data set (ex. add missing labels). An example of the use
of filtering operation as a key feature of tools is illustrated by WebGIVI [9]
which help researchers to interpret large gene data sets by associating genes and
informative terms (iTerm) that are obtained from the biomedical literature.

The visual mapping is at the core of the design of information visualization
techniques. It allows the association of data attributes (such as gender and age)
to visual variables (as form, color, size or texture). Mapping can be hard-coded
or adjusted by the users. A good example is uVis Studio [10] which allows devel-
opers to compose visualizations by dragging-and-dropping building blocks, then
binding controls to data and visualizing results with immediate feedback. Tech-
niques such as dynamic bidding provide flexibility and interactivity for users to
customize their views according to their needs.

The rendering operations define how the visualization techniques are dis-
played to the users. At this step, the tools might perform geometric transfor-



4 Bosetti et al.

mations to make data to fit in the screen. The rendering also defines if the
visualization is to be seen in a standard application or an element that can be
integrated into another context of use. A flexible rendering is illustrated here
by the framework Webcharts [11] which can adapt the rendering to three types
of users: for developer who uses the framework for creating an application; for
the visualization developer, who extends the framework with new visualizations;
and for the end-user, who may dynamically change the visualization of the data
in the application, with no need of waiting for an update of the application that
incorporates the latest visualizations.

The pipeline, shown in Figure 1, is part of all visualization tools regardless of
the technology used for the implementation. As far Web technology is a concern,
there are many libraries based on JavaScript that manipulate DOM and CSS to
build visualization techniques that can be displayed inside the Web browser. An
example of a very well-known this libraries is D3 8 [12] which already dispose
of a huge collection of interactive visualizations. The very common use of these
libraries is to feed the visualizations with data that comes from some API or
fixed data specified by Website developers. In most cases, the creation and the
use of visualization techniques still remain something very technical that requires
programming skills.

Viégas et al [13] were pioneers in the democratization of information visual-
ization techniques over the Web; their Web site called ManyEyes allowed people
to create visualizations based on a predefined set of techniques available. Data
acquisition in ManyEyes was simplified at the most, requiring a simple cut and
paste; but it was not possible to connect tools for automating the information
extraction from the Web. In addition to that, the rendering of the visualizations
created by ManyEyes is not flexible and they cannot be integrated into other
contexts of use than the Web site.

2.2 Web scrapping and Web augmentation

We suggest that information visualization of data sets over the Web can be
enhanced with Web augmentation and Web scrapping technology.

Web Scrapping allows transforming unstructured data available on the Web,
typically in HTML format, into structured data that can be analyzed and stored
analyzed in a central local database. For example, MeatBrain [14] is a tool that
extracts data from Web sites and, eventually, aggregates different data into a
new Web page. It is also very common that scrappers let their users define which
part of Web sites to extract, meanwhile others may do it automatically.

Web scrapers are often the base for other applications such as search engines,
Web automation, Web testing, and Web augmentation tools. It is interesting to
notice that, although not every Web augmentation tool employs Web scrap-
ping, most of them contain some scrapper functionality that is used to parse the
Web pages’ DOMs in order to materialize the augmentation. Web augmentation

8 https://d3js.org/



Title Suppressed Due to Excessive Length 5

typically allows to adapt existing third-party Web sites in order to add new con-
tent or functionality [15] and we suggest that it can be a suitable alternative to
integrate visualization techniques into Web sites that lack visualization features.

There are different alternatives to achieve Web Augmentation at client-,
server- or proxy-side. Client-side scripting is the most common alternative that
can be evaluated through browser weavers, like Greasemonkey9), or as browser
extensions. Annotation [16] is a broadly used technique to configure these under-
lying Web scrappers following a manual or semi-automatic approach. Actually,
some Web augmentation approaches based on annotations were defined to im-
prove information visualization. For instance, Reform (Attaching UI Enhance-
ments to Websites with End Users) allows developers to define general purpose
applications that require some information to work. In this sense, end-users are
responsible for the web content annotation from where that information must
be extracted.

Other Web augmentation approaches may work based on an automatic scraper
because their augmentation effect is not variable. VizMe [17] is a tool supporting
an approach for handling additional data and tasks through augmented brows-
ing. It is intended to provide extra information to the user in the same context of
use, therefore, avoiding the switching between Web pages. That work emphasizes
the visualization of such further data into the browsed Web page; they deal with
the problem of how additional information is communicated to the user. They
propose visualizations at different levels: visual cues at micro-level for hyperme-
dia items and additional layers at macro-level for Web pages. At the micro-level,
they present time-referenced Google data in a time-plot when the user highlights
some Web content. At macro-level, they offer a wide range of visualizations on
a floating panel, as a tag cloud based on the important words from the text
on a Web page, a search engine to Google extra information or an editor to
merge content from different pages. Similarly, another approach (Enhanced Web
Page Content Visualization with Firefox) use natural language processing and
machine learning techniques to help users to get a better overview of the pages
they read, presenting graph-based visualizations.

3 Augmenting web sites with visualization techniques

In this paper, Web Augmentation (WA) is used to allow end users to build on-
demand visualizations of semi-structured data sources available over the Web
without changing the user’s context of use, which means that visualizations are
embedded into the web site users are visiting. The data acquisition is simplified
by allowing users to select raw data presented in the Web page and turn then
into visualization. This solution has the advantage of refreshing the visualization
automatically when the Web page is updated. We also propose to reuse the data
in search-results or with documents sharing the same structure. It is also possible
to track the changes for a concrete element in the DOM through time, in order
to analyze its evolution through visual means.
9 https://www.greasespot.net/



6 Bosetti et al.

Providing users with a means to visualize any third-party semi-structured
Web content present some challenges from the point of view of the Web Engi-
neering, mainly at the beginning of the visualization pipeline, where the data
acquisition happens. The different structures inherent to the representation of
the data in a page (HTML elements) must be understood to automatically ex-
tract and interpret their content to create a data-set serving as the input for
a visualization. Moreover, first, it is mandatory to understand which are the
HTML structures that may represent a target data-set to be visualized in a new
way.

In this context, we formulated an initial set of questions: how many such
HTML structures do exist? Can users benefit from visualizing existing data
spread over the Web through alternative visualizations? Are augmentation-based-
visualizations useful to solve any general-purpose task? Or is it better to use
domain-specific ones? Does the user feel in control by using visualizations through
WA or does he want more expressiveness power? Is specialized domain-knowledge
a requirement for applying a visualization into any Web page? This work is a first
step towards answering those questions, and Web Augmentation is presented as
a bridge for joining Web Scrapping and the benefits of visualization techniques
for solving tasks without changing the context of use where data appears. It is
not just about expanding the limits of technology but also enhancing the user
experience in any Web page –even third-party– by the addition of a new fea-
ture. We are aimed at covering the gap between the existing Web scrapping and
visualization tools and techniques. In this approach:

1. users –with no need for knowledge in low-level scrapping– can abstract raw
data on a Web page into a data model specification (DMS),

2. users choose and apply alternative visualizations for the DMS
3. a repository of infovis augmentations do exist
4. developers can extend the existing visualizations in case existing specific

visualizations do not cover a concrete task or domain, so users can apply
them on any existing and third-party Web page

4 Web sites: a perspective on content, structure and time

A first step towards the visualization of third-party raw data in the Web is to
analyze how much and how diverse are the HTML structures presenting homo-
geneous content on the Web. To do so, we choose to analyze a sample of sites
that can match into a table data-set type [2]. In this sense, our target data-sets
may be referred to as tables, which has rows (members), columns (variables) and
cell values (datums).

To avoid sample bias, we took the list of sites from the top 50 popular sites
according to Alexa’s ranking for Argentina10 as the target sample. We considered
all the sites with a collection of at least five homogeneous elements representing
a data-set member with more than a single variable. Regarding the data-set
10 https://www.alexa.com/topsites/countries/AR Dec. 18th, 2018 at 22:00h UTC-3



Title Suppressed Due to Excessive Length 7

variables, only those that are present in all occurrences of the data-set members
were considered. Besides, HTML elements not containing textual raw-data were
not taken into account (e.g. images with no alternative text, «like» or «share»
action buttons). The target data-sets were searched in a limited part of the site:
the homepages of the sites. If there was no data to visualize in the homepage
(e.g., Google’s default page) we triggered a search using the search engine of
the site, to check if their Search Engine Results Pages (SERP) may contain
items that may represent a data-set. The remaining pages of the sites were not
analyzed. If more than one possible data-set was detected for a site, we studied
only the one with the most members and variables, respectively. The keywords
used in the case of searching were «facts» and «certificado», respectively. It is
worth mentioning that all the sites have been analyzed in a private-browsing
tab, except for the ones that require log-in (e.g., Facebook or Twitter). From the
50 sites, we kept only 42 sites for analysis; we discarded 3 sites not meeting the
requirement of content suitable for all audiences, 2 sites with the same domain,
2 sites that were offline at the time of analyzing and 1 site with a broken engine.

From the 42 sites, only 10 did not present any data with an heterogeneous
structure. This leaves us with 76% of sites with data that may be visualized in an
alternative way. These sites use different HTML elements to represent the data:
2 of them do it through a table («table»), 3 through an ordered list («ol»), 5
through an unordered list («ul»), 6 through a set of article elements («article»),
and 16 through a hierarchy of homogeneous divs («div»). As shown in Figure 1,
we classified those cases in 3 categories: HTML tables, HTML lists and HTML
hierarchical containers. In this work, we propose at least 3 kinds of data-set
extractors.

Table 1. HTML structures

Dataset presentation HTML Table HTML list HTML hierarchy
Dataset table ol/ul div
Variables / Columns thead >tr - -
Members / rows tbody >tr li div / article
Datum / cell td >* * *
Occurrences in the sample 2 8 22

Regardless of such general HTML structure, different combinations of inner
elements were found to present the data-sets datum or table’s cell value. That’s
the meaning of the «*» symbol in the Figure 1. For instance, in the YouTube’s
site, we considered two anchors presenting the video title and video category,
respectively, and two spans for the views and the date of publication. Since
these data are shared by all the analyzed instances, they represent a variable
of the data-set. The shared variables make it possible to claim that raw-data in
existing and popular Web sites is comparable, and that may be the target of our
proposed visualizations. On average, the amount of data-set members analyzed
ranged from 5 to 74, with an average of 18.6 and a standard deviation of 14.8



8 Bosetti et al.

occurrences. We also found an average of 3.4 variables of the members, ranging
from 2 to 6, and with a standard deviation of 1.2 variables.

We also observed that different mechanisms must be implemented for up-
dating the visualization when it is required to include extra members from a
data-set presented in a different context (e.g., on the second page of a dynamic
table, or a SERP). Just 8 of the 32 sites with possible data-sets had paginated
members. Therefore, in the 75% of the cases it was possible to retrieve extra
members for the data-set through a user interaction: in 11 cases when the page
is scrolled down, and in the remaining cases when a single link is clicked (10
cases, e.g., the «next» anchor), multiple links (2 cases, e.g. «page 1» or «page
2» anchors), or a button (1 case).

Obtaining such extra members (e.g., more videos appearing at the bottom
of the page when the user scrolls down on the search engine of YouTube) or ac-
cessing a similar page which presents different data (e.g., two videos at YouTube
share the same structure but the data), allow reusing the same structure under-
standing. Such elements can be referenced by evaluating different Web locators
[18], like XPath, CSS or JQuery selectors. We previously worked on the defini-
tion of user-defined scrappers capable of extracting similar elements loaded in
different contexts [16]. So far, everything seems to be a question of how to map
different HTML structures to the constitution of a data-set, and how to reuse the
initial selectors to get more HTML elements to consider when the information
is paginated. However, it is also a matter of time, since using the same selectors
allows obtaining the same information at different times. Moreover, although a
website may change over time (as you can check by using the Internet Archive
11), Aldalur and Dı́az [18] presented an approach for generating regenerative
locators that use contingency data to evaluate alternative location strategies in
case the DOM of a website changes. They validated their approach by taking
a sample of a webpage from 8 websites every three months, and they find out
that using their resilient locators, they were able to successfully regenerate the
locators of the 73% of the samples. Therefore, a using a locator over time for
extracting elements and creating one or multiple data-sets over time is plausible.

5 AlVis: an end-user tool for web content visualization

In the previous section, we presented the typical information visualization pipeline
adapted to end-user activities in scenarios where they want to add alternative
visualization to existing and third-party Web content. Moreover, we presented
an analysis that we have made over several kinds of Web page’s DOM structures
in order to understand how to extract data sets from these semi-structured con-
tent. In this section, we present AlVis (ALternative VISualization through web
augmentation), our end-user tool for visualizing Web content which is deployed
as a Web extension 12. We first present the use process of this tool, explaining
11 https://archive.org/web/
12 AlVis prototype is publicly available https://github.com/gbosetti/alvis



Title Suppressed Due to Excessive Length 9

the matching between interaction steps in the tool with the steps explained in
the adapted pipeline. Later, we show the tool in action through some examples.

Fig. 2. AlVis use process for visualizing third-party raw-data in Web pages

The AlVis use process (see Figure 2) requires six interaction steps by part
of end-users:

1. DOM annotation (corresponds to the Data Acquisition step in the pipeline):
define which part of the current Web site’s DOM will be extracted. This step
can be manual or semi-automatic. For a manual step, it is required an an-
notation tool such as the one we have defined in previous work, called WOA
(Web Objects Ambient) [16]. The semi-automatic way requires that users
choose some semi-structured data automatically discovered by the AlVis ex-
tractors. For this regard, and based on the analysis presented in Section 4,
we have defined the following extractors:
– TableExtractor. Through this strategy, all the HTML tables present in

the DOM are retrieved and analyzed. The extractor checks for the def-
inition of the «thead» to identify the variables of the dataset, and the
«tbody» to generate the output. In both cases, what is extracted are
the children of such elements: a collection of «tr» elements. If multiple
elements compose a «tr» element, these are split into new columns, in
case the user needs to use them separately. The name of the column is
the same with the addition of an index.

– ListExtractor. This strategy retrieves all the «ol» and «ul» elements
from the current document. For each list, it takes all the «li» elements
as possible members of the dataset. The variables are generated in a
second round, by traversing all the possible members of the dataset and
keeping just the leaf children elements that are present on all the mem-
bers, based in its type. This means that if an «ol» has 5 «li», and only
two of them have an element «anchor», then it is not considered as a
variable. Under this strategy, the variables exist but their names are not
representative: it is a combination of the name of the DOM element type



10 Bosetti et al.

concatenated with an index. The user will be able to redefine his name
when manipulating the data after its extraction.

– HierarchyExtractor. In this case, the variables are created in the same
way as for the ListExtractor. What’s different is the detection of similar
elements representing the members of the dataset to be extracted (as
the «li» elements inside a list for the ListExtractor). In this case, the
detection of similar elements is conducted by traversing the full body
of the page’s document looking for potential «container» elements that
are not a «script» element, and that contain more than five children.
Then, the children of each potential container are analyzed to check
that more than the 50% of the elements are instances of the same type
of element (e.g., articles, divs, ytd-video-renderer). If so, the instances of
the predominant kind of element are considered as the members of the
dataset to extract, and the variables are extracted in the same way as
for the ListExtractor.

Both methods (manual and semi-automatic) generate a DOM annotation
template that is stored in the AlVis local storage, in this way AlVis can be
aware of the desired data structure for a particular Web site when this is
loaded again in the future.

2. Data-Items materialization (corresponds to the Data Acquisition step in the
pipeline): materialization is the process by which a DOM extractor parse the
Web page’s DOM to extract the data and their underlying data model. For
any of the extractors defined for AlVis, the output is always always a JSON
that would be used for the further steps in this process.

3. Data transformation (corresponds to the Filtering step in the pipeline): some
data could require to be curated by end-users before going on into the visu-
alization steps. For instance, if some value extracted must be pass through a
transformation function, or even if the data model requires some refinement,
such as adding or changing naming columns heads. Moreover, this interaction
steps allows users to delete data that is not required for the visualization.

4. Visualization selection (corresponds to the Visual Mapping step in the pipeline):
This step allows end-user to choose a kind of visualization from the currently
available ones. Although the AlVis tool includes a framework for adding new
kinds of visualizations, the current prototype already covers the most com-
mon ones. It is important to mention that for the same data set, several
visualizations can be used.

5. Visualization customization (corresponds to the Visual Mapping step in the
pipeline): Once a visualization is chosen, the user may customize which values
to use, and other several aspects related inherent to the visualization being
configured.

6. Augmentation method selection (corresponds to the Rendering step in the
pipeline): finally, the last interaction steps in AlVis let users define how the
alternative visualization must be rendered. Visualization could be added in
a pop-up window or can be woven in the original Web page’s DOM with
different insertion strategies.



Title Suppressed Due to Excessive Length 11

———————————————-
A playlist with a video demonstration concerning this and other scenarios is

also available online 13.
The process starts with the user navigating the Web and identifying a raw

data-set. For instance, the Latest Human Development Ranking by the United
Nations Development Programme 14. A screenshot of the page without aug-
mentations can be found in Figure 3. In such page there is a table reporting
variables as «the expected years of schooling» and «the gross national income»
by country. Consider that a user wants to take his customized ranking as the
data-set to visually identify the countries with more the higher gross national
income and their proportion concerning the countries with the lower values. In
the same Figure, it can be observed that the page is presenting 25 results by
page. The user may want to create a visualization just with such a number of
members, or he may want to do it with all the paginated results in the HTML
table. For a matter of space, we will explain the simplest case.

Fig. 3. A capture of the HTML table to extract data from

The first step is to extract the data to create the user’s data-set of interest.
It involves using one of three strategies, matching the structures mentioned in
Figure 1. All the extraction techniques generate the same output: a JSON with
the variable names, and the members of the data-set. In case any element is not
detected, it is defined as «undefined».

Under our approach, such extractors are evaluated when the user clicks the
browser action of the ALVis extension (first step of Figure 4); it is a button
13 https://www.youtube.com/playlist?list=PLHuNJBFXxaLBFgtbBCZ7kOUUFd-Z3aaJK
14 http://hdr.undp.org/en/2018-update



12 Bosetti et al.

in the browser’s toolbar that can be clicked to evaluate all the extractors with
the content of the current page. From that moment on, an «extract» button is
added at the bottom of all the DOM structures recognized by the extractors
in the current webpage (step 2 of Figure 4 without any extra user intervention,
transparently performed.

When the user clicks the «extract» button, the extracted dataset is shown
below in a new div under the HTML structure, which presents an editor to
manipulate the data-set and use it through different visualization techniques.
This is the second step the user must carry on. For instance, she can change
the variable names, remove variables or members, transpose the matrix, apply
operators to the data. A screenshot of the extracted data presented through the
editor is shown in the last step of Figure 4.

The results of the two first steps are the transformation of raw data into
a data-set. Both steps can be envisioned as part of what Card et al. [19] calls
«Data Transformation» in his well-known model. What follows is the visualiza-
tion selection and its customization.

Regarding visualization selection, our approach contemplates a framework
where the visualizations represent an extension point. We provided a base of vi-
sualizations, like the ones listed at the top of Figure 4, but these can be extended.
The visualizations are presented according to the data-set characteristics. For
instance, some of them require to have a mandatory variable name or are de-
signed for a concrete kind of data: continuous, discrete or categorical. However,
such a process is transparent for the end user, who need to choose any available
visualization and configure it if required. For instance, in Figure 4 the user is
required to choose two variables as the input for the X and Y axis of the bar
chart. He can also use the control at the bottom to zoom in or zoom out part of
the graph, including or excluding some bars at both sides of the graph.

6 Validation

Before starting with the development of our prototype, we checked how much
data available in the Web is a potential target to be visualized. Starting from the
same sample described in Section 4, which was focused on the kinds of HTML
structures, we also analyzed if such structures have data that makes sense to
visualize without making data transformations. We discarded all the cases with
no numerical variables and no repeated textual values or dates (e.g., a new’s
dataset with just two variables: «title» and «description»). The number of high-
lighted sites was 10, leaving 22 sites with data that could make sense for some
user to visualize. In order to check the extractors, and for the sake of space, we
took the two first sites from the sample matching each type of HTML structure
(Table 1), and we used our described techniques to check if the proposed extrac-
tion techniques succeeded. The sites chosen were youtube.com, clarin.com.ar,
wikipedia.org, twitter.com, blogger.com, and bna.com.ar. The extractors were
successfully tested in the six sites, these were capable of extracting all the de-
fault members of the dataset and observed properties, with no exception.



Title Suppressed Due to Excessive Length 13

Fig. 4. Extracting and visualizing data from a page



14 Bosetti et al.

7 Conclusions and Future work

As the reader knows, the Web is a powerful platform for an extensive range of
user activities, among which learning from the available information is not very
well supported. As we know them, Web Browsers are a tool for browsing Web
sites, but these hardly have evolved to support the complexity of available infor-
mation, although there have been considerable advances in support of security
issues as well as to support the technologies that have arisen during almost 30
years of Web applications evolution.

The kind of approaches we present in this paper, plus other compelling ones
with another kind of goals in the context of Web mashups and Web Augmenta-
tion, aim to adapt Web browsers to reach new kind of interactions that empower
end-users for interacting with Web content beyond the interactions that Web
applications and Web Browsers allow. From our humble point of view, these
approaches are vital given the advance of users capabilities that are very often
not adequately addressed.

In this work, we analyze how information visualization would improve data
consumption and use from part of end-users. Mainly, we analyze how the formal
pipeline for information visualization should be adapted or applied by end-users
(which are not necessarily experts in this area) for visualizing Web content. The
engineering problem behind our approach is threefold: one problem is scraping
semi-structured data from Web under demand into the Web browser to create
data-sets, a second problem is how to obtain visualizations from this data-sets,
and a third is how to plug in-context new pervasive visualizations for desired
Web sites.

At this moment we are designing a user evaluation for our approach to pro-
cess and visualize Web information. We firmly believe in the idea that this kind
of Browser’s behavior would make user’s tasks faster and also the user’s under-
standing of information deeper. Moreover, we plan a more in-depth analysis of
multiple websites may be useful to understand how much content share a similar
structure and find which are the best alternatives for generating proper selectors.

At the same time, we are studying how information can be usefully extracted
to help users in its analysis and use in other ways. For instance, for creating dy-
namic data sets using temporal information that Web sites change with a specific
frequency. Furthermore, using user-driven annotations for extracting complex in-
stances of information that are composed without a semi-structured presentation
enabling automatic extraction.

Finally, other more technological aspects for making easier the use of this
tools are devised, such as repositories for quickly sharing and maintaining vi-
sualizations and the implementation of a library that allows Web developers to
apply this kind of visualizations internally.

References

1. Sanou, B.: Measuring the Information Society Report 2018. International Telecom-
munication Union, Geneva, Switzerland (2018)



Title Suppressed Due to Excessive Length 15

2. Munzner, T.: Visualization analysis and design. AK Peters/CRC Press (2014)
3. Yi, J.S., ah Kang, Y., Stasko, J.: Toward a deeper understanding of the role of

interaction in information visualization. IEEE transactions on visualization and
computer graphics 13(6) (2007) 1224–1231

4. Shneiderman, B.: The eyes have it: A task by data type taxonomy for information
visualizations. The Craft of Information Visualization (2003) 364–371

5. Price, M., Crumley-Branyon, J., Leidheiser, W., Pak, R.: Effects of Information
Visualization on Older Adults’ Decision-Making Performance in a Medicare Plan
Selection Task: A Comparative Usability Study. JMIR Human Factors 3(1) (2016)

6. Jeevitha Mahendiran, Kirstie Hawkey, N.Z.H.: Exploring the need for visualiza-
tions in system administration tools. In: CHI’14 Extended Abstracts on Human
Factors in Computing Systems, ACM (2014) 1429–1434

7. de Borja, F.G., Freitas, C.M.D.S.: Civisanalysis: Interactive visualization for ex-
ploring roll call data and representatives’ voting behaviour. In: 28th SIBGRAPI
Conference on Graphics, Patterns and Images (SIBGRAPI 2015), IEEE Computer
Society (2015) 257–264

8. Heer, J., Card, S.K., Landay, J.A.: Prefuse: a toolkit for interactive information
visualization. In: Proceedings of the SIGCHI conference on Human factors in
computing systems, ACM (2015) 421–430

9. Sun, L., Zhu, Y., Mahmood, A.S.M.A., Tudor, C.O., Ren, J., Vijay-Shanker, K.,
Chen, J., Schmidt, C.J.: Webgivi: a web-based gene enrichment analysis and visu-
alization tool. BMC Bioinformatics 18(1) (May 2017) 237

10. Pantazos, K., Kuhail, M., Lauesen, S., Xu, S.: uVis Studio: an integrated develop-
ment environment for visualization. Visualization and Data Analysis 2013 8654
(2013)

11. Fisher, D., Drucker, S., Fernandez, R., Ruble, S.: Visualizations everywhere: A
multiplatform infrastructure for linked visualizations. IEEE Transactions on Vi-
sualization and Computer Graphics 16(6) (2010) 1157–1163

12. Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE transac-
tions on visualization and computer graphics 17(12) (2011) 2301–2309

13. Viégas, F.B., Wattenberg, M., van Ham, F., Kriss, J., McKeon, M.M.: ManyEyes:
a Site for Visualization at Internet Scale. IEEE Trans. Vis. Comput. Graph 13(6)
(2007)

14. Teixeira, J., Barata, G., Gonçalves, D.: Metabrain: Web information extraction
and visualization. (2012)

15. Dı́az, O., Arellano, C.: The augmented web: rationales, opportunities, and chal-
lenges on browser-side transcoding. ACM Transactions on the Web 9(2) (2015)

16. Firmenich, S., Bosetti, G., Rossi, G., Winckler, M., Barbieri, T.: Abstracting and
structuring web contents for supporting personal web experiences. In: International
Conference on Web Engineering, Springer, Cham (2016) 77–95

17. Nguyen, D.Q., Schumann, H.: Visualization to support augmented web browsing.
In: International Joint Conferences on Web Intelligence (WI) and Intelligent Agent
Technologies (IAT), IEEE/WIC/ACM (2013) 535–541

18. Aldalur, I., Diaz, O.: Addressing web locator fragility: a case for browser exten-
sions. In: Proceedings of the ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, ACM (2017) 45–50

19. Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in information visualiza-
tion: using vision to think. Morgan Kaufmann (1999)


