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Abstract

The data interpolating problem is a fundamental problem in data analysis, and
B-splines are frequently used as the basis functions for data interpolation. In the
real-world applications, the real-time processing is very important. To achieve
that, we cannot use any matrix inversion for large amount of data, and we also
need to avoid using any global operator. To solve this problem, we develop a
new method based on a local quasi-interpolation operator. To construct the local
quasi-interpolation operator, we need to factorize the Shoenberg-Whitney matri-
ces for the given data samples. Furthermore, our local quasi-interpolation operator
should correspond to a band matrix with the minimum bandwidth, which is criti-
cal for the real-time data processing. Finally, we bridge the gap between our local
quasi-interpolation operator and a local spline interpolation operator through an
impulse interpolation operator using a “blending” method.

Key Words:B-spline/ Cardinal B-spline/ Reproduction and Marsden’s Iden-
tity / Shoenberg-Whitney/ Quasi interpolation/ Coefficients of the Marsden’s Iden-
tities.
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Chapter 1

Introduction

The word “Spline”, originated from East Anglian dialect, means something elastic,
such as a piece of thin wood or metal slat, that was used as a tool in shape design
at ancient time. In mathematics, we use the splines to represent a special type
of functions - piecewise-polynomials, with certain smoothness conditions at the
joint points of two adjacent polynomial pieces. The spline functions have many
applications in the real-world due to its excellent mathematical properties. There
are several industry standards based on the splines. They are an important tool
in computer graphics.

In data analysis, the spline functions provide us a powerful tool due to its
simplicity and flexibility. A fundamental problem in data analysis is the data
interpolotion problem, and the spline-based interpolation is the most commonly
used method. However, there are still some difficult problems to be solved in data
interpolation. When the data size becomes larger and larger, the data processing
time becomes slower and slower. If the response time is too long, then those data
processing methods would not be practical in many real-world applications.

In the data interpolation problem, when we use the direct method, we need
to solve a linear system, in which the matrix size corresponds to the data size.
Suppose that there are n data points to be interpolated. Then our data interpo-
lation problem involves a matrix of size n x n. If the data interpolating method
requires computation of the inverse of this matrix, then the running time com-
plexity function would be in O(n?®), which is not acceptable for large number n.
So the first natural question in this situation is: Is it possible to avoid the matrix
inverse operation in data interpolation? There is an interesting idea to solve this
problem: If one can find a local quasi-interpolating operator for the B-splines, then
the matrix inverse can be eliminated from the algorithm.

However, constructing a local quasi-interpolating operator is not an easy task.
There are two methods for the construction, and they have these properties: 1) The



method relies on some special setting between the knots and data samples; 2) The
construction procedure is extremely complicated, and it is very hard to implement
it. These two “drawbacks” make the methods not very user-friendly in the real-
world applications. Therefore, to construct a “perfect” local quasi-interpolating
operator, we need to fix the above two drawbacks. Specifically, we would like to
make our local quasi-interpolating operator have the following properties:

e For any valid knots-samples setting (i.e. satisfying the Shoenberg-Whitney
condition), the local quasi-interpolating operator can be defined using ex-
plicit formulas.

e The construction procedure is easy to follow, and the performance of the
algorithm is fast (in terms of O(n) for the data size n).

The rational behind using the quasi-interpolating operators instead of the di-
rect interpolating operators is: We divide the interpolation into two steps: 1) Use
a quasi-interpolating operator to approximate the data while preserving adequate
precision (i.e. certain approximation order); 2) Interpolate the data exactly by
bridging the gap. This two-step approach has an advantage over the one-step ap-
proach, because the room that we can approximate the data in the first step allows
us to make the operator local, which is essential for achieving the real-time data
processing. Then we apply a special “blending” method to make up the difference
part to complete the whole interpolation.

Since it is very difficult to solve the above problem completely, in this dis-
sertation, we would like to solve the problem for the linear B-splines (the order
m = 2). The method developed for this relatively simple case would establish the
foundation for solving the whole problem in the future. Let us give an overview
of our method below.

Let { By (7)}7Zs denote the set of the m-th order B-spline basis functions on
the interval [a, b] with the knot sequence {tz}p__,, ;. Let Sp,; be the space of
spline functions on [a, b] defined as follows

n—1
St = {chBj,mwcj ERfor 0<j<n- 1}-
7=0

The space S, is a linear space of dimension n, which will be used to approximate
the continuous functions in C|a, b|.

When we interpolate given data points, we need to find a function in C|a, b]
that takes the given values at the given locations. Since there are many different
ways to do the interpolation, we want to find a function with good mathematical



properties. We start our search in S,, . To find a local linear operator on S,,; that
maps the given data to a function in S, satisfying the interpolating condition, it
is extremely hard in general. Then we extend S,,; to a larger subspace of Cla, b,
so that we have more freedom to find an interpolating function in it. Specifically,
we insert a few appropriate new knots into the original knot sequence, i.e. t C t*,
then we get a larger spline space, denoted by S, 4+, i.e. Sy C Sy In other
words, we increase the dimension of the initial subspace of Cfa,b] to get more
flexibility, so that we can derive an appropriate interpolating function g(z) in the
larger subspace of C|a, b] without using matrix inverse. That local interpolating
linear operator will be a quasi-interpolating operator so as to achieve certain ap-
proximation order for the approximation function.

The quasi-interpolating operators, first introduced by De Boor and Fix in [7].
More precisely, the spline approximation operator Q,, : Cla,b] — S+ with knot
sequence {t;} is called a quasi-interpolating operator if it reproduces polynomials
of degree < m — 1; that is,

(Qmp)(x) :p<£€), VS [a7 b]

for polynomials p € m,,_1. This property provides us necessary precision in data
processing. Our construction heavily relies on the coefficients of the Marsden’s
identity, which describe the polynomial reproduction property for the B-splines.

In 1970, Marsden in [13] expressed (- —y)® in terms of a linear combination of
B-splines, which is called Marsden’s identity. This identity plays an important role
in change of basis procedures and B-spline curve approximation. Moreover this
identity is deeply studied and extended in various settings by many researchers.
Denote {p}, ., = 0,1,...;m — 1} as the coefficients of the Marsden’s Identities
given by

Prm =1,

1
%m=?;§ > titn. t,, 1<r<m-—1

T k—m+2<j1<ja2<...<jr<k

with 0 < k <n — 1, and we have

MH

m Biem(z for0 <r<m-—1.
k=0

A matrix version criterion of the Marsden’s identity provides us a convenient
tool in dealing with the linear operators related to the polynomial preservation
property. To describe the linear operators used to define the quasi-interpolating
operators, we introduce a concept called the data-induced (DI) operator, which
connects a linear operator to the given data samples. Then a local linear operator
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corresponds to a band matrix. Thus, to find a local quasi-interpolating operator,
we need to find a band matrix that satisfies the above mentioned matrix version
criterion of the Marsden’s identity.

Another important tool to study the data interpolation is the Shoenberg-
Whitney matrix. In the direct interpolation problem using the B-splines, the
inverse of the Shoenberg-Whitney matrix is needed. Since we want to avoid any
matrix inverse operation, because it has two big drawbacks: 1) Computation of
the inverse is very time-consuming; 2) The inverse in general is a global matrix
which does not support real-time data processing. Therefore, we will use a band
matrix to approximate the inverse of the Shoenberg-Whitney matrix under the
criterion for preserving certain number of polynomial orders.

To this end, we introduce a concept called approzimate inverse, for which we
use a band matrix to approximate the inverse of some matrix such that their dif-
ference is orthogonal to a special subspace. This special subspace is formed from
the given data. Then we develop an algorithm to find the approximate inverse of
the Shoenberg-Whitney matrix through the matrix factorization technique. Our
matrix factorization technique is analogous to the polynomial factorization in this
way: When a polynomial takes the zero value at some point, then we can factorize
a linear factor from it. In our matrix case, when a matrix is orthogonal to a vec-
tor, we can factorize a special matrix factor, which is called a divided-difference
matrix. We use the divided-difference matrices as the building blocks to construct
the approximate inverse of the inverse of the Shoenberg-Whitney matrix.

After we find the approximate inverse of the linear Shoenberg-Whitney ma-
trix, we observe an interesting property: the duality property between the linear
Shoenberg-Whitney matrix and its approximate inverse. This duality property
only occurs in the linear B-spline case. In other words, when the spline order
m > 2, we will not have this property anymore. The reason behind this is: For
the linear B-splines, the relationship between the knot sequence {t;}}7__; and the
data samples {yk}z;é has some duality property. Specifically, we have the follow-
ing conditions;

a:t_1:t0<t1<t2<---<tn_2<tn_1:tn:b,

a=yo <y <Y< <Yn2<Yp_1 =0,
and

tic1 < Yi <tiga, for 1<i<n-2,
or equivalently,

Vi1 < t; <Yy, for 1<i<n-—2

If we define t := (t1,...,t,_o) for the inner knots, and 7 := (y1,...,Yn_2) for the
inner samples, we can see that there is some symmetry property between ¢ and /.



This symmetry property also occurs in the linear Shoenberg-Whitney matrix and
its approximate inverse. Let By(f,#) be the Shoenberg-Whitney matrix for the
linear B-splines, where we treat ¢ and § two sets of variables in the matrix-valued
function By(f, 7). We found that By(7,t), switching the positions of ¢ and ¥ in
By(t, ), is an approximate inverse of By (t,7). Here we would like to point out
that there are many approximate inverses for By (t,%), and By(#,t) is just one of
them. This view is quite natural, because we have the similar view in the general
function approximation: One function can be approximated by many different
functions, even with the same approximation order. This property makes the
computation of the quasi-interpolating operator for the linear B-splines extremely

easy.

We will organize our presentation in the following chapters as follows. In
Chapter 2, we provide the preliminaries for our theory development. In Chapter
3, we obtain the explicit formulas for the inverse of the Shoenberg-Whitney matrix
for the general linear B-splines. In Chapter 4, we study the main properties for
the quasi-interpolating operators and the data interpolating scheme. In Chapter
5, we apply the matrix factorization technique to find the approximate inverse of
the Shoenberg-Whitney matrix for the general linear B-splines. In Chapter 6, we
describe some future research problems.



Chapter 2

Preliminaries

2.1 B-splines

Let m be a positive integer and let ¢ = (¢;) be the knot vector or knot sequence,
which is a nondecreasing sequence of real numbers of length at least m-+1 satisfying
the following condition

tj > t]’,m,
so that the B-spline defined on this knot sequence is non-vanishing. Then we can
define the B-spline functions by the following recursive formulas.

Definition 2.1.1. The j-th B-spline of order m with knots t (denoted by B, (x))
is defined via
tiv1 —@

T —1t;_
Bjm(w) = ——— "B imo14() + P,
J j—m+1 j+1 j—m-+2

Bj,m—l,t(x) (211)

for all real numbers x, with

( )_ 1, Zf tj§$<tj+1,
b 0, otherwise.

To simplify the notation B, (x) slightly, we usually drop the ¢ part, that is,
we use Bj,(x) to represent a B-spline function with the underlying knot sequence
t.
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Example 2.1.2. (B-Splines of order 2) An application of the recurrence rela-
tion (2.1.1) gives:

Tr — tj—l tj+1 — X

Bjs(z) = Bj_1a(z) + Bja(x)

tj = tj—1 tiv1 — 1

(x —t;_
L ha<a<t,
tj — tj—l

Yt —x

La Zf t] §$<tj+l7
i1 —
0, otherwise.

\

When we apply the recursive formula (2.1.1), we may encounter the case that
tj—m = t; in evaluating B;_; ,,(z), in which we assume that

B;_1mi(x) =0 for all z when t;_,, =1,

which corresponds to the vanishing case based on the geometric understanding.
This assumption is compatible with the recursive formula (2.1.1).

Notice that a B-spline is determined by its knot sequence, we introduce an
alternative notation for the B-spline to reflect this consideration,

Bjmi(z) = B(x|tj—mi1, tjimmta, - - - tj11)-
The definition of the B-Splines implies the translation invariance property, i.e,
Bx+yltj—ms1 + Y, .. tis1 +y) = B(z|tj—pms1, .. tjs1), x,y €R.
It is easy to see that the support of Bj,(x) is [tj—m+1,tj41], and Bj,(xz) > 0 on

(tj—mt1, 1)

The knots do not have to be distinct. If a knot is repeated r times, then we
call that the multiplicity of this knot is r. The multiplicity of a knot will affect the
smoothness of the spline at this knot, that is, B;,,(z) € C?" in a neighborhood
of this knot, where d is the degree of the B-spline, which is m — 1. Hence the
maximum possible multiplicity of a knot for B;,,(x) is m, in which Bj,,(x) is
discontinuous at this knot. For example, let z = t;_,,,11 = ... = t; < t;41, then
Bjm(z) =1and B;,,(2) =0fori>jori<j—1

We can also find the derivative and integral of a B-spline as follows,

Bisim-1(r)  Bim-i1(z) )7

i — i1 Tig1 — ticmgo

Blute) =~ 1) (2.12)

11



and
m

—/Biym(a:)da: =1.
tiv1 — timmi

The simplest case for the B-splines is the Cardinal B-Splines, in which the
knots are integers. We denote the cardinal B-Splines of order m > 1 by

Ny (z) = B(z]0,1,...,m), x€R.

Then the recurrence relation (2.1.1) for m > 2 becomes

Np(z) = mx_ Ny () + Z:me,l(x —1). (2.1.3)

It is easy to see that the support of N,,(z) is [0, m] and N,,(z) > 0 in (0,m). It
also has the partition of unity property,

> Np(x—k)=1, forallz €R.

Other than the recursion formula (2.1.3), N,,(z) can be derived from N,,_i(x) by
the convolution operation as follows,

Np(2) = (Np—1 * Np)(2) = /01 Np—1(z —t)dt, m > 2. (2.1.4)

Based on the relationship between the Fourier transform and the convolution
operation, from (2.1.4) we immediately get

A

Np(w) = (Nl(w)) . (2.1.5)
It is easy to calculate Ny(w), which is

~ ] 2 .
= L
w

and (2.1.5) leads to

. sinw/2\"™
Sl = (B357)

which implies that

A

N (0) = 1.

Since

Nm(w):/ Ny (z)e “*dux,

12



we have

N, (0) = /_OO Np(x)de = 1.

Equation (2.1.5) can also be written as

N () = (“—)m

w

which is easier to use when we consider
Nm(w) B (1—e ™) /(iw) \™ 1+ eiw/2\ ™
Np(w/2) ((1 - e‘i‘"”)/(iw/?)) B ( 2 ) '
NM(W) = pm(Z)Nm(w/Q)v

P (z) = (1;Z)m

Therefore the cardinal B-splines satisfy the following refinement equation

That is,

—iw/2

where z = ¢ and

2.2 Spline evaluations and interpolations

Now we want to use the spline functions, (functions generated by the B-splines), to
approximate or model the real world functions. We consider the spline functions
with the knot sequence (t;) on the interval [a,b]. In order to form a complete basis
functions on [a,b], we need to assume that the given knots satisfy the following
conditions:

A=t = =tg<ty <ty < <tpm <tpmsr=---=t,=0b (2.2.1)

and
Li—m < tj, 7=1---.n. (222)

This set of B-spline functions satisfy the partition of unity,

Bjm(@) = 1, (2.2.3)



where B;,,(z) is defined as in (2.1.1). Now, we can define the space of the spline

functions on [a, b] with knots (¢;)7__,,,, satisfying (2.2.1) and (2.2.2) as follows
n—1
Syt = {Z ¢jBjm(z)|c; e Rfor 1 <j < n} : (2.2.4)
=0

Thus S, is a linear space of dimension n.

For a function f € S, we can write it as f(z) = Z;:& ¢jBjm(x). When
we evaluate f(x) at © = x¢ with ¢ € [t,,t,41) for 0 < g < n — m, notice that
only those B-splines B, ,,, with © < j < pu+ m — 1 may not vanish on zy, hence

(o) = Y20 ¢ By (o).

Let us consider the general evaluation problem of a spline function f(z) =
"1 B.n(x). Since the explicit representation of each B-spline B, (z) is com-
j—O J Js Js

plex, we will try to represent the value of f(x) as a product of matrices, which
rely on the recursion formula of the B-splines.

Let @= (co,...,c,—1)". Then we can write
f(x) = (Bom(x), ..., Bu1m(z))C (2.2.5)
Next, we will write the vector (By (), ..., Bn_1m(2)) as a product of matrices

from the lower order cases.

Assume that the n data samples {y;}0~" satisfy:
a=Y <Yy < <Yp2<Yp1=2>0 (2.2.6)
and
tz’—m+1 <Y < tit1, for 1= 1,...,n— 2. (227)

Given a function f : Cla,b] — R, the spline interpolation operator S, :
Cla,b] — Sy, satisfies the n interpolation conditions

(Smf)wi) = f(y), i=0,....,n—1. (2.2.8)

Spline interpolation has the advantage over traditional polynomial interpolation
(for example, the lagrange and Newton interpolation formulas) that the approxi-
mation accuracy may be improved by decreasing the distance between consecutive
knots while keeping the polynomial degree m — 1 relatively low.

Since {Bj,, : j = 0,...,n — 1} forms a basis for the spline space S,,;, there
exists a spline S, f, defined by

(Smf)(@) = cIBjm(x), =€ [a,b],



that satisfies (2.2.8), if and only if

n—1

> dBimyi) = f(y), i=0,...,n—1 (2.2.9)

Jj=0

In other words, the vector c; := (c{;, c )T € R™, where R" denotes the

» Pn—1
n-dimensional real space, is a solution to the matrix equation

mcf fn’

where B,, is an n x n coefficient matrix of the form

Bo,m(yo) T Bn—Lm(yo)
B, = : : : (2.2.10)
BO,m(yn—l) Tt Bn—l,m(yn—l)

and f,, := (f(40), -, f(yn_1))T € R™. A necessary and sufficient condition for the
matrix By, in (2.2.10) to be invertible is that

Bjm(y;) #0, for j=0,...,n—1, (2.2.11)

which is the result of the Schoenberg-Whitney theorem [45], and we refer the ma-
trix By, to Schoenberg- Whitney matriz.

Our setting in (2.2.6) and (2.2.7) ensures (2.2.11), thus, we can write

n—1
ZB Y£2)iBjm(z), x € la,b],
7=0

where (v); refers to the j-th component of an n-vector v.

In order to calculate the entries of B, in (2.2.10), we would like to introduce
the following notations,

 — tiem tiv1 — Y
S R S S 2 S N (2.2.12)
Tt —ticmn T tipr — tismyo
where {t;_m+1,...,tit1} are the knots that define the B-spline B; ,,,(z) (see 2.1.1).

We can easily see a property between of"; and 57}

aiy + Gt ;=1 (2.2.13)

Next we will discuss the B-spline evaluations for three cases: Linear (m = 2),
Quadratic (m = 3), and Cubic (m = 4) B-splines.
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In the case that m = 2, the support of B;s(z) is [ti—1,ti11]. We consider the
following two cases: 1) y; € [ti_1,ti]; 2) y; € [ti, tiva].

1. For y; € [ti_1,ti],

Yj —ti1
Bia(y;) = tj——tl = Oé,-z,j. (2.2.14)
2. For y; € [ts, tita], ,
i+1 — Yj
Bia(y;) = ﬁ = 6. (2.2.15)

In order to get a specific view on the knot-data setting, we consider the fol-
lowing special knots and data samples arrangements:

a=ty=(yo) = (1) = t1 = (y2) = t2 = (y3) = t3

—ty = (ya) =t — (ys) = te — (ys) — b =17 = (yr), (2.2.16)
and we will write the Shronberg-Whitney matrix for the basis functions { B; 2(z)}/_,
with respect to this setting.

The Shronberg-Whitney matrix (2.2.10) has the following format:
By = [bji]8><8a

where b;; := B;2(y;). Next, we will calculate B, for the non-zero entries in the
following pattern:

1 0 0 0 0 0 0 0]
by by 0 0O 0 0 0 O
0 by by 0 0 0 0 0
0 0 by bz 0 0 0 0
B:=1y o 0 o0 by bis 0 0 (2.2.17)
0 0 0 0 0 bss bsg O
0 0 0 0 0 0 bg ber
00 0 0 0 0 0 1,

Since there is no data sample between the knots t3 and t4, the By matrix is a
block-diagonal matrix with two diagonal blocks. Next we verify the partition of
unity property of B-splines.

Consider the ith row with 1 <1 < 3: {b;_1,0;;} for the first diagonal block
matrix.
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e For the knots-data setting: {t;—o — (yi—1) = ti-1 — (ys) — i},
bi—l,i = Bi—l,?(yi) = 1'2_1,1'-
e For the knots-data setting: {t;1 — (yi) = t; = (Yir1) — tis1},
bi,i = Bi,2(yi) = 042271‘-
Then the sum of all these numbers is:
bi—1; +bi; = Bz‘z_u + 0%2,1‘ =1,
which follows the partition of unity property.
Consider the ith row with 4 <i < 6: {b;;, bi11,} for the second diagonal block
matrix in Bs.
e For the knots-data setting: {t;1 — (yi—1) =t = (i) — lis1}
bii = Bia(yi) = 121
e For the knots-data setting: {t; — (yi) — tiy1 — (Yir1) = tiso}
biv1i = Biv12(yi) = afp,
We also have that the sum of all these numbers is:
bii+biv1i = 121 + 0%2+1,z' =1,
which again satisfies the partition of unity property.
For the case that m = 3, we consider a general quadratic B-spline B; 3(x) with

knots {t;_2,t;_1,t;,t;11} using the notations in (2.2.12).

1. For y; € [ti_2, tiq],

Baly) = W T2 e (2.2.18)
Y (tic1 — tia)(ti — ti2) T
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2. For y; € [ti1,t],

(ti —y;)(y; — tia) N (y; — tio1)(tiv1 — 5)

Bialys) = (ti —tic1)(ti —tize)  (ti —tim1)(ti — tio)
=B 08 + ol 5. (2.2.19)
3. For y; € [ti, tit1],
Bisly;) = — i =Wl B4 (2.2.20)

(tigr — ta)(tigr — tiz1)

We consider the following knots and data samples arrangements:
a=ty=(yo) = (y1) = t1 = (y2) = ta = (y3) = 3 — (ya)
—ty = (ys) = ts — (y6) = te = (yr) = b=1tr = (ys), (2.2.21)

and we will write the Shronberg-Whitney matrix for the quadratic B-spline basis
functions with respect to these knots and data points.

The Shronberg-Whitney matrix has the following format:
Bs := [Bji]9><97

where B;; := B;3(y;). Next, we will calculate Bs for the non-zero entries in the
following pattern:

[ 1 0 0 0 0
Byt Bii By 00
Bz By Bs 0
0 Bs3 Bsz Bys 0
0 B3y By Bsy 0

o O O
o O O O

Bs = (2.2.22)

O OO o oo
SO DO OO oo

0
0
0
0
0
0
0

0
0O 0 0 By Bss Bes
0 0 0 0 Bsg Bes DBre
0 0 0 0 0 Ber By Bsr
0 0 0 0 0 0 0 0 1],

1. The 2Hd TOwW: {3017 Blla Bgl}

e With the knot sequence: {a =ty = (yo) = a —a — (y1) = 1}
Boi = Bos(y1) = 531531-
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e With the knot sequence: {a =ty = (y1) = a — (y1) = t1 = (32) — t2}
Biy = Bis(y1) = Byady + o8-

e With the knot sequence:
{a=1to=(yo) = (y1) = t1 — (y2) = t2 — (y3) = t3}

Boy = B2,3(?/1) = 0‘%10431-
Sum of all these numbers:

Bo1 + Biy + Bay = 85,651 + (8103, + of185) + adia3,

= (5(2)1531 + 5(2)104%1) + (O‘iﬁi + 04%10431) = 5(2)1 + 04%1 =1
2. The 3rd row: {Bl27 BQQ, ng}

e With the knot sequence: {a =ty = (yo) = a — (y1) = t1 — (32) = t2}
By = 31,3(y2) = 5%25?2'

e With the knot sequence:
{a=to=(y) = (y1) = t1 = (y2) = t2 — (y3) = t3}

Bay = Bo3(y2) = Ba00 + 03,55,

e With the knot sequence:
{t1 = () = t2 = (y3) = t3 — (ya) = ta}

Byy = Ba3(y2) = 03y
Sum of all these numbers:
By + By + By = 1,01 + (875035 + 035 55) + 3503
= (87287, + Bla0i3y) + (3055 + a%2a§2) = By +aby = 1.

Now we consider the general case.

The 7th row with 1 < 1 < 7 {Bifl,i; Bi,i7 Bi+1,i}
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e With the knot sequence:
{tics = (i) = tio — (yic1) = tion — (i) — i}

Bi1i=Bi_13(y) = 51'2_1,1' ?-1,7;-
e With the knot sequence:
{tico = (Wic1) = ticn = (Yi) = ti = (Wir1) = tig1}
Bi; = Bis(y:) = B .0 +0412,z' 132

i—1,0"1,8

e With the knot sequence:
{tics — (y) = ti = Wiv1) = tiyn — (Yir2) — tiya}
3

Bit1i = Biv13(yi) = O‘zg,iai—l-l,i'
Sum of all these numbers:
Bi 1+ Bii + Biy1i = 51'2—1,1' ?—u + ( i2—1,ia?,i + 0%2,1' 131) + a?,ia?-i-l,i
= ( i1, ?71,1' + @271,1'0‘?,@') + (0%'2,@' 131 + a?,ia§+1,i) =Pist+ O‘?,i =L

For the case that m = 4, we work on a general cubic B-spline with knots
{tics, tizo, iy, ti tiga )

1. For x € [t;_3,t; o],

L (l’ — ti,3)3
Biale) := (tico —tis)(tioy — tis)(ti —tis) (2.2.23)

2. For x € [ti_g,ti_l],
(ti,1 — 33’) (.Z' — ti,3)2
(tico — tiz3)(tice — ti—a)(tic1 — tia)
(@ —tios)(tim1 — 2)(z — ti-4) n (z —tig)*(ti — )
(timo — timg)(tic — timg)(timg — tica)  (time — tims)(tic1 — tizs)(ti — tizs)

BZ"4(£L') = +

(2.2.24)
3. For x € [ti_g,ti_l],
L (72;1 — $)2($ — ti,4)
Bia(z) := (tic1 — tiza)(tiz1 — timg)(tic — 751'—4)+
(tio1 — @) (x — tio3)(t; — ) n (z —tio)(t; — 2)?
(tim1 — timo)(timy — timg)(ti — timg)  (timn — tio) (s — tio)(ti — tizs)
(2.2.25)
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4. For x € [t;_1, ),

(ti —x)°
(t; —tica)(ti — tica)(t; — tiz)

B 4(z) == (2.2.26)

Then we can represent B, 4(y;) in the following compact form using the nota-
tions (2.2.12):

1. For y; € [ti—s, ti—a],

yj —ti3)’
Bialy;) = (y; — tis) = o, 00 ol (2.2.27)

(tico — tiz3)(tic1 — tizg)(ti — tizs)

2. For y; € [ti—a,ti—1],

(tics = yi)(y; — tis)”
(tic1 — tico)(ticn — tizg)(ti — ti—s)

(y; — i) (ti — y;) (y; — ti-s) (y; = ti-2)*(fis1 — )
(tic1 —tico)(ts — tico)(ti — timg)  (tic1 — tico)(ts — tica) (tig1 — tiza)

Bi(y;) := +

— 3 3 4
5 -2, zl] z]+az 1,jMi—1,5 z]_'_az 1] 4,717%,5° (2228)

3. For y; € [ti1,ti],

(ti — y;)*(y; — ti-s)
(ti = tica)(ts — tizo)(ti — tizg)

(ti = y) (s —tico) (i —45) (g — tim1)(tivs — y5)°
(ti —tia)(ti — tico) (tivn — tic2) (i — tica)(figr — tica)(tig1 — ti2)

Bia(y;) ==

+

ﬁz 1]11] 13+B121] Q; +062 133 14,]" (2229)

4. For y; € [ti, tiv1],

(ti1 —y)°
(tivr — ) (tigr — tica)(tip1 — tiz2)
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We consider the following knots and data points arrangements:

a=ty=(yo) = (y1) =~ t1 — (o) =2 — (y3) = 3 = (ya) = (y5) = 1u

— (ys) = t5 = (yr) = x6 — (ys) = b =17 = (yo),
and we will write the Shronberg-Whitney matrix for the cubic B-spline basis func-
tions with respect to these knots and data points.

The Shronberg-Whitney matrix has the following format:

By := [Bjiliox10,

where B;; := B;4(y;). Next, we will calculate B, for the non-zero entries in the

following pattern:

1
Bn

0
0
0
0
0
0
0
0

1. The 2nd row: {Byg, B11, Bo1, B31}

0
B
By

0

S OO OO oo

0
By,
By
Bos

0

S OO OO

0
Bz

0
0

0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
Bss 0 0 0 0
Bsy Bgy 0 0 0
Be: B 0 0 0 (2.2.31)
Bss Bgs Brg 0 0
Bs; Ber Brr Bgr 0
0 Bgs Brs Bss DBos
0 0 0 0 I

e With the knot sequence: {a =ty = (yo) ~a —a—a— (y1) = 1}
By = Bo,4<yl) = 5315815611'

e With the knot sequence: {a =ty = (yo) = a — a — (y1) = t; —
(y2) — t2}

By = Bl,4<yl) = 581531“111 + 531“?15%1 + 0‘%15%15?1-

e With the knot sequence:
{fa=to=(y) =~ a—(y1) = t1 = (y2) = t2 = (y3) = 13}

2 3 4 2 p3 4 2 3 34
B = Bau(y1) = Bpra11 0y + 041 B0y + a0, By

e With the knot sequence:
{a=to="(y0) = (y1) = t1 = (y2) = T2 = (y3) =5 = (va) = (y5) =

ty}

_ _ 2 3 4
Bs = 33,4(3/1) = 019 gy
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Sum of all these numbers:

2 53 o4 2 53 4 2 3 4 2 53 o4
Bo1 + Bi1 + Bay + Bsi = 841851801 + (Bo1 81011 + Borad1 51 + 31871 811)+
2 3 4 2 03 4 2 3 o4 2 3 4
(5010‘110421 + ai 1 B0y + a1 Byy) + Qg (g
2 43 a4 2 53 4 2 3 o4 2 3 4
= (Bo1Bo1Bor + BoiBorany) + (Boray By + By )+
2 23 o4 2 03 4 2 3 o4 2 3 4
(a11 871811 + a1 B710p) + (a0 By + afyaiyy gy )

= (5(2)15(?)’1 + 5(2)1045’1) + (O‘%ﬁ% + 0‘%10431) = 5(2)1 + 04%1 =1

2. The 3rd row: { Bz, Bag, B3, Bao}

e With the knot sequence: {a =ty = (yo) = a = a — (y1) = t; —
(y2) — ta} N
Bia = By 4(y2) = Biaf1251-
e With the knot sequence:
fa=to=(y) = a— (y1) = t1 — (y2) = ta = (y3) — 3}
By = Bau(y2) = 5%25?20/212 + 61220432@12 + 0432532532-
e With the knot sequence:
fa=to=(yo) = (y1) = t1 — (o) = t2 = (y3) = t3 = (va) = (y5) —
ty}
Bsy = Bsa(ye) = Bla0h90i3y + 043253204;12 + b3 3.
e With the knot sequence:

{ti— (y2) = t2 = (y3) = 3 = (ya) = (ys) = ta — (Y6) — 5}
By = Bua(y2) = 0‘320‘32@32
Sum of all these numbers:
By + By + By + Bug = 1580815 + (81281200 + 82035055 + o35 95) +
(ﬁﬂa%aé + a§25§2a§2 + a§2a§25§2) + Oz§2a§2aig
= (BL012812 + Biafia03s) + (812050825 + Baaieais)+
(050835 + 35 50030) + (035035 35 + 55 05505)

= (5%25?2 + 5%20432) + (04325:232 + 043204:?3)2) = 5%2 + 0432 =1

3. The 4th row: {Bas, Bss, Bas, Bss}
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With the knot sequence:
{a=to=(y) =~ a—(y1) = t1 = (y2) = t2 = (y3) = 13}

Bas = 32,4(93) = 533533533-

With the knot sequence:
{a=to=(y0) = (y1) = t1 = (y2) = T2 = (y3) =5 = (va) = (y5) =
ty}

Bss = B3,4<Z/3) = 53353304313 + ng‘lgsﬁ;fg + a§35§35§3-

With the knot sequence:
{ts = (y2) = ta = (y3) = t3 = (ya) = (y5) = ta — (ys) — 15}

2 3 4 2 03 4 2 3 pd
Bus = Baa(ys) = By30iss0vys + 0338353003 + 0330030,s.

With the knot sequence:
{ta = (y3) = t3 = (ya) = (y5) = ts — (ys) = t5 — (y7) — t6}

Bsz = 35,4(93) = 043304230‘;31&
Sum of all these numbers:
Bos + Bss + Bug + Bss = B33053055 + (835855055 + 833003355 + 3383 85)+

2 3 4 2 03 4 2 3 n4 2 3 4
(Ba3i330ry3 + Q33853003 + Q330043 8,3) + Q33003005
2 03 o4 2 03 4 2 3 4 2 3 4
= (ﬁ23ﬁ23523 + 5236230‘33) + (ﬁ230‘33533 + 52304%0443)+
2 03 4 2 3 4 2 3 o4 2 3 4
(33853833 + Q33 B33043) + (330043843 + Q330053053)

= (835835 + B350is) + (033555 + ajgaly) = B35 + ags = 1.

Now we consider the general case.
1. The 7th row with 1 S 1 S 4. {Bifl’l', Bi,i: B’i+1,i7 Bi+2,i}

e With the knot sequence:
{tica = (Wies) = ticg = (Wico) = tio = (yic1) = ticn — (yi) — ti}

Bzel,i = Bi71,4<yi) = (7 s h

i—1,iPi—1,iPi—1,i-

e With the knot sequence:
{tics = (Wi2) = tica = (Y1) = ticn = (y) = ti = (Yir1) — tina}

_ _p2 3 4 2 3 p4 2 3 o4
Bii = Bia(yi) = 5171,1' i1, % T 51'71,1'0% i T 0GP Dy -
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e With the knot sequence:
{tie = (yim1) = tica = (¥) = ti = (Wir1) = tisn = (Yir2) = liga}

_ _ 22 3 4 203 4 2 3 4
Bit1i = Biy14(yi) = i1, Q5 Q1 T QG P50 + QG QG Dy e

e With the knot sequence:
{ticn — (W) = ti = (Yirr) = tisn = (Wiva) — tive = (Yirs) — tiss}
Biyoi = Biraa(yi) = 0501 0400

Sum of all these numbers:

_ 2 3 4 2 3 4 2 3 04 2 03 o4
Bi—17i+Bii+Bi+1,i+Bi+2,i — Mi—1,iMi—1,i 171,7;"‘( i—1,8 ifl,iaii—i_ﬂifl,iaii i TG D ii>+

2 3 4 203 4 2 3 4 2 3 4
( 1,100 Oy T QG P30 g 5+ QG007 i+1,i) T Q0G0 Qg
_ 3 4 2 3 4 2 3 nd 2 3 4
= ( i—1,iPi—1,i i—u"‘ﬂi—l,i i—l,iaii)+( i—1,i Vi ii+ﬁi—1,iaiiai+1,i)+

2 03 pd 2 93 4 2 3 4 2 3 4
(0GB B + i iiai—l—l,i) +(aiiai+1,i i+1,i+aiiai+1,iai+2,i)

2 3 2 3 2 53 2 3 2 2
= ( i—1,iPi-1,i T Bi—l,iaii) + (a8 + aiiai+l,i) = 51‘—1@‘ +oa; =1

2. The ith row with 5 S 1 S 8: {Bi_gﬂ‘, Bi—l,i; Bi,i, Bi+1,i}

With the knot sequence:
{tics = (i3) = tia — (Yi2) = tiig — (Wi1) = ticg = (y) = tia}

2 3 4
Bi 2= Bi24(y;) = ﬁi—2,i/8i—2,iﬁi—2,i‘

With the knot sequence:
{tica = (Wiz2) = ticg = (Yic1) = tio = (i) = ticy — (Yip1) — ti}

_ _ 22 3 4 2 3 4 2 3 4
Bi 1= Bi-14(yi) = 5i—2,zﬂi—2,z‘az‘—1,z‘+5i—2,¢0‘i—1,¢ i1, Q1P 1P

With the knot sequence:
{tios = (Yim1) = tice = (¥3) — tict = (Yir1) =t = (Yir2) = liga}

3 p4

_ 02 3 4 2 3 4 2
Bii = Bia(yi) = Bi—2,z’04i—1,i04i,z' T QPO T G OGP

With the knot sequence:
{tice = (¥i) = ticn = Wir1) = ti = Wir2) = tis1 — (Yira) = Liga}

. ) 3 4
Bit1, = Bit1a(yi) = Q100 iy 4
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Sum of all these numbers:
Bio;+DBi1;+ B+ Bt

2 a3 o4 2 a3 4 2 3 2 53
= Bi 0.8 2iBi 0+ (BioiBi a1+ Bioii 181+ ai 187 1.8 14)

2 3 4 2 53 4 2 3 o4 2 3 4
+(Bi g0 10, + Qi Qi+ QG 0 )+

i1, i,iPi 1,i%i+1,

= (6?—2,1‘5?—2,@'5?—2,1‘ + 51‘2—2,1‘5?—2,1'@?—1,1‘) + (53—2,1‘@?—1,1‘5?—1,1' + 53—2,ia?—1,z‘a?,i)+
(0%2—1,1‘ ?—1,i5§1—1,i + 0412—1,1' ?—l,iaii> + (a?—l,iaiiﬂii + a?—l,iaiia?—i—l,i)

= ( 2, 1‘3—2,2' + 53—2,104?—1,7;) + (0%2—1,7; ?—1,1 + 0‘?—1,1'0‘?,1) = Pi_g; t+ a?—l,z’ =1L

In order to find the inverse for the Shoenberg-Whitney matrix for m = 2, we
need the following theorem from [17].

Theorem 2.2.1. Let B be an n-by-n tridiagonal matrix as in

_dl aq O_
by do :
B = o e, | ERTT (2.2.32)
bn—l dn—l 0
| o --- ce 0 1_

and ¢; #0, fori=1,2,--- .n—1. Then B is invertible and det(B) = H?:_ll ci. If
we denote B™' = [ay], then we have

(1, for i =mn,

1 .
R fori=n~—1,
(23 Cn—l

_+yiziai+1,i+l7 fO']" Z:n_27n_37 )1

\ C;
and
—Yi®iy14, for i <j<n-—1,
QG5 = —ZiQ 41, f07" ] <ir<n-— 1,
0, else,
a; bit1
where y; = —, z; = )
C; C;
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In order to estimate the computing cost of B, (in Chapter 4), we represent
each row of B,, as products of some matrices. For easier discussion, we can assume
that @ € [t,, ).

For the linear B-splines, m = 2. When we evaluate f(z), we notice that the
only linear B-Splines that are non-zero on [t,,t,4+1) are B, and B, 2, and their
basis vector representation is

(Buale), Bnalo) = ({2251 ).

tuH - tu tu+1 - tu

For m = 3, to evaluate f(z) when x € [t,,t,11), we only need to use 3 B-
splines: {ng}g‘;rj Apply the recursion formula (2.1.1), we have

r—1t,_ t —x
Bs(r) = —= B, 12(x) + ———Bya(x)
t# - tu—2 bu1 — tu—l
r—1,_ t —x
Buiis(z) = —HIBM(%) + LBAHIQ(J:)
t#+1 - t#—l tuv2 =ty
r—t t -
Byia3(x) = —MBu+1,2<x> + LBH+2,2(£)=
bu2 — Ly btz — tuta
which can be represented as
t#+1 — X r — t‘u,1 0
tupr — -1 tpgr =t
(Bus, Bus13, Buyas) = (Bu2, Buiiz)
0 lypo — x—1t,

tu+2 - tu 75u+2 - tu

due to the fact that B,_12(z) = Bi22(x) = 0 because x € [t,,t,41) is outside
the supports of these two B-splines.

For the cubic B-spline case where m = 4, we can get the basis vector represen-
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tation by the similar approach,

(Bua, But14, Buyos, Buysa) = (Bus, Bu+13, But23)

B tlﬁ‘l — X T — tM—Q 0 0 7
tur1 —lu—2 tugpr —tu—2
t - T —1t,_
X 0 pt2 pel 0
tyr2 —tu—1 Tur2 —tu
0 0 tuyz —x xr—1t,
L t,u+3 - tu t;H—S - tu-
tlﬁ‘l — X T — tu—l 0 T
typ1 — v T —1, bt =t B —
L T L 0 lyta — @ T —t,
tura =ty tura =ty
B t‘qul - X xr — tH,Q 0 0 7
bupr —tu—2 Ty —tuo
t - T —1t,_
X 0 pt2 pl 0
turz —tu—1 tugpo =ty
0 0 lutz — T r—1,
L t,u+3 - tu t,u—i—?) - t,u_

We can summarize the above analysis for the general case. To evaluate f(z) for
x € [ty tu+1), we only need to consider the vector (B, .m, ..., Butm—1m). In
order to represent this vector as a product of matrices, we define the matrices

R (z) by:

bup1 — @

Xr — tﬂ_l

0 0
byt — luvri—k tupr —tupik
0 lyto — T T —turo—k 0
pooN
Ry (z) = tur2 — turo—r Tut2 — Luto—ik
0 turk — xr—1t,
L tu-i—k - tu t,u-l—k - tu_
(2.2.33)
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Then
(Bums -+ Butm—1m) = Ri(2)Ra(x) ... Rp_1(x) (2.2.34)
Therefore f(z) can be represented by:
f(z) = Ri(z)Ra(x) ... Rpp—1(z) C, for x € [t,,tu41). (2.2.35)

2.3 Approximation orders and polynomial repro-
duction

2.3.1 Polynomial reproduction and Marsden’s identity

Since z* is a special function in the space S,,; for 0 < k < m — 1, we expect to

have an expression for x as follows
n—1
T = ijBj,m(x>) for x € [CL7 bL (231)
=0

where {p;}’s are the real coefficients. If (2.3.1) is true, we can take derivatives on
both sides and get

n—1
d
1= ij%Bj,m(x). (2.3.2)
j=0

From equations (2.1.2) and (2.3.2), we get

1=(m—1) nipj (Bj‘l’m‘l(x) _ Bima(@) > , (2.3.3)

tic1—tji—m Uy —tj—mt

=0

which can be simplified as

n—1
1=(m-1)Y PR 7H g (). (2.3.4)
—lj —tj—mt
7=0
By the partition of unity property, we get
tivi —tj—me2
Pj+1—Pj = ]m——jl (2.3.5)

We can find p; by (2.3.1) and (2.3.5)

tj,erQ + v +t]

" (2.3.6)

b; =
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Therefore (2.3.1) can be represented as

n—1

timia+ -+ 1
r=> - ] L Bjm(). (2.3.7)

J=0

In order to represent z* as a linear combination of Bj,,(x) for 0 < k <m —1, we
need a more powerful tool. To this end, we introduce the dual polynomial of the
B-Spline B; ,,,, which is defined by :

pia(y) =1
Pim(Y) = (Y = tjoma2) (Y = tjomas)- .. (Y — §;), m =2

Furthermore, we define the dual vector of By, = (Bum, .., Bytm—1,m)" on the
interval [t,,t,41) by

P = P (y) = (Pruan(¥), s Putm—1m (4))"- (2.3.8)

We have the following property that is crucial in deriving the polynomial repro-
duction in B-splines,

Rmfl(x)p_‘m(y) = (y - x)ﬁmfl(y)a for m > 27 and S R? (239)

where R,,_1(z) is defined as in (2.2.33). We apply (2.3.9) recursively m — 1 times
and get

Ri(z1) Ryt (Tn—1)Pm(y) = (y — 21) -+ (y — Tm—1), (2.3.10)

for all real numbers zi, s, ..., 2,1 and y with ¢, < t,.1. We also have the
following property: For m > 2 and x, z € R, then

Ry-1(2)Rp(x) = Ry—1(2) R (2). (2.3.11)

Now we consider the spline space Sy, defined in (2.2.4) on the interval [a, b].
We will derive the B-spline representation for z* with 0 < & < m — 1 by the
properties we have listed above.

1. Taking 1 = 29 = ... = x,_; = x in (2.3.10), we get
Ry(2)... Ry 1 (2) o (y) = (y — )™ 1. (2.3.12)

2. Then (2.2.34) implies that

pu+m—1

(y —2)" " =Bu(2) nly) = Z Pim(y)Bjm (), (2.3.13)

provided that x € [t,,t,41).
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Equation (2.3.13) is the so-called Marsden’s Identity. We can use it to write
explicit B-spline representations for the powers 1,x,22,...,2™ ! using the basis
functions {B;,,(z)}7—) on the interval [a,b] as follows:

n—1

1= Bju(x), for m>1, (2.3.14)
=0
n—1

T = Zt;mBj,m(x), for m > 2, (2.3.15)
j=0
n—1

2% = Zt;7>:nBj,m(x), for m >3 (2.3.16)
=0

on the interval [a, b] where

. 1

1 j—1 J
£, = @ Z Z tity.

i=j—m~+2 k=i+1

And more generally, for r = 0,1,2,...m — 1 we have
n—1
= Zp;mijm(a:), for x € [a, 1], (2.3.17)
§=0

where pf . are the symmetric polynomials given by:

1
Pjm = [GR) D titise ot (2.3.18)

and the sum is over all integers j1, ja, ..., jr such that j—m+2 < 5, < ... <5, <J
and the total number of terms is (mr_l)

Example 2.3.1. In the cubic case, the explicit representations of the Marsden’s
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tdentities are given below,

on |a,b]. see [11].

When we consider the cardinal B-splines, that is, N,,(z) as defined in (2.1.3),
we have the following property.

Theorem 2.3.2. [3] For any polynomial p(x) with degree up to m — 1,
~1

> p(k)No(z — k) = Z N, (K)p(z — k). (2.3.19)

k=—00 k=0
Proof. By Marsden’s Identity, for » =0,1,2,....,m — 1, we have

Z 0 Nm (T — 7), (2.3.20)

]7—00
where )
P @D > titjy. -1, (2.3.21)
) jH1<j1<j2<..<jr<j+m-—1
Then, we get
S N B = 33 Nl )Nnle )
k=—00 k=—00 j=—00

By change of variable s = k — j, we get

o0

Zker(x—k‘) = Z ijm Np(z—7—9)

k=—o00 §=—00 j=—00
0

— Z ( Z P m N, x—j—s))Nm(s).

s=—00 j=—00
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Therefore, using (2.3.20), we obtain

ki k' Nin(x — k) = i (7 = 8)"Nin(s)- (2.3.22)

Hence, we get _
ki (k) N (2 — k) = ki N (k)p(z — k). (2.3.23)
Since supp{ Ny, ()} = [0,m], (2.3.23) is equivalent to (2.3.19). O
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Chapter 3

Inverses of Shoenberg-Whitney
Matrices for Linear B-Splines

For the general case of the Shoenberg-Whitney matrix B,,, it is very hard to cal-
culate B;,'. But for the linear case where m = 2, it is doable to calculate B, ' in
an explicit form. Next, we will calculate it in a step-by-step approach.

3.1 (General representation for linear Shoenberg-
Whitney matrix

Assume that we are given n sample points: {y;}7_) spread on the interval [a, b]
with the following condition:

a=1yY <y < " < Ypo < Yn_1 = 0. (3.1.1)

To do the linear B-spline interpolation on these sample points, we construct a set
n—1

of linear B-splines {B; 2(z)}-, using the knots {t;}7__; with the following form:
a:t_1:t0<t1<t2<---<tn_2<tn_1:tn:b, (312)

where the basis function B;s(x) is constructed from the knots: {t;_1,%;,t;41} for
1=0,...,n—1. Furthermore, the Shoenberg-Whitney condition must be satisfied,
that is,

tig <y < ti—&-l’ for 1 <:<n-— 2, (313)

which implies that

Vi1 < by < Yiv1, forl1<i<n-—2. (314)
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With the above setting, we shall derive the unified form of the Shoenberg-
Whitney matrix, whose general form is given by

BO,Q(yO) T Bn—1,2(yo)
B - B,_
B, = 0,2‘(?41) 1Z2(3/1) (3.1.5)
BO,Q(ynfl) Tt Bn71,2<yn71)

nxn

Many of the entries in matrix By are zero. Specifically, when 57 > ¢ + 2 for
0 < i <n-—3, the (i,7) entry (counting from zero) of By is B;2(y;). Since the
knots for Bjs(x) are {t;_1,%;,t;11} and j —2 >4, by (3.1.4) and (3.1.2), we have
Y < ti—l—l S tj—la that iS, Y g [tj—17tj+1]7 which 1mphes that Bj’Q(yZ‘) = 0.

On the other hand, when ¢ > j 4 2, by (3.1.4) and (3.1.1), we have t;1; <
Yjr2 < Ui, that is, y; & [tj_1,tj41], which implies that Bjs(y;) = 0. Thus we
conclude that By matrix in (3.1.5) is a tridiagonal matrix. Specifically, we can
write (3.1.5) as

[ 1 0 0 e 0

Bo,z(yl) Bl,z(yl) B2,2(y1) T 0

By = 0 - - - 0

0 Bn73,2(yn72) Bn72,2(yn72) Bn—1,2<yn—2>
0 0 e 0 1 d
(3.1.6)
Furthermore, this tridiagonal matrix has a special property:

Bi—l,?(yi)Bi-l—l,Z(yi) = O (317)

That means, either B;_;2(y;) = 0 or Bjy12(y;) = 0, which depends on y; €
(ti—1,ti) or y; € (t;,tiv1). In particular, when y; = ¢;, we have B;_12(y;) =
Biy12(y:) = 0, and B (y;) = 1.

In order to handle the uncertainty in (3.1.6) in a controlled way, we introduce
a set of indicator variables {o;}7~7 as follows,

1 1 . s .
b %f Yi € (tio1,ti) (3.1.8)
0 if wy; € [ti,tiy1).

With these (n — 2) indicator variables, there are 272 different choices for the

(n — 2)-tuple (o1, ...,0,_2), with each corresponds to one specific knots-data set-
ting.

35



Now we can write explicit expressions for B;_12(v;), Bi2(vi), Biy12(y:) as fol-

lows,

( ti — Ui
Bi_12(yi) = 0; ' Y

Yi —t
Biy12(y:) = (1 —0y) PR
L i1 — b

Yi —tiza tiv1 — s
2l =0 ti —ti1 (1= tiv1 — L

(3.1.9)

Next, we consider several special cases which can help us find the general B;*

gradually.

3.2 Inverses of linear Shoenberg-Whitney ma-

trix for special cases

We need the following lemma that is a special case of the theorem [17] for our first

case.

Lemma 3.2.1. Let G be an upper bi-diagonal matriz with the following form

by ¢ e e e 0
0 bg Co 0 :
G:
Cn—1
0 o e e oo by
L 4 nXn
Then G=' = (B, ;) with
0 i i
1 .
LT T
() i<y
i j

Proof: First we denote G = (a; ;) where
ai,j = C; lf j :’l—f—l,

0 otherwise.
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In order to show that G™! = (8;;), we let L = (5;;), and it is equivalent to show
that GL = I,,.

Now we assume that GL = (¢; ;), which gives us ¢;; = > °,_, @;15;. We use
the following three steps to verify that (c; ;) is the identity matrix.

e Verify that ¢;; =1fori=1,2,...,n

1
Zazkﬁkz—i_azzﬁzz—i_ Z@zkﬂkl O+bz (b_z>+():1

k=i+1

e Verify that ¢; ; = 0 for 7 > j.

Cij = Zaz kﬁk] + a; zﬁz,] + Z a; kﬁk] -

k=i+1

e Verify that ¢; ; = 0 for ¢ < j.

First we consider the case that i +1 < 5. We have

Jj—1 j—1
- Z Q; kﬁk,j + a’l,]ﬁj 7 + Z a; k‘/Bk‘j - Z ai,kBk,j + 0 + 0
k= ]+1 k=1
- Z a; kJ/Bk}J + a; zﬂz N + Z Q; k/Bk}J
k=i+1

(—1)He i

=0+ b + @iit1Bi1,
i j
_ (_1)i+jci C G e (_1)i+1+jcl.+1 G 0
bis1---b; ¢ bis1---b; :

Second we consider the case that ¢ + 1 = 5. We still have

Ci,] Z a; kﬁk] + a; Z/B’l,j + Z a; kﬂk,j

k=i+1

C; 1
= b, i =0.
U, T (le)
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Thus, we complete the proof. [

Case I: 0, =0fori=1,...,n—2.

In this case, we have that y; € [t;,t;41) for all i = 1,...,n — 2, and (3.1.9)
becomes

Bi—l,Q(yi) =0,
tiv1 — Ui
Bis(y) = =,
o2(0i) = 3 = (3.2.3)
Yi — U
B, )= —.
H—LQ(yz) tior —
By becomes an upper triangular matrix in the form of
1 0 - 0
to—y1 y1—t 0
to—t1 to—11
t3 — —1
0 0 3~ Y2 Y2—12
ts —to  t3—to
Bf = : : (3.2.4)
0 0 th—1— Yn—2 Yn—2 —tn—2
th—1 —th—2 th—1 —th—2
0 0 1

We introduce another notation to make the expression of Bf a little simpler,

Then Bj becomes

(1 0
0 m21
0 O
0
_0

1—m1

73,2

772'7,]‘ =

0
1—m32

ti —yj

ti—tioa

0 Mn-1n-—2
0

1- h—1,n—2

1

(3.2.5)

(3.2.6)

—1. . :
In order to represent (B2I ) in a concise way, we need another notation,

gi,j = <
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Yi-1 — ti—l) ( Yi — t; ) (%—1 — tj—l)
ti — Yi1 tiv1 — i tj — Yj-1
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Then by Lemma 3.2.1 we can write

1 0 0
to — 11 t3 — 1o ty —t3 th_1 —tn_o
0 22 — §23 §24 (O Dt S
y1 —t1 Yo — t2 Y3 — t3 Yn—2 — tn_2
. t3 —to ty — 13 .
£33 — €34
Y2 —t2 ys — 13
1 . ty — 13 th—1 —th—2
(Bz) = §a.4 Rt S SO
ys — t3 Yn—2 — ln—2
. the1 —tn—
L Ty S |
Yn—2 — tn72
0 MgnAm*l 0
Yn—2 — tn—2
_0
which can be further simplified as
1 0 0 07
0 &2 —&3 &4 (1),
1 D §33  —&34 :
B = . A
( 2) 4,4 En—3n—1 >
. _£n72,n71 0
0 fnfl,nfl 0
0 0 1]
where ) _
1
1
2.1
1
Ay = 73,2
1
Nn—1,n—2
1
L 4 nXxXn

Case Il: o0, =1fori=1,...,n—2.

In this case, we have that y; € (t;_1,¢;) for all i = 1,...,n — 2, and (3.1.9)

becomes

ti — Yi
Bi12(yi) = P
Yi — t;
Bia(yi) = P

Bii12(yi) = 0.
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By becomes a lower bi-diagonal matrix in the form of

1T _
By =

1 0
tih—y1 y1—to 0
ti—to t1—to
0 to—y2 y2—11
to—1t1 to—11
0

tn72 — Yn—-2

Yn—2 — tnf?)

ln—2 —th—3

tn72 - tnf?)

nxn

(3.2.9)

Notice that the transpose of Bi! is an upper bi-diagonal matrix, we take fol-
lowing expressions

where

and

by 0 0 ]
C1 b1 0
0 Co
: 0
0 Cn—1 bn—l
b() C1 0 17"
0 b 0
O 0 C3 _ F2T,
bn—Q Cn—1
0 0 bn—l
vi ti_l, if 1<i<n—2,
b —ti
1, if 1=0 or i=n-1,
ti — Yy . .
Y , if 1 <i<n—2,

= li—tia

0, if i=n-—1.
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Observe that (BI) ™" = (FI)~! = (F; 17, by Lemma 3.2.1, we get
2 2 2

(B£I> - = [ai,j}nxna

where
0, if @<y,
1 e
Qi =145 it =7, (3.2.12)
(—1)i+ Cjb' "02—1, if Q> .
b

To further simplify the expressions in (3.2.12), we introduce the notation v; ;

as follows,
U= ( ti —Yjn1 ) (tjl - yj) (til - yi) ‘ (3.2.13)
! Yi+1 —tj—1 /) \Yj — tj—2 Yi — ti—o

With (3.2.10), (3.2.11), and (3.2.13), we can simplify (3.2.12) to the following
form

0, it @<y,
lic1 —tio it Q=
Q5 = Yi — ti_o ’ ’ (3214)
ot — i P .
(_1)Z+] <—] : J 2) Vi i, if 7> J-
Y —lj—2
) —1
Thus, we can write (B}') " as
I 1
(Bz) -
B 1 0 0
t —
s h—ty 0
' Y2 — to
(=)
V3,1 - V3,2
y2 — to
t1 —t thog —tn_ theo —tn_
(*]—)nl/n—l,l (71)n+1 <10> Vp—12 *** 0 — <34> Un—1n-2 n=2 " 'n-3
Y2 — tO Yn—2 — tn—4 tn—l — Yn-3

| 0 .. ...

which can be further represented as
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B 1 0 0 07
—Vg 1 Voo 0 :
V31 —UV32
A3,
(-D)"vp—11 ()" 19 0 00 —VUp—im—2 Vp—iga-1 O
i 0 0 11 .
where -~ -
1
1
1— M2
A = L —ma3
1
1— Nn—2n—1
1
L 4 nXxXn

Case III: Assume that n is even, and o1 = 03 = --

-=0,_3 =0and g9 = 04 =
e =09 =1.

In this case, we have that yor_1 € [tor_1,tox) for all k = 1,2,..., n_ 1, and
(3.1.9) becomes

B2k—2,2(3/2k—1) =0,
lok — Yok—1

for —tor 1 (3.2.15)
Yok—1 — togp—1

B2k—1,2(3/2k—1) =

Bopi1,2(Yar—1) = tox — tor—1

We also have that yor, € (tor_1,tox) for k =1,2,..., g — 1, and (3.1.9) becomes

Lok — Yok
sz-1,2(3/2k) = ia
Lok ; tor—1
Yor — lok—
sz,z(y%) = #a (3'2'16)
tor — tar—1

Bogy12(yor) = 0.

By becomes a block diagonal matrix in the form of
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M1 0 0 07
0 le—y1 y1—h 0
to—t1 to—11
0 lo—y2 y2—1 0
to—t1 to—11
. 0 ta—Yys yYs—1t3
ta —13 ta—13
B = tamys ya—ts
ty—t3  ty—t3
0 0 0
0 0 ln—2—Yn—3 Yn-3 —ln_3 0
tn72 —tp—3 tp—2 — tn73
0 0 tp—2 — Yn—2 Yn—2 — tn—3 0
ln—2—=1ln-3 th2—1ln-3
10 e 0 1]
(3.2.17)
Denote
i —¥Yi—1 Yj—1—tji
tj — tj—l tj — tj—l
D; = (3.2.18)
-y Yt
Then we can write (3.2.17) as
1 0 0]
0 Dy
.o D,
B = (3.2.19)
0 D,_5 0
0 e 1
Thus the inverse of B! can be written as
1 0 0]
0 D;*
o 1
1 b
(B") = ' (3.2.20)
0 D', 0
0 e 1
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To make the calculation of Dj’l easier, we use the notation 7; ; as in (3.2.5), and

get
7747.71 1_77’71 .
D]:|:]] ]__]]:|7 ]6{2’47’n_2}
Ny, 1j,5
Then we get
yi —tic1 tio1 —yj
C— i C— i
pi—_ ! {1 — Mg M1~ 1} _ TV Tl
J —m. o
Njj—1 = Njj M. Nj.j-1 yi — ti— 11
Yi —Yi-1 Y —Yj-1
) —1 ..
Now we can write (B3) " explicitly as follows,
M1 0 0]
0 Yo —t1  t1—
Y2—Y1 Y2 — U
Yo —to  to— 0
Y2—Y1 Y2 — U
. 0 Ya —ts 13— ys
1 Ys —Ys  Ya — Y3
II1\~ b, ts—
(B3 = ya—ts tazys
Ya —Ys Y4 — Y3
' 0
Yn—2 — tn73 tn73 — Yn-3
Yn—2 —Yn—-3 Yn—-2 — Yn-—3
Yn—2 — tn—2 tn—2 — Yn-3 0
Yn—2 — Yn—3 Yn—2 — Yn—3
0 0 1_
(3.2.21)

3.3 Inverses of linear Shoenberg-Whitney ma-
trix for the general case

In order to study the general case of the Shoenberg-Whitney matrix, we start with
the following special case first, because it can be used as the building block of the
general case.

Case IV: Assume that 01 = 09 = - -
1<k<n-3.

=o,=0and o441 =+ =0, 0 =1 for
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In this case, we have that y; € [t;,t;41) for i =1,.

Bi_12(y:) =0,

Liv1 — Ui
Bia(ys) = L=
2(%:) tiv1 — 4

Yi — b
Bi12(yi) = P

Y

We also have that y; € (t;_1,t;) fori=k+1,...,n—

ti — Vi
Bi12(y:) = P
Yi —ti
Bia(y:) = PR

Biy12(yi) = 0.

Then B; has the form of

.., k, and (3.1.9) becomes

2, and (3.1.9)becomes

rl 0 07
ty — —t .
o k-w w-h 0
to —t1 to —t1
0 0
te — Yp— 1 —tg_
0 0 k= Yk—1 Yk—1—tk—1 0
e — k-1 te —tk—1
t — —t
- 0 0 0 k+1 — Yk Yk — tk
By = ter1 — tk ter1 — tk
t — —t
0 0 0 k+1 — Yk+1 Yk+1 k
tet1 — tk th+1 — tk
0 0 th—2 — Yn—2 Yn—2 — tn—3
tn—2 - tn—S tn—2 - tn—S
_0 T 0 “nXn
(3.3.1)
With the 7; ; notation as in (3.2.5), we can write (3.3.1) as
[1 0 0]
0 ma1 1—mn2
BIv 0 Motk 1 — Merik
5 =
Met1k+1 L — D1 k1 0
: 77n—2,n—2 1— 77n—2,n—2 O
0 0 1
L - nXn
(3.3.2)
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In order to write a general form for the inverse of (3.3.2), we define a special

tri-diagonal matrix from the given independent variables u, . .

p>1and g > 1 as follows,

(75} 1-— Uy 0
0 U9 1-— U2
(i, 7) = 0w
U1
| 0
where we denote @ := (uy, ..

1—-u,
1—U1

V2

S up) and U = (vq,. ..

1-7)2

following lemma, we give the formula for Q71 (@, ¥/).

Lemma 3.3.1. Given a p-vector @ := (uq, ..

(Y

q

0
0

1 -y

<y Up, U1,y - .

mxXm

L up) and a g-vector U= (vy, ..

., Vg With

, (3.3.3)

,vy) and m = p + ¢. In the

3 Ug)

that satisfy the conditions: p > 1,q > 1 and p+q = m, define a tridiagonal matrix
Q(u, V) as in (3.3.3). In order to make Q(u, V) invertible, we require that

u; #0  for1l <i<p,

u, #vi, and v; #1 for2<j<q.

(3.3.4)

Then we can write Q1 (@, V) as [ay;], where the non-zero entries in {ay;} are given

by the following formulas:

e For the diagonal entries, we have

1
Qi = —,
i

and
Up

QXp+1p+1 = i

Y
Up — V1

s =

for1<i<p-—1,

1

1—w

Jj—p

Qpp

1—1)1

Y

Up — V1

orp+2<j7<m.
Jorp J

(3.3.5)

(3.3.6)

e [or the lower triangular entries o, ; with p < j <1 < m, we represent them
in the following general formulas, forr =1, ...

Up V2

Up —

U1
Qptrp = T Qptrptl, Opirilptl = —
p
and forp+2<j7<m—r,
Vi_
Jj—p+1
Oé‘+7”,' L S
J J 1 — ’Uj,
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,q—1:

Qjtrj+1-

Qptr4+1,p+25
U1

(3.3.7)
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e For the upper triangular entries, for s=1,...,q,

1
VI1Si<p  aiins = (1= = o (3.3.9)
Us
and fort=q+1,....m—1,
. 1
V1 S 1 S m — t, Oyt = <1 — _>Oéi+1,i+t~ (3310)
Uy
With Lemma 3.3.1, we can represent (BQ'V)_]" as Q71(@, ¥) with @ := (a1, - -, Mhr1.4)

and a g-vector U := (Mkt1k+1,- - Pn—2.n—2)-

Case V: (The general case)

Notice that o can only be 0 or 1 for 1 < k < n — 2, we can formulate the
general case in the following format:

Assume that 01y = -+ =0, = 0,04,01 = - =0k, = 1,-++ ,Op,_101 = -+ =

O, = 142 EJ —s. (That means, when s is even, o, = 1; when s is odd, o}, = 0.)

Note: In order to make the discussion a little easier, we allow k; = 0. When it
happens, we have 0y = -+ = 0y, = 1 and we treat the part oy = --- =0, =0
empty.

Under this assumption, By in 3.1.6 can be written as a block-diagonal matrix
as follows,

B 0 0 0 0
0 B2 0
BY =0 - . 0 |, (3.3.11)
0 . 82[5/21_1 0
0 0 0 0 B

where B; has different structures based on the value of k;, and Bgs/ ?I has different
structures based on the parity of s.
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More specifically, when k; > 0, we have a tridiagonal matrix

r 0 0 T

0 Bioa2(y1) Ba22(y1)

: B B
Bl = 0 k,2(Uky) k1+1,2(Uky ) 0 0  (3.3.12)

Bry,2(Ukyi+1)  Bri+1,2(Uk,+1) 0

0

L0 Bry—1,2(Uks)  Bry,2(Yry) |

When £ = 0, its structure becomes a lower bidiagonal matrix

1 0 0 0

B% - Boa(y1) Bia2() 0 : , (3.3.13)
0 0
0 ce Bk2—1,2(yk2) Bk2,2<yk2)

For Bgs/ 21, when s is even, we have a tridiagonal matrix

32[5/2] =
[Br,_»,2Wky_5) Bry_ot1,2(Uk,_,) 0 0 0 0
0 0 0 0
0 0 By 12Uk, 1) Br, 1+1,2Wk,_1) 0 0
0 0 Bi,_1,2Wke_1+1)  Bro_1+1,2(Uk,_1+1) 0 :
. } .
0 Br,—1,2(Uk,) Brs,2(Uk,)
0 0 0 |
(3.3.14)
When s is odd, we have an upper bidiagonal matrix
Bks—172<yks—l) Bks—1+172(yks—1) O O
Bl .= 0 0 . (3.3.15)
0 0 B, 2(Yr,) Bror12(Ys.)
0 n 0 1

For the interior matrix-block cases 2 < j < [s/2]| —1, we have a tridiagonal matrix

Bg =
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[Brog_y+1,2Wko;_qy+1)  Bryi qy+2,2Wky ;1 +1) 0 0 0

0 . . 0 0

’ Bryjo1,2Whyj 1) Broj_1+1.2Wkg;_1) 0
’ Bhyj1.2Whoj 141)  Broj_141.2(Wkg5_141) 0

Brgj—1,2(Yky;)
(3.3.16)

Since each diagonal block matrix B3 in (3.3.11) is invertible for 1 < j < [s/2],
we can easily write the inverse of BY as follows,

(BHYt 0 0 0 0
0o (B - 0
By = 0 ’ ' 0 (3.3.17)
(B2) 0 <B£3/211)‘1 0
-1
0 0 0 0 (62”21> _

Explicit formulas for (Bg)_1 can also be given by the result of Case I'V.

The explicit formulas for (B%)fl with 1 < j < [s/2] in (3.3.17) can be given
in the following three cases:

e For j =1, when k; = 0, we choose w3 := (1) and 01 := (o1, - - -, Mhy—1.ks)-

Then (BY) ™' = Q2 (uy, v1).

When k; > 0, we take @y := (11, -+, My ky ) @A 01 1= (kg eyt 1s -+ - > o1 ko) -

Then
1\ —1 . 1 O
(B2) = {0 Q—1<uz,vz>} |
e For j = [s/2], when s is even, let uy := (M, yke oy -+ Mho 1.ke_y) a0 U5 1=

(nks—lyks—l‘i’l? R 777]93*17]95)' Then

o A

-1
When s is odd, let @ := (9, 1 kooys - -5 Tk k) a0 05 2= (1). Then (Bgs/ﬂ) -

Q~ (s, 0s).
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e For 2 < j < [s/2] — 1, we note by u := (Wkg(j,l)ﬂ,kg(j,lﬁla oy Mkt knjn )

and U5 := (Mky;_1 kaj 141> - - - 5 Thoy—Lko; )- L hen (Bg)i = QN (uj, v5).

With these formulas, Clase V covers all the possible cases for the linear Shoenberg-
Whitney matrices.
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Chapter 4

Local Quasi-Interpolating
Operators Based-on B-splines

4.1 Framework for local quasi-interpolation

Linear operators from the local quasi-interpolation are very useful in data analysis,
and the tool of B-splines is very powerful in many application problems. In this
chapter, we will describe the general framework for the local quasi-interpolating
operators from the B-splines.

4.1.1 Linear operators induced by data points

Here we would like to use the linear operator way to describe the method. Since the
space Cla, b] is infinite-dimensional, we would like to consider its finite-dimensional
subspaces to approximate functions in Cfa,b]. The spline space S,,; defined as in
(2.2.4) for certain knot sequence ¢t = (¢;) satisfying (2.2.1) and (2.2.2) is a good
choice in this situation.

Our linear operators are data dependent, that means they rely on a set of data
samples. Given a set of data samples {y;}!'"; that satisfy the conditions (2.2.6)
and (2.2.7) with respect to the n-dimensional spline space S,,;, for any n x n
matrix L, we define a linear operator L, : Cla,b] — S+ as follows

Z Lf,) kB (z (4.1.1)
k=0
where .
fy = [f(y0)7 e af(yn—l)]T' (412)



We call L, the linear operator induced by the data samples {yl-}?gol from a given
n x n matrix L, or we refer L, as a DI-operator, which means a data-induced
operator.

4.1.2 Polynomial-preservation property

Now we would like to know how well that L, f approximates f on [a,b]. Let us
consider a subspace of Cla,b], that is C™]a,b], which is dense in C[a,b]. Take
any fo(r) € C™a,b]. We want to estimate |fo() — L,fo(z)| on [a,b]. Notice
that

a=yo<y1 < <Yp2<Yp1=0>

Denote Ay the length of the longest subinterval [y;, y;4+1], that is,

Ay = max [|yn — yl.

For any = € [a, b], there exists some j with 0 < j <mn—2, such that y; <z < y,.1.
Since x € [y;,yj+1], by Taylor’s theorem, we have

" V)

fol@) = foly;) + foly) (@ —y;) + -+ (m —1)!

where

R, () (! (x —y;)™, for some & € [y;,yj41]-

Denote po(z) the polynomial (which is an approximation to fy(z)) as

£ V)

po(x) = foly;) + folyi)(x —y;) +- - + (m = 1) (x —y)" (4.1.3)

Thus, for any fo(x) € C™]a, b, we can find a polynomial py() € 7,,_1, such that
[folw) = po()] < ColAy|™ max [ ()] (4.1.4)
for some positive constant Cj.

Notice that L, is a bounded linear operator from Cla,b] to S;,,, that is, for
any f(z),g(x) € Cla,b], we have

Ly f(x) = Lyg(x)| < C(n)|[Ly|| max [f(x) — g(x)] (4.1.5)

a<z<b
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Now we can estimate |fy(z) — L, fo(2)| for any fo(x) € C™]a,b]. In fact, we can
find a polynomial py(z) € my,—1 as in (4.1.3), which satisfies (4.1.4). We can write

[fol@) = Ly fo(@)] < |fo(x) = po(@)| + Ipo() = Lypo()|
+ [Lypo(e) = Ly fola)]:
We have
[Fo(@) = po(@)] + [Lypo(z) = Lyfo(x)
< (1+ CIILy 1) max | fo(r) = po(w)]
< Co (14 COIIL 1) [ Ayl™ max |£5™ ()]

But we still need to deal with the term |po(z) — Lypo(z)|. It is desirable to have
the property

Lypo(z) = po(), for all  po(z) € Tp-1, (4.1.6)
then we have
folw) = Lyfo(@)] < Co (L+ COIIL,I) [Agl™ max If6™ (). (417)

In other words, if the operator L, has the polynomial preservation property as in
(4.1.6), then L, fo(x) can approximate fy(x) well in the sense of (4.1.7). Therefore,
when we construct an operator L,, we would like it to have the polynomial preser-
vation property. In fact, it is the so-called quasi-interpolation operator, which is
defined as follows.

Definition. A bounded linear operator @ on Cla,b] is called a quasi-interpolation
operator if it preserves polynomials as follows,

(@p)(z) =p(z), pE Mm. (4.1.8)

We would like to make our data-samples-induced linear operator L, a quasi-
interpolation operator. Furthermore, in order to make this operator support ef-
ficient computation, we would like it to be a local operator in the sense that the
corresponding matrix L is a band matrix. Hence we need the following concept:
local quasi-interpolation operator induced by data samples through B-splines.

Definition. Given a set of data samples {y;}/"-; that satisfy the conditions (2.2.6)
and (2.2.7) with respect to the n-dimensional B-spline space S, ¢, let L, : C[a, b] —
Smt be a linear operator defined as in (4.1.1). If L is an n x n band matrix, and

(Lyp)(z) =p(z), forall p € my_, (4.1.9)

then we call L, a local quasi-interpolation operator induced by data samples {y; )

through B-splines.
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4.1.3 Blending linear operator

The quasi-interpolation operator defined above has the desired approximation
property, unfortunately it does not interpolate the given data. We would like
to have a local linear operator that has both the polynomial-preservation prop-
erty and the interpolatory property. A method in Chui [3] solves this problem in
a simple way:

Making corrections through an impulse interpolation operator

Notice that our quasi-interpolator ¢) does not interpolate the data exactly, we
need to make some small corrections to make up the differences. To this end, we
insert a few appropriate new knots and get a larger spline space, denoted by S, s+,

i.e. St C S (with respect to ¢ C t*). In S, 4+, we can choose a set of special
n—1

interpolating B-splines {& () },—, with the property: Each & ,,(z) interpolates
one of the data points y, and its support is the interval between two adjacent
knots in the ¢t sequence that covers y,. Then we have the property

fk,m(yj> - 5kj7 for 0 < k?] <n-— 17

where ¢ is the Kronecker’s delta notation. We call {&,,.(z)}}Z; the impulse in-
terpolating functions.

Now we can define our impulse interpolation operator R, : Cla,b] — Sy, as
follows,

n—1
(R £)(@) = > FWr)hm(), (4.1.10)
k=0
which obviously satisfies the data interpolating property
(R f) () = f(yx),  k=0,...,n—1. (4.1.11)
Next we define the following “blending” operator P : Cla,b] — Sy, 4+ as
P:=R,+0Q—-R,0Q (4.1.12)

This operator possesses the polynomial-preservation property. In deed, for any
p € Tym_1, We have

(Pp)(z) = (Rup)(z)+ (Qp)(z) — (RnQp)(x)
(Rimp)(z) + p(z) — (Rmp)(@)
= p(z).
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P satisfies the data interpolatory property as well. In fact, we look at the function
values at the data points y;, j = 0,...,n — 1, then we have

(PHy;) = (Bnf)yy) + (Q)(ys) — (Rm@Qf)(y;)
= flyy) +(Qf)(y;) — (Qf)(vy)
= f(y))-

If we take @ as a local linear operator L,: Cla,b] — S,,+, and R, is another
local linear operator: Cfa,b] — Sy, . Therefore, P is a local linear operator:
Cla,b] — Sp, -, which satisfies our requirements for data analysis. Our next chal-
lenge is: How to construct a local quasi-interpolation operator L, without any
matrix inverse.

4.2 Properties of local quasi-interpolation oper-
ators L,

4.2.1 Polynomial-preservation condition for DI-operators

Let L, be a DI-operator as defined in (4.1.1). We want to know under what
condition that L, will preserve polynomials in 7,,_;. To this end, we need to
use the Marsden’s identities. We use pg,,,---, 051, to denote the Marsden’s
coefficients that satisfy

"= Zpﬂ Bim(z), for 0<r<m-—1 (4.2.1)

Proposition 4.2.1. Given a set of data samples {y; ?:_01 that satisfy the conditions
(2.2.6) and (2.2.7) with respect to the n-dimensional B-spline space Sy, let Ly, :
Cla,b] = Sm+ be a DI-operator as in (4.1.1) with associated n x n matriz L. If L
satisfies the equation:

Yo Pom
L yl = qum . for r=0,1,--- ,m—1, (4.2.2)
Yn—1 Pr—1,m
then
(Lyp)(z) = p(x), forall p €& my_1, (4.2.3)
where Py ;- - -5 Pr_1.m are the Marsden’s coefficients defined as in (4.2.1).
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Proof. Let us consider the building blocks of the polynomials in 7, 1, that is, the

monomials 7" (z) := 2" for 0 <r <m — 1. Since 7j; = [y, - ,yg_l}T by (4.1.2),
and from (4.2.2), we get
Yo Po,m
Lﬁ; _ ?/‘1 _ pl.,m 7
y;—l p:Lfl,m
which leads to
(Lﬁ;)k = Pem> for 0<r<m-—1 (4.2.4)
Thus,
n—1
Ly(n") (@) = Y piemBrm(@) = 1" (2), (4.2.5)
k=0
which results in (4.2.3) by the linearity of the operator L,. O

Based on Proposition 4.2.1, we are interested in those matrices that satisfy the
condition (4.2.2). The next proposition gives us another matrix with this property.

Proposition 4.2.2. Let {B;,.(z)}!=; be the B-splines on [a,b] with knots sat-
isfying (2.2.1) and (2.2.2). Given a set of data points {y;}1=) that satisfy the
conditions (2.2.6) and (2.2.7), let B,, be the Shoenberg- Whitney matriz , i.e.

BO,m(yO) o Bn—l,m(yo)
B, = : : (4.2.6)
BO,m(yn—l) e Bn—l,m(yn—l) nxXn
and let {/):,m}?;ol be the Marsden’s coefficients for ™ with 0 <r <m — 1. Then
Po,m Yo
B, : =1 : for r=0,1,--- m—1. (4.2.7)

T T
pn—l,m Yn—1

Proof. By the Marsden’s Identity, we have for 0 <r <m —1

n—1
z" = Z p;",mijm(x)
=0

Bo’m(x)

= [pO,m pZ—l,m} :
anl,m(x)
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Thus, for j =0,1,--- ;n— 1, we get

BO,m(yj)
y; = |:p6,m e p;—l,m}
By—1.m(y5)
By putting them together, we have
BO,m(yO) Bn—l,m(?/n—l)
Wo 0 Ynoa] = [Pom 0 Phoim) : :
Bo,m (o) B 1m(Yn-1)
or equivalently
Yo Bom(yo) -+ Ba—1.m(Y0) Po,m
y,ﬁ_l BO,m(anl) e Bn—l,m(yn—l) p:L—l,m
which gives (4.2.7) and we complete the proof. O
Remark 4.2.3. We can write equation (4.2.7) as
Loy L
1 e r 1 e r
- n =B, |, ™" P - (2s)
T . 1 T
1 Yn—-1 " Yp— nx (r+1) 1 Pn—im " Pn-im nx (r+1)
with 0 <r <m — 1, or equivalently,
Loy L
1 e r 1 e r
B y'l y'l _ | Pl',m 01',m (4.2.9)
. . r. , 1 T
1 Yn—1 " Yp_a nx(r+1) 1 pn—l,m  Pn—1m nx(r+1)

with 0 <r <m—1.

Remark 4.2.4. In view of (4.2.9), we notice that B, is a full matriz in general,
which could not give us a local linear operator. To find a local quasi-interpolating
operator, we need to find a band matriz L, (determined by the given data samples

{y:}1=)), such that
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Loy o L P Plim
Loy ™ Lopi o Pl

L,|. g =|. " " (4.2.10)
U/ -ul INUNR § ST ) D

In Chapter 5, we will use a special matrix factorization method to find this n X n
band matriz L.

The following result gives us the estimate of computation cost for calculating
the Shoenberg-Whitney matrix.

Proposition 4.2.5. To calculate the Shoenberg- Whitney matrix B,,, we need at
most 2m(m — 1)n multiplications or divisions and —m(m — 1)n additions or sub-

tractions, which means that its complexity function is in O(n) or the algorithm is
linear with respect to the spline order m.

Proof. To calculate the Shoenberg-Whitney matrix B,,, we need to calculate
B m(y;) for 0 <i,j <mn —1. We use the recurrence formula

i — liem tiv1 — Y
o mdd Y B (yy) (4.2.11)

Bif m—1(Y;5) +
-1 (37) lit1 — timmyo

Bi,m(yj) = ti— timia

for 0 <i,j < n—1, where the (m—1)th order B-spline basis functions { B; ,,—1(z) ?:_02
are defined on the knots:
{a,...;a,t1,ta, -+ ;ty_m,b,... b} (4.2.12)
—— ——

m—1 m—1

We write (4.2.11) in the form of matrix product as follows,

Yi — ticmt1 lit1 — Y Bi_1m-1(y;)
B (y:) = m=1\4j 4213
m(y3) |:ti —ticmy1r tig1 — tierZ} { Bim-1(y5) ( )

for 0 < 14,5 <n — 1. Similarly, we have

Yj — ti—my2 liv1 — Y5 Bi_1m—2(y;)
B () — m—=2{Y; 4.2.14
im—1(1;) {ti —timye  tip1 — ti—m+3:| [ Bim—2(y5) ( )

for0<i<n—2andfor0<j<n-—1. Let

. it . tiiy —
of =%l g gl = L (4.2.15)
’ ti — ticmy1 ’ tit1 — timma2
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Thus, (4.2.13) and (4.2.14) can be written as

j j Bi—lm—1<y’):|
Bim(y;) = | / ’ J 4.2.16
s (y]> [az,m z,m] |: Bi,m—l(yj) ( )
and
. 4 Bi 1.mo(y;
Bi,m—l(yj) - [Oég,m—l z{m—l} |: 3112?;§§):| : (4217)

It follows from (4.2.16) and (4.2.17) that

[045_1,m_1 ﬁz‘j—Lm 1] { i—2,m— 2(%)}

z 1,m— Q(y]

Bi,m(yj) = [O‘gm szm}

o i [ i—1,m— 2 (y; )}
[ i,m—1 i,m 1] 1m 9 yj

: ; Bi—3m-2(y;)

j ] O‘/gf m— g, m— 0 pBme2

= ol Bl | g T 5 } Bi1m-2(y;)

i,m—1 i,m—1 Bi,m72<yj)

Now we consider the general case for the (m — r)th order B-spline basis functions
{Bim_r(2)}=7 " that are defined on the knots:

{a,...,a,tl,t27"' ,tn_m,b,...,b} (4218)
—— ——"

m—-r m—-r

for 0 <r <m — 1. Then we have the general version for (4.2.16) as

j j Bi—l m—r—l(y'>:|
B’i m—r - = a] _ ‘7 _ ’ J 4219
s (yj) |: i,m—r ﬁz,m r:| |i Bi,m—’r—l(yj) ( )

for 0 <r <m —2. Denote R,(y;) as the (r + 1) X (r + 2) matrix

a/gfr,mfr 51‘];7“,77171" 0 U 0
0 O‘/g—r—i-l,m—r g—r—i—l,m—r
Ri(y)=| (4.2.20)
| 0 0 U O[g,m—r 5{771—7"_

for 0 <r <m — 2. Then, we get
Bim(y;) = Ro(yi) Ba(ys) - R oys) |, |- (4.2.21)
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Here we take that
Bim—r(x) =0 for i<Oori>n—r—1 (4.2.22)

To compute B, using (4.2.21), we start with {B;1(y;)} for 0 < i < n —m and
0 <75 <n—1 with respect to the knot sequence

{a,t1,ta, -+ tn_m,b}, (4.2.23)

and we take ty = a and t,_,,41 = b as usual. By (2.2.7), we can see that for
1 <j<n—2,y; could be in any of the following m intervals,

(jmmt1s tjmms2), [Lj—m2, tjmmas), =5 [t L) (4.2.24)
In order to locate the interval [ty, t;41] that covers y;, we use the following notation

¢; = max{i}. (4.2.25)

ti<y;

For each j with 1 < j < n—2, y; falls into the interval [t t¢,41). (4.2.24) implies
that
J—m+1<¢G<j+1 (4.2.26)

Thus, we have for 1 < j <n — 2,
(Bi—m-1),1(Y;), - ,Bi,l(yj)]T =0, for ¢ <(j—1lori>(+m (4.2.27)
and for ¢; <@ < ¢ +m —1,
[Bi—(m—l)ﬂ(yj)u T >Bi,1(yj)]T = [07 50,1, 0,...,0 T' (4228)
Cj+m—1—i i~
For 7 = 0, we have that (;, =0 and for 0 <7 <m — 1,
[Bi—(m-1a(a),--+, Bii(a)]" =[0,...,0, 1, 0,...,0]7; (4.2.29)
m—i—1 i
and for j =n — 1, we have that (,_1 =n—mand forn—m < <n—1,
[Bi—m-11(b), -+, B;1(0)]" =0,...,0, 1, 0,...,0]". (4.2.30)
n—i—1 i+m—n

Notice that (4.2.29) is a special case of (4.2.28), but (4.2.30) is not a special case
of (4.2.28) due to the way we define B,,_,,111(z) at © = b, which is different from
the way we define B; ;(z) at  =t; for 0 <i <n—m — 1. With (4.2.21), (4.2.28)
and (4.2.30), we can find B, ,,(y;) for all 0 <i,5 <n —1.
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Next we will show that the total number of multiplications (or divisions) and
additions (or subtractions) for computing B,, is bounded by some constant mul-
tiple (as a function of m) of n. To this end, we need to count the number of mul-
tiplications (or divisions) and additions (or subtractions) for computing B ,,(y;)
using (4.2.21).

From the structure of By, as in (2.2.10), for each fixed j, [Bin(y;)]/y is the
j-th row of B,,. The 1st row and n-th row are given by

10 -~ 0] and [0 --- 0 1],
respectively, due to the assumption that yo = a and y,_; = b from (2.2.6).

Now we calculate the j-th row for 1 < j < n — 2. For each i in the range
¢ <i<(j+m—1, we start with the vector

[0,...,0, 1, 0,...,0"

Cj+m—1—i i—Cj

as in (4.2.28), which we multiply with R,,_»(y;) from the right based on (4.2.21).
Notice that

O‘g—(m—2),2 BZ—(m—z),2 ' 0 - 0
0 O‘L(mf:s),z /Bgf(mf:),),z
R, »(yj) = ' '
J J
L 0 0 T ai72 ivz— (mfl)Xm
When ¢ = (; and ¢ = (; +m — 1, we have
0 0
RS L) || = 4.2.31
) | 0 (4:231)
J
1 mx1 G2 (m—1)x1
and ‘
1 O‘Z‘j+1,2
, 0 0
jtm—1
RS ) || = . (4.2.32)
0 mx1 0 (m—1)x1

When ¢; +1 <@ < +m — 2, we have
R 5(y) [0,...,0, 1, 0,...,0" =[0,...,0, B 15 al 155 0,...,0".

Cj4+m—1—i i—¢; Cj+m—i—2 i—¢—1

(4.2.33)
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It is easy to see that in this matrix multiplication, we need at most 2 divisions
and 2 subtractions. Next we consider the following matrix multiplication

i ) . -
m—3(yj)[07"'707 ﬁéﬁrl’g, Oééj+272, 0,...,0".

Citm—i—2 i—¢j—1
Notice that
O‘g—(m—?)),s ﬁi—(m—z%),s , 0 o 0
0 O‘?—(m—4),3 g—(m—4),3
m—3(yj) = ' '
J J
L 0 0 e &3 ﬁi,?)_ (m—2)x (m—1)

Since the counting for precise number of multiplications (or divisions) and addi-
tions (or subtractions) could be very complicated, here we just do a very generous
counting but still meet our goal for O(n) complexity. We rewrite (4.2.21) in the
form of

Bim(y;) = Ro(y;) R ;) - - - Ry o (y;)b0, (4.2.34)
where bj ; is a column vector with size m x 1. Now we define a sequence of vectors
blm- for 1 <r <m —1 as follows,

bi,j =R, (yj)biﬂ,j- (4.2.35)

m—r—1

Thus b} ; is a column vector of size (m — ) x 1. When we do the counting, we
allow that all the components of b; ; could be nonzero.

Now we do the counting for the number of multiplications (or divisions) and
additions (or subtractions) on the matrix multiplication R}, . (y;)b._, ; for 1 <
r < m—1. There are (m—r) rows. For each row, there are only two nonzero entries
in R!,_._,(y;). Hence our counting has this result: 2 divisions, 2 multiplications,
4 subtractions, and 1 addition for the multiplication of one row of R! _, _(y;)
with 0., ;. Therefore to calculate R}, . (y;)b._,;, we need at most 4(m — r)
multiplications or divisions and 5(m — r) additions or subtractions. To get the
total number of operations, we find the summation

mz_:(m—r)zl—l—Z—i—-w—i-(m—l):%m(m—l).

r=1
We conclude that to calculate B,,, we need at most 2m(m — 1)n multiplications
or divisions and §m(m — 1)n additions or subtractions, which means that its

complexity function is in O(n) or the algorithm is linear, and we complete the
proof. O]
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Chapter 5

Local Quasi-Interpolation
Operator for Linear B-Splines by
Factorization on
Shoenberg-Whitney Matrix

5.1 Divided-difference matrices

Define the difference matrix of order k as

1 -1
0 1 -1 0
Dy, = _ ) : (5.1.1)
1= kex (k+1)
We will consider m difference matrices: Dy for k=n—1,n—2,..., n—m.

Then we define a sequence of scaling matrices as the diagonal matrices with

respect to the data points: {y;}i "' as follows,
1
0
Yi — Yo
G; = fori=1,2,--- ,m. (5.1.2)
1
0

Yn—1 = Yn—i—1d (n—i)x (n—i)
With (5.1.1) and (5.1.2), we can define m divided-difference matrices as follows,

Ei = Gian’h 1= 1, 2, e, M. (513)
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Proposition 5.1.1. Given a set of data points {y;}!—, that satisfy the conditions
(2.2.6) and (2.2.7), the m divided-difference matrices Ey, Fs, ..., E,, defined in
(5.1.3) have the following property:

Ly o
1 oy - yin—l
BB By |, =0 (5.1.4)
1 Yn—1 y;n:ll
Proof. Denote
Loy g
M=, " g (5.1.5)
1 Yn—1 y:zn—_ll

We will apply the divided-difference matrices Ei,. .., E,, on M, in (5.1.5) one by
one. To see the results clearly, we need to use the standard divided difference
operation, which is defined as follows: Given a polynomial f(x), for [ > 1,

. >yl+j] — f[lerla T 7yl+j] B f[yla U 7yl+j*1] (516)
Y+ — U

f[ylayl-i-lv T

and
flyl = f(y)-

Here we need to use the following property of the divided-difference operation:
When f(z) is a polynomial of degree j, then f[y;, yi+1, -, yi+;] is a nonzero con-
stant (the leading coefficient of f(z)); when the degree of f(z) is less than j, then

Tl visr, - sy = 0.

(5.1.7)

Denote p,(z) = 2" for r =0,1,...,m — 1. For j = 1, we have

E\M,

0 1 W

Yo — Y1
0 1 yi—z - ?/721—1
| Yn—2 — Yn—1
(0 1 b2 [?Jo, yl]
10 1 polyn—2,yn1]
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Yo — Y1

m—1 m—1
Ypn—2 — Yn—1

Yn—2 — YUn—1 i
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By the definition of the divided difference operation, we can easily see that

Ej---E\M, =
O - 01 pj+1[y07"'ayj] pm—l[%;"%%‘]
0 -~ 01 pialUny1s s Yna] = Pmil¥nj1, " s Yn1]
(5.1.8)
In particular, when 7 = m, all the columns at the right-hand-side of (5.1.8) are
zero, thus we get (5.1.4), and complete the proof. O

5.2 Matrix factorization with divided-difference
matrices

Assume that {y;}§~" and {t;}",,,; satisfy the Shoenberg-Whitney condition. In
order to factorize the general case of By, we need to develop a general factorization
theory.

Lemma 5.2.1. :  Let A = [a;] be an n X n matriz which satisfies

1<i,j<n

1
Al:l =0. (5.2.1)
1

n

Then, there exists an n X (n — 1)matriz X such that
A= XD, (5.2.2)

where Dy is the difference matriz, given by

1 -1 0 --- 0 0
1 -1 --- 0 0
Di=|: + & i i (5.2.3)
00 0 -+ —1 0
00 0 - 1 SIf

Furthermore, we can write X explicitly as follows,

X = [i aik] (5.2.4)

UG >
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Proof. The condition (5.2.1) leads to
» ag =0, fori=12--n (5.2.5)

Since D, is of full rank, we can easily find its pseudo-inverse as follows,

11 1
01 --- 1
Dy =1: t & (5.2.6)
00 1
_O 0 - 0_ nx(n—1).
Notice that
DlDi‘r = In—17 (527)
which inspires us to consider the following form
X := AD, (5.2.8)

which has the explicit representation as follows,

X = [i: aik] (5.2.9)

ST >

Next we shall show that X satisfies the condition (5.2.2). A straightforward cal-
culation results in

n—1
11 0 AQip-1 T 2 =1 Ak
n—1
XDy = |aip - Gino1 — D i Qik (5.2.10)
n—1
_anl Tt A1 T k=1 ank_

The equality (5.2.5) implies that
n—1
Uin = — Y _ag, fori=12..n, (5.2.11)
k=1

which allows us to simplify the matrix at the right-hand-side of (5.2.10), which is
exactly A. Hence, we complete the proof. n
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Definition 5.2.2. Let A = [a;;] be an m x n matriz with the following properties:
All the entries of its first row and last row are zero, that is,

a1j =y =0, forj=1,2,... n.

Then we call it zero-row-ending matriz.

Next, we have a zero-row-ending version of Lemma 5.2.1.

Lemma 5.2.3. Let A = [a;;] be an m X n zero-row-ending matriz such that

1
Al:] =o. (5.2.12)
1

n

Then, there exists an m x (n — 1) matriz X such that

A=XDs, (5.2.13)
where _ _
1 -1 0 0 0
0o 1 -1 0 0
Dl = 1: : : : : : (5-2-14)
0 O o --- =1 0
_0 0 0 T 1 _1_ (n—1)xn.

Furthermore, X 1is also a zero-row-ending matriz. More specifically, if we write
X = [z45], then we have

0 T
P ifi=1orm _ (5.2.15)
S _jag for2<i<m-—1landl<j<n-1
Proof. Since A is a zero-row-ending matrix, we have
ajj = ap; =0, forj=1,2,...,n (5.2.16)

From (5.2.12), we get
> an=0 (5.2.17)



fori=2,--- ,m—1. Next we just need to verify that X with the form of (5.2.15)
satisfies (5.2.13).

To this end, we write X explicitly based on (5.2.15) and get

0 0 e 0
a1 a21 + Q92 s Qo1+ + a2pn-1
X = : : : (5.2.18)
Am-11 Qm—11+ AQm-12 **° Gp_11t "+ Ap_1n-1
0 0 e 0

It follows from (5.2.18) and (5.2.14) that

0 0 e 0 0
a1 aze  t A2p—1 - Z;;l A2
XDy = | R : (5.2.19)
m-1,1 Om-12 *°° Am—1np-1 — Z;le Am—1,5
|0 0 o 0 0 i

(5.2.17) implies that
n—1
= ay=ay, fori=2....m-1 (5.2.20)
j=1

Thus the right-hand-side of (5.2.19) is exactly A, and we complete the proof. [

Proposition 5.2.4. Given n data samples ij := {y; i~ on the interval [a, b] with
the endpoints interpolating property: yo = a and y,_1 = b, we consider the m-th
order B-splines with n basis functions on the interval |a,b] defined on the knots
t = {ti}" - Assume that t and § satisfy the Shoenberg-Whitney condition.
Denote B,, as the Shoenberg- Whitney matriz with respect to t and ij. There exists
an n x (n — 1) zero-row-ending matriz X, such that

B, —I=XE, (m>1). (5.2.21)

Proof. By the partition of unity property of B-splines, we have

B, | =1:] , (5.2.22)



which leads to

(B -1 |:| =0. (5.2.23)
1

n
We also notice that the matrix B,, — I is an n X n zero-row-ending matrix. By
Lemma 5.2.3, there exists an n x (n — 1) zero-row-ending matrix X such that

(Bp —I) = XD;. (5.2.24)
Observe that
XD, = XG{'G1D, = XG{'E,.

By taking X; = X G1*', which is a zero-row-ending matrix obviously, we obtain
(5.2.21) immediately from (5.2.24), and complete the proof. H

Proposition 5.2.5. Given n data samples ij := {y;}i~' on the interval [a, b] with
the endpoints interpolating property: yo = a and y,_1 = b, we consider the m-th
order B-splines with n basis functions {B;,(z)}I=y on the interval [a,b] defined
on the knots t := {ti}" - Assume that t and 7 satisfy the Shoenberg-Whitney
condition. Denote B,, as the Shoenberg-Whitney matriz with respect to t and .
For any n x (n — 1) zero-row-ending matriz Xy, there exists an n x (n — 1) band
matriz By of bandwidth 2, such that

BBy + X, = XoF,, (m>2) (5.2.25)

for some n x (n — 2) zero-row-ending matriz Xs.

Proof. When n is even, we take B, in the following form

o 0. . 0 T 00
0 by :
B — ) ~bg (5.2.26)
: bg_,_l 0 .
Dot 0
_O O_ nx(n—1).
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When n is odd, we take

0 0 - 0
0 by
0 b
~ 2 ~
By = 0 bup o T (5.2.27)
buts 0
2
b, 1 0
_0 0 O_nx(nfl)'

Obviously (5.2.26) and (5.2.27) are band matrix of bandwidth 2. To determine
the parameters {by, ..., b, 1}, we need

(BB, + X1) |: = 0. (5.2.28)

(n—1)x1
Denote Xl = [a:ij]1<i<n 1<j<n_1- Since )~(1 is a zero-row-ending matrix, we have
21, =0 and x,;, =0 forl<j<n-1. (5.2.29)

We can simplify (5.2.28) to

- ~() - - O -
ba Zk 1x2k
B, | : + _ = 0. (5.2.30)
7 n—1
bnfl k=1 Tn—1,k
L 0 4 nx1 L 0 4 nx1

Since the Shoenberg-Whitney matrix B, is invertible, we can find the solution for
{b1,ba,...,b,} from (5.2.30) as follows,

i 0
b Zk 1 T2k
| =-B} : (5.2.31)
b, > ke 1% Lk
. 0 =
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Now we claim that b = 0 and b, = 0. Indeed, from (5.2.31), we have

3 0
by Z;i Lok
Bn|:i|=- : . (5.2.32)
bn ZZ;% Tpn—1,k
- 0 -

Notice that the first row of By, is [1,0, ..., 0], and the last row of B,, is [0, ..., 0, 1].
By comparing the two sides of (5.2.32), we get b; = 0 and b, = 0. Thus, we find
by, ..., b, 1 that satisfy (5.2.30).

To make the final conclusion, we observe that B, By+ X is an nx (n—1) zero-
row-ending matrix and it satisfies (5.2.28). By 5.2.3, there exists an n x (n — 2)
zero-row-ending matrix X, that satisfies (5.2.25), and we complete the proof. [

Then we combine the above two results, and get the following factorization
result.

Proposition 5.2.6. ., Given n data samples ij := {y;}i"' on the interval [a,b]
with the condition: yy = a and y,_1 = b, we consider the m-th order B-splines
with n basis functions on the interval [a,b] defined on the knots t = {t;}", ..
Assume that t and  satisfy the Shoenberg-Whitney condition. Denote B,, as the
Shoenberg- Whitney matriz with respect to t and §. There exists an n x n band
matriz By with bandwidth 3, such that

BnBy—1=XEE,, (m>2) (5.2.33)

for some n x (n — 2) matriz X .

Proof. : With the given conditions, we apply (5.2.4) first on B,,, and get

B, — I =X,F, (5.2.34)

for some n x (n — 1) zero-row-ending ‘matrix X,. With this X, we apply on B,
and get an n X (n — 1) band matrix B, with bandwidth 2, such that

BmBQ -+ Xl = XQEQ (5235)

for some n x (n — 2) zero-row-ending matrix X,. It follows from (5.2.34)- (5.2.35)
that . 3

71



Now we take .

It is easy to see that By is an n x n band matrix of bandwidth 3 that satisfies
(5.2.33), and we complete the proof.
]

Proposition 5.2.7. With the same condition as above for m > 2, there exists an
n X n banded matriz By with bandwidth 3, such that

1 Yo 1 pé,m
By |: = |: : (5.2.38)
1 Yn—1 1 p}z—l,m .

Proof. By Proposition (5.2.6), we can find a banded matrix B, of bandwidth 3,
such that ) 3
BBy — I = XE,E, (5.2.39)

for some n x (n — 2) matrix X. Then by Proposition (5.1.1), we have

L o Ly
(BnBo—1I) |+ | =XEE |t : |=0,
1 Yn—1 1 Yn—1
which implies that
Ly I
BmBO : =
1 Yn—1 1 Yn—1
Hence, we obtain
L yo Ly
Bo|: | =B+ (5.2.40)
1 Yn—1 1 Yn—1 )
By identity (4.2.9), the right-hand-side of (5.2.40) equals the right-hand-side of
(5.2.38), and we complete the proof. ]

Remark 5.2.8. In the proof of Proposition 5.2.5, we use the matrixz inverse
B! to get the band matriz Bsy. But in the real world applications, we should avoid
taking any matric inverse, because it is too expensive (even if for m = 2). Thus,
we need to find the explicit formula for By when m = 2.
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In the next section, we will use a special case for B, with n = 8 to find the
explicit formula for By in (5.2.33).

5.3 Determine the Band Matrix of Approximate
Inverse for a Special Case

In this section, we will use the following matrix factorization steps to find the
explicit formula for By in (5.2.33). The first time, we work on a special case, and
we will work on the general case in the next section.

In the special case, we assume that
a=to=(yo) = (y1) =1 = (2) =2 = (y3) = 13

=ty = (ya) = t5s = (y5) =t = (y6) = b=1tr = (yr)

for the knots-samples relationship to start our investigation. We do the matrix
factorization in the following steps.

The structure of the Shronberg-Whitney matrix can be represented as the
following format:

By = [bji]8><8a
where bij = Bi,2(yj); that iS,

[ 1 0 0 0 0 0 0 0]

bor b1 O 0 0 0 0 0

0 big by 0 0 0 0 0

B, — 0 0 by b3z O 0 0 0

2700 0 0 0 by by 0 0

0 0 0 0 0 bss bsg O

0 0 0 0 0 0 bgg ber
i 0 0 0 0 0 0 0 1 i

Notice that there is no data sample between the knots t3 and ¢4, the By matrix
is a block-diagonal matrix with two diagonal blocks.
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1. Find B; and X;, such that

3231 —I= XlEb

where

Y1 — Yo 1 -1

E1: Yo — Y1

Y7 — Ys |

1 1 -1

(5.3.1)

(5.3.2)

We take B; = I. Denote 1g as the column matrix with all entries 1, that is,

The partition of unit property of the B-spline functions implies that

(BB — I)15 =0,
which allows us to do the following factorization:
BBy — I = XD,

where

Tx8
To find X in (5.3.5), we need the pseudo-inverse of Dy, that is,

1

Dy =

oo o O
OO O = =
O = =

L 4 8x7

Thus, we have B
Xl — (BQBl - I)Dfr =
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(5.3.3)

(5.3.4)

(5.3.5)

(5.3.6)

(5.3.7)

(5.3.8)



(5.3.10)
(5.3.11)

0
0

0 bes
0

0
0
0
bss
0

0 0

0 0 O
0 0

0 0 bu

0 0 O

0 0 O
0 0

bas
d? =Y — Yj—k-

0
bio
0
0

0
Y1 — Yo
SR . (5.3.9)
Yr — Ys

0
0
0
0
X4

box

X4

o

o

Now we can write X; as follows

Then we have

Denote

(5.3.12)

X2E27

BQBQ + X1
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2. Find B, and X5, such that

Y2 — Yo

where
E2 -



Assume that

00 0 0 0 00
bp 0.0 0 0 0 O
0 bb 0 0 0O 0 O
~ 0 0 b3 0 0O O O
By = ~ 5.3.14
7100 0 b 0 00 ( )
0 0 0 0 b 0 O
0 0 0 0 0 b O
00 0 0 0 0 0f,,.
We will determine 51, cee be such that
(ByBy + X1)1; =0, (5.3.15)
that is,
1 0 0 0 0 0 0 07107 [ o 7
b01 b11 0 0 0 0 0 0 91 —d% b01
O blg bQQ O 0 O 0 0 132 —d% blg
0 0 b23 b33 0 0 0 0 b3 . —dé 523
0 0 0 0 by bs 0 0] 6|~ |~dibw (5.3.16)
0 0 0 0 0 bss bsg O bs —d} bss
0 0 0 0 0 0 be ber be —dg bes
' o 0 0 0 0 0 0 1 0 | 0
For this particular example, we find that
bi=yi—t,, by=ys—ts, by=ys—ts
bi=yi—ts, bs=ys—t5, bo=ys—ts (5.3.17)

Now we can calculate B, using the formula (5.2.37).

By = Bo X, + I =
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[ 1 0 0 0 0 0 0 0 |
—ty ot —
U1 1 1 — Yo 0 0 0 0 0 0
Y —Y% U1 - %0 .
0 Y2 2 2— U 0 0 0 0 0
Y2 — Y1 Y2 - ZL{l b
0 0 Y3 3 3~ Y2 0 0 0 0
Ys — Y2 Y3z — Y2 _ ‘o
0 0 0 0 Ya 4 14— Y3 0 0
Ys —Ys Y4 - 1%(3 b
0 0 0 0 0 Ys 5 5 — Ya 0
Ys —Ys Y5 - %4 .
0 0 0 0 0 0 Ye 6 6 — Us
Y —Ys Ys — Ys
i 0 0 0 0 0 0 0 1 |

5.4 Determine the Band Matrix of Approximate
Inverse for the General Case

This time we will use the general expression of By with the indicator variables
{o;}7=2 as in Chapter 3. Specifically, we take equation (3.1.6) here,

1 0 0 e 0 T
Boa(y1) Bia(yi)  Baa(y) 0
By = 0 " " ' 0 ,
0 By _32(Un—2) Bn-22(Un—2) Bn-12(Yn—2)
0 0 0 [
where B;_12(Yi), Bi2(yi), Bi+12(y;) can be represented as
( li — Y
B;_ i) = 0; ;
12(y1) = o t ; ti s t
Yi — li—1 i+1 — Yi
Bis(yi)) =0i—7—+ (1 —0y)) 7——, 4.
o) = P 4 (1= ) (5.41)
Yi — 1
\ ir1 — b
with
1 if i € (ti— ,ti
) (5.4.2)
0 if y € [ti,tig1).

We will use the same method as in the previous section under the new formulation.
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1. Find B; and X;, such that
ByBy — I = X\ E}, (5.4.3)

where
E, =
1 _
Y1 — Yo 1 —1

Y2 — Y1

1 1 -1

Yn—1 = Yn—2] (n-1)x(n—1)

. (5.4.4)
We take By = I,,. Denote 1,, as the column matrix with all entries 1, that
is,

1, = . (5.4.5)
1xn
The partition of unit property of the B-spline functions implies that
(BBy — I,)1, = 0, (5.4.6)
which allows us to do the following factorization:
ByBy — I = XDy, (5.4.7)

where

Dy = o . (5.4.8)
1 -1 (n—1)xn

To find X in (5.4.7), we need the pseudo-inverse of Dy, that is,

11 1 1]
01 1 1
Df=10 0 . 1 (5.4.9)
00 O 1
_0 00 - O_ nx(n—1)
Thus, we have .
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[ 0 0 0 0 0 0 i
Boa(y1) —Baa(yr) 0 0 0 0
0 Bis(y2)  —Bsa(y2) 0 0 0
0 0 0
0 0 Bi71,2(yi) —Bz’+1,2(yi) 0 0
0 0 B " 0
0 0 0 i Bn73,2(yn72) —Bn71,2(3/n72)
|0 0 0 0 0 0 ]
With the notations in (5.4.1), we have
Xl -
0 0 0 0
o ill :i‘; (o1 — 1) 1121 ::1 0 0
0 UQZ::“:? (02—1)% 0 0 0
0 . 0
0 0 tf :tiyj] (og — 1):;'17_’5; 0
0 0 0
: i 0 v s G e b
0 0 0 0 0 0
(5.4.11)
Then we use
Y1 — Yo
X, = X, i (5.4.12)
Yn-1 = Yn-2] ,_1yx(n-1)
Denote
d5 =y — ik (5.4.13)
We can write )~(1 as
dy
) dl
Xl — Xl —
1
dpy (n—1)x(n—1)
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We will determine by, ..., b,_» such that

(BQBQ + X1>]—n71 - 0,
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lp—2 — Yn—2

B 0 0
1d} 2 :1’; (o1 — 1)d} ?;21 ::1
0 o2 %YZ:?? (o2 — 1)dé :lt/j, — :j 0
0 oid; tltz— tiy_il (o5 = 1)djy, n
0 0
0 0 ; ’ 0n72d}b—2 thn—2 —th—3
| 0 0 0 0
. Find BQ and )~(2, such that
BQBQ + Xl = X2E27
where
- .
Y2 — Yo 1 1 -1
1 -1
E2 = Ys — 1
1
L Yn—1 — Yn—3 ]
To make B, as simple as possible, we take
"p 0O 0 0 O 0 O]
bp 0 0 0 O 0 O
0 bob 0 0 O 0 O
- 0 O 0 0 0 0
BQ -
0 0 O 0 0 O
0O 0 0 O 0 O
O 0 0 0 0 b,o O
L0 0 0 0 O 0 0] nx(n-1)

tit1 —t;

(op—2 — 1)d}

0
0
Yn—2 — tn—2
n-l thn—1 —tn—2
0 =
(5.4.14)

(5.4.16)

(5.4.17)



that is,

1 tn—2 — Yn—2

Tn-2y-23 :
n—2 "~ n-3

Based on our example in the previous section, we make the following guess,

Blzyl_tla gzzyz—tza ooy bpo = Yo — thoo.

1 0 0 0 0 0
30,2(3/1) Bl,Q(yl) BQ,2(ZJ1) 0 0 0
0 Bl,2(?J2) B2,2(y2) B3,2(y2) 0 0
0 0 0
0 0 0 Bn—3,2(yn—2) Bn—2,2(yn—2> Bn—1,2(yn—2)

i 0 0 0 0 0 1
_ 0 _

t t

ald% 1~ U 1 (0_1 _ 1)d§y1 1

§1 —lo to - 17551

@d% 2 — Y2 1 (0_2 _ 1)6%92 2

tg — U1 t3 - t2

Next we need to prove the above conjecture. Let us do the calculation as follows,

LHS = b;_; Bi_12(yi) + b; Bia(yi) + bit1 Biy12(ys)
ti — Yi Yi —tiza
= Wic1 —tic1) Os———— i — i) oi———
(Yi-1 1)Uti—t¢71+(y )Uti—ti,1+
tivi — Yi Yi — t
(yi — t:) (1 — ;)" + (yig1 — tip1) (1 — 03) ——
tiy1 — t; tic1—t;
ti — Yi Yi —tiza
=0 | Wic1 —tic1) ———— i — i) ————
o ((y 1 1) Lt + (y ) - til)
tivi — Vi Yi — t;
H(L—o0) [ (g —t)) "+ (Yir1 — tiv1) ——— | -
tiv1 — 1 Liv1 — 1
and
RHS :_U.d1ﬂ+(1_a,)d1 Yzt
Ut —ti VU i — t
ti — i Yi — t
=—0; Wi —vi1) ——— + 1 —0) W1 —yi) /.
oi (yi — y 1)ti—tH+( 0i) (Yit1 y)tm—ti
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Comparing the two sides above, we need to verify the following identities:

(Yim1 —tic1) (b — ys) + (yi — i) (i — tic1) = (Wim1 — i) (ti — vi)

and
(i = &) (b1 — i) + (i1 — tisa) (Ui — i) = (Wi — ¥i) (v — &)
We can that the above two identities are true by factorizing the common factors

(t; — y;) and (y; — t;), respectively. Thus, our conjecture is true. Based on this
property, we can get the following theorem.

Theorem 5.4.1. Given n data samples i = {y; Yo" on the interval [a,b] with
the endpoints interpolating property: yo = a and y,_1 = b, we consider the linear
B-splines with n basis functions {B;2(x)}=, on the interval [a,b] defined on the
knots {t;}™, with

a:t,1:t0<t1<t2<~-<tn,2<tn,1:tn:b.

Assume that
ti71<yi<ti+17 1§Z§7’L—2,

and we denote t := {t;}o~'. Then the Shoenberg-Whitney matriz defined as follows

1 0 0 0
Boa(y1) Bia(yi)  Baa(yi) E 0
Bo(t;i)i=| 0 - - ' 0
0 . By_32(Yn—2) Bn—22(Yn—2) Bn-12(Yn—2)
0 0 0 I
(5.4.19)
has an approximate inverse of the form Bg(y_',f), i.€e.
Ly L o
By(t,i) | i | =Bu@h) |1 i |- (5.4.20)
1 Yn—1 1 Yn—1

Proof. By the matrix factorization steps above, we can find X, of the form (5.4.12),
such that )
82 - [n = XlEh (5421)

where F) is defined in (5.4.4). Since B, contains the indicator variables {o; 2

we choose our B, factoring in the o-structure as follows

BQI
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0 0 0 0 0 0 0
o1 (yl—tl) (1—01)(y1—t1) 0 0 0 0 0
0 o2 (y2 — t2) (I1—-o02)(y2—t2) 0 0O 0 0
0 0 0 0 0 0
0 0 0 o0 0 0
0 0 0 0o . 0 0
0 0 0 0 0 On—2 (yn72 - tn72) (1 - 0'7172) (yn72 - tn72)
0 0 0 0 0 0 0
(5.4.22)
and we can get . .
(BQBQ + Xl) ]_n,1 == 0 (5423)

by the following identity
(i1 —tic1) Bic12(yi) + (i — ts) Bio(yi) + (Yir1 — tiv1) Bit1,2(ys)

ti — Y yi — t;
+ (1= 03) (Yis1 — vi)

= —o: (y —y, 1) ——2 A
i (yz Y 1) ti _ tz’—l tz‘+1 N ti

Y

where the general expressions of B;_12(v;), Bi2(v:), and Biy12(y;) are given by
(5.4.1). The identity (5.4.23) implies that there exists an n x (n — 2) matrix X,
such that ) 3 3

BBy + X1 = XoFs,

with Fy given by (5.4.15). Combine (5.4.21) and (5.4.23), we get
By (I, + BoFy) — I, = XoFo . (5.4.24)
Now we define 3 .

We can write (5.4.24) as ) .
By By — I, = Xo BB, (5.4.26)

By Proposition (5.1.1), we have that

1 v L %
Gobo-1) |, | =xmE | | =0
i y"‘*l nx2 1 y"‘*l nx2
which implies that
1 1w
B! y.l = By 1 ?/.1
TTY IR | )

“nx(n—1)



By the definition of the approzimate inverse, we can see that By is an approximate
inverse of By. Next we will find the expression of By by calculating I, + BoE; in
the following steps.

~ 1 1
1. Calculate B;diag ( ey )
Y1 — Y Yn—1 — Yn—2

By (5.4.22), we have

- 1
Bleag( g eeey )Z
Y1 — Yo Yn—1 — Yn—2
0 0
o y1 — t1 (1—o1) y1 — t1
Y1 — Yo Y2 — Y1
0 2T 2T g 0 0
Y2 — Y1 Y3 — Y2

0 0 0 0 0 0
0 0 0 .0 0 0

0 0 0

0 0 T Yn—2 — tn—2 (1 e )

Yn—2 — Yn—-3 Yn—1 — Yn—-2
0 0 0 0 0 0
(5.4.27)
2. Calculate By E;
By (5.4.4), we have
- _— 1 1
By Ey = By diag yorn,— | Dy,
Y1 — Yo Yn—1 — Yn—2

where D is the difference matrix defined in (5.4.8). Notice that the (i+1)-th

. 1 1
rowofBQdiag( s )is
Y1 — Yo Yn—1 — Yn—2

i — i i — i
[0 L Ay § R D LA | o} 7
where the first nonzero entry is at the i-th location in the row. Then we can
get the (7 + 1)-th row of By E; as

Yi —ti Wit '
Yi — yi71’ ! Yi —¥Yi-1 Yir1 — yi7 Yi+1 — yi’

[0 0 oy

where the first nonzero entry is also at the i-th location of the row.
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3. Calculate I, + By Fy

It is easy to see that the (i + 1)-th row of I, + B, Fy is

Yi — b Yi —

o -+ 0 gg——m, 1—o0; +(1—0y) , (1—0y) ———,
L Yi —Yi-1 Yi — Yi—1 Yivr1 — Yi Yi+1 — Yi
which can be simplified as
0 --- 0 oy Yi d , O i 7 Yird —l—(l—ai) Yit1 17 1_0i) i Y , 0
L Yi —Yi-1 Yi —Yi-1 Yi+1 — Yi Yi+1 — Yi
(5.4.28)

where the first nonzero entry is also at the i-th location of the row.

In order to compare By with By, we also list the (7 + 1)-th row of By here, i.e.

[0 -+ 0 Bisia(y) Bialy) Binaa(ys) 0 --- 0],
which is
ti — ¥i i — ti- tit1 — Yi i —ti
[o S T L Li(Qoo)itt™% g o) X% g ..o 0.
ti —ti1 li —ti1 liv1 — 4 tiv1 —t;
(5.4.29)

By examining the expressions of (5.4.28) and (5.4.29), we observe the following
relationship between them: If we switch the positions of ¢ and y in the first
expression, we will get the second expression. In other words, these two vectors
have the duality property with respect to ¢ and §. By extending this property to
the whole matrix, we get

BQ(t_; ?j) = BO(gv 57
which is the same as (5.4.20), and we complete the proof.

From this theorem, we can easily get the following corollary.

Corollary 5.4.2. With the same conditions and notations as in Theorem 5.4.1,
we have the following identity:

(B2 (L) Bo(y,8) — 1) |+ & | =0. (5.4.30)
1 Yn—1
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Proof. By Theorem 5.4.1, we have
BZ(t_; ?7) = BO(@Z 57

or equivalently, N

By the definition of approximate inverse, we have that

L wo . L o
By |1 i | =Bt | i |- (5.4.32)
1 Yn—1 1 Yn—1

It follows from (5.4.31) and (5.4.32) that

L v L o
ByU(Ey) | | =B(gh) |1 |,
1 Yn—1 1 Yn—1
which is the same as (5.4.30), and we complete the proof. m

Next we will use the band matrix By to construct a local quasi-interpolating
operator.

5.5 Local Quasi-Interpolating Operator for Lin-
ear B-Splines

(Compare our new result with the following identity:)

k=—o00 k=0

Looking from this angle: Switching the knots ¢ and the sampling points 7. For
the linear case (m = 2), there is a duality property between ¢ and 7. But for the
general case, this property may be lost.

With the explicit formula for the approximate inverse of By as in (5.4.20), we
can write the data-induced (DI) linear operator for By as follows.
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n—1

With n data samples ¢ := {y;};~ on the interval [a,b] satisfying the end-
points interpolating property: yo = a and y,_1 = b, we use the n linear B-splines
{B;2(x)}1=) on the interval [a,b] defined on the knots {t;}", to define the follow-
ing linear operator:

BY: Cla,b] = Sy, with

(BY) (@) = S (BoF s B, (55.1)
where .
fy=1fwo)s -+ Flyn-2)]"- (5.5.2)

In order to see this operator clearly, we would like to write its expression explicitly.

First, let us write the matrix By explicitly. We use b 0 =0,1,...,n—1 to
denote the n rows of By. Thus the matrix-vector product Bo fy can be represented

as
. )
D I < ) f >
Bﬂfy - . Y )
(b6, fy)
where the notation (-, -) is the regular inner-product of two vectors. Hence, (5.5.1)
can be written as

—

b
b

0
0>
1
0

I
—

n

(Byf)(x) =Y (B fy) Bim(x).

i

Il
=)

Furthermore, let us write the expression of (b, f;) explicitly. By (5.4.28), we have

P Yi — b ti —Yi-1 Yir1 — bi Li — Y
by, fy) = o3 fyi— +<0'+ l—0y) —/—— ) f(ys) + (1 -0y f(Wig1).
b6 £y) "y —yia vi-1) "y — i ( 0 Yi+1 — Yi (ws) + 0 Yi+1 — Yi Wit)

In order to see a complete picture of (5.5.1), we write it as follows,

(BOf)(a) = 37 [m Vil p )+ (ai LZVinl (g gy m) Flgi) + (1 — o) LY (ylm} By ().
7 1 Yi —Yi—1 Yi+1 — Yi Yi+1 — Yi (5 5 3)

In order to show that the linear operator in (5.5.1) is a quasi-interpolating opera-
tor, we need to show that

(B1)(z) =1 and (B%)(z) = .

Y

The first identity can be verified easily by the partition of unity for B-splines as
follows,
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n—1
- PR t: —yi_ . —t: t: —y;
(BYD)(2) = > [aiyyziz-u(aﬂiylw(lw)w) A4 (1o BTY
; i 1

Yi —Yi—1 Yi+1 — Yi

:Z[Ui-1+(lf¢7i)- B m(z) = ZBlm(x—l

Yi+1 — Yi

To verify the second identity, we need to calculate the following expression:

(B = 5 [o:

i—0

Yi — Yi— Yi—1 Yi+1 — Yi

Let us simplify the coefficient for each B; () first.

gi%z.yi_1+<ai1%1+(1_01)%+11>.%+(1_gi) :

Yi —Yi-1 Yi+1 — Yi

b — i 1 —ti t
z‘71+(Uz’%+(1*0’i)w)'yi+(1*0i) :
L —

—Yi

“Yit1

Yi+1 — Yi

tz —Yi

— 1 b — yi_ —t;
—0; (yzz gy 4 YL yz> +(1—0y) (y”l
i i i i Yi+1 _yz

With this simplification, we have

n—1
= Ztl Bz’m<I> =,
=0

Yi+1 — Yi

— Y
Yi+1 — Yi

: y¢+1)

*Yit+1

where the last equality is based on the Marsden’s identity for the linear case.

Next Question: How to connect the following two identities?

—_

o0

3

Y p(B)Nu(e —k) =) Nu(k)p(x — k)

B
Il

k=—o00 0

and

Bo(t,4) = Bo(F, ).

To see this, we need to go back to the definition of the approximate inverse and

the definition of the DI-operator.

First we simplify the first identity by using a monomial to replace the polyno-

mial, i.e., replacing p(x) by z" for some 0 < r < m — 1. We have

H

[e.o] m—

Z k" N ( N, (k

k=—o00 k=0
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Here our focus is on: How the knot vector and the data sample vector switch.
In the Cardinal B-spline case, both the knot vector and the data sample vec-
tor are using integers. It is hard to separate them. Let us list the following two

properties.

Polynomial preservation property:

Yo Po,m
v Plm
L ,1 = 1,’ , for r=0,1,--- ,m-—1,
Yn—1 P:z—l,m
then
(Lyp)(x) = p(l’), for all D€ Tm—1,
where pg ;- -, Pr_1., are the Marsden’s coefficients.

The B-spline interpolating operator preserves the polynomials.

Yo Po.m
B! o Plm
Yn—1 p:z—l,m
For the linear case, we have the following results:
Yo P6,2
1,7 o Y1 PI,z
BQ ! (t7 y) . = - ’
Yn—1 P2—1,2
which is equivalently as
Yo P0,2
5 (7 ,0{2
82 (ya E) . - : )
Yn—1 Pr-1,2

For the Cardinal B-splines, we can view N,,(x — k) as Ny, ,,(x) for any integer
k. Now we can write

o (k— 1)
Z p(k‘)Nm(JJ — k‘) = [ .. Nk—Lm(x) Nk7m(.ﬁl§') Nk+1,m(x) .. ] kT
b= (k+1)r

89



Chapter 6

Conclusion and Future Research

In this work, we constructed a local quasi-interpolating operator for the linear
B-splines which can be used to do data interpolation without using any matrix
inverse. The construction is based on the matrix factorization technique. The suc-
cess of this method relies on a matrix criterion for the polynomial reproduction
using the coefficients of the Marsden’s identities.

We believe that this method can be extended to more general situation. For
example, we can consider the spaces generated by refinable functions. We can
also consider the basis functions on the real axis. In these cases, how to define
the approzimate inverse concept, and what are the properties for the approximate
inverses in these general cases?

We also plan to apply our quasi-interpolation operators on some real-world ap-
plication problems. In many data processing problems, real-time response is very
important. Since our method avoids matrix inverse computation that is needed in
most existing data interpolating methods, we have a very good change to achieve
the linear (O(n)) performance in those problems.

We will develop computer programs in Matlab, R, and Python with user
friendly interfaces and make them available in the community, so that our methods
can be applied to many data processing problems in the community.

In order to get the approximate inverse formulas for m > 3, we do the following
calculations for some special cases.
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6.1 Quadratic B-spline - General case

Next, we will do factorization on B3. Assume that we are given n sample points:
{yx }7=5 spread on the interval [a,b] with the following condition:

a=yo <y < - <Yp2o<Yp_1 =0

To do the quadratic B-spline interpolation on these sample points, we construct a
set of quadratic B-splines {B; 5(x)}"= using the knots {t;}7?__, with the following
form:

a:t_QZt_1:t0<t1<t2<"'<tn_3<tn_2:tn_1:tn:b,

where the basis function B;3(x) is constructed from the knots: {t;_o,t;—1,%;, i1}
for © = 0,...,n — 1. Furthermore, the Shoenberg-Whitney condition must be
satisfied, that is,

ti—o <Yy < tiyq, fOI'lSZSTL—Z,

which implies that

Y1 < T < Yigo, forl1<i<n-—3.

1. Find Bl and Xl, such that
Bgél - I == XlEla (611)

where

1
Y1—=Yo

By = G o . (6.1.2)

L 1 -1
ys—y7d 9x9 8x9

We take B; = I. Denote 1g as the column matrix with all entries 1, that is,

1

1
=[] . (6.1.3)
1
1x9

The partition of unit property of the B-spline functions implies that
(BsB; — 1)1y = 0, (6.1.4)
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which allows us to do the following factorization:
8331 - [ == X1D17 (615)

where

Dy = L . (6.1.6)

8%9

1 1 1 1
01 1 1
Df=10 0 . 1 (6.1.7)
0 0 O 1
o0 o0 --- 0
L 4 9x8
Thus, we have 3
X, = (BsBy — I)D} = (6.1.8)
[0 0 0 0 0 0 0 0 ]
By —DBan 0 0 0 0 0 0
0 B —Bsp 0 0 0 0 0
0 0 Bss  —Bus 0 0 0 0
0 0 0 By —Bsy 0 0 0 ,
0 0 0 0 Bis  —Begs 0 0
0 0 0 0 0 Bss  —DBrg 0
0 0 0 0 0 0 B¢ —DBgr
o 0 0 0 0 0 0 0 |,
where B;; means B;3(y;). Then we have
Y1 — Yo
X, = X, o . (6.1.9)
Y8 = Y] g5
Denote
d¥ =y — yj k- (6.1.10)
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Now we can write X; as follows

[0 0 0 0
dl Boy —d} By 0 0
0 dy Bz —di Bso 0
0 0 di By —d} Bys
Xi=1] 0 0 0 d} By
0 0 0 0
0 0 0 0
0 0 0 0
L 0 0 0 0

. Find B, and X, such that

3332 + Xl = X2E2,

where
1
Y2—Yo
1
_Ev2 — Ys3s—y1
1
Ys—Ye

Assume that
[0 0 0 ©
by p 0 0
0 by 9 0
3 0 0 b3 O
By=10 0 0 by
0O 0 0 O
0O 0 0 0
0O 0 0 O
00 0 0

We will determine by, . .., by such that

co o FSltoo o o o

cofFlooco oo oo

oFlooc oo oo o

(8332 + X1)18 =0,

93

0 0
0 0
0 0
0 0
0 0
—d§ Bes 0
di Bss —d By
0 d} Ber
0 0
-1
X8
4 9x8

SO OO O oo oo

(6.1.12)

(6.1.13)

(6.1.14)

(6.1.15)

9x8



that is,

1 0 o0 o0 o0 o0 o0 o0 0710 i 0 1
BOl Bll B21 0 0 0 0 0 0 {)1 —d%BOl + d%BQl
0 Big By By 0 0 0 0 0] b —d}Bos + di Bso
0 0 Bys Bss By O 0 0 0 b3 —d:l.)B34 + d}lB43
0O 0 O By By By 0 0 0| |by| =|—diBys+d.Bss
0 O O 0 By Bss Bes 0 0| |bs —d}Bsg + di Bes
0 0 0 0 0 Bss Bes Brs 0| |bg —d§ Bsr + dy Bre
0 0 0 0 0 0 Bs B Bsr| b —d}Brs + di Bsy
Lo 0 0 0 0 O 0 0 1]]o i 0 |
(6.1.16)
Based on our experiment, we guess that
b1=—t0—gt1+y1, bzz—tl—;tQﬂLy% b3=—t2;t3+y3,
by = —t3;t4 + Y4, by = —t4;rt5 + U5, (6.1.17)
b6:_t5—;t6+y67 b7=—t6;t7+y7-

To verify the correctness of each row in (6.1.16), we need to show that
bi 1\Bi1;+b0iBi; +biy1Bit1i = —d!Bi_1; +dly Biyy. (6.1.18)
Let us verify it directly. We calculate the two sides of (6.1.18) separately.
LHS = Bi—lBi—l,i + Bszz + Bi—&-lBi—H,i
= <—7ti_2_§ti_l + yi—l) Bi_1;+ (—7”_12“" + yz) Bii+ (—Li”l + yi-i—l) Bit,

2 tivk—2+tite—
= yi-1Bi—1i + YiBii + Yit1Biv1,i — D ho (w) Bitk_14-

The last summation term can be simplified by the Marsden’s identity as

follows
Livk—o +tiph—
Z ( j+k—2 - j+k 1) Bjin-1(y;) = y;. (6.1.19)

2
k=0

Thus we have (using the partition of unity)
LHS =y; 1Bi—1; +yiBii + yir1Biv1i — yi

=vyi1Bi—1; + ¥iBii + Yit1Biv1i — vi(Bi—1i + Bii + Biv1)
= (Vi1 — ¥i)Bi—1i + (Yis1 — vi)Big1, = —df} Bi_1;+ d§+1 Biy1,,
which is exactly the right-hand-side of (6.1.18).
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To get the factorization, we need to compute B;Bs + X1, that is,

0

b1B11 — d} Box
b1 Bi2

0

oo o oo

To find X5, such that

where

we need to use the pseudo-inverse of Dy, that is,

Thus,

0

— (b2 + d}) B2y
b1 B12

0

[Nl ool

0

(b2 +d3)Bay
by Baa — d3B1

b2 Bag

0

0
0
0
0

0
0

BsBy + X, =
0 0
0 0
(b3 + d3)Bs2 0

b3 Bss — d} Bag

D2 =

+
2

—(b3 + d})Bs2

ba Bos

Now we calculate

Xy = X,

0

oo o o

_(ba +d})Bas

Y2 — Yo

Ys —

o oo

0

Ys — Ve -~

95

o O oo

0

(6.1.20)

(bs + d§)Bgs

be Be7
0

be Bes — dg Bse

(===}

0

(b7 + d3)Bre

b7 Br7 — di Bet
0

(6.1.21)

(6.1.22)

(6.1.23)

(6.1.24)

(6.1.25)

S OO O oo

—(l~77~+ d})Bre

b3 B3a b4Bas —djBzs (b5 +d})Bsa
0 by Bys b5 Bss — dj Bas
0 0 bs Bse
0 0 0
0 0 0
BsBy + X1 = X3Ds,
1 -1
1 -1
Y
1 -1
Tx8
1 1 1 1
01 1 1
=10 O 1
00 O 1
0 0 O 0
L 4 8x7
_ B % + _
Xy = (BsBy + X1)Dy =
0 0 0
0 0 0
~ 0 0 0
—(ba +d})Bas .0 0
b3 B34 —(bs + d})Bsa 0
0 by Bys —(be + d§)Bes
0 0 b5 Bse
0 0 0
0 0 0

bs Be7
0

(6.1.26)

[eleleoBoNoBoN-)

—d}Bgy
0

sy

o~
oo ooococoo

9x7



0

—(by + d})d3 B2
b1d2B12

0

oo oo o

3. Find Bg and )~(3, such that

where

1
Y3—=Yo

Assume that

We will determine ¢4, . .

that is,

1
By
0

(e R en B en B e B e B @]

0
By
Bio

0

o O O o O

0
Boy
Bao
Bos

0

o O oo

0 0 0 0 0 0
- 0 0 0 0 0 0
— (b3 + d3)d3 Baa . 0 0 0 0 0
bad2 Bag — (b4 + d})d3Bus } 0 0 0 0
0 b3d2 B3y —(bs_ + d3)d2 Bsa : 0 0 0
0 0 bad2Bas —(bg + d§)d3 Bes 3 0 0
0 0 0 bsd2Bsg — (b7 + d3)d2 Brg 0
0 0 0 0 bed2Ber —did2Bsr
0 0 0 0 0 0
BsBs + Xy = X3 Es, (6.1.27)
1 -1
1
1 -1
e _ (6.1.28)
1 -1
Ys—Ys 6x7
[0 0 0 0 0 0 O]
¢t 0 0 0 O O O
0 ¢ O 0O 0 0 O
~ 0 0 ¢ 0 0 0 O
Bs={(0 0 0 ¢ 0 0 O (6.1.29)
0 0 0 0 ¢ 0 O
0 0 0 0 0 ¢ O
0O 0 0 0 0 0 ¢
|00 0 0 0 0 0 957
., ¢7 such that
(BsBs + X,)1; = 0, (6.1.30)
o 0o o0 o0 o o77r07 | 0
0o 0 0 0 0 O0]|& ~ (by+d3)d3Ba
Bp 0 0 0 0 0]|é& ~b1d3B12 + (b3 + d})d3 Bs»
Bss Bggs 0O 0 0 0| |é —bad3 B3 + (ba + d})d} Bas
B3y By Bss 0 0 0 Ca| = —{73613334 + (b5 + d})d%Bs4
0 Bsys Bss Bes 0 0 Cs —134d§B45 + (b6 + d})d2 Bgs
0 0 Bss Bes Brg 0 Co —bsd2 Bsg + (b + d})d2 Brg
0 0 0 Ber Brr Bsr| |cr —bgd2Bgr + (bs + d})d2 Bsy
0 0 0 0 0 1] L0 0
(6.1.31)
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The expressions of ¢4, .. ., ¢; should be related to the quadratic Marsden’s iden-
tity.

Research Problem 1

Given n sample points: {y;}}?—; on the interval [a,b] with
a=yo <y < <Yp2<Yp1=0,
consider the quadratic B-splines {B;3(x)}?=, defined on the knots {t;}7_ , with
a=t o=t 1 =tg<thi<ta<- - - <th3<tpo=t,_1=1,=0.

Let Bs be the Shoenberg-Whitney matrix. How to find a band matrix By, such
that
L w v Y w W
Byt|: i | =DBy|: i
L Yna ygfl L yn yfﬂ
The reason to find this matrix By is that it can help us define a local quasi-
interpolating operator.

(For this problem, if we can find the explicit formulas for &, ..., ¢, in above
discussion, we can find this By.)

6.2 Cubic B-Spline - General Case

Next, we will do factorization on B4. Assume that we are given n sample points:
{yx};—; spread on the interval [a,b] with the following condition:

a=Yo <Y1 < - <Ypo < Yn_1=0>b.

To do the cubic B-spline interpolation on these sample points, we construct a set
of cubic B-splines {B;4(7)}}=, using the knots {t;}7__, with the following form:

a:t_gzt_zzt_1:t0<t1<t2<"'<tn_4<tn_3:tn_2:tn_1:tn:b,

where the basis function B, 4(x) is constructed from the knots: {t;_s,t;—a,t;i—1, i, tit1}
fori=0,...,n — 1. Furthermore, the Shoenberg-Whitney condition must be sat-
isfied, that is,

ti—g <y <tiyq, fOI'lSZSTL—Q,
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which implies that

Y1 < T < Yirs, forl1<i<n-—4.

1. Find Bl and )~(1, such that
BB, — I = X,E\,

where

1
Y1—Yo

El — Y2—y1

L 1
Yo—ys

(6.2.1)

(6.2.2)

We take Bl = I. Denote 179 as the column matrix with all entries 1, that

is,
1

1
1=

1x10

The partition of unit property of the B-spline functions implies that

(B4By — )15 = 0,
which allows us to do the following factorization:
ByB, — I = X,Dy,

where

9x10

To find X in (6.2.5), we need the pseudo-inverse of Dy, that is,

Df =

OO O O+
OO DO ==
O = =

| 0 Ml ioxe

(6.2.3)

(6.2.4)

(6.2.5)

(6.2.6)

(6.2.7)



Thus, we have

_ B + _
X, = (B.B, — )D} = (6.2.8)
[ 0 0 0 0 0 0 0 0
Bo1  —Ba21 — Bz —Bs1 0 0 0 0 0
0 Bi2 —B32 — By2 —By2 0 0 0 0
0 0 Bos —By3 — Bss —Bs3 0 0 0
0 0 0 B3y —Bs4 — Bsa —Begs 0 0
0 0 0 Bss Bss + Bas —Bes 0 0
0 0 0 0 Bas By + Bse —Bre 0
0 0 0 0 0 Bsy Bs7 + Be7 —Bsg7
0 0 0 0 0 0 Bgg Bes + Brs
| 0 0 0 0 0 0 0 0
Then we have
Y1 — Yo
5 Y2 — 1
X=X (6.2.9)
Yo — Ys
Denote
ko .__
Now we can write X; as follows
[ o 0 0 0 0 0 0
d%B()l —d%(BQl + B31) —d:l))B31 0 0 0 0
0 d%Blg —dé(ng + B42) —d}lB42 0 0 0
Xl _ 0 0 0 0
0 0 0 . t. T, 0
0 0 0 0 d¢Bs7  d}(Bs7 + Ber) —diBsr
0 0 0 0 0 dlBes d§(Bss + Brs)
L O 0 0 0 0 0 0
(6.2.11)
Find By and X5, such that
BBy + X1 = XoF», (6.2.12)
where
1
Y2—Y0 1 I -1
Y3—y1 =1
Ey = _ (6.2.13)
1 1 -1
Yyo—yr 8%x9
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Assume that

O 0 0 O OO 0 00O
by p O 0 0 0O 0 0 O
0 by p O 0 0 0 0 O
0O 0 b5 0O 0 O O O O
~ O 0 0 by O O O O O
By = ~ 6.2.14
7100 0 0b 00 00 ( )
0O 0 0 0 0 b O 0 O
O 0 0 0O 0 0 b 0 O
0O 0 00 O 0 0 b O
0 0 0 00 0 0 0 0] 10%9
We will determine IN)l, cee bs such that
(BsBy + X1)19 = 0, (6.2.15)
that is,
rl 0 0 0 0 0 0 0 0 0 7
Bo1 B11 Bo1 Bs1 0 0 0 0 0 0 0
0 Bi2 B22 Bs2 B 0 0 0 0 0 0 —dlBo1 + di(B21 + Bs1) +d
0 0 B23 B33z Biz Bs3 0 0 0 0 by —di B2 + di(Bs2 + Ba2) +d
0 0 0 B3s Baa Bsa Bega 0 0 0 - .
0 0 0 Bss Bjys Bss Bsgs 0 0 0 T :
0 0 0 0 Bss Bss Bss Brs 0 0 | [bs fdéBm — d}(Bs7 + Ber) +d
0 0 0 0 0 Bsy Bgr Bry Bgr 0 0 _d7368 - dé(BGZS + B78) +d
0 0 0 0 0 0 Bgs Brs Bss Bos 0
) 0 0 0 0 0 0 0 0 1]
(6.2.16)
Based on our experiment, we guess that
lN) _26L+t1_ = _a+t1+t2_ 6 _t1+t2+t3_
1= 3 Y1, 2 = —3 Y2, 3 = —3 Ys,
> lo+13+ 14 > t3 + 14+ t5 > ty+15 +ts
by = ——F———Ys, bs=-"—F—— —ys, 6 = 5  — Y6,
3 3 3
(6.2.17)
;o _tsttetb o to+2b
7= 3 Yz, s = 3 Ys-
In particular, we have
~ ~ b+b+b
bozw—yon, and bgz%—ygzo.

To verify (6.2.16), we consider the following two cases:
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e For 2 < i <5, we need to verify that
bi—1Bi—1,i+biBi i+bit1Bis1,i+bisaBito; = di Bi_1,;—d} | (Bit1,+Biyai)—d} 49 Bita,

(6.2.18)
which is equivalent to

(Bi—l —d%)Bi—LH-BiBi,H- (5i+1 +dz‘1+1)Bi+1,i+ (8i+2 +d%+2 +di1+1>Bi+2,i =0,

that is,

(%o)—s + To()—2 + To()-1 yi) Biyit (%m—z + To()-1 + To(y) yi) Bt

3 3 '

$g‘,1+$0‘+$0‘ 1 $0'+$0' 1+$0' 2
( G) 3(3) G+ yi) B +( G) <ag+ G)+2 yi) Bipss =0

This formula is just the linear case of the Marsden’s identity:

3

To(j)—3+k T To(j)—2+k T To(j)—1+k

y; = § ( v (3)3 v - ?Jj) Bi 14k4(y;)-
k=0

(6.2.19)

Research Problem 2
Given n sample points: {y;}}—; on the interval [a,b] with
a=yYo <y1 <+ <Yp-2 <Yp—1 =0,
consider the cubic B-splines {B; ()}, defined on the knots {t;}7_ . with
a=t 3=t o=t 1=t)g<t1<te<---<thy<ths=t,o=t,_1=1,=0b.

Let By be the Shoenberg-Whitney matrix. How to find a band matrix By, such
that
Lo w w | (1w % W
Byt|: o+ ¢ i | =DBof: i
L oYo1 Yoy Ypoa L Yo1 Yoy Ypoa
The reason to find this matrix By is that it can help us define a local quasi-
interpolating operator.

For the general factorization, we would like to have the following results.
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Proposition 6.2.1. Given n data samples i = {y;}4~" on the interval [a,b]

with the condition: yy = a and y,_1 = b, we consider the m-th order B-splines
with n basis functions { B, ()}, on the interval [a,b] defined on the knots
t = {ti}" 1. Assume that t and § satisfy the Shoenberg-Whitney condition.
Denote B, as the Shoenberg-Whitney matriz with respect to t and ij. Show that
for any n x (n — r) zero-row-ending matrix X, with 0 < r < m — 1, there exists
ann x (n —r) band matriz B,y, of bandwidth up to max(2,r — 1), such that

BpBi1 + Xy = Xo 1By (6.2.20)

for some n x (n —r — 1) zero-row-ending matriz X, .

Proposition 6.2.2. ., Given n data samples ij == {y;}i~' on the interval [a,b]
with the condition: yy = a and y,_1 = b, we consider the m-th order B-splines
with n basis functions on the interval [a,b] defined on the knots & = {t;}" ...

Assume that  and i satisfy the Shoenberg- Whitney condition. Denote B,, as the
Shoenberg- Whitney matriz with respect to T and y. Show that there exists an nxn
band matriz By with bandwidth 5, such that

BnBy— I = XE,E3E,Ey,  (m > 4) (6.2.21)

for some n x (n — 4) matriz X .

Proposition 6.2.3. Given n data points ij := {y;}o~" on the interval [a,b] with
the condition: yg = a and y,_1 = b, we consider the m-th order B-splines with
n basis functions {Bin(x)}'2y on the interval [a,b] defined on the knots t :=
{t:}" 1y in the form of

{CL,"' 7a7t17t27”' 7tn—m7b>'” Jb}
——— ——

satisfying
a<ti<ty<- - <th_m<b.

Here we take
t_m+1:-~~:t0:a and tn_m+1:"':tn:b.

Assume that t and § satisfy the Shoenberg-Whitney condition. Denote B,, as the
Shoenberg-Whitney matriz with respect to t and y. Show that there exists annXn
band matriz By with bandwidth at most max(4,2r — 2) for 1 <r <m, such that

Bn.By—1=XE,---E;, (1<r<m) (6.2.22)

for some n x (n —r) matriz X. Furthermore, the computation complezity for By

is in O(n).
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Proposition 6.2.4. With the same condition as above for m > 4, show that there
exists an n X n banded matriz By with bandwidth 5, such that

~ 1 Yo yg yg 1 pO,m pO,m pO,m
By |: : : : = |: : : : (6.2.23)

I Yo y12171 973171 1 p}lfl,m p?zfl,m pifl,m .
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