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Abstract

The data interpolating problem is a fundamental problem in data analysis, and
B-splines are frequently used as the basis functions for data interpolation. In the
real-world applications, the real-time processing is very important. To achieve
that, we cannot use any matrix inversion for large amount of data, and we also
need to avoid using any global operator. To solve this problem, we develop a
new method based on a local quasi-interpolation operator. To construct the local
quasi-interpolation operator, we need to factorize the Shoenberg-Whitney matri-
ces for the given data samples. Furthermore, our local quasi-interpolation operator
should correspond to a band matrix with the minimum bandwidth, which is criti-
cal for the real-time data processing. Finally, we bridge the gap between our local
quasi-interpolation operator and a local spline interpolation operator through an
impulse interpolation operator using a “blending” method.

Key Words:B-spline/ Cardinal B-spline/ Reproduction and Marsden’s Iden-
tity/ Shoenberg-Whitney/ Quasi interpolation/ Coefficients of the Marsden’s Iden-
tities.
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Chapter 1

Introduction

The word “Spline”, originated from East Anglian dialect, means something elastic,
such as a piece of thin wood or metal slat, that was used as a tool in shape design
at ancient time. In mathematics, we use the splines to represent a special type
of functions - piecewise-polynomials, with certain smoothness conditions at the
joint points of two adjacent polynomial pieces. The spline functions have many
applications in the real-world due to its excellent mathematical properties. There
are several industry standards based on the splines. They are an important tool
in computer graphics.

In data analysis, the spline functions provide us a powerful tool due to its
simplicity and flexibility. A fundamental problem in data analysis is the data
interpolotion problem, and the spline-based interpolation is the most commonly
used method. However, there are still some difficult problems to be solved in data
interpolation. When the data size becomes larger and larger, the data processing
time becomes slower and slower. If the response time is too long, then those data
processing methods would not be practical in many real-world applications.

In the data interpolation problem, when we use the direct method, we need
to solve a linear system, in which the matrix size corresponds to the data size.
Suppose that there are n data points to be interpolated. Then our data interpo-
lation problem involves a matrix of size n × n. If the data interpolating method
requires computation of the inverse of this matrix, then the running time com-
plexity function would be in O(n3), which is not acceptable for large number n.
So the first natural question in this situation is: Is it possible to avoid the matrix
inverse operation in data interpolation? There is an interesting idea to solve this
problem: If one can find a local quasi-interpolating operator for the B-splines, then
the matrix inverse can be eliminated from the algorithm.

However, constructing a local quasi-interpolating operator is not an easy task.
There are two methods for the construction, and they have these properties: 1) The
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method relies on some special setting between the knots and data samples; 2) The
construction procedure is extremely complicated, and it is very hard to implement
it. These two “drawbacks” make the methods not very user-friendly in the real-
world applications. Therefore, to construct a “perfect” local quasi-interpolating
operator, we need to fix the above two drawbacks. Specifically, we would like to
make our local quasi-interpolating operator have the following properties:

• For any valid knots-samples setting (i.e. satisfying the Shoenberg-Whitney
condition), the local quasi-interpolating operator can be defined using ex-
plicit formulas.

• The construction procedure is easy to follow, and the performance of the
algorithm is fast (in terms of O(n) for the data size n).

The rational behind using the quasi-interpolating operators instead of the di-
rect interpolating operators is: We divide the interpolation into two steps: 1) Use
a quasi-interpolating operator to approximate the data while preserving adequate
precision (i.e. certain approximation order); 2) Interpolate the data exactly by
bridging the gap. This two-step approach has an advantage over the one-step ap-
proach, because the room that we can approximate the data in the first step allows
us to make the operator local, which is essential for achieving the real-time data
processing. Then we apply a special “blending” method to make up the difference
part to complete the whole interpolation.

Since it is very difficult to solve the above problem completely, in this dis-
sertation, we would like to solve the problem for the linear B-splines (the order
m = 2). The method developed for this relatively simple case would establish the
foundation for solving the whole problem in the future. Let us give an overview
of our method below.

Let {Bk,m(x)}n−1k=0 denote the set of the m-th order B-spline basis functions on
the interval [a, b] with the knot sequence {tk}nk=−m+1. Let Sm,t be the space of
spline functions on [a, b] defined as follows

Sm,t =

{
n−1∑
j=0

cjBj,m(x) | cj ∈ R for 0 ≤ j ≤ n− 1

}
.

The space Sm,t is a linear space of dimension n, which will be used to approximate
the continuous functions in C[a, b].

When we interpolate given data points, we need to find a function in C[a, b]
that takes the given values at the given locations. Since there are many different
ways to do the interpolation, we want to find a function with good mathematical
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properties. We start our search in Sm,t. To find a local linear operator on Sm,t that
maps the given data to a function in Sm,t satisfying the interpolating condition, it
is extremely hard in general. Then we extend Sm,t to a larger subspace of C[a, b],
so that we have more freedom to find an interpolating function in it. Specifically,
we insert a few appropriate new knots into the original knot sequence, i.e. t ⊂ t∗,
then we get a larger spline space, denoted by Sm,t∗ , i.e. Sm,t ⊂ Sm,t∗ . In other
words, we increase the dimension of the initial subspace of C[a, b] to get more
flexibility, so that we can derive an appropriate interpolating function g(x) in the
larger subspace of C[a, b] without using matrix inverse. That local interpolating
linear operator will be a quasi-interpolating operator so as to achieve certain ap-
proximation order for the approximation function.

The quasi-interpolating operators, first introduced by De Boor and Fix in [7].
More precisely, the spline approximation operator Qm : C[a, b] → Sm,t with knot
sequence {tk} is called a quasi-interpolating operator if it reproduces polynomials
of degree ≤ m− 1; that is,

(Qmp)(x) = p(x), x ∈ [a, b]

for polynomials p ∈ πm−1. This property provides us necessary precision in data
processing. Our construction heavily relies on the coefficients of the Marsden’s
identity, which describe the polynomial reproduction property for the B-splines.

In 1970, Marsden in [13] expressed (· − y)α in terms of a linear combination of
B-splines, which is called Marsden’s identity. This identity plays an important role
in change of basis procedures and B-spline curve approximation. Moreover this
identity is deeply studied and extended in various settings by many researchers.
Denote {ρrk,m, r = 0, 1, ...,m − 1} as the coefficients of the Marsden’s Identities
given by

ρ0k,m = 1,

ρrk,m =
1(

m−1
r

) ∑
k−m+2≤j1<j2<...<jr≤k

tj1tj2 . . . tjr , 1 ≤ r ≤ m− 1

with 0 ≤ k ≤ n− 1, and we have

xr =
n−1∑
k=0

ρrk,mBk,m(x), for 0 ≤ r ≤ m− 1.

A matrix version criterion of the Marsden’s identity provides us a convenient
tool in dealing with the linear operators related to the polynomial preservation
property. To describe the linear operators used to define the quasi-interpolating
operators, we introduce a concept called the data-induced (DI) operator, which
connects a linear operator to the given data samples. Then a local linear operator
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corresponds to a band matrix. Thus, to find a local quasi-interpolating operator,
we need to find a band matrix that satisfies the above mentioned matrix version
criterion of the Marsden’s identity.

Another important tool to study the data interpolation is the Shoenberg-
Whitney matrix. In the direct interpolation problem using the B-splines, the
inverse of the Shoenberg-Whitney matrix is needed. Since we want to avoid any
matrix inverse operation, because it has two big drawbacks: 1) Computation of
the inverse is very time-consuming; 2) The inverse in general is a global matrix
which does not support real-time data processing. Therefore, we will use a band
matrix to approximate the inverse of the Shoenberg-Whitney matrix under the
criterion for preserving certain number of polynomial orders.

To this end, we introduce a concept called approximate inverse, for which we
use a band matrix to approximate the inverse of some matrix such that their dif-
ference is orthogonal to a special subspace. This special subspace is formed from
the given data. Then we develop an algorithm to find the approximate inverse of
the Shoenberg-Whitney matrix through the matrix factorization technique. Our
matrix factorization technique is analogous to the polynomial factorization in this
way: When a polynomial takes the zero value at some point, then we can factorize
a linear factor from it. In our matrix case, when a matrix is orthogonal to a vec-
tor, we can factorize a special matrix factor, which is called a divided-difference
matrix. We use the divided-difference matrices as the building blocks to construct
the approximate inverse of the inverse of the Shoenberg-Whitney matrix.

After we find the approximate inverse of the linear Shoenberg-Whitney ma-
trix, we observe an interesting property: the duality property between the linear
Shoenberg-Whitney matrix and its approximate inverse. This duality property
only occurs in the linear B-spline case. In other words, when the spline order
m > 2, we will not have this property anymore. The reason behind this is: For
the linear B-splines, the relationship between the knot sequence {tk}nk=−1 and the
data samples {yk}n−1k=0 has some duality property. Specifically, we have the follow-
ing conditions;

a = t−1 = t0 < t1 < t2 < · · · < tn−2 < tn−1 = tn = b,

a = y0 < y1 < y2 < · · · < yn−2 < yn−1 = b,

and
ti−1 < yi < ti+1, for 1 ≤ i ≤ n− 2,

or equivalently,
yi−1 < ti < yi+1, for 1 ≤ i ≤ n− 2.

If we define ~t := (t1, . . . , tn−2) for the inner knots, and ~y := (y1, . . . , yn−2) for the
inner samples, we can see that there is some symmetry property between ~t and ~y.
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This symmetry property also occurs in the linear Shoenberg-Whitney matrix and
its approximate inverse. Let B2(~t, ~y) be the Shoenberg-Whitney matrix for the
linear B-splines, where we treat ~t and ~y two sets of variables in the matrix-valued
function B2(~t, ~y). We found that B2(~y,~t), switching the positions of ~t and ~y in
B2(~t, ~y), is an approximate inverse of B2(~t, ~y). Here we would like to point out
that there are many approximate inverses for B2(~t, ~y), and B2(~y,~t) is just one of
them. This view is quite natural, because we have the similar view in the general
function approximation: One function can be approximated by many different
functions, even with the same approximation order. This property makes the
computation of the quasi-interpolating operator for the linear B-splines extremely
easy.

We will organize our presentation in the following chapters as follows. In
Chapter 2, we provide the preliminaries for our theory development. In Chapter
3, we obtain the explicit formulas for the inverse of the Shoenberg-Whitney matrix
for the general linear B-splines. In Chapter 4, we study the main properties for
the quasi-interpolating operators and the data interpolating scheme. In Chapter
5, we apply the matrix factorization technique to find the approximate inverse of
the Shoenberg-Whitney matrix for the general linear B-splines. In Chapter 6, we
describe some future research problems.
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Chapter 2

Preliminaries

2.1 B-splines

Let m be a positive integer and let t = (tj) be the knot vector or knot sequence,
which is a nondecreasing sequence of real numbers of length at leastm+1 satisfying
the following condition

tj > tj−m,

so that the B-spline defined on this knot sequence is non-vanishing. Then we can
define the B-spline functions by the following recursive formulas.

Definition 2.1.1. The j-th B-spline of order m with knots t (denoted by Bj,m,t(x))
is defined via

Bj,m,t(x) =
x− tj−m+1

tj − tj−m+1

Bj−1,m−1,t(x) +
tj+1 − x

tj+1 − tj−m+2

Bj,m−1,t(x) (2.1.1)

for all real numbers x, with

Bj,1,t(x) =

{
1, if tj ≤ x < tj+1,

0, otherwise.

To simplify the notation Bj,m,t(x) slightly, we usually drop the t part, that is,
we use Bj,m(x) to represent a B-spline function with the underlying knot sequence
t.
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Example 2.1.2. (B-Splines of order 2) An application of the recurrence rela-
tion (2.1.1) gives:

Bj,2(x) =
x− tj−1
tj − tj−1

Bj−1,1(x) +
tj+1 − x
tj+1 − tj

Bj,1(x)

=



x− tj−1
tj − tj−1

, if tj−1 ≤ x < tj,

tj+1 − x
tj+1 − tj

, if tj ≤ x < tj+1,

0, otherwise.

When we apply the recursive formula (2.1.1), we may encounter the case that
tj−m = tj in evaluating Bj−1,m(x), in which we assume that

Bj−1,m,t(x) = 0 for all x when tj−m = tj,

which corresponds to the vanishing case based on the geometric understanding.
This assumption is compatible with the recursive formula (2.1.1).

Notice that a B-spline is determined by its knot sequence, we introduce an
alternative notation for the B-spline to reflect this consideration,

Bj,m,t(x) = B(x|tj−m+1, tj−m+2, . . . , tj+1).

The definition of the B-Splines implies the translation invariance property, i.e,

B(x+ y|tj−m+1 + y, . . . , tj+1 + y) = B(x|tj−m+1, . . . , tj+1), x, y ∈ R.

It is easy to see that the support of Bj,m(x) is [tj−m+1, tj+1], and Bj,m(x) > 0 on
(tj−m+1, tj+1).

The knots do not have to be distinct. If a knot is repeated r times, then we
call that the multiplicity of this knot is r. The multiplicity of a knot will affect the
smoothness of the spline at this knot, that is, Bj,m(x) ∈ Cd−r in a neighborhood
of this knot, where d is the degree of the B-spline, which is m − 1. Hence the
maximum possible multiplicity of a knot for Bj,m(x) is m, in which Bj,m(x) is
discontinuous at this knot. For example, let z = tj−m+1 = . . . = tj < tj+1, then
Bj,m(z) = 1 and Bi,m(z) = 0 for i > j or i < j − 1.

We can also find the derivative and integral of a B-spline as follows,

B′i,m(x) = (m− 1)

(
Bi−1,m−1(x)

ti − ti−m+1

− Bi,m−1(x)

ti+1 − ti−m+2

)
, (2.1.2)
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and
m

ti+1 − ti−m+1

∫
Bi,m(x)dx = 1.

The simplest case for the B-splines is the Cardinal B-Splines, in which the
knots are integers. We denote the cardinal B-Splines of order m ≥ 1 by

Nm(x) = B(x|0, 1, . . . ,m), x ∈ R.

Then the recurrence relation (2.1.1) for m ≥ 2 becomes

Nm(x) =
x

m− 1
Nm−1(x) +

m− x
m− 1

Nm−1(x− 1). (2.1.3)

It is easy to see that the support of Nm(x) is [0,m] and Nm(x) > 0 in (0,m). It
also has the partition of unity property,

∞∑
−∞

Nm(x− k) = 1, for all x ∈ R.

Other than the recursion formula (2.1.3), Nm(x) can be derived from Nm−1(x) by
the convolution operation as follows,

Nm(x) = (Nm−1 ∗N1)(x) =

∫ 1

0

Nm−1(x− t)dt, m ≥ 2. (2.1.4)

Based on the relationship between the Fourier transform and the convolution
operation, from (2.1.4) we immediately get

N̂m(ω) =
(
N̂1(ω)

)m
. (2.1.5)

It is easy to calculate N̂1(ω), which is

N̂1(ω) =
sinω/2

ω/2
e−iω/2,

and (2.1.5) leads to

N̂m(ω) =

(
sinω/2

ω/2

)m
e−imω/2,

which implies that
N̂m(0) = 1.

Since

N̂m(ω) =

∫ ∞
−∞

Nm(x)e−iωxdx,
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we have

N̂m(0) =

∫ ∞
−∞

Nm(x)dx = 1.

Equation (2.1.5) can also be written as

N̂m(ω) =

(
1− e−iω

iω

)m
,

which is easier to use when we consider

N̂m(ω)

N̂m(ω/2)
=

(
(1− e−iω)/(iω)

(1− e−iω/2)/(iω/2)

)m
=

(
1 + e−iω/2

2

)m
.

That is,
N̂m(ω) = Pm(z)N̂m(ω/2),

where z = e−iω/2 and

Pm(z) =

(
1 + z

2

)m
.

Therefore the cardinal B-splines satisfy the following refinement equation

Nm(x) =
m∑
j=0

(
m
j

)
2m−1

Nm(2x− j).

2.2 Spline evaluations and interpolations

Now we want to use the spline functions, (functions generated by the B-splines), to
approximate or model the real world functions. We consider the spline functions
with the knot sequence (tj) on the interval [a, b]. In order to form a complete basis
functions on [a, b], we need to assume that the given knots satisfy the following
conditions:

a = t−m+1 = · · · = t0 < t1 ≤ t2 ≤ · · · ≤ tn−m < tn−m+1 = · · · = tn = b, (2.2.1)

and
tj−m < tj, j = 1, · · · , n. (2.2.2)

This set of B-spline functions satisfy the partition of unity,

n−1∑
j=0

Bj,m(x) = 1, (2.2.3)
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where Bj,m(x) is defined as in (2.1.1). Now, we can define the space of the spline
functions on [a, b] with knots (tj)

n
j=−m+1 satisfying (2.2.1) and (2.2.2) as follows

Sm,t =

{
n−1∑
j=0

cjBj,m(x)|cj ∈ R for 1 ≤ j ≤ n

}
. (2.2.4)

Thus Sm,t is a linear space of dimension n.

For a function f ∈ Sm,t, we can write it as f(x) =
∑n−1

j=0 cjBj,m(x). When
we evaluate f(x) at x = x0 with x0 ∈ [tµ, tµ+1) for 0 ≤ µ ≤ n − m, notice that
only those B-splines Bj,m with µ ≤ j ≤ µ + m − 1 may not vanish on x0, hence
f(x0) =

∑µ+m−1
j=µ cjBj,m(x0).

Let us consider the general evaluation problem of a spline function f(x) =∑n−1
j=0 cjBj,m(x). Since the explicit representation of each B-spline Bj,m(x) is com-

plex, we will try to represent the value of f(x) as a product of matrices, which
rely on the recursion formula of the B-splines.

Let ~c = (c0, . . . , cn−1)
T . Then we can write

f(x) = (B0,m(x), . . . , Bn−1,m(x)) ~c. (2.2.5)

Next, we will write the vector (B0,m(x), . . . , Bn−1,m(x)) as a product of matrices
from the lower order cases.

Assume that the n data samples {yi}n−10 satisfy:

a = y0 < y1 < · · · < yn−2 < yn−1 = b (2.2.6)

and
ti−m+1 < yi < ti+1, for i = 1, . . . , n− 2. (2.2.7)

Given a function f : C[a, b] → R, the spline interpolation operator Sm :
C[a, b]→ Sm,t satisfies the n interpolation conditions

(Smf)(yi) = f(yi), i = 0, . . . , n− 1. (2.2.8)

Spline interpolation has the advantage over traditional polynomial interpolation
(for example, the lagrange and Newton interpolation formulas) that the approxi-
mation accuracy may be improved by decreasing the distance between consecutive
knots while keeping the polynomial degree m− 1 relatively low.

Since {Bj,m : j = 0, . . . , n − 1} forms a basis for the spline space Sm,t, there
exists a spline Smf , defined by

(Smf)(x) =
n−1∑
j=0

cfjBj,m(x), x ∈ [a, b],

14



that satisfies (2.2.8), if and only if

n−1∑
j=0

cfjBj,m(yi) = f(yi), i = 0, . . . , n− 1. (2.2.9)

In other words, the vector cf := (cf0 , . . . , c
f
n−1)

T ∈ Rn, where Rn denotes the
n-dimensional real space, is a solution to the matrix equation

Bmcf = fn,

where Bm is an n× n coefficient matrix of the form

Bm :=

 B0,m(y0) · · · Bn−1,m(y0)
...

...
B0,m(yn−1) · · · Bn−1,m(yn−1)

 , (2.2.10)

and fn := (f(y0), . . . , f(yn−1))
T ∈ Rn. A necessary and sufficient condition for the

matrix Bm in (2.2.10) to be invertible is that

Bj,m(yj) 6= 0, for j = 0, . . . , n− 1, (2.2.11)

which is the result of the Schoenberg-Whitney theorem [45], and we refer the ma-
trix Bm to Schoenberg-Whitney matrix.

Our setting in (2.2.6) and (2.2.7) ensures (2.2.11), thus, we can write

(Smf)(x) =
n−1∑
j=0

(B−1m fn)jBj,m(x), x ∈ [a, b],

where (v)j refers to the j-th component of an n-vector v.

In order to calculate the entries of Bm in (2.2.10), we would like to introduce
the following notations,

αmi,j :=
yj − ti−m+1

ti − ti−m+1

, βmi,j :=
ti+1 − yj

ti+1 − ti−m+2

, (2.2.12)

where {ti−m+1, . . . , ti+1} are the knots that define the B-spline Bi,m(x) (see 2.1.1).
We can easily see a property between αmi,j and βmi,j:

αmi,j + βmi−1,j = 1. (2.2.13)

Next we will discuss the B-spline evaluations for three cases: Linear (m = 2),
Quadratic (m = 3), and Cubic (m = 4) B-splines.
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In the case that m = 2, the support of Bi,2(x) is [ti−1, ti+1]. We consider the
following two cases: 1) yj ∈ [ti−1, ti]; 2) yj ∈ [ti, ti+1].

1. For yj ∈ [ti−1, ti],

Bi,2(yj) :=
yj − ti−1
ti − ti−1

= α2
i,j. (2.2.14)

2. For yj ∈ [ti, ti+1],

Bi,2(yj) :=
ti+1 − yj
ti+1 − ti

= β2
i,j. (2.2.15)

In order to get a specific view on the knot-data setting, we consider the fol-
lowing special knots and data samples arrangements:

a = t0 = (y0) ⇀ (y1) ⇀ t1 ⇀ (y2) ⇀ t2 ⇀ (y3) ⇀ t3

⇀ t4 ⇀ (y4) ⇀ t5 ⇀ (y5) ⇀ t6 ⇀ (y6) ⇀ b = t7 = (y7), (2.2.16)

and we will write the Shronberg-Whitney matrix for the basis functions {Bi,2(x)}7i=0

with respect to this setting.

The Shronberg-Whitney matrix (2.2.10) has the following format:

B2 := [bji]8×8,

where bij := Bi,2(yj). Next, we will calculate B2 for the non-zero entries in the
following pattern:

B2 =



1 0 0 0 0 0 0 0
b01 b11 0 0 0 0 0 0
0 b12 b22 0 0 0 0 0
0 0 b23 b33 0 0 0 0
0 0 0 0 b44 b45 0 0
0 0 0 0 0 b55 b56 0
0 0 0 0 0 0 b66 b67
0 0 0 0 0 0 0 1


. (2.2.17)

Since there is no data sample between the knots t3 and t4, the B2 matrix is a
block-diagonal matrix with two diagonal blocks. Next we verify the partition of
unity property of B-splines.

Consider the ith row with 1 ≤ i ≤ 3: {bi−1,i, bi,i} for the first diagonal block
matrix.
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• For the knots-data setting: {ti−2 ⇀ (yi−1) ⇀ ti−1 ⇀ (yi) ⇀ ti},

bi−1,i = Bi−1,2(yi) = β2
i−1,i.

• For the knots-data setting: {ti−1 ⇀ (yi) ⇀ ti ⇀ (yi+1) ⇀ ti+1},

bi,i = Bi,2(yi) = α2
i,i.

Then the sum of all these numbers is:

bi−1,i + bi,i = β2
i−1,i + α2

i,i = 1,

which follows the partition of unity property.

Consider the ith row with 4 ≤ i ≤ 6: {bi,i, bi+1,i} for the second diagonal block
matrix in B2.

• For the knots-data setting: {ti−1 ⇀ (yi−1) ⇀ ti ⇀ (yi) ⇀ ti+1}

bi,i = Bi,2(yi) = β2
i,i.

• For the knots-data setting: {ti ⇀ (yi) ⇀ ti+1 ⇀ (yi+1) ⇀ ti+2}

bi+1,i = Bi+1,2(yi) = α2
i+1,i.

We also have that the sum of all these numbers is:

bi,i + bi+1,i = β2
i,i + α2

i+1,i = 1,

which again satisfies the partition of unity property.

For the case that m = 3, we consider a general quadratic B-spline Bi,3(x) with
knots {ti−2, ti−1, ti, ti+1} using the notations in (2.2.12).

1. For yj ∈ [ti−2, ti−1],

Bi,3(yj) :=
(yj − ti−2)2

(ti−1 − ti−2)(ti − ti−2)
= α2

i−1,jα
3
i,j. (2.2.18)
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2. For yj ∈ [ti−1, ti],

Bi,3(yj) :=
(ti − yj)(yj − ti−2)
(ti − ti−1)(ti − ti−2)

+
(yj − ti−1)(ti+1 − yj)
(ti − ti−1)(ti − ti−2)

= β2
i−1,jα

3
i,j + α2

i,jβ
3
i,j. (2.2.19)

3. For yj ∈ [ti, ti+1],

Bi,3(yj) :=
(ti+1 − yj)2

(ti+1 − ti)(ti+1 − ti−1)
= β2

i,jβ
3
i,j. (2.2.20)

We consider the following knots and data samples arrangements:

a = t0 = (y0) ⇀ (y1) ⇀ t1 ⇀ (y2) ⇀ t2 ⇀ (y3) ⇀ t3 ⇀ (y4)

⇀ t4 ⇀ (y5) ⇀ t5 ⇀ (y6) ⇀ t6 ⇀ (y7) ⇀ b = t7 = (y8), (2.2.21)

and we will write the Shronberg-Whitney matrix for the quadratic B-spline basis
functions with respect to these knots and data points.

The Shronberg-Whitney matrix has the following format:

B3 := [Bji]9×9,

where Bij := Bi,3(yj). Next, we will calculate B3 for the non-zero entries in the
following pattern:

B3 =



1 0 0 0 0 0 0 0 0
B01 B11 B21 0 0 0 0 0 0
0 B12 B22 B32 0 0 0 0 0
0 0 B23 B33 B43 0 0 0 0
0 0 0 B34 B44 B54 0 0 0
0 0 0 0 B45 B55 B65 0 0
0 0 0 0 0 B56 B66 B76 0
0 0 0 0 0 0 B67 B77 B87

0 0 0 0 0 0 0 0 1


9×9

. (2.2.22)

1. The 2nd row: {B01, B11, B21}

• With the knot sequence: {a = t0 = (y0) ⇀ a ⇀ a ⇀ (y1) ⇀ t1}

B01 = B0,3(y1) = β2
01β

3
01.
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• With the knot sequence: {a = t0 = (y1) ⇀ a ⇀ (y1) ⇀ t1 ⇀ (y2) ⇀ t2}

B11 = B1,3(y1) = β2
01α

3
11 + α2

11β
3
11.

• With the knot sequence:
{a = t0 = (y0) ⇀ (y1) ⇀ t1 ⇀ (y2) ⇀ t2 ⇀ (y3) ⇀ t3}

B21 = B2,3(y1) = α2
11α

3
21.

Sum of all these numbers:

B01 +B11 +B21 = β2
01β

3
01 + (β2

01α
3
11 + α2

11β
3
11) + α2

11α
3
21

= (β2
01β

3
01 + β2

01α
2
11) + (α2

11β
3
11 + α2

11α
3
21) = β2

01 + α2
11 = 1.

2. The 3rd row: {B12, B22, B32}

• With the knot sequence: {a = t0 = (y0) ⇀ a ⇀ (y1) ⇀ t1 ⇀ (y2) ⇀ t2}

B12 = B1,3(y2) = β2
12β

3
12.

• With the knot sequence:
{a = t0 = (y0) ⇀ (y1) ⇀ t1 ⇀ (y2) ⇀ t2 ⇀ (y3) ⇀ t3}

B22 = B2,3(y2) = β2
12α

3
22 + α2

22β
3
22.

• With the knot sequence:
{t1 ⇀ (y2) ⇀ t2 ⇀ (y3) ⇀ t3 ⇀ (y4) ⇀ t4}

B32 = B3,3(y2) = α2
22α

3
32.

Sum of all these numbers:

B12 +B22 +B32 = β2
12β

3
12 + (β2

12α
3
22 + α2

22β
3
22) + α2

22α
3
32

= (β2
12β

3
12 + β2

12α
3
22) + (α2

22β
3
22 + α2

22α
3
32) = β2

12 + α2
22 = 1.

Now we consider the general case.

The ith row with 1 ≤ i ≤ 7: {Bi−1,i, Bi,i, Bi+1,i}
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• With the knot sequence:
{ti−3 ⇀ (yi−2) ⇀ ti−2 ⇀ (yi−1) ⇀ ti−1 ⇀ (yi) ⇀ ti}

Bi−1,i = Bi−1,3(yi) = β2
i−1,iβ

3
i−1,i.

• With the knot sequence:
{ti−2 ⇀ (yi−1) ⇀ ti−1 ⇀ (yi) ⇀ ti ⇀ (yi+1) ⇀ ti+1}

Bi,i = Bi,3(yi) = β2
i−1,iα

3
i,i + α2

i,iβ
3
i,i.

• With the knot sequence:
{ti−1 ⇀ (yi) ⇀ ti ⇀ (yi+1) ⇀ ti+1 ⇀ (yi+2) ⇀ ti+2}

Bi+1,i = Bi+1,3(yi) = α2
i,iα

3
i+1,i.

Sum of all these numbers:

Bi−1,i +Bi,i +Bi+1,i = β2
i−1,iβ

3
i−1,i + (β2

i−1,iα
3
i,i + α2

i,iβ
3
i,i) + α2

i,iα
3
i+1,i

= (β2
i−1,iβ

3
i−1,i + β2

i−1,iα
3
i,i) + (α2

i,iβ
3
i,i + α2

i,iα
3
i+1,i) = β2

i−1,i + α2
i,i = 1.

For the case that m = 4, we work on a general cubic B-spline with knots
{ti−3, ti−2, ti−1, ti, ti+1}:

1. For x ∈ [ti−3, ti−2],

Bi,4(x) :=
(x− ti−3)3

(ti−2 − ti−3)(ti−1 − ti−3)(ti − ti−3)
. (2.2.23)

2. For x ∈ [ti−2, ti−1],

Bi,4(x) :=
(ti−1 − x)(x− ti−3)2

(ti−2 − ti−3)(ti−2 − ti−4)(ti−1 − ti−4)
+

(x− ti−3)(ti−1 − x)(x− ti−4)
(ti−2 − ti−3)(ti−1 − ti−3)(ti−1 − ti−4)

+
(x− ti−3)2(ti − x)

(ti−2 − ti−3)(ti−1 − ti−3)(ti − ti−3)
.

(2.2.24)

3. For x ∈ [ti−2, ti−1],

Bi,4(x) :=
(ti−1 − x)2(x− ti−4)

(ti−1 − ti−2)(ti−1 − ti−3)(ti−1 − ti−4)
+

(ti−1 − x)(x− ti−3)(ti − x)

(ti−1 − ti−2)(ti−1 − ti−3)(ti − ti−3)
+

(x− ti−2)(ti − x)2

(ti−1 − ti−2)(ti − ti−2)(ti − ti−3)
.

(2.2.25)
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4. For x ∈ [ti−1, ti],

Bi,4(x) :=
(ti − x)3

(ti − ti−1)(ti − ti−2)(ti − ti−3)
. (2.2.26)

Then we can represent Bi,4(yj) in the following compact form using the nota-
tions (2.2.12):

1. For yj ∈ [ti−3, ti−2],

Bi,4(yj) :=
(yj − ti−3)3

(ti−2 − ti−3)(ti−1 − ti−3)(ti − ti−3)
= α2

i−2,jα
3
i−1,jα

4
i,j. (2.2.27)

2. For yj ∈ [ti−2, ti−1],

Bi,4(yj) :=
(ti−1 − yj)(yj − ti−3)2

(ti−1 − ti−2)(ti−1 − ti−3)(ti − ti−3)
+

(yj − ti−2)(ti − yj)(yj − ti−3)
(ti−1 − ti−2)(ti − ti−2)(ti − ti−3)

+
(yj − ti−2)2(ti+1 − yj)

(ti−1 − ti−2)(ti − ti−2)(ti+1 − ti−2)

= β2
i−2,jα

3
i−1,jα

4
i,j + α2

i−1,jβ
3
i−1,jα

4
i,j + α2

i−1,jα
3
i,jβ

4
i,j. (2.2.28)

3. For yj ∈ [ti−1, ti],

Bi,4(yj) :=
(ti − yj)2(yj − ti−3)

(ti − ti−1)(ti − ti−2)(ti − ti−3)
+

(ti − yj)(yj − ti−2)(ti+1 − yj)
(ti − ti−1)(ti − ti−2)(ti+1 − ti−2)

+
(yj − ti−1)(ti+1 − yj)2

(ti − ti−1)(ti+1 − ti−1)(ti+1 − ti−2)

= β2
i−1,jβ

3
i−1,jα

4
i,j + β2

i−1,jα
3
i,jβ

4
i,j + α2

i,jβ
3
i,jβ

4
i,j. (2.2.29)

4. For yj ∈ [ti, ti+1],

Bi,4(yj) :=
(ti+1 − yj)3

(ti+1 − ti)(ti+1 − ti−1)(ti+1 − ti−2)
= β2

i,jβ
3
i,jβ

4
i,j. (2.2.30)
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We consider the following knots and data points arrangements:

a = t0 = (y0) ⇀ (y1) ⇀ t1 ⇀ (y2) ⇀ t2 ⇀ (y3) ⇀ t3 ⇀ (y4) ⇀ (y5) ⇀ t4

⇀ (y6) ⇀ t5 ⇀ (y7) ⇀ x6 ⇀ (y8) ⇀ b = t7 = (y9),

and we will write the Shronberg-Whitney matrix for the cubic B-spline basis func-
tions with respect to these knots and data points.

The Shronberg-Whitney matrix has the following format:

B4 := [Bji]10×10,

where Bij := Bi,4(yj). Next, we will calculate B4 for the non-zero entries in the
following pattern:

B4 =



1 0 0 0 0 0 0 0 0 0
B01 B11 B21 B31 0 0 0 0 0 0
0 B12 B22 B32 B42 0 0 0 0 0
0 0 B23 B33 B43 B53 0 0 0 0
0 0 0 B34 B44 B54 B64 0 0 0
0 0 0 B35 B45 B55 B65 0 0 0
0 0 0 0 B46 B56 B66 B76 0 0
0 0 0 0 0 B57 B67 B77 B87 0
0 0 0 0 0 0 B68 B78 B88 B98

0 0 0 0 0 0 0 0 0 1


. (2.2.31)

1. The 2nd row: {B01, B11, B21, B31}

• With the knot sequence: {a = t0 = (y0) ⇀ a ⇀ a ⇀ a ⇀ (y1) ⇀ t1}

B01 = B0,4(y1) = β2
01β

3
01β

4
01.

• With the knot sequence: {a = t0 = (y0) ⇀ a ⇀ a ⇀ (y1) ⇀ t1 ⇀
(y2) ⇀ t2}

B11 = B1,4(y1) = β2
01β

3
01α

4
11 + β2

01α
3
11β

4
11 + α2

11β
3
11β

4
11.

• With the knot sequence:
{a = t0 = (y0) ⇀ a ⇀ (y1) ⇀ t1 ⇀ (y2) ⇀ t2 ⇀ (y3) ⇀ t3}

B21 = B2,4(y1) = β2
01α

3
11α

4
21 + α2

11β
3
11α

4
21 + α2

11α
3
21β

4
21.

• With the knot sequence:
{a = t0 = (y0) ⇀ (y1) ⇀ t1 ⇀ (y2) ⇀ t2 ⇀ (y3) ⇀ t3 ⇀ (y4) ⇀ (y5) ⇀
t4}

B31 = B3,4(y1) = α2
11α

3
21α

4
31.
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Sum of all these numbers:

B01 +B11 +B21 +B31 = β2
01β

3
01β

4
01 + (β2

01β
3
01α

4
11 + β2

01α
3
11β

4
11 + α2

11β
3
11β

4
11)+

(β2
01α

3
11α

4
21 + α2

11β
3
11α

4
21 + α2

11α
3
21β

4
21) + α2

11α
3
21α

4
31

= (β2
01β

3
01β

4
01 + β2

01β
3
01α

4
11) + (β2

01α
3
11β

4
11 + β2

01α
3
11α

4
21)+

(α2
11β

3
11β

4
11 + α2

11β
3
11α

4
21) + (α2

11α
3
21β

4
21 + α2

11α
3
21α

4
31)

= (β2
01β

3
01 + β2

01α
3
11) + (α2

11β
3
11 + α2

11α
3
21) = β2

01 + α2
11 = 1.

2. The 3rd row: {B12, B22, B32, B42}

• With the knot sequence: {a = t0 = (y0) ⇀ a ⇀ a ⇀ (y1) ⇀ t1 ⇀
(y2) ⇀ t2}

B12 = B1,4(y2) = β2
12β

3
12β

4
12.

• With the knot sequence:
{a = t0 = (y0) ⇀ a ⇀ (y1) ⇀ t1 ⇀ (y2) ⇀ t2 ⇀ (y3) ⇀ t3}

B22 = B2,4(y2) = β2
12β

3
12α

4
22 + β2

12α
3
22β

4
22 + α2

22β
3
22β

4
22.

• With the knot sequence:
{a = t0 = (y0) ⇀ (y1) ⇀ t1 ⇀ (y2) ⇀ t2 ⇀ (y3) ⇀ t3 ⇀ (y4) ⇀ (y5) ⇀
t4}

B32 = B3,4(y2) = β2
12α

3
22α

4
32 + α2

22β
3
22α

4
32 + α2

22α
3
32β

4
32.

• With the knot sequence:
{t1 ⇀ (y2) ⇀ t2 ⇀ (y3) ⇀ t3 ⇀ (y4) ⇀ (y5) ⇀ t4 ⇀ (y6) ⇀ t5}

B42 = B4,4(y2) = α2
22α

3
32α

4
42.

Sum of all these numbers:

B12 +B22 +B32 +B42 = β2
12β

3
12β

4
12 + (β2

12β
3
12α

4
22 + β2

12α
3
22β

4
22 + α2

22β
3
22β

4
22)+

(β2
12α

3
22α

4
32 + α2

22β
3
22α

4
32 + α2

22α
3
32β

4
32) + α2

22α
3
32α

4
42

= (β2
12β

3
12β

4
12 + β2

12β
3
12α

4
22) + (β2

12α
3
22β

4
22 + β2

12α
3
22α

4
32)+

(α2
22β

3
22β

4
22 + α2

22β
3
22α

4
32) + (α2

32α
3
32β

4
32 + α2

22α
3
32α

4
42)

= (β2
12β

3
12 + β2

12α
3
22) + (α2

22β
3
22 + α2

22α
3
32) = β2

12 + α2
22 = 1.

3. The 4th row: {B23, B33, B43, B53}
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• With the knot sequence:
{a = t0 = (y0) ⇀ a ⇀ (y1) ⇀ t1 ⇀ (y2) ⇀ t2 ⇀ (y3) ⇀ t3}

B23 = B2,4(y3) = β2
23β

3
23β

4
23.

• With the knot sequence:
{a = t0 = (y0) ⇀ (y1) ⇀ t1 ⇀ (y2) ⇀ t2 ⇀ (y3) ⇀ t3 ⇀ (y4) ⇀ (y5) ⇀
t4}

B33 = B3,4(y3) = β2
23β

3
23α

4
33 + β2

23α
3
33β

4
33 + α2

33β
3
33β

4
33.

• With the knot sequence:
{t1 ⇀ (y2) ⇀ t2 ⇀ (y3) ⇀ t3 ⇀ (y4) ⇀ (y5) ⇀ t4 ⇀ (y6) ⇀ t5}

B43 = B4,4(y3) = β2
23α

3
33α

4
43 + α2

33β
3
33α

4
43 + α2

33α
3
43β

4
43.

• With the knot sequence:
{t2 ⇀ (y3) ⇀ t3 ⇀ (y4) ⇀ (y5) ⇀ t4 ⇀ (y6) ⇀ t5 ⇀ (y7) ⇀ t6}

B53 = B5,4(y3) = α2
33α

3
43α

4
53.

Sum of all these numbers:

B23 +B33 +B43 +B53 = β2
23β

3
23β

4
23 + (β2

23β
3
23α

4
33 + β2

23α
3
33β

4
33 + α2

33β
3
33β

4
33)+

(β2
23α

3
33α

4
43 + α2

33β
3
33α

4
43 + α2

33α
3
43β

4
43) + α2

33α
3
43α

4
53

= (β2
23β

3
23β

4
23 + β2

23β
3
23α

4
33) + (β2

23α
3
33β

4
33 + β2

23α
3
33α

4
43)+

(α2
33β

3
33β

4
33 + α2

33β
3
33α

4
43) + (α2

33α
3
43β

4
43 + α2

33α
3
43α

4
53)

= (β2
23β

3
23 + β2

23α
3
33) + (α2

33β
3
33 + α2

33α
3
43) = β2

23 + α2
33 = 1.

Now we consider the general case.

1. The ith row with 1 ≤ i ≤ 4: {Bi−1,i, Bi,i, Bi+1,i, Bi+2,i}

• With the knot sequence:
{ti−4 ⇀ (yi−3) ⇀ ti−3 ⇀ (yi−2) ⇀ ti−2 ⇀ (yi−1) ⇀ ti−1 ⇀ (yi) ⇀ ti}

Bi−1,i = Bi−1,4(yi) = β2
i−1,iβ

3
i−1,iβ

4
i−1,i.

• With the knot sequence:
{ti−3 ⇀ (yi−2) ⇀ ti−2 ⇀ (yi−1) ⇀ ti−1 ⇀ (yi) ⇀ ti ⇀ (yi+1) ⇀ ti+1}

Bii = Bi,4(yi) = β2
i−1,iβ

3
i−1,iα

4
ii + β2

i−1,iα
3
iiβ

4
ii + α2

iiβ
3
iiβ

4
ii.
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• With the knot sequence:
{ti−2 ⇀ (yi−1) ⇀ ti−1 ⇀ (yi) ⇀ ti ⇀ (yi+1) ⇀ ti+1 ⇀ (yi+2) ⇀ ti+2}

Bi+1,i = Bi+1,4(yi) = β2
i−1,iα

3
iiα

4
i+1,i + α2

iiβ
3
iiα

4
i+1,i + α2

iiα
3
i+1,iβ

4
i+1,i.

• With the knot sequence:
{ti−1 ⇀ (yi) ⇀ ti ⇀ (yi+1) ⇀ ti+1 ⇀ (yi+2) ⇀ ti+2 ⇀ (yi+3) ⇀ ti+3}

Bi+2,i = Bi+2,4(yi) = α2
iiα

3
i+1,iα

4
i+2,i.

Sum of all these numbers:

Bi−1,i+Bii+Bi+1,i+Bi+2,i = β2
i−1,iβ

3
i−1,iβ

4
i−1,i+(β2

i−1,iβ
3
i−1,iα

4
ii+β

2
i−1,iα

3
iiβ

4
ii+α

2
iiβ

3
iiβ

4
ii)+

(β2
i−1,iα

3
iiα

4
i+1,i + α2

iiβ
3
iiα

4
i+1,i + α2

iiα
3
i+1,iβ

4
i+1,i) + α2

iiα
3
i+1,iα

4
i+2,i

= (β2
i−1,iβ

3
i−1,iβ

4
i−1,i + β2

i−1,iβ
3
i−1,iα

4
ii) + (β2

i−1,iα
3
iiβ

4
ii + β2

i−1,iα
3
iiα

4
i+1,i)+

(α2
iiβ

3
iiβ

4
ii + α2

iiβ
3
iiα

4
i+1,i) + (α2

iiα
3
i+1,iβ

4
i+1,i + α2

iiα
3
i+1,iα

4
i+2,i)

= (β2
i−1,iβ

3
i−1,i + β2

i−1,iα
3
ii) + (α2

iiβ
3
ii + α2

iiα
3
i+1,i) = β2

i−1,i + α2
ii = 1.

2. The ith row with 5 ≤ i ≤ 8: {Bi−2,i, Bi−1,i, Bi,i, Bi+1,i}

• With the knot sequence:
{ti−5 ⇀ (yi−3) ⇀ ti−4 ⇀ (yi−2) ⇀ ti−3 ⇀ (yi−1) ⇀ ti−2 ⇀ (yi) ⇀ ti−1}

Bi−2,i = Bi−2,4(yi) = β2
i−2,iβ

3
i−2,iβ

4
i−2,i.

• With the knot sequence:
{ti−4 ⇀ (yi−2) ⇀ ti−3 ⇀ (yi−1) ⇀ ti−2 ⇀ (yi) ⇀ ti−1 ⇀ (yi+1) ⇀ ti}

Bi−1,i = Bi−1,4(yi) = β2
i−2,iβ

3
i−2,iα

4
i−1,i+β

2
i−2,iα

3
i−1,iβ

4
i−1,i+α

2
i−1,iβ

3
i−1,iβ

4
i−1,i.

• With the knot sequence:
{ti−3 ⇀ (yi−1) ⇀ ti−2 ⇀ (yi) ⇀ ti−1 ⇀ (yi+1) ⇀ ti ⇀ (yi+2) ⇀ ti+1}

Bi,i = Bi,4(yi) = β2
i−2,iα

3
i−1,iα

4
i,i + α2

i−1,iβ
3
i−1,iα

4
i,i + α2

i−1,iα
3
i,iβ

4
i,i.

• With the knot sequence:
{ti−2 ⇀ (yi) ⇀ ti−1 ⇀ (yi+1) ⇀ ti ⇀ (yi+2) ⇀ ti+1 ⇀ (yi+3) ⇀ ti+2}

Bi+1,i = Bi+1,4(yi) = α2
i−1,iα

3
i,iα

4
i+1,i.
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Sum of all these numbers:

Bi−2,i +Bi−1,i +Bi,i +Bi+1,i

= β2
i−2,iβ

3
i−2,iβ

4
i−2,i + (β2

i−2,iβ
3
i−2,iα

4
i−1,i + β2

i−2,iα
3
i−1,iβ

4
i−1,i + α2

i−1,iβ
3
i−1,iβ

4
i−1,i)

+(β2
i−2,iα

3
i−1,iα

4
i,i + α2

i−1,iβ
3
i−1,iα

4
i,i + α2

i−1,iα
3
i,iβ

4
i,i) + α2

i−1,iα
3
i,iα

4
i+1,i

= (β2
i−2,iβ

3
i−2,iβ

4
i−2,i + β2

i−2,iβ
3
i−2,iα

4
i−1,i) + (β2

i−2,iα
3
i−1,iβ

4
i−1,i + β2

i−2,iα
3
i−1,iα

4
i,i)+

(α2
i−1,iβ

3
i−1,iβ

4
i−1,i + α2

i−1,iβ
3
i−1,iα

4
i,i) + (α2

i−1,iα
3
i,iβ

4
i,i + α2

i−1,iα
3
i,iα

4
i+1,i)

= (β2
i−2,iβ

3
i−2,i + β2

i−2,iα
3
i−1,i) + (α2

i−1,iβ
3
i−1,i + α2

i−1,iα
3
i,i) = β2

i−2,i + α2
i−1,i = 1.

In order to find the inverse for the Shoenberg-Whitney matrix for m = 2, we
need the following theorem from [17].

Theorem 2.2.1. Let B be an n-by-n tridiagonal matrix as in

B :=


d1 a1 0

b2 d2
. . .

...
. . . . . . an−2

...
bn−1 dn−1 0

0 · · · · · · 0 1

 ∈ Rn×n, (2.2.32)

and ci 6= 0, for i = 1, 2, · · · , n− 1. Then B is invertible and det(B) =
∏n−1

i=1 ci. If
we denote B−1 = [αij], then we have

αii =



1, for i = n,

1

cn−1
, for i = n− 1,

1

ci
+ yiziαi+1,i+1, for i = n− 2, n− 3, · · · , 1

and

αij =


−yiαi+1,j, for i < j < n− 1,

−zjαi,j+1, for j < i < n− 1,

0, else,

where yi =
ai
ci

, zi =
bi+1

ci
.
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In order to estimate the computing cost of Bm (in Chapter 4), we represent
each row of Bm as products of some matrices. For easier discussion, we can assume
that x ∈ [tµ, tµ+1).

For the linear B-splines, m = 2. When we evaluate f(x), we notice that the
only linear B-Splines that are non-zero on [tµ, tµ+1) are Bµ,2 and Bµ+1,2, and their
basis vector representation is

(Bµ,2(x), Bµ+1,2(x)) =

(
tµ+1 − x
tµ+1 − tµ

,
x− tµ
tµ+1 − tµ

)
.

For m = 3, to evaluate f(x) when x ∈ [tµ, tµ+1), we only need to use 3 B-
splines: {Bj,3}µ+2

j=µ. Apply the recursion formula (2.1.1), we have

Bµ,3(x) =
x− tµ−2
tµ − tµ−2

Bµ−1,2(x) +
tµ+1 − x
tµ+1 − tµ−1

Bµ,2(x)

Bµ+1,3(x) =
x− tµ−1
tµ+1 − tµ−1

Bµ,2(x) +
tµ+2 − x
tµ+2 − tµ

Bµ+1,2(x)

Bµ+2,3(x) =
x− tµ
tµ+2 − tµ

Bµ+1,2(x) +
tµ+3 − x
tµ+3 − tµ+1

Bµ+2,2(x),

which can be represented as

(Bµ,3, Bµ+1,3, Bµ+2,3) = (Bµ,2, Bµ+1,2)


tµ+1 − x
tµ+1 − tµ−1

x− tµ−1
tµ+1 − tµ−1

0

0
tµ+2 − x
tµ+2 − tµ

x− tµ
tµ+2 − tµ


due to the fact that Bµ−1,2(x) = Bµ+2,2(x) = 0 because x ∈ [tµ, tµ+1) is outside
the supports of these two B-splines.

For the cubic B-spline case where m = 4, we can get the basis vector represen-
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tation by the similar approach,

(Bµ,4, Bµ+1,4, Bµ+2,4, Bµ+3,4) = (Bµ,3, Bµ+1,3, Bµ+2,3)

×



tµ+1 − x
tµ+1 − tµ−2

x− tµ−2
tµ+1 − tµ−2

0 0

0
tµ+2 − x
tµ+2 − tµ−1

x− tµ−1
tµ+2 − tµ−1

0

0 0
tµ+3 − x
tµ+3 − tµ

x− tµ
tµ+3 − tµ



=

[
tµ+1 − x
tµ+1 − tµ

x− tµ
tµ+1 − tµ

]
tµ+1 − x
tµ+1 − tµ−1

x− tµ−1
tµ+1 − tµ−1

0

0
tµ+2 − x
tµ+2 − tµ

x− tµ
tµ+2 − tµ



×



tµ+1 − x
tµ+1 − tµ−2

x− tµ−2
tµ+1 − tµ−2

0 0

0
tµ+2 − x
tµ+2 − tµ−1

x− tµ−1
tµ+2 − tµ−1

0

0 0
tµ+3 − x
tµ+3 − tµ

x− tµ
tµ+3 − tµ


We can summarize the above analysis for the general case. To evaluate f(x) for
x ∈ [tµ, tµ+1), we only need to consider the vector (Bµ,m, . . . , Bµ+m−1,m). In
order to represent this vector as a product of matrices, we define the matrices
Rµ
k(x) by:

Rµ
k(x) =



tµ+1 − x
tµ+1 − tµ+1−k

x− tµ−1
tµ+1 − tµ+1−k

0 . . . 0

0
tµ+2 − x

tµ+2 − tµ+2−k

x− tµ+2−k

tµ+2 − tµ+2−k
. . . 0

. . .

. . . 0
tµ+k − x
tµ+k − tµ

x− tµ
tµ+k − tµ


.

(2.2.33)
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Then

(Bµ,m, . . . , Bµ+m−1,m) = R1(x)R2(x) . . . Rm−1(x) (2.2.34)

Therefore f(x) can be represented by:

f(x) = R1(x)R2(x) . . . Rm−1(x)~c, for x ∈ [tµ, tµ+1). (2.2.35)

2.3 Approximation orders and polynomial repro-

duction

2.3.1 Polynomial reproduction and Marsden’s identity

Since xk is a special function in the space Sm,t for 0 ≤ k ≤ m − 1, we expect to
have an expression for x as follows

x =
n−1∑
j=0

pjBj,m(x), for x ∈ [a, b], (2.3.1)

where {pj}’s are the real coefficients. If (2.3.1) is true, we can take derivatives on
both sides and get

1 =
n−1∑
j=0

pj
d

dx
Bj,m(x). (2.3.2)

From equations (2.1.2) and (2.3.2), we get

1 = (m− 1)
n−1∑
j=0

pj

(
Bj−1,m−1(x)

tj−1 − tj−m
− Bj,m−1(x)

tj − tj−m+1

)
, (2.3.3)

which can be simplified as

1 = (m− 1)
n−1∑
j=0

pj+1 − pj
tj − tj−m+1

Bj,m−1(x). (2.3.4)

By the partition of unity property, we get

pj+1 − pj =
tj+1 − tj−m+2

m− 1
. (2.3.5)

We can find pj by (2.3.1) and (2.3.5)

pj =
tj−m+2 + · · ·+ tj

m− 1
. (2.3.6)
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Therefore (2.3.1) can be represented as

x =
n−1∑
j=0

tj−m+2 + · · ·+ tj
m− 1

Bj,m(x). (2.3.7)

In order to represent xk as a linear combination of Bj,m(x) for 0 ≤ k ≤ m− 1, we
need a more powerful tool. To this end, we introduce the dual polynomial of the
B-Spline Bj,m, which is defined by :{

ρj,1(y) = 1

ρj,m(y) = (y − tj−m+2)(y − tj−m+3). . . (y − tj), m ≥ 2.

Furthermore, we define the dual vector of Bm = (Bµ,m, ..., Bµ+m−1,m)T on the
interval [tµ, tµ+1) by

~ρm = ~ρm(y) = (ρµ,m(y), ..., ρµ+m−1,m(y))T . (2.3.8)

We have the following property that is crucial in deriving the polynomial repro-
duction in B-splines,

Rm−1(x)~ρm(y) = (y − x)~ρm−1(y), for m ≥ 2, and x, y ∈ R, (2.3.9)

where Rm−1(x) is defined as in (2.2.33). We apply (2.3.9) recursively m− 1 times
and get

R1(x1) · · ·Rm−1(xm−1)~ρm(y) = (y − x1) · · · (y − xm−1), (2.3.10)

for all real numbers x1, x2, ..., xm−1 and y with tµ < tµ+1. We also have the
following property: For m ≥ 2 and x, z ∈ R, then

Rm−1(z)Rm(x) = Rm−1(x)Rm(z). (2.3.11)

Now we consider the spline space Sm,t defined in (2.2.4) on the interval [a, b].
We will derive the B-spline representation for xk with 0 ≤ k ≤ m − 1 by the
properties we have listed above.

1. Taking x1 = x2 = ... = xm−1 = x in (2.3.10), we get

R1(x)...Rm−1(x)~ρm(y) = (y − x)m−1. (2.3.12)

2. Then (2.2.34) implies that

(y − x)m−1 = Bm(x)T ~ρm(y) =

µ+m−1∑
j=µ

ρj,m(y)Bj,m(x), (2.3.13)

provided that x ∈ [tµ, tµ+1).
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Equation (2.3.13) is the so-called Marsden’s Identity. We can use it to write
explicit B-spline representations for the powers 1, x, x2, ..., xm−1 using the basis
functions {Bj,m(x)}n−1j=0 on the interval [a, b] as follows:

1 =
n−1∑
j=0

Bj,m(x), for m ≥ 1, (2.3.14)

x =
n−1∑
j=0

t∗j,mBj,m(x), for m ≥ 2, (2.3.15)

x2 =
n−1∑
j=0

t∗∗j,mBj,m(x), for m ≥ 3 (2.3.16)

on the interval [a, b] where

t∗j,m =
1

m− 1
(tj−m+2 + . . . + tj),

t∗∗j,m =
1(

m−1
2

) j−1∑
i=j−m+2

j∑
k=i+1

titk.

And more generally, for r = 0, 1, 2, ...m− 1 we have

xr =
n−1∑
j=0

ρrj,mBj,m(x), for x ∈ [a, b], (2.3.17)

where ρrj,m are the symmetric polynomials given by:

ρrj,m =
1(

m−1
r

)∑ tj1tj2 . . . tjr (2.3.18)

and the sum is over all integers j1, j2, . . . , jr such that j−m+2 ≤ j1 < . . . < jr ≤ j
and the total number of terms is

(
m−1
r

)
.

Example 2.3.1. In the cubic case, the explicit representations of the Marsden’s
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identities are given below,

1 =
n−1∑
j=0

Bj,4(x),

x =
1

3

n−1∑
j=0

(tj−2 + tj−1 + tj)Bj,4(x),

x2 =
1

3

n−1∑
j=0

(tj−2tj−1 + tj−2tj + tj−1tj) Bj,4(x),

x3 =
n−1∑
j=0

tj−2tj−1tj Bj,4(x)

on [a, b]. see [11].

When we consider the cardinal B-splines, that is, Nm(x) as defined in (2.1.3),
we have the following property.

Theorem 2.3.2. [3] For any polynomial p(x) with degree up to m− 1,

∞∑
k=−∞

p(k)Nm(x− k) =
m−1∑
k=0

Nm(k)p(x− k). (2.3.19)

Proof. By Marsden’s Identity, for r = 0, 1, 2, ....,m− 1, we have

xr =
∞∑

j=−∞

ρrj,mNm(x− j), (2.3.20)

where

ρrj,m =
1(

m−1
r

) ∑
j+1≤j1<j2<...<jr≤j+m−1

tj1tj2 . . . tjr (2.3.21)

Then, we get
∞∑

k=−∞

krNm(x− k) =
∞∑

k=−∞

∞∑
j=−∞

ρrj,mNm(k − j)Nm(x− k).

By change of variable s = k − j, we get
∞∑

k=−∞

krNm(x− k) =
∞∑

s=−∞

∞∑
j=−∞

ρrj,mNm(s)Nm(x− j − s)

=
∞∑

s=−∞

( ∞∑
j=−∞

ρrj,mNm(x− j − s)
)
Nm(s).
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Therefore, using (2.3.20), we obtain

∞∑
k=−∞

krNm(x− k) =
∞∑

s=−∞

(x− s)rNm(s). (2.3.22)

Hence, we get

∞∑
k=−∞

p(k)Nm(x− k) =
∞∑

k=−∞

Nm(k)p(x− k). (2.3.23)

Since supp{Nm(x)} = [0,m], (2.3.23) is equivalent to (2.3.19).
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Chapter 3

Inverses of Shoenberg-Whitney
Matrices for Linear B-Splines

For the general case of the Shoenberg-Whitney matrix Bm, it is very hard to cal-
culate B−1m . But for the linear case where m = 2, it is doable to calculate B−12 in
an explicit form. Next, we will calculate it in a step-by-step approach.

3.1 General representation for linear Shoenberg-

Whitney matrix

Assume that we are given n sample points: {yk}n−1k=0 spread on the interval [a, b]
with the following condition:

a = y0 < y1 < · · · < yn−2 < yn−1 = b. (3.1.1)

To do the linear B-spline interpolation on these sample points, we construct a set
of linear B-splines {Bi,2(x)}n−1i=0 using the knots {tk}nk=−1 with the following form:

a = t−1 = t0 < t1 < t2 < · · · < tn−2 < tn−1 = tn = b, (3.1.2)

where the basis function Bi,2(x) is constructed from the knots: {ti−1, ti, ti+1} for
i = 0, . . . , n−1. Furthermore, the Shoenberg-Whitney condition must be satisfied,
that is,

ti−1 < yi < ti+1, for 1 ≤ i ≤ n− 2, (3.1.3)

which implies that

yi−1 < ti < yi+1, for 1 ≤ i ≤ n− 2. (3.1.4)
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With the above setting, we shall derive the unified form of the Shoenberg-
Whitney matrix, whose general form is given by

B2 :=


B0,2(y0) · · · Bn−1,2(y0)
B0,2(y1) · · · Bn−1,2(y1)

... · · · ...
B0,2(yn−1) · · · Bn−1,2(yn−1)


n×n

. (3.1.5)

Many of the entries in matrix B2 are zero. Specifically, when j ≥ i + 2 for
0 ≤ i ≤ n − 3, the (i, j) entry (counting from zero) of B2 is Bj,2(yi). Since the
knots for Bj,2(x) are {tj−1, tj, tj+1} and j − 2 ≥ i, by (3.1.4) and (3.1.2), we have
yi < ti+1 ≤ tj−1, that is, yi 6∈ [tj−1, tj+1], which implies that Bj,2(yi) = 0.

On the other hand, when i ≥ j + 2, by (3.1.4) and (3.1.1), we have tj+1 <
yj+2 ≤ yi, that is, yi 6∈ [tj−1, tj+1], which implies that Bj,2(yi) = 0. Thus we
conclude that B2 matrix in (3.1.5) is a tridiagonal matrix. Specifically, we can
write (3.1.5) as

B2 :=


1 0 0 · · · 0

B0,2(y1) B1,2(y1) B2,2(y1) · · · 0

0
. . . . . . . . . 0

0
. . . Bn−3,2(yn−2) Bn−2,2(yn−2) Bn−1,2(yn−2)

0 0 · · · 0 1


n×n

.

(3.1.6)
Furthermore, this tridiagonal matrix has a special property:

Bi−1,2(yi)Bi+1,2(yi) = 0. (3.1.7)

That means, either Bi−1,2(yi) = 0 or Bi+1,2(yi) = 0, which depends on yi ∈
(ti−1, ti) or yi ∈ (ti, ti+1). In particular, when yi = ti, we have Bi−1,2(yi) =
Bi+1,2(yi) = 0, and Bi,2(yi) = 1.

In order to handle the uncertainty in (3.1.6) in a controlled way, we introduce
a set of indicator variables {σi}n−2i=1 as follows,

σi =

{
1 if yi ∈ (ti−1, ti)

0 if yi ∈ [ti, ti+1).
(3.1.8)

With these (n − 2) indicator variables, there are 2n−2 different choices for the
(n− 2)-tuple (σ1, . . . , σn−2), with each corresponds to one specific knots-data set-
ting.
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Now we can write explicit expressions for Bi−1,2(yi), Bi,2(yi), Bi+1,2(yi) as fol-
lows, 

Bi−1,2(yi) = σi
ti − yi
ti − ti−1

,

Bi,2(yi) = σi
yi − ti−1
ti − ti−1

+ (1− σi)
ti+1 − yi
ti+1 − ti

,

Bi+1,2(yi) = (1− σi)
yi − ti
ti+1 − ti

.

(3.1.9)

Next, we consider several special cases which can help us find the general B−12

gradually.

3.2 Inverses of linear Shoenberg-Whitney ma-

trix for special cases

We need the following lemma that is a special case of the theorem [17] for our first
case.

Lemma 3.2.1. Let G be an upper bi-diagonal matrix with the following form

G =



b1 c1 · · · · · · · · · 0

0 b2 c2 0 · · · ...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . cn−1
0 · · · · · · · · · · · · bn


n×n

. (3.2.1)

Then G−1 = (βi,j) with

βi,j =


0 if i > j;
1

bi
if i = j;

(−1)i+j
ci · · · cj−1
bi · · · bj

if i < j.

(3.2.2)

Proof : First we denote G = (ai,j) where

ai,j =


bi if i = j;

ci if j = i+ 1;

0 otherwise.
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In order to show that G−1 = (βi,j), we let L = (βi,j), and it is equivalent to show
that GL = In.

Now we assume that GL = (ci,j), which gives us ci,j =
∑n

k=1 ai,kβk,j. We use
the following three steps to verify that (ci,j) is the identity matrix.

• Verify that ci,i = 1 for i = 1, 2, . . . , n.

ci,i =
i−1∑
k=1

ai,kβk,i + ai,iβi,i +
n∑

k=i+1

ai,kβk,i = 0 + bi

(
1

bi

)
+ 0 = 1.

• Verify that ci,j = 0 for i > j.

ci,j =
i−1∑
k=1

ai,kβk,j + ai,iβi,j +
n∑

k=i+1

ai,kβk,j = 0.

• Verify that ci,j = 0 for i < j.

First we consider the case that i+ 1 < j. We have

ci,j =

j−1∑
k=1

ai,kβk,j + ai,jβj,j +
n∑

k=j+1

ai,kβk,j =

j−1∑
k=1

ai,kBk,j + 0 + 0

=
i−1∑
k=1

ai,kβk,j + ai,iβi,j +

j∑
k=i+1

ai,kβk,j

= 0 + bi
(−1)i+jci · · · cj−1

bi · · · bj
+ ai,i+1βi+1,j

=
(−1)i+jci · · · cj−1

bi+1 · · · bj
+ ci

(−1)i+1+jci+1 · · · cj−1
bi+1 · · · bj

= 0.

Second we consider the case that i+ 1 = j. We still have

ci,j =
i−1∑
k=1

ai,kβk,j + ai,iβi,j +

j∑
k=i+1

ai,kβk,j

= bi(−1)
ci

bibi+1

+ ci

(
1

bi+1

)
= 0.
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Thus, we complete the proof. �

Case I : σi = 0 for i = 1, . . . , n− 2.

In this case, we have that yi ∈ [ti, ti+1) for all i = 1, . . . , n − 2, and (3.1.9)
becomes 

Bi−1,2(yi) = 0,

Bi,2(yi) =
ti+1 − yi
ti+1 − ti

,

Bi+1,2(yi) =
yi − ti
ti+1 − ti

.

(3.2.3)

B2 becomes an upper triangular matrix in the form of

BI
2 =



1 0 · · · · · · · · · · · · 0

0
t2 − y1
t2 − t1

y1 − t1
t2 − t1

0 · · · · · ·
...

0 0
t3 − y2
t3 − t2

y2 − t2
t3 − t2

· · · · · ·
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · · · · · · · 0
tn−1 − yn−2
tn−1 − tn−2

yn−2 − tn−2
tn−1 − tn−2

0 · · · · · · · · · · · · 0 1


(3.2.4)

We introduce another notation to make the expression of BI
2 a little simpler,

ηi,j =
ti − yj
ti − ti−1

. (3.2.5)

Then BI
2 becomes

BI
2 =



1 0 · · · · · · · · · · · · 0

0 η2,1 1− η2,1 0 · · · · · ·
...

0 0 η3,2 1− η3,2 · · · · · ·
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · · · · · · · 0 ηn−1,n−2 1− ηn−1,n−2
0 · · · · · · · · · · · · 0 1


(3.2.6)

In order to represent
(
BI

2

)−1
in a concise way, we need another notation,

ξi,j =

(
yi−1 − ti−1
ti − yi−1

)(
yi − ti
ti+1 − yi

)
· · ·
(
yj−1 − tj−1
tj − yj−1

)
. (3.2.7)
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Then by Lemma 3.2.1 we can write

(
BI

2

)−1
=



1 0 0 · · · · · · · · · 0

0
t2 − t1
y1 − t1

ξ2,2 − t3 − t2
y2 − t2

ξ2,3
t4 − t3
y3 − t3

ξ2,4 · · · (−1)n+1 tn−1 − tn−2

yn−2 − tn−2
ξ2,n−1

...

...
. . .

t3 − t2
y2 − t2

ξ3,3 − t4 − t3
y3 − t3

ξ3,4
. . .

...
...

...
. . .

. . .
t4 − t3
y3 − t3

ξ4,4
. . .

tn−1 − tn−2

yn−2 − tn−2
ξn−3,n−1

...

...
. . .

. . .
. . .

. . . − tn−1 − tn−2

yn−2 − tn−2
ξn−2,n−1 0

0 · · · · · · · · · · · · tn−1 − tn−2

yn−2 − tn−2
ξn−1,n−1 0

0 · · · · · · · · · · · · 0 1


,

which can be further simplified as

(
BI

2

)−1
=



1 0 0 · · · · · · · · · 0

0 ξ2,2 −ξ2,3 ξ2,4 · · · (−1)n+1ξ2,n−1

...
...

. . . ξ3,3 −ξ3,4
. . .

...
...

...
. . .

. . . ξ4,4
. . . ξn−3,n−1

...
...

. . .
. . .

. . .
. . . −ξn−2,n−1 0

0 · · · · · · · · · · · · ξn−1,n−1 0
0 · · · · · · · · · · · · 0 1


Λ2,

where

Λ2 =



1
1

η2,1
1

η3,2
. . .

1

ηn−1,n−2
1


n×n

.

Case II : σi = 1 for i = 1, . . . , n− 2.

In this case, we have that yi ∈ (ti−1, ti) for all i = 1, . . . , n − 2, and (3.1.9)
becomes 

Bi−1,2(yi) =
ti − yi
ti − ti−1

,

Bi,2(yi) =
yi − ti
ti − ti−1

,

Bi+1,2(yi) = 0.

(3.2.8)
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B2 becomes a lower bi-diagonal matrix in the form of

BII
2 =



1 0 · · · · · · · · · · · · 0
t1 − y1
t1 − t0

y1 − t0
t1 − t0

0 · · · · · · · · ·
...

0
t2 − y2
t2 − t1

y2 − t1
t2 − t1

· · · · · · · · ·
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

... · · · · · · 0
tn−2 − yn−2
tn−2 − tn−3

yn−2 − tn−3
tn−2 − tn−3

0

0 · · · · · · · · · · · · 0 1


n×n

(3.2.9)

Notice that the transpose of BII
2 is an upper bi-diagonal matrix, we take fol-

lowing expressions

BII
2 =



b0 0 · · · · · · · · · 0

c1 b1 0 0 · · · ...

0 c2 b2
. . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0

0 · · · · · · · · · cn−1 bn−1



=



b0 c1 · · · · · · · · · 0

0 b1 c2 0 · · · ...

0 0 b2 c3
. . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . bn−2 cn−1

0 · · · · · · · · · 0 bn−1



T

=: F T
2 ,

where

bi =


yi − ti−1
ti − ti−1

, if 1 6 i 6 n− 2,

1, if i = 0 or i = n− 1,
(3.2.10)

and

ci =


ti − yi
ti − ti−1

, if 1 6 i 6 n− 2,

0, if i = n− 1.
(3.2.11)
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Observe that
(
BII

2

)−1
= (F T

2 )−1 = (F−12 )T , by Lemma 3.2.1, we get(
BII

2

)−1
= [αi,j]n×n,

where

αi,j =


0, if i < j,
1

bi
, if i = j,

(−1)i+j
cj · · · ci−1
bj · · · bi

, if i > j.

(3.2.12)

To further simplify the expressions in (3.2.12), we introduce the notation νi,j
as follows,

νi,j =

(
tj − yj+1

yj+1 − tj−1

)(
tj−1 − yj
yj − tj−2

)
· · ·
(
ti−1 − yi
yi − ti−2

)
. (3.2.13)

With (3.2.10), (3.2.11), and (3.2.13), we can simplify (3.2.12) to the following
form

αi,j =


0, if i < j,
ti−1 − ti−2
yi − ti−2

, if i = j,

(−1)i+j
(
tj−1 − tj−2
yj − tj−2

)
νi,j, if i > j.

(3.2.14)

Thus, we can write
(
BII

2

)−1
as (

BII
2

)−1
=

1 0 0 · · · · · · · · · 0

−ν2,1
t1 − t0
y2 − t0

0
. . .

. . .
. . .

...

ν3,1 −
(
t1 − t0
y2 − t0

)
ν3,2

. . .
. . .

...

...
...

. . .
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

. . .
...

(−1)nνn−1,1 (−1)n+1

(
t1 − t0
y2 − t0

)
νn−1,2 · · · 0 −

(
tn−3 − tn−4

yn−2 − tn−4

)
νn−1,n−2

tn−2 − tn−3

tn−1 − yn−3
0

0 · · · · · · · · · · · · 0 1


n×n

,

which can be further represented as
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1 0 0 · · · · · · · · · 0

−ν2,1 ν2,2 0
. . .

. . .
. . .

...

ν3,1 −ν3,2
. . .

. . .
...

...
...

. . .
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

. . .
...

(−1)nνn−1,1 (−1)n+1νn−1,2 · · · 0 −νn−1,n−2 νn−1,n−1 0
0 · · · · · · · · · · · · 0 1


n×n

Λ∗2,

where

Λ∗2 =



1
1

1− η1,2
1

1− η2,3
. . .

1

1− ηn−2,n−1
1


n×n

.

Case III : Assume that n is even, and σ1 = σ3 = · · · = σn−3 = 0 and σ2 = σ4 =
· · · = σn−2 = 1 .

In this case, we have that y2k−1 ∈ [t2k−1, t2k) for all k = 1, 2, . . . ,
n

2
− 1, and

(3.1.9) becomes 
B2k−2,2(y2k−1) = 0,

B2k−1,2(y2k−1) =
t2k − y2k−1
t2k − t2k−1

,

B2k+1,2(y2k−1) =
y2k−1 − t2k−1
t2k − t2k−1

.

(3.2.15)

We also have that y2k ∈ (t2k−1, t2k) for k = 1, 2, . . . ,
n

2
− 1, and (3.1.9) becomes

B2k−1,2(y2k) =
t2k − y2k
t2k − t2k−1

,

B2k,2(y2k) =
y2k − t2k−1
t2k − t2k−1

,

B2k+1,2(y2k) = 0.

(3.2.16)

B2 becomes a block diagonal matrix in the form of
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BIII
2 =



1 0 · · · · · · · · · · · · · · · 0 0

0
t2 − y1
t2 − t1

y1 − t1
t2 − t1

0 · · · · · · · · · · · ·
...

0
t2 − y2
t2 − t1

y2 − t1
t2 − t1

0
. . . · · · · · · · · ·

...

...
. . . 0

t4 − y3
t4 − t3

y3 − t3
t4 − t3

. . .
. . .

. . .
...

...
. . .

. . .
t4 − y4
t4 − t3

y4 − t3
t4 − t3

0
. . .

. . .
...

0 · · · · · ·
. . . 0

. . .
. . . · · · 0

0 · · · · · · · · · 0
. . .

tn−2 − yn−3

tn−2 − tn−3

yn−3 − tn−3

tn−2 − tn−3
0

0 · · · · · · · · · 0
. . .

tn−2 − yn−2

tn−2 − tn−3

yn−2 − tn−3

tn−2 − tn−3
0

0 · · · · · · · · · · · · · · · · · · 0 1


(3.2.17)

Denote

Dj =


tj − yj−1
tj − tj−1

yj−1 − tj−1
tj − tj−1

tj − yj
tj − tj−1

yj − tj−1
tj − tj−1

 . (3.2.18)

Then we can write (3.2.17) as

BIII
2 =



1 0 · · · · · · · · · · · · 0

0 D2
. . . . . . . . . . . .

...
...

. . . D4
. . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...

0
. . . . . . . . . . . . Dn−2 0

0 · · · · · · · · · · · · · · · 1


n×n

. (3.2.19)

Thus the inverse of BIII
2 can be written as

(
BIII

2

)−1
=



1 0 · · · · · · · · · · · · 0

0 D−12
. . . . . . . . . . . .

...
...

. . . D−14
. . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...

0
. . . . . . . . . . . . D−1n−2 0

0 · · · · · · · · · · · · · · · 1


n×n

. (3.2.20)
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To make the calculation of D−1j easier, we use the notation ηi,j as in (3.2.5), and
get

Dj =

[
ηj,j−1 1− ηj,j−1
ηj,j 1− ηj,j

]
, j ∈ {2, 4, · · · , n− 2}.

Then we get

D−1j =
1

ηj,j−1 − ηj,j

[
1− ηj,j ηj,j−1 − 1
−ηj,j ηj,j−1

]
=


yj − tj−1
yj − yj−1

tj−1 − yj−1
yj − yj−1

yj − tj
yj − yj−1

tj − yj−1
yj − yj−1

 .

Now we can write
(
BIII

2

)−1
explicitly as follows,

(
BIII

2

)−1
=



1 0 · · · · · · · · · · · · · · · · · · 0

0
y2 − t1
y2 − y1

t1 − y1
y2 − y1

. . .
. . .

. . .
. . .

. . .
...

...
y2 − t2
y2 − y1

t2 − y1
y2 − y1

0
. . .

. . .
. . .

. . .
...

...
. . . 0

y4 − t3
y4 − y3

t3 − y3
y4 − y3

. . .
. . .

. . .
...

...
. . .

. . .
y4 − t4
y4 − y3

t4 − y3
y4 − y3

0
. . .

. . .
...

...
. . .

. . .
. . . 0

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

yn−2 − tn−3

yn−2 − yn−3

tn−3 − yn−3

yn−2 − yn−3

...

...
. . .

. . .
. . .

. . .
. . .

yn−2 − tn−2

yn−2 − yn−3

tn−2 − yn−3

yn−2 − yn−3
0

0 · · · · · · · · · · · · · · · · · · 0 1


n×n

(3.2.21)

3.3 Inverses of linear Shoenberg-Whitney ma-

trix for the general case

In order to study the general case of the Shoenberg-Whitney matrix, we start with
the following special case first, because it can be used as the building block of the
general case.

Case IV : Assume that σ1 = σ2 = · · · = σk = 0 and σk+1 = · · · = σn−2 = 1 for
1 ≤ k ≤ n− 3.
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In this case, we have that yi ∈ [ti, ti+1) for i = 1, . . . , k, and (3.1.9) becomes
Bi−1,2(yi) = 0,

Bi,2(yi) =
ti+1 − yi
ti+1 − ti

,

Bi+1,2(yi) =
yi − ti
ti+1 − ti

.

We also have that yi ∈ (ti−1, ti) for i = k + 1, . . . , n− 2, and (3.1.9)becomes
Bi−1,2(yi) =

ti − yi
ti − ti−1

,

Bi,2(yi) =
yi − ti−1
ti − ti−1

,

Bi+1,2(yi) = 0.

Then B2 has the form of

BIV2 =



1 0 · · · · · · · · · · · · · · · · · · 0

0
t2 − y1
t2 − t1

y1 − t1
t2 − t1

0 · · · · · · · · · · · ·
...

0 0
. . .

. . . · · · · · · · · · · · ·
...

0 0 · · ·
tk − yk−1

tk − tk−1

yk−1 − tk−1

tk − tk−1
0 · · · · · ·

...

0 0 · · · 0
tk+1 − yk
tk+1 − tk

yk − tk
tk+1 − tk

· · · · · ·
...

0 0 · · · 0
tk+1 − yk+1

tk+1 − tk
yk+1 − tk
tk+1 − tk

· · · · · ·
...

...
. . .

. . .
. . .

. . .
. . . · · · · · ·

...
...

. . .
. . .

. . .
. . .

. . . · · · · · ·
...

0 · · · · · · · · · 0 · · ·
tn−2 − yn−2

tn−2 − tn−3

yn−2 − tn−3

tn−2 − tn−3
0

0 · · · · · · · · · · · · · · · · · · 0 1


n×n

(3.3.1)

With the ηi,j notation as in (3.2.5), we can write (3.3.1) as

BIV
2 =



1 0 · · · · · · · · · · · · · · · 0

0 η21 1− η21
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . .
...

...
. . . 0 ηk+1,k 1− ηk+1,k

. . . . . .
...

...
. . . . . . ηk+1,k+1 1− ηk+1,k+1 0

. . .
...

...
. . . . . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . ηn−2,n−2 1− ηn−2,n−2 0
0 · · · · · · · · · · · · · · · 0 1


n×n

(3.3.2)
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In order to write a general form for the inverse of (3.3.2), we define a special
tri-diagonal matrix from the given independent variables u1, . . . , up, v1, . . . , vq with
p ≥ 1 and q ≥ 1 as follows,

Ω(~u,~v) =



u1 1− u1 0 · · · · · · · · · · · · 0

0 u2 1− u2
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . .
...

...
. . . 0 up 1− up

. . . . . .
...

...
. . . . . . v1 1− v1 0

. . .
...

...
. . . . . . . . . v2 1− v2

. . . 0
...

. . . . . . . . . . . . . . . . . . 0
0 · · · · · · · · · · · · 0 vq 1− vq


m×m

, (3.3.3)

where we denote ~u := (u1, . . . , up) and ~v := (v1, . . . , vq) and m = p + q. In the
following lemma, we give the formula for Ω−1(~u,~v).

Lemma 3.3.1. Given a p-vector ~u := (u1, . . . , up) and a q-vector ~v := (v1, . . . , vq)
that satisfy the conditions: p ≥ 1, q ≥ 1 and p+q = m, define a tridiagonal matrix
Ω(~u,~v) as in (3.3.3). In order to make Ω(~u,~v) invertible, we require that

ui 6= 0 for 1 ≤ i ≤ p, up 6= v1, and vj 6= 1 for 2 ≤ j ≤ q. (3.3.4)

Then we can write Ω−1(~u,~v) as [αij], where the non-zero entries in {αij} are given
by the following formulas:

• For the diagonal entries, we have

αii =
1

ui
, for 1 ≤ i ≤ p− 1, αpp =

1− v1
up − v1

, (3.3.5)

and

αp+1,p+1 =
up

up − v1
, αjj =

1

1− vj−p
for p+ 2 ≤ j ≤ m. (3.3.6)

• For the lower triangular entries αi,j with p ≤ j < i ≤ m, we represent them
in the following general formulas, for r = 1, . . . , q − 1:

αp+r,p = − v1
up
αp+r,p+1, αp+r+1,p+1 = − up v2

up − v1
αp+r+1,p+2, (3.3.7)

and for p+ 2 ≤ j ≤ m− r,

αj+r,j = − vj−p+1

1− vj−p
αj+r,j+1. (3.3.8)
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• For the upper triangular entries, for s = 1, . . . , q,

∀ 1 ≤ i ≤ p, αi,i+s =
(

1− 1

ui

)
αi+1,i+s, (3.3.9)

and for t = q + 1, . . . ,m− 1,

∀ 1 ≤ i ≤ m− t, αi,i+t =
(

1− 1

ui

)
αi+1,i+t. (3.3.10)

With Lemma 3.3.1, we can represent
(
BIV

2

)−1
as Ω−1(~u,~v) with ~u := (η21, . . . , ηk+1,k)

and a q-vector ~v := (ηk+1,k+1, . . . , ηn−2,n−2).

Case V : (The general case)

Notice that σk can only be 0 or 1 for 1 ≤ k ≤ n − 2, we can formulate the
general case in the following format:

Assume that σ1 = · · · = σk1 = 0, σk1+1 = · · · = σk2 = 1, · · · , σks−1+1 = · · · =

σks = 1+2
⌊s

2

⌋
−s. (That means, when s is even, σks = 1; when s is odd, σks = 0.)

Note: In order to make the discussion a little easier, we allow k1 = 0. When it
happens, we have σ1 = · · · = σk2 = 1 and we treat the part σ1 = · · · = σk1 = 0
empty.

Under this assumption, B2 in 3.1.6 can be written as a block-diagonal matrix
as follows,

BV
2 :=



B1
2 0 0 0 0

0 B2
2

. . . . . . 0

0
. . . . . . . . . 0

0
. . . . . . Bds/2e−12 0

0 0 0 0 Bds/2e2

 , (3.3.11)

where B1
2 has different structures based on the value of k1, and Bds/2e2 has different

structures based on the parity of s.
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More specifically, when k1 > 0, we have a tridiagonal matrix

B12 :=



1 0 · · · · · · · · · · · · 0

0 B1,2(y1) B2,2(y1)
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . . 0 Bk1,2(yk1 ) Bk1+1,2(yk1 ) 0 0

...
. . .

. . . Bk1,2(yk1+1) Bk1+1,2(yk1+1) 0
...

...
. . .

. . .
. . .

. . .
. . . 0

0 · · · · · · · · · · · · Bk2−1,2(yk2 ) Bk2,2(yk2 )



. (3.3.12)

When k1 = 0, its structure becomes a lower bidiagonal matrix

B1
2 :=


1 0 0 0

B0,2(y1) B1,2(y1) 0
...

0
. . . . . . 0

0 · · · Bk2−1,2(yk2) Bk2,2(yk2)

 . (3.3.13)

For Bds/2e2 , when s is even, we have a tridiagonal matrix

Bds/2e2 :=



Bks−2,2(yks−2
) Bks−2+1,2(yks−2

) 0 0 0 0 0

0
. . .

. . . 0 0 0 0
0 0 Bks−1,2(yks−1

) Bks−1+1,2(yks−1
) 0 0 0

0 0 Bks−1,2(yks−1+1) Bks−1+1,2(yks−1+1) 0
... 0

0
. . .

. . .
. . .

. . .
. . .

...

0
. . .

. . . · · · Bks−1,2(yks ) Bks,2(yks ) 0
0 · · · · · · · · · 0 0 1


.

(3.3.14)

When s is odd, we have an upper bidiagonal matrix

B
ds/2e
2 :=


Bks−1,2(yks−1) Bks−1+1,2(yks−1) 0 0

0
. . . . . . 0

0 0 Bks,2(yks) Bks+1,2(yks)
0 · · · 0 1

 . (3.3.15)

For the interior matrix-block cases 2 ≤ j ≤ ds/2e−1, we have a tridiagonal matrix

Bj2 :=
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Bk2(j−1)+1,2(yk2(j−1)+1) Bk2(j−1)+2,2(yk2(j−1)+1) 0 0 0 0

0
.
.
.

.
.
. 0 0 0

.
.
. 0 Bk2j−1,2(yk2j−1

) Bk2j−1+1,2(yk2j−1
) 0 0

. .
. 0 Bk2j−1,2(yk2j−1+1) Bk2j−1+1,2(yk2j−1+1) 0

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
. 0

.
.
.

.
.
.

.
.
. · · · Bk2j−1,2(yk2j

) Bk2j ,2
(yk2j

)



.

(3.3.16)

Since each diagonal block matrix Bj2 in (3.3.11) is invertible for 1 ≤ j ≤ ds/2e,
we can easily write the inverse of BV

2 as follows,

(
BV

2

)−1
:=



(B1
2)
−1

0 0 0 0

0 (B2
2)
−1 . . . . . . 0

0
. . . . . . . . . 0

0
. . . . . .

(
Bds/2e−12

)−1
0

0 0 0 0
(
Bds/2e2

)−1


. (3.3.17)

Explicit formulas for
(
Bj2
)−1

can also be given by the result of Case IV.

The explicit formulas for
(
Bj2
)−1

with 1 ≤ j ≤ ds/2e in (3.3.17) can be given
in the following three cases:

• For j = 1, when k1 = 0, we choose ~u1 := (1) and ~v1 := (η01, . . . , ηk2−1,k2).

Then (B1
2)
−1

= Ω−1( ~u1, ~v1).

When k1 > 0, we take ~u1 := (η11, . . . , ηk1,k1) and ~v1 := (ηk1,k1+1, . . . , ηk2−1,k2).
Then (

B1
2

)−1
=

[
1 0
0 Ω−1( ~u1, ~v1)

]
.

• For j = ds/2e, when s is even, let ~us := (ηks−2,ks−2 , . . . , ηks−1,ks−1) and ~vs :=
(ηks−1,ks−1+1, . . . , ηks−1,ks). Then(

Bds/2e2

)−1
=

[
Ω−1(~us, ~vs) 0

0 1

]
.

When s is odd, let ~us := (ηks−1,ks−1 , . . . , ηks,ks) and ~vs := (1). Then
(
Bds/2e2

)−1
=

Ω−1(~us, ~vs).
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• For 2 ≤ j ≤ ds/2e − 1, we note by ~uj := (ηk2(j−1)+1,k2(j−1)+1, . . . , ηk2j−1,k2j−1
)

and ~vj := (ηk2j−1,k2j−1+1, . . . , ηk2j−1,k2j). Then
(
Bj2
)−1

= Ω−1(~uj, ~vj).

With these formulas, Case V covers all the possible cases for the linear Shoenberg-
Whitney matrices.
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Chapter 4

Local Quasi-Interpolating
Operators Based-on B-splines

4.1 Framework for local quasi-interpolation

Linear operators from the local quasi-interpolation are very useful in data analysis,
and the tool of B-splines is very powerful in many application problems. In this
chapter, we will describe the general framework for the local quasi-interpolating
operators from the B-splines.

4.1.1 Linear operators induced by data points

Here we would like to use the linear operator way to describe the method. Since the
space C[a, b] is infinite-dimensional, we would like to consider its finite-dimensional
subspaces to approximate functions in C[a, b]. The spline space Sm,t defined as in
(2.2.4) for certain knot sequence t = (tj) satisfying (2.2.1) and (2.2.2) is a good
choice in this situation.

Our linear operators are data dependent, that means they rely on a set of data
samples. Given a set of data samples {yi}n−1i=0 that satisfy the conditions (2.2.6)
and (2.2.7) with respect to the n-dimensional spline space Sm,t, for any n × n
matrix L, we define a linear operator Ly : C[a, b]→ Sm,t as follows

(Lyf)(x) =
n−1∑
k=0

(L~fy)kBk,m(x), (4.1.1)

where
~fy = [f(y0), · · · , f(yn−1)]

T . (4.1.2)
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We call Ly the linear operator induced by the data samples {yi}n−1i=0 from a given
n × n matrix L, or we refer Ly as a DI-operator, which means a data-induced
operator.

4.1.2 Polynomial-preservation property

Now we would like to know how well that Lyf approximates f on [a, b]. Let us
consider a subspace of C[a, b], that is C(m)[a, b], which is dense in C[a, b]. Take
any f0(x) ∈ C(m)[a, b]. We want to estimate |f0(x) − Lyf0(x)| on [a, b]. Notice
that

a = y0 < y1 < · · · < yn−2 < yn−1 = b.

Denote ∆y the length of the longest subinterval [yj, yj+1], that is,

∆y = max
0≤j≤n−2

|yj+1 − yj|.

For any x ∈ [a, b], there exists some j with 0 ≤ j ≤ n−2, such that yj ≤ x ≤ yj+1.
Since x ∈ [yj, yj+1], by Taylor’s theorem, we have

f0(x) = f0(yj) + f ′0(yj)(x− yj) + · · ·+ f
(m−1)
0 (yj)

(m− 1)!
(x− yj)m−1 +Rm(x),

where

Rm(x) =
f
(m)
0 (ξ)

(m)!
(x− yj)m, for some ξ ∈ [yj, yj+1].

Denote p0(x) the polynomial (which is an approximation to f0(x)) as

p0(x) = f0(yj) + f ′0(yj)(x− yj) + · · ·+ f
(m−1)
0 (yj)

(m− 1)!
(x− yj)m−1. (4.1.3)

Thus, for any f0(x) ∈ C(m)[a, b], we can find a polynomial p0(x) ∈ πm−1, such that

|f0(x)− p0(x)| ≤ C0|∆y|m max
a≤x≤b

|f (m)
0 (x)|, (4.1.4)

for some positive constant C0.

Notice that Ly is a bounded linear operator from C[a, b] to St,m, that is, for
any f(x), g(x) ∈ C[a, b], we have

|Lyf(x)− Lyg(x)| ≤ C(n)‖Ly‖ max
a≤x≤b

|f(x)− g(x)|. (4.1.5)
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Now we can estimate |f0(x)− Lyf0(x)| for any f0(x) ∈ C(m)[a, b]. In fact, we can
find a polynomial p0(x) ∈ πm−1 as in (4.1.3), which satisfies (4.1.4). We can write

|f0(x)− Lyf0(x)| ≤ |f0(x)− p0(x)|+ |p0(x)− Lyp0(x)|
+ |Lyp0(x)− Lyf0(x)|.

We have

|f0(x)− p0(x)|+ |Lyp0(x)− Lyf0(x)|
≤ (1 + C(n)‖Ly‖) max

a≤x≤b
|f0(x)− p0(x)|

≤ C0 (1 + C(n)‖Ly‖) |∆y|m max
a≤x≤b

|f (m)
0 (x)|.

But we still need to deal with the term |p0(x) − Lyp0(x)|. It is desirable to have
the property

Lyp0(x) = p0(x), for all p0(x) ∈ πm−1, (4.1.6)

then we have

|f0(x)− Lyf0(x)| ≤ C0 (1 + C(n)‖Ly‖) |∆y|m max
a≤x≤b

|f (m)
0 (x)|. (4.1.7)

In other words, if the operator Ly has the polynomial preservation property as in
(4.1.6), then Lyf0(x) can approximate f0(x) well in the sense of (4.1.7). Therefore,
when we construct an operator Ly, we would like it to have the polynomial preser-
vation property. In fact, it is the so-called quasi-interpolation operator, which is
defined as follows.

Definition. A bounded linear operator Q on C[a, b] is called a quasi-interpolation
operator if it preserves polynomials as follows,

(Qp)(x) = p(x), p ∈ πm−1. (4.1.8)

We would like to make our data-samples-induced linear operator Ly a quasi-
interpolation operator. Furthermore, in order to make this operator support ef-
ficient computation, we would like it to be a local operator in the sense that the
corresponding matrix L is a band matrix. Hence we need the following concept:
local quasi-interpolation operator induced by data samples through B-splines.

Definition. Given a set of data samples {yi}n−1i=0 that satisfy the conditions (2.2.6)
and (2.2.7) with respect to the n-dimensional B-spline space Sm,t, let Ly : C[a, b]→
Sm,t be a linear operator defined as in (4.1.1). If L is an n× n band matrix, and

(Lyp)(x) = p(x), for all p ∈ πm−1, (4.1.9)

then we call Ly a local quasi-interpolation operator induced by data samples {yi}n−1i=0

through B-splines.
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4.1.3 Blending linear operator

The quasi-interpolation operator defined above has the desired approximation
property, unfortunately it does not interpolate the given data. We would like
to have a local linear operator that has both the polynomial-preservation prop-
erty and the interpolatory property. A method in Chui [3] solves this problem in
a simple way:

Making corrections through an impulse interpolation operator

Notice that our quasi-interpolator Q does not interpolate the data exactly, we
need to make some small corrections to make up the differences. To this end, we
insert a few appropriate new knots and get a larger spline space, denoted by Sm,t∗ ,
i.e. Sm,t ⊂ Sm,t∗ (with respect to t ⊂ t∗). In Sm,t∗ , we can choose a set of special
interpolating B-splines {ξk,m(x)}n−1k=0 with the property: Each ξk,m(x) interpolates
one of the data points yk and its support is the interval between two adjacent
knots in the t sequence that covers yk. Then we have the property

ξk,m(yj) = δkj, for 0 ≤ k, j ≤ n− 1,

where δ is the Kronecker’s delta notation. We call {ξk,m(x)}n−1k=0 the impulse in-
terpolating functions.

Now we can define our impulse interpolation operator Rm : C[a, b]→ Sm,t∗ as
follows,

(Rmf)(x) :=
n−1∑
k=0

f(yk)ξk,m(x), (4.1.10)

which obviously satisfies the data interpolating property

(Rmf)(yk) = f(yk), k = 0, . . . , n− 1. (4.1.11)

Next we define the following “blending” operator P : C[a, b]→ Sm,t∗ as

P := Rm +Q−RmQ (4.1.12)

This operator possesses the polynomial-preservation property. In deed, for any
p ∈ πm−1, we have

(Pp)(x) = (Rmp)(x) + (Qp)(x)− (RmQp)(x)

= (Rmp)(x) + p(x)− (Rmp)(x)

= p(x).
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P satisfies the data interpolatory property as well. In fact, we look at the function
values at the data points yj, j = 0, . . . , n− 1, then we have

(Pf)(yj) = (Rmf)(yj) + (Qf)(yj)− (RmQf)(yj)

= f(yj) + (Qf)(yj)− (Qf)(yj)

= f(yj).

If we take Q as a local linear operator Ly: C[a, b] → Sm,t, and Rm is another
local linear operator: C[a, b] → Sm,t∗ . Therefore, P is a local linear operator:
C[a, b]→ Sm,t∗ , which satisfies our requirements for data analysis. Our next chal-
lenge is: How to construct a local quasi-interpolation operator Ly without any
matrix inverse.

4.2 Properties of local quasi-interpolation oper-

ators Ly

4.2.1 Polynomial-preservation condition for DI-operators

Let Ly be a DI-operator as defined in (4.1.1). We want to know under what
condition that Ly will preserve polynomials in πm−1. To this end, we need to
use the Marsden’s identities. We use ρr0,m, . . . , ρ

r
n−1,m to denote the Marsden’s

coefficients that satisfy

xr =
n−1∑
k=0

ρrk,mBk,m(x), for 0 ≤ r ≤ m− 1. (4.2.1)

Proposition 4.2.1. Given a set of data samples {yi}n−1i=0 that satisfy the conditions
(2.2.6) and (2.2.7) with respect to the n-dimensional B-spline space Sm,t, let Ly :
C[a, b]→ Sm,t be a DI-operator as in (4.1.1) with associated n× n matrix L. If L
satisfies the equation:

L


yr0
yr1
...

yrn−1

 =


ρr0,m
ρr1,m

...
ρrn−1,m

 , for r = 0, 1, · · · ,m− 1, (4.2.2)

then
(Lyp)(x) = p(x), for all p ∈ πm−1, (4.2.3)

where ρr0,m, . . . , ρ
r
n−1,m are the Marsden’s coefficients defined as in (4.2.1).
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Proof. Let us consider the building blocks of the polynomials in πm−1, that is, the

monomials ηr(x) := xr for 0 ≤ r ≤ m− 1. Since ~η ry =
[
yr0, · · · , yrn−1

]T
by (4.1.2),

and from (4.2.2), we get

L~η ry = L


yr0
yr1
...

yrn−1

 =


ρr0,m
ρr1,m

...
ρrn−1,m

 ,
which leads to (

L~η ry
)
k

= ρrk,m, for 0 ≤ r ≤ m− 1. (4.2.4)

Thus,

Ly(η
r)(x) =

n−1∑
k=0

ρrk,mBk,m(x) = ηr(x), (4.2.5)

which results in (4.2.3) by the linearity of the operator Ly.

Based on Proposition 4.2.1, we are interested in those matrices that satisfy the
condition (4.2.2). The next proposition gives us another matrix with this property.

Proposition 4.2.2. Let {Bi,m(x)}n−1i=0 be the B-splines on [a, b] with knots sat-
isfying (2.2.1) and (2.2.2). Given a set of data points {yi}n−1i=0 that satisfy the
conditions (2.2.6) and (2.2.7), let Bm be the Shoenberg-Whitney matrix , i.e.

Bm :=

 B0,m(y0) · · · Bn−1,m(y0)
...

...
B0,m(yn−1) · · · Bn−1,m(yn−1)


n×n

(4.2.6)

and let {ρri,m}n−1i=0 be the Marsden’s coefficients for xr with 0 ≤ r ≤ m− 1. Then

Bm

 ρr0,m
...

ρrn−1,m

 =

 yr0
...

yrn−1

 for r = 0, 1, · · · ,m− 1. (4.2.7)

Proof. By the Marsden’s Identity, we have for 0 ≤ r ≤ m− 1

xr =
n−1∑
i=0

ρri,mBj,m(x)

=
[
ρr0,m · · · ρrn−1,m

]  B0,m(x)
...

Bn−1,m(x)

 .
56



Thus, for j = 0, 1, · · · , n− 1, we get

yrj =
[
ρr0,m · · · ρrn−1,m

]  B0,m(yj)
...

Bn−1,m(yj)

 .
By putting them together, we have

[
yr0 · · · yrn−1

]
=
[
ρr0,m · · · ρrn−1,m

] B0,m(y0) · · · Bn−1,m(yn−1)
...

...
B0,m(y0) · · · Bn−1,m(yn−1)


or equivalently yr0

...
yrn−1

 =

 B0,m(y0) · · · Bn−1,m(y0)
...

...
B0,m(yn−1) · · · Bn−1,m(yn−1)


 ρr0,m

...
ρrn−1,m

 ,
which gives (4.2.7) and we complete the proof.

Remark 4.2.3. We can write equation (4.2.7) as
1 y0 · · · yr0
1 y1 · · · yr1
...

...
...

1 yn−1 · · · yrn−1


n×(r+1)

= Bm


1 ρ10,m · · · ρr0,m
1 ρ11,m · · · ρr1,m
...

...
...

1 ρ1n−1,m · · · ρrn−1,m


n×(r+1)

, (4.2.8)

with 0 ≤ r ≤ m− 1, or equivalently,

B−1m


1 y0 · · · yr0
1 y1 · · · yr1
...

...
...

1 yn−1 · · · yrn−1


n×(r+1)

=


1 ρ10,m · · · ρr0,m
1 ρ11,m · · · ρr1,m
...

...
...

1 ρ1n−1,m · · · ρrn−1,m


n×(r+1)

(4.2.9)

with 0 ≤ r ≤ m− 1.

Remark 4.2.4. In view of (4.2.9), we notice that B−1m is a full matrix in general,
which could not give us a local linear operator. To find a local quasi-interpolating
operator, we need to find a band matrix Ly (determined by the given data samples
{yi}n−1i=0 ), such that
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Ly


1 y0 · · · ym−10

1 y1 · · · ym−11
...

...
...

1 yn−1 · · · ym−1n−1


n×m

=


1 ρ10,m · · · ρm−10,m

1 ρ11,m · · · ρm−11,m
...

...
...

1 ρ1n−1,m · · · ρm−1n−1,m


n×m

. (4.2.10)

In Chapter 5, we will use a special matrix factorization method to find this n× n
band matrix Ly.

The following result gives us the estimate of computation cost for calculating
the Shoenberg-Whitney matrix.

Proposition 4.2.5. To calculate the Shoenberg-Whitney matrix Bm, we need at

most 2m(m− 1)n multiplications or divisions and
5

2
m(m− 1)n additions or sub-

tractions, which means that its complexity function is in O(n) or the algorithm is
linear with respect to the spline order m.

Proof. To calculate the Shoenberg-Whitney matrix Bm, we need to calculate
Bi,m(yj) for 0 ≤ i, j ≤ n− 1. We use the recurrence formula

Bi,m(yj) =
yj − ti−m+1

ti − ti−m+1

Bi−1,m−1(yj) +
ti+1 − yj

ti+1 − ti−m+2

Bi,m−1(yj) (4.2.11)

for 0 ≤ i, j ≤ n−1, where the (m−1)th order B-spline basis functions {Bi,m−1(x)}n−2i=0

are defined on the knots:

{a, . . . , a︸ ︷︷ ︸
m−1

, t1, t2, · · · , tn−m, b, . . . , b︸ ︷︷ ︸
m−1

}. (4.2.12)

We write (4.2.11) in the form of matrix product as follows,

Bi,m(yj) =

[
yj − ti−m+1

ti − ti−m+1

ti+1 − yj
ti+1 − ti−m+2

] [
Bi−1,m−1(yj)
Bi,m−1(yj)

]
(4.2.13)

for 0 ≤ i, j ≤ n− 1. Similarly, we have

Bi,m−1(yj) =

[
yj − ti−m+2

ti − ti−m+2

ti+1 − yj
ti+1 − ti−m+3

] [
Bi−1,m−2(yj)
Bi,m−2(yj)

]
(4.2.14)

for 0 ≤ i ≤ n− 2 and for 0 ≤ j ≤ n− 1. Let

αji,m :=
yj − ti−m+1

ti − ti−m+1

and βji,m :=
ti+1 − yj

ti+1 − ti−m+2

. (4.2.15)
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Thus, (4.2.13) and (4.2.14) can be written as

Bi,m(yj) =
[
αji,m βji,m

] [Bi−1,m−1(yj)
Bi,m−1(yj)

]
(4.2.16)

and

Bi,m−1(yj) =
[
αji,m−1 βji,m−1

] [Bi−1,m−2(yj)
Bi,m−2(yj)

]
. (4.2.17)

It follows from (4.2.16) and (4.2.17) that

Bi,m(yj) =
[
αji,m βji,m

] 
[
αji−1,m−1 βji−1,m−1

] [Bi−2,m−2(yj)
Bi−1,m−2(yj)

]
[
αji,m−1 βji,m−1

] [Bi−1,m−2(yj)
Bi,m−2(yj)

]


=
[
αji,m βji,m

] [αji−1,m−1 βji−1,m−1 0

0 αji,m−1 βji,m−1

]Bi−2,m−2(yj)
Bi−1,m−2(yj)
Bi,m−2(yj)

 .
Now we consider the general case for the (m− r)th order B-spline basis functions
{Bi,m−r(x)}n−r−1i=0 that are defined on the knots:

{a, . . . , a︸ ︷︷ ︸
m−r

, t1, t2, · · · , tn−m, b, . . . , b︸ ︷︷ ︸
m−r

} (4.2.18)

for 0 ≤ r ≤ m− 1. Then we have the general version for (4.2.16) as

Bi,m−r(yj) =
[
αji,m−r βji,m−r

] [Bi−1,m−r−1(yj)
Bi,m−r−1(yj)

]
(4.2.19)

for 0 ≤ r ≤ m− 2. Denote Rr(yj) as the (r + 1)× (r + 2) matrix

Ri
r(yj) =


αji−r,m−r βji−r,m−r 0 · · · 0

0 αji−r+1,m−r βji−r+1,m−r · · ·
...

. . . . . . . . . . . .
...

. . . . . . . . . . . .

0 0 · · · αji,m−r βji,m−r

 (4.2.20)

for 0 ≤ r ≤ m− 2. Then, we get

Bi,m(yj) = Ri
0(yj)R

i
1(yj) · · ·Ri

m−2(yj)


Bi−(m−1),1(yj)

...
Bi−1,1(yj)
Bi,1(yj)

 . (4.2.21)
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Here we take that

Bi,m−r(x) = 0 for i < 0 or i > n− r − 1. (4.2.22)

To compute Bm using (4.2.21), we start with {Bi,1(yj)} for 0 ≤ i ≤ n − m and
0 ≤ j ≤ n− 1 with respect to the knot sequence

{a, t1, t2, · · · , tn−m, b}, (4.2.23)

and we take t0 = a and tn−m+1 = b as usual. By (2.2.7), we can see that for
1 ≤ j ≤ n− 2, yj could be in any of the following m intervals,

(tj−m+1, tj−m+2), [tj−m+2, tj−m+3), · · · , [tj, tj+1). (4.2.24)

In order to locate the interval [tk, tk+1] that covers yj, we use the following notation

ζj = max
ti≤yj
{i}. (4.2.25)

For each j with 1 ≤ j ≤ n− 2, yj falls into the interval [tζj , tζj+1). (4.2.24) implies
that

j −m+ 1 ≤ ζj < j + 1. (4.2.26)

Thus, we have for 1 ≤ j ≤ n− 2,

[Bi−(m−1),1(yj), · · · , Bi,1(yj)]
T = 0, for i ≤ ζj − 1 or i ≥ ζj +m; (4.2.27)

and for ζj ≤ i ≤ ζj +m− 1,

[Bi−(m−1),1(yj), · · · , Bi,1(yj)]
T = [ 0, . . . , 0︸ ︷︷ ︸

ζj+m−1−i

, 1, 0, . . . , 0︸ ︷︷ ︸
i−ζj

]T . (4.2.28)

For j = 0, we have that ζ0 = 0 and for 0 ≤ i ≤ m− 1,

[Bi−(m−1),1(a), · · · , Bi,1(a)]T = [0, . . . , 0︸ ︷︷ ︸
m−i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
i

]T ; (4.2.29)

and for j = n− 1, we have that ζn−1 = n−m and for n−m ≤ i ≤ n− 1,

[Bi−(m−1),1(b), · · · , Bi,1(b)]
T = [0, . . . , 0︸ ︷︷ ︸

n−i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
i+m−n

]T . (4.2.30)

Notice that (4.2.29) is a special case of (4.2.28), but (4.2.30) is not a special case
of (4.2.28) due to the way we define Bn−m+1,1(x) at x = b, which is different from
the way we define Bi,1(x) at x = ti for 0 ≤ i ≤ n−m− 1. With (4.2.21), (4.2.28)
and (4.2.30), we can find Bi,m(yj) for all 0 ≤ i, j ≤ n− 1.
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Next we will show that the total number of multiplications (or divisions) and
additions (or subtractions) for computing Bm is bounded by some constant mul-
tiple (as a function of m) of n. To this end, we need to count the number of mul-
tiplications (or divisions) and additions (or subtractions) for computing Bi,m(yj)
using (4.2.21).

From the structure of Bm as in (2.2.10), for each fixed j, [Bi,m(yj)]
n−1
i=0 is the

j-th row of Bm. The 1st row and n-th row are given by[
1 0 · · · 0

]
and

[
0 · · · 0 1

]
,

respectively, due to the assumption that y0 = a and yn−1 = b from (2.2.6).

Now we calculate the j-th row for 1 ≤ j ≤ n − 2. For each i in the range
ζj ≤ i ≤ ζj +m− 1, we start with the vector

[ 0, . . . , 0︸ ︷︷ ︸
ζj+m−1−i

, 1, 0, . . . , 0︸ ︷︷ ︸
i−ζj

]T

as in (4.2.28), which we multiply with Rm−2(yj) from the right based on (4.2.21).
Notice that

Ri
m−2(yj) =


αji−(m−2),2 βji−(m−2),2 0 · · · 0

0 αji−(m−3),2 βji−(m−3),2 · · ·
...

. . . . . . . . . . . .
...

. . . . . . . . . . . .

0 0 · · · αji,2 βji,2


(m−1)×m

.

When i = ζj and i = ζj +m− 1, we have

R
ζj
m−2(yj)


0
...
0
1


m×1

=


0
...
0

βjζj ,2


(m−1)×1

(4.2.31)

and

R
ζj+m−1
m−2 (yj)


1
0
...
0


m×1

=


αjζj+1,2

0
...
0


(m−1)×1

. (4.2.32)

When ζj + 1 ≤ i ≤ ζj +m− 2, we have

Ri
m−2(yj) [ 0, . . . , 0︸ ︷︷ ︸

ζj+m−1−i

, 1, 0, . . . , 0︸ ︷︷ ︸
i−ζj

]T = [ 0, . . . , 0︸ ︷︷ ︸
ζj+m−i−2

, βjζj+1,2, α
j
ζj+2,2, 0, . . . , 0︸ ︷︷ ︸

i−ζj−1

]T .

(4.2.33)
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It is easy to see that in this matrix multiplication, we need at most 2 divisions
and 2 subtractions. Next we consider the following matrix multiplication

Ri
m−3(yj)[ 0, . . . , 0︸ ︷︷ ︸

ζj+m−i−2

, βjζj+1,2, α
j
ζj+2,2, 0, . . . , 0︸ ︷︷ ︸

i−ζj−1

]T .

Notice that

Ri
m−3(yj) =


αji−(m−3),3 βji−(m−3),3 0 · · · 0

0 αji−(m−4),3 βji−(m−4),3 · · ·
...

. . . . . . . . . . . .
...

. . . . . . . . . . . .

0 0 · · · αji,3 βji,3


(m−2)×(m−1)

.

Since the counting for precise number of multiplications (or divisions) and addi-
tions (or subtractions) could be very complicated, here we just do a very generous
counting but still meet our goal for O(n) complexity. We rewrite (4.2.21) in the
form of

Bi,m(yj) = Ri
0(yj)R

i
1(yj) · · ·Ri

m−2(yj)b
i
0,j (4.2.34)

where bi0,j is a column vector with size m×1. Now we define a sequence of vectors
bir,j for 1 ≤ r ≤ m− 1 as follows,

bir,j = Ri
m−r−1(yj)b

i
r−1,j. (4.2.35)

Thus bir,j is a column vector of size (m − r) × 1. When we do the counting, we
allow that all the components of bir,j could be nonzero.

Now we do the counting for the number of multiplications (or divisions) and
additions (or subtractions) on the matrix multiplication Ri

m−r−1(yj)b
i
r−1,j for 1 ≤

r ≤ m−1. There are (m−r) rows. For each row, there are only two nonzero entries
in Ri

m−r−1(yj). Hence our counting has this result: 2 divisions, 2 multiplications,
4 subtractions, and 1 addition for the multiplication of one row of Ri

m−r−1(yj)
with bir−1,j. Therefore to calculate Ri

m−r−1(yj)b
i
r−1,j, we need at most 4(m − r)

multiplications or divisions and 5(m − r) additions or subtractions. To get the
total number of operations, we find the summation

m−1∑
r=1

(m− r) = 1 + 2 + · · ·+ (m− 1) =
1

2
m(m− 1).

We conclude that to calculate Bm, we need at most 2m(m − 1)n multiplications

or divisions and
5

2
m(m − 1)n additions or subtractions, which means that its

complexity function is in O(n) or the algorithm is linear, and we complete the
proof.
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Chapter 5

Local Quasi-Interpolation
Operator for Linear B-Splines by
Factorization on
Shoenberg-Whitney Matrix

5.1 Divided-difference matrices

Define the difference matrix of order k as

Dk =


1 −1
0 1 −1 0

. . . . . .

1 −1


k×(k+1)

. (5.1.1)

We will consider m difference matrices: Dk for k = n− 1, n− 2, . . . , n−m.

Then we define a sequence of scaling matrices as the diagonal matrices with
respect to the data points: {yi}n−10 as follows,

Gi =


1

yi − y0
0

0
. . .

1

yn−1 − yn−i−1


(n−i)×(n−i)

for i = 1, 2, · · · ,m. (5.1.2)

With (5.1.1) and (5.1.2), we can define m divided-difference matrices as follows,

Ei = GiDn−i, i = 1, 2, · · · ,m. (5.1.3)
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Proposition 5.1.1. Given a set of data points {yi}n−1i=0 that satisfy the conditions
(2.2.6) and (2.2.7), the m divided-difference matrices E1, E2, . . . , Em defined in
(5.1.3) have the following property:

EmEm−1 · · ·E1


1 y0 · · · ym−10

1 y1 · · · ym−11
...

...
...

1 yn−1 · · · ym−1n−1

 = 0. (5.1.4)

Proof. Denote

My =


1 y0 · · · ym−10

1 y1 · · · ym−11
...

...
...

1 yn−1 · · · ym−1n−1


.

(5.1.5)

We will apply the divided-difference matrices E1, . . . , Em on My in (5.1.5) one by
one. To see the results clearly, we need to use the standard divided difference
operation, which is defined as follows: Given a polynomial f(x), for l ≥ 1,

f [yl, yl+1, · · · , yl+j] :=
f [yl+1, · · · , yl+j]− f [yl, · · · , yl+j−1]

yl+j − yl
(5.1.6)

and
f [yl] = f(yl). (5.1.7)

Here we need to use the following property of the divided-difference operation:
When f(x) is a polynomial of degree j, then f [yl, yl+1, · · · , yl+j] is a nonzero con-
stant (the leading coefficient of f(x)); when the degree of f(x) is less than j, then
f [yl, yl+1, · · · , yl+j] = 0.

Denote pr(x) = xr for r = 0, 1, . . . ,m− 1. For j = 1, we have

E1My =


0 1

y20 − y21
y0 − y1

· · · ym−10 − ym−11

y0 − y1
...

...
...

0 1
y2n−2 − y2n−1
yn−2 − yn−1

· · ·
ym−1n−2 − ym−1n−1

yn−2 − yn−1



=

0 1 p2[y0, y1] · · · pm−1[y0, y1]
...

...
... · · · ...

0 1 p2[yn−2, yn−1] · · · pm−1[yn−2, yn−1]

 .
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By the definition of the divided difference operation, we can easily see that

Ej · · ·E1My =0 · · · 0 1 pj+1[y0, · · · , yj] · · · pm−1[y0, · · · , yj]
...

...
...

...
...

...
...

0 · · · 0 1 pj+1[yn−j−1, · · · , yn−1] · · · pm−1[yn−j−1, · · · , yn−1]

 .
(5.1.8)

In particular, when j = m, all the columns at the right-hand-side of (5.1.8) are
zero, thus we get (5.1.4), and complete the proof.

5.2 Matrix factorization with divided-difference

matrices

Assume that {yi}n−10 and {ti}n−m+1 satisfy the Shoenberg-Whitney condition. In
order to factorize the general case of B2, we need to develop a general factorization
theory.

Lemma 5.2.1. : Let A = [aij]1≤i,j≤n be an n× n matrix which satisfies

A

1
...
1


n

= 0. (5.2.1)

Then, there exists an n× (n− 1)matrix X such that

A = XD1, (5.2.2)

where D1 is the difference matrix, given by

D1 =


1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · −1 0
0 0 0 · · · 1 −1


(n−1)×n.

(5.2.3)

Furthermore, we can write X explicitly as follows,

X =

[
j∑

k=1

aik

]
1≤i≤n,1≤j≤n−1.

(5.2.4)
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Proof. The condition (5.2.1) leads to

n∑
k=1

aik = 0, for i = 1, 2, · · · , n. (5.2.5)

Since D1 is of full rank, we can easily find its pseudo-inverse as follows,

D+
1 =


1 1 · · · 1
0 1 · · · 1
...

...
...

...
0 0 · · · 1
0 0 · · · 0


n×(n−1).

(5.2.6)

Notice that
D1D

+
1 = In−1, (5.2.7)

which inspires us to consider the following form

X := AD+
1 , (5.2.8)

which has the explicit representation as follows,

X =

[
j∑

k=1

aik

]
1≤i≤n,1≤j≤n−1.

(5.2.9)

Next we shall show that X satisfies the condition (5.2.2). A straightforward cal-
culation results in

XD1 =


a11 · · · a1,n−1 −

∑n−1
k=1 a1k

...
...

...
...

ai1 · · · ai,n−1 −
∑n−1

k=1 aik
...

...
...

...

an1 · · · an,n−1 −
∑n−1

k=1 ank


.

(5.2.10)

The equality (5.2.5) implies that

ain = −
n−1∑
k=1

aik, for i = 1, 2, . . . , n, (5.2.11)

which allows us to simplify the matrix at the right-hand-side of (5.2.10), which is
exactly A. Hence, we complete the proof.
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Definition 5.2.2. Let A = [aij] be an m×n matrix with the following properties:
All the entries of its first row and last row are zero, that is,

a1j = amj = 0, for j = 1, 2, . . . , n.

Then we call it zero-row-ending matrix.

Next, we have a zero-row-ending version of Lemma 5.2.1.

Lemma 5.2.3. Let A = [aij] be an m× n zero-row-ending matrix such that

A

1
...
1


n

= 0. (5.2.12)

Then, there exists an m× (n− 1) matrix X such that

A = XD1, (5.2.13)

where

D1 =


1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · −1 0
0 0 0 · · · 1 −1


(n−1)×n.

(5.2.14)

Furthermore, X is also a zero-row-ending matrix. More specifically, if we write
X = [xij], then we have

xij =

{
0 if i = 1 or m∑j

k=1 aik for 2 ≤ i ≤ m− 1 and 1 ≤ j ≤ n− 1.
(5.2.15)

Proof. Since A is a zero-row-ending matrix, we have

a1j = amj = 0, for j = 1, 2, . . . , n. (5.2.16)

From (5.2.12), we get
n∑
k=1

aik = 0 (5.2.17)
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for i = 2, · · · ,m− 1. Next we just need to verify that X with the form of (5.2.15)
satisfies (5.2.13).

To this end, we write X explicitly based on (5.2.15) and get

X =


0 0 · · · 0
a21 a21 + a22 · · · a21 + · · ·+ a2,n−1
...

... · · · ...
am−1,1 am−1,1 + am−1,2 · · · am−1,1 + · · ·+ am−1,n−1

0 0 · · · 0


.

(5.2.18)

It follows from (5.2.18) and (5.2.14) that

XD1 =


0 0 · · · 0 0

a21 a22 · · · a2,n−1 −
∑n−1

j=1 a2j
...

... · · · ...

am−1,1 am−1,2 · · · am−1,n−1 −
∑n−1

j=1 am−1,j
0 0 · · · 0 0


.

(5.2.19)

(5.2.17) implies that

−
n−1∑
j=1

aij = ain, for i = 2, . . . ,m− 1. (5.2.20)

Thus the right-hand-side of (5.2.19) is exactly A, and we complete the proof.

Proposition 5.2.4. Given n data samples ~y := {yi}n−10 on the interval [a, b] with
the endpoints interpolating property: y0 = a and yn−1 = b, we consider the m-th
order B-splines with n basis functions on the interval [a, b] defined on the knots
~t := {ti}n−m+1. Assume that ~t and ~y satisfy the Shoenberg-Whitney condition.

Denote Bm as the Shoenberg-Whitney matrix with respect to ~t and ~y. There exists
an n× (n− 1) zero-row-ending matrix X̃1, such that

Bm − I = X̃1E1, (m ≥ 1). (5.2.21)

Proof. By the partition of unity property of B-splines, we have

Bm

1
...
1


n

=

1
...
1


n

, (5.2.22)
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which leads to

(Bm − I)

1
...
1


n

= 0. (5.2.23)

We also notice that the matrix Bm − I is an n × n zero-row-ending matrix. By
Lemma 5.2.3, there exists an n× (n− 1) zero-row-ending matrix X such that

(Bm − I) = XD1. (5.2.24)

Observe that
XD1 = XG−11 G1D1 = XG−11 E1.

By taking X̃1 = XG−11 , which is a zero-row-ending matrix obviously, we obtain
(5.2.21) immediately from (5.2.24), and complete the proof.

Proposition 5.2.5. Given n data samples ~y := {yi}n−10 on the interval [a, b] with
the endpoints interpolating property: y0 = a and yn−1 = b, we consider the m-th
order B-splines with n basis functions {Bi,m(x)}n−1i=0 on the interval [a, b] defined
on the knots ~t := {ti}n−m+1. Assume that ~t and ~y satisfy the Shoenberg-Whitney

condition. Denote Bm as the Shoenberg-Whitney matrix with respect to ~t and ~y.
For any n× (n− 1) zero-row-ending matrix X̃1, there exists an n× (n− 1) band
matrix B̃2 of bandwidth 2, such that

BmB̃2 + X̃1 = X̃2E2, (m ≥ 2) (5.2.25)

for some n× (n− 2) zero-row-ending matrix X̃2.

Proof. When n is even, we take B̃2 in the following form

B̃2 =



0 0
. . . . . . . . . . . . . . . 0

0 b̃2
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

... · · · 0 b̃n
2
· · · · · · ...

... · · · b̃n
2
+1 0

. . .
...

...
. . . . . . . . . . . .

...
... · · · . . . . . . b̃n−1 0

0 · · · . . . . . . . . . 0


n×(n−1).

(5.2.26)
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When n is odd, we take

B̃2 =



0 0
. . . . . . . . . . . . . . . . . . 0

0 b̃2
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . .
...

... · · · 0 b̃n−1
2
· · · · · · · · · ...

... · · · . . . 0 b̃n+1
2

. . . . . .
...

...
. . . . . . . . . b̃n+3

2
0

. . .
...

...
. . . . . . . . . . . . . . . . . .

...
... · · · . . . . . . . . . b̃n−1 0

0 · · · . . . . . . . . . . . . 0 0


n×(n−1).

(5.2.27)

Obviously (5.2.26) and (5.2.27) are band matrix of bandwidth 2. To determine
the parameters {b̃2, . . . , b̃n−1}, we need

(BmB̃2 + X̃1)

1
...
1


(n−1)×1

= 0. (5.2.28)

Denote X̃1 = [xij]1≤i≤n,1≤j≤n−1. Since X̃1 is a zero-row-ending matrix, we have

x1j = 0 and xnj = 0 for 1 ≤ j ≤ n− 1. (5.2.29)

We can simplify (5.2.28) to

Bm


0

b̃2
...

b̃n−1
0


n×1

+


0∑n−1

k=1 x2k
...∑n−1

k=1 xn−1,k
0


n×1

= 0. (5.2.30)

Since the Shoenberg-Whitney matrix Bm is invertible, we can find the solution for
{b̃1, b̃2, . . . , b̃n} from (5.2.30) as follows,

b̃1...
b̃n

 = −B−1m


0∑n−1

k=1 x2k
...∑n−1

k=1 xn−1,k
0

 . (5.2.31)
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Now we claim that b̃1 = 0 and b̃n = 0. Indeed, from (5.2.31), we have

Bm

b̃1...
b̃n

 = −


0∑n−1

k=1 x2k
...∑n−1

k=1 xn−1,k
0

 . (5.2.32)

Notice that the first row of Bm is [1, 0, . . . , 0], and the last row of Bm is [0, . . . , 0, 1].
By comparing the two sides of (5.2.32), we get b̃1 = 0 and b̃n = 0. Thus, we find
b̃2, . . . , b̃n−1 that satisfy (5.2.30).

To make the final conclusion, we observe that BmB̃2+X̃1 is an n×(n−1) zero-
row-ending matrix and it satisfies (5.2.28). By 5.2.3, there exists an n × (n − 2)
zero-row-ending matrix X̃2 that satisfies (5.2.25), and we complete the proof.

Then we combine the above two results, and get the following factorization
result.

Proposition 5.2.6. ., Given n data samples ~y := {yi}n−10 on the interval [a, b]
with the condition: y0 = a and yn−1 = b, we consider the m-th order B-splines
with n basis functions on the interval [a, b] defined on the knots ~t := {ti}n−m+1.

Assume that ~t and ~y satisfy the Shoenberg-Whitney condition. Denote Bm as the
Shoenberg-Whitney matrix with respect to ~t and ~y. There exists an n × n band
matrix B̃0 with bandwidth 3, such that

BmB̃0 − I = X̃E2E1, (m ≥ 2) (5.2.33)

for some n× (n− 2) matrix X̃.

Proof. : With the given conditions, we apply (5.2.4) first on Bm, and get

Bm − I = X̃1E1 (5.2.34)

for some n× (n− 1) zero-row-ending matrix X̃1. With this X̃1, we apply on Bm,
and get an n× (n− 1) band matrix B̃2 with bandwidth 2, such that

BmB̃2 + X̃1 = X̃2E2 (5.2.35)

for some n× (n− 2) zero-row-ending matrix X̃2. It follows from (5.2.34)- (5.2.35)
that

Bm(B̃2E1 + I)− I = X̃2E2E1. (5.2.36)
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Now we take
B0 = B̃2E1 + I. (5.2.37)

It is easy to see that B̃0 is an n × n band matrix of bandwidth 3 that satisfies
(5.2.33), and we complete the proof.

Proposition 5.2.7. With the same condition as above for m ≥ 2, there exists an
n× n banded matrix B̃0 with bandwidth 3, such that

B̃0

1 y0
...

...
1 yn−1

 =

1 ρ10,m
...

...
1 ρ1n−1,m


.

(5.2.38)

Proof. By Proposition (5.2.6), we can find a banded matrix B̃0 of bandwidth 3,
such that

BmB̃0 − I = X̃E2E1 (5.2.39)

for some n× (n− 2) matrix X̃. Then by Proposition (5.1.1), we have

(BmB̃0 − I)

1 y0
...

...
1 yn−1

 = X̃E2E1

1 y0
...

...
1 yn−1

 = 0,

which implies that

BmB̃0

1 y0
...

...
1 yn−1

 =

1 y0
...

...
1 yn−1


.

Hence, we obtain

B̃0

1 y0
...

...
1 yn−1

 = B−1m

1 y0
...

...
1 yn−1


.

(5.2.40)

By identity (4.2.9), the right-hand-side of (5.2.40) equals the right-hand-side of
(5.2.38), and we complete the proof.

Remark 5.2.8. In the proof of Proposition 5.2.5, we use the matrix inverse
B−1m to get the band matrix B̃2. But in the real world applications, we should avoid
taking any matrix inverse, because it is too expensive (even if for m = 2). Thus,
we need to find the explicit formula for B̃2 when m = 2.
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In the next section, we will use a special case for B2 with n = 8 to find the
explicit formula for B̃0 in (5.2.33).

5.3 Determine the Band Matrix of Approximate

Inverse for a Special Case

In this section, we will use the following matrix factorization steps to find the
explicit formula for B̃0 in (5.2.33). The first time, we work on a special case, and
we will work on the general case in the next section.

In the special case, we assume that

a = t0 = (y0) ⇀ (y1) ⇀ t1 ⇀ (y2) ⇀ t2 ⇀ (y3) ⇀ t3

⇀ t4 ⇀ (y4) ⇀ t5 ⇀ (y5) ⇀ t6 ⇀ (y6) ⇀ b = t7 = (y7)

for the knots-samples relationship to start our investigation. We do the matrix
factorization in the following steps.

The structure of the Shronberg-Whitney matrix can be represented as the
following format:

B2 := [bji]8×8,

where bij := Bi,2(yj), that is,

B2 =



1 0 0 0 0 0 0 0
b01 b11 0 0 0 0 0 0
0 b12 b22 0 0 0 0 0
0 0 b23 b33 0 0 0 0
0 0 0 0 b44 b45 0 0
0 0 0 0 0 b55 b56 0
0 0 0 0 0 0 b66 b67
0 0 0 0 0 0 0 1


.

Notice that there is no data sample between the knots t3 and t4, the B2 matrix
is a block-diagonal matrix with two diagonal blocks.
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1. Find B̃1 and X̃1, such that

B2B̃1 − I = X̃1E1, (5.3.1)

where

E1 =



1

y1 − y0
1

y2 − y1
. . .

1

y7 − y6




1 −1

1 −1
. . . . . .

1 −1


7×8

.

(5.3.2)
We take B̃1 = I. Denote 18 as the column matrix with all entries 1, that is,

18 =


1
1
...
1


1×8

. (5.3.3)

The partition of unit property of the B-spline functions implies that

(B2B̃1 − I)18 = 0, (5.3.4)

which allows us to do the following factorization:

B2B̃1 − I = X1D1, (5.3.5)

where

D1 :=


1 −1

1 −1
. . . . . .

1 −1


7×8

. (5.3.6)

To find X1 in (5.3.5), we need the pseudo-inverse of D1, that is,

D+
1 =


1 1 1 · · · 1
0 1 1 · · · 1

0 0
. . . · · · 1

0 0 0 · · · 1
0 0 0 · · · 0


8×7

. (5.3.7)

Thus, we have
X1 = (B2B̃1 − I)D+

1 = (5.3.8)
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0 0 0 0 0 0 0
b01 0 0 0 0 0 0
0 b12 0 0 0 0 0
0 0 b23 0 0 0 0
0 0 0 0 b44 0 0
0 0 0 0 0 b55 0
0 0 0 0 0 0 b66
0 0 0 0 0 0 0


.

Then we have

X̃1 = X1


y1 − y0

y2 − y1
. . .

y7 − y6

 . (5.3.9)

Denote
dkj := yj − yj−k. (5.3.10)

Now we can write X̃1 as follows

X̃1 =



0 0 0 0 0 0 0
d11 b01 0 0 0 0 0 0
0 d12 b12 0 0 0 0 0
0 0 d13 b23 0 0 0 0
0 0 0 0 d14 b44 0 0
0 0 0 0 0 d15 b55 0
0 0 0 0 0 0 d16 b66
0 0 0 0 0 0 0


. (5.3.11)

2. Find B̃2 and X̃2, such that

B2B̃2 + X̃1 = X̃2E2, (5.3.12)

where

E2 =



1

y2 − y0
1

y3 − y1
. . .

1

y7 − y5




1 −1

1 −1
. . . . . .

1 −1


6×7

.

(5.3.13)
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Assume that

B̃2 =



0 0 0 0 0 0 0

b̃1 0 0 0 0 0 0

0 b̃2 0 0 0 0 0

0 0 b̃3 0 0 0 0

0 0 0 b̃4 0 0 0

0 0 0 0 b̃5 0 0

0 0 0 0 0 b̃6 0
0 0 0 0 0 0 0


8×7

. (5.3.14)

We will determine b̃1, . . . , b̃6 such that

(B2B̃2 + X̃1)17 = 0, (5.3.15)

that is,

1 0 0 0 0 0 0 0
b01 b11 0 0 0 0 0 0
0 b12 b22 0 0 0 0 0
0 0 b23 b33 0 0 0 0
0 0 0 0 b44 b45 0 0
0 0 0 0 0 b55 b56 0
0 0 0 0 0 0 b66 b67
0 0 0 0 0 0 0 1


.



0

b̃1
b̃2
b̃3
b̃4
b̃5
b̃6
0


=



0
−d11 b01
−d12 b12
−d13 b23
−d14 b44
−d15 b55
−d16 b66

0


. (5.3.16)

For this particular example, we find that

b̃1 = y1 − t1, b̃2 = y2 − t2, b̃3 = y3 − t3,

b̃4 = y4 − t4, b̃5 = y5 − t5, b̃6 = y6 − t6. (5.3.17)

Now we can calculate B̃0 using the formula (5.2.37).

B̃0 = B̃2X1 + I =
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1 0 0 0 0 0 0 0
y1 − t1
y1 − y0

t1 − y0
y1 − y0

0 0 0 0 0 0

0
y2 − t2
y2 − y1

t2 − y1
y2 − y1

0 0 0 0 0

0 0
y3 − t3
y3 − y2

t3 − y2
y3 − y2

0 0 0 0

0 0 0 0
y4 − t4
y4 − y3

t4 − y3
y4 − y3

0 0

0 0 0 0 0
y5 − t5
y5 − y4

t5 − y4
y5 − y4

0

0 0 0 0 0 0
y6 − t6
y6 − y5

t6 − y5
y6 − y5

0 0 0 0 0 0 0 1



.

(5.3.18)

5.4 Determine the Band Matrix of Approximate

Inverse for the General Case

This time we will use the general expression of B2 with the indicator variables
{σi}n−2i=1 as in Chapter 3. Specifically, we take equation (3.1.6) here,

B2 :=


1 0 0 · · · 0

B0,2(y1) B1,2(y1) B2,2(y1) · · · 0

0
. . . . . . . . . 0

0
. . . Bn−3,2(yn−2) Bn−2,2(yn−2) Bn−1,2(yn−2)

0 0 · · · 0 1


n×n

,

where Bi−1,2(yi), Bi,2(yi), Bi+1,2(yi) can be represented as
Bi−1,2(yi) = σi

ti − yi
ti − ti−1

,

Bi,2(yi) = σi
yi − ti−1
ti − ti−1

+ (1− σi)
ti+1 − yi
ti+1 − ti

,

Bi+1,2(yi) = (1− σi)
yi − ti
ti+1 − ti

.

(5.4.1)

with

σi =

{
1 if yi ∈ (ti−1, ti)

0 if yi ∈ [ti, ti+1).
(5.4.2)

We will use the same method as in the previous section under the new formulation.
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1. Find B̃1 and X̃1, such that

B2B̃1 − I = X̃1E1, (5.4.3)

where
E1 =

1

y1 − y0
1

y2 − y1
. . .

1

yn−1 − yn−2


(n−1)×(n−1)


1 −1

1 −1
. . . . . .

1 −1


(n−1)×n

.

(5.4.4)
We take B̃1 = In. Denote 1n as the column matrix with all entries 1, that
is,

1n =


1
1
...
1


1×n

. (5.4.5)

The partition of unit property of the B-spline functions implies that

(B2B̃1 − In)1n = 0, (5.4.6)

which allows us to do the following factorization:

B2B̃1 − I = X1D1, (5.4.7)

where

D1 :=


1 −1

1 −1
. . . . . .

1 −1


(n−1)×n

. (5.4.8)

To find X1 in (5.4.7), we need the pseudo-inverse of D1, that is,

D+
1 =


1 1 1 · · · 1
0 1 1 · · · 1

0 0
. . . · · · 1

0 0 0 · · · 1
0 0 0 · · · 0


n×(n−1)

. (5.4.9)

Thus, we have
X1 = (B2B̃1 − I)D+

1 = (5.4.10)
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0 0 0 0 0 0
B0,2(y1) −B2,2(y1) 0 0 0 0

0 B1,2(y2) −B3,2(y2) 0 0 0

0
. . . . . . . . . 0 0

0 0 Bi−1,2(yi) −Bi+1,2(yi) 0 0

0 0
. . . . . . . . . 0

0 0 0
. . . Bn−3,2(yn−2) −Bn−1,2(yn−2)

0 0 0 0 0 0


n×(n−1)

.

With the notations in (5.4.1), we have

X1 =



0 0 0 0 0 0

σ1
t1 − y1

t1 − t0
(σ1 − 1)

y1 − t1

t2 − t1
0 0 0 0

0 σ2
t2 − y2

t2 − t1
(σ2 − 1)

y2 − t2

t3 − t2
0 0 0

0
. .
.

. .
.

. .
. 0 0

0 0 σi
ti − yi

ti − ti−1

(σi − 1)
yi − ti

ti+1 − ti
0 0

0 0
. .
.

. .
.

. .
. 0

0 0 0
.
.
. σn−2

tn−2 − yn−2

tn−2 − tn−3

(σn−2 − 1)
yn−2 − tn−2

tn−1 − tn−2
0 0 0 0 0 0


n×(n−1)

.

(5.4.11)

Then we use

X̃1 = X1


y1 − y0

y2 − y1
. . .

yn−1 − yn−2


(n−1)×(n−1)

. (5.4.12)

Denote
dkj := yj − yj−k. (5.4.13)

We can write X̃1 as

X̃1 = X1


d11

d12
. . .

d1n−1


(n−1)×(n−1)

=
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0 0 0 0 0

σ1d11
t1 − y1
t1 − t0

(σ1 − 1)d12
y1 − t1
t2 − t1

0 0 0

0 σ2d12
t2 − y2
t2 − t1

(σ2 − 1)d13
y2 − t2
t3 − t2

0 0

0
. . .

. . .
. . . 0

0 0 σid
1
i

ti − yi
ti − ti−1

(σi − 1)d1i+1

yi − ti
ti+1 − ti

0

0 0
. . .

. . . 0

0 0
. . . σn−2d1n−2

tn−2 − yn−2

tn−2 − tn−3
(σn−2 − 1)d1n−1

yn−2 − tn−2

tn−1 − tn−2
0 0 0 0 0


.

2. Find B̃2 and X̃2, such that

B2B̃2 + X̃1 = X̃2E2, (5.4.14)

where

E2 =



1

y2 − y0
1

y3 − y1
. . .

1

yn−1 − yn−3




1 −1

1 −1
. . . . . .

1 −1


(n−2)×(n−1)

.

(5.4.15)
To make B̃2 as simple as possible, we take

B̃2 =



0 0 0 0 0 0 0

b̃1 0 0 0 0 0 0

0 b̃2 0 0 0 0 0

0 0
. . . 0 0 0 0

0 0 0
. . . 0 0 0

0 0 0 0
. . . 0 0

0 0 0 0 0 b̃n−2 0
0 0 0 0 0 0 0


n×(n−1)

. (5.4.16)

We will determine b̃1, . . . , b̃n−2 such that

(B2B̃2 + X̃1)1n−1 = 0, (5.4.17)
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that is,



1 0 0 0 0 0
B0,2(y1) B1,2(y1) B2,2(y1) 0 0 0

0 B1,2(y2) B2,2(y2) B3,2(y2) 0 0

0 0
. . . . . . . . . 0

0 0 0 Bn−3,2(yn−2) Bn−2,2(yn−2) Bn−1,2(yn−2)
0 0 0 0 0 1


.



0

b̃1
b̃2
...
...
...

b̃n−2
0



= −



0

σ1d
1
1

t1 − y1
t1 − t0

+ (σ1 − 1)d12
y1 − t1
t2 − t1

σ2d
1
2

t2 − y2
t2 − t1

+ (σ2 − 1)d13
y2 − t2
t3 − t2

...

...

σn−2d
1
n−2

tn−2 − yn−2
tn−2 − tn−3

+ (σn−2 − 1)d1n−1
yn−2 − tn−2
tn−1 − tn−2

0


.

Based on our example in the previous section, we make the following guess,

b̃1 = y1 − t1, b̃2 = y2 − t2, · · · , b̃n−2 = yn−2 − tn−2. (5.4.18)

Next we need to prove the above conjecture. Let us do the calculation as follows,

LHS = b̃i−1Bi−1,2(yi) + b̃iBi,2(yi) + b̃i+1Bi+1,2(yi)

= (yi−1 − ti−1)σi
ti − yi
ti − ti−1

+ (yi − ti)σi
yi − ti−1
ti − ti−1

+

(yi − ti) (1− σi)
ti+1 − yi
ti+1 − ti

+ (yi+1 − ti+1) (1− σi)
yi − ti
ti+1 − ti

= σi

(
(yi−1 − ti−1)

ti − yi
ti − ti−1

+ (yi − ti)
yi − ti−1
ti − ti−1

)
+(1− σi)

(
(yi − ti)

ti+1 − yi
ti+1 − ti

+ (yi+1 − ti+1)
yi − ti
ti+1 − ti

)
.

and

RHS = −σi d1i
ti − yi
ti − ti−1

+ (1− σi) d1i+1

yi − ti
ti+1 − ti

= −σi (yi − yi−1)
ti − yi
ti − ti−1

+ (1− σi) (yi+1 − yi)
yi − ti
ti+1 − ti

.
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Comparing the two sides above, we need to verify the following identities:

(yi−1 − ti−1) (ti − yi) + (yi − ti) (yi − ti−1) = (yi−1 − yi) (ti − yi)

and
(yi − ti) (ti+1 − yi) + (yi+1 − ti+1) (yi − ti) = (yi+1 − yi) (yi − ti).

We can that the above two identities are true by factorizing the common factors
(ti − yi) and (yi − ti), respectively. Thus, our conjecture is true. Based on this
property, we can get the following theorem.

Theorem 5.4.1. Given n data samples ~y := {yi}n−10 on the interval [a, b] with
the endpoints interpolating property: y0 = a and yn−1 = b, we consider the linear
B-splines with n basis functions {Bi,2(x)}n−1i=0 on the interval [a, b] defined on the
knots {ti}n−1 with

a = t−1 = t0 < t1 < t2 < · · · < tn−2 < tn−1 = tn = b.

Assume that
ti−1 < yi < ti+1, 1 ≤ i ≤ n− 2,

and we denote ~t := {ti}n−10 . Then the Shoenberg-Whitney matrix defined as follows

B2(~t, ~y) :=


1 0 0 · · · 0

B0,2(y1) B1,2(y1) B2,2(y1) · · · 0

0
. . . . . . . . . 0

0
. . . Bn−3,2(yn−2) Bn−2,2(yn−2) Bn−1,2(yn−2)

0 0 · · · 0 1


n×n

(5.4.19)
has an approximate inverse of the form B2(~y,~t), i.e.

B2 (~t, ~y)

1 y0
...

...
1 yn−1

 = B2(~y,~t)

1 y0
...

...
1 yn−1

 . (5.4.20)

Proof. By the matrix factorization steps above, we can find X̃1 of the form (5.4.12),
such that

B2 − In = X̃1E1, (5.4.21)

where E1 is defined in (5.4.4). Since B2 contains the indicator variables {σi}n−2i=1 ,
we choose our B̃2 factoring in the σ-structure as follows

B̃2 =
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0 0 0 0 0 0 0
σ1 (y1 − t1) (1− σ1) (y1 − t1) 0 0 0 0 0

0 σ2 (y2 − t2) (1− σ2) (y2 − t2) 0 0 0 0

0 0
. . . 0 0 0 0

0 0 0
. . . 0 0 0

0 0 0 0
. . . 0 0

0 0 0 0 0 σn−2 (yn−2 − tn−2) (1− σn−2) (yn−2 − tn−2)
0 0 0 0 0 0 0


n×(n−1)

,

(5.4.22)

and we can get
(B2B̃2 + X̃1) 1n−1 = 0 (5.4.23)

by the following identity

(yi−1 − ti−1)Bi−1,2(yi) + (yi − ti)Bi,2(yi) + (yi+1 − ti+1)Bi+1,2(yi)

= −σi (yi − yi−1)
ti − yi
ti − ti−1

+ (1− σi) (yi+1 − yi)
yi − ti
ti+1 − ti

,

where the general expressions of Bi−1,2(yi), Bi,2(yi), and Bi+1,2(yi) are given by
(5.4.1). The identity (5.4.23) implies that there exists an n× (n− 2) matrix X̃2,
such that

B2B̃2 + X̃1 = X̃2E2,

with E2 given by (5.4.15). Combine (5.4.21) and (5.4.23), we get

B2 (In + B̃2E1)− In = X̃2E2E1. (5.4.24)

Now we define
B̃0 := In + B̃2E1. (5.4.25)

We can write (5.4.24) as
B2 B̃0 − In = X̃2E2E1. (5.4.26)

By Proposition (5.1.1), we have that

(B2 B̃0 − In)


1 y0
1 y1
...

...
1 yn−1


n×2

= X̃2E2E1


1 y0
1 y1
...

...
1 yn−1


n×2

= 0,

which implies that

B−12


1 y0
1 y1
...

...
1 yn−1


n×2

= B̃0


1 y0
1 y1
...

...
1 yn−1


n×2

.
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By the definition of the approximate inverse, we can see that B̃0 is an approximate
inverse of B2. Next we will find the expression of B̃0 by calculating In + B̃2E1 in
the following steps.

1. Calculate B̃2 diag

(
1

y1 − y0
, . . . ,

1

yn−1 − yn−2

)
By (5.4.22), we have

B̃2 diag

(
1

y1 − y0
, . . . ,

1

yn−1 − yn−2

)
=



0 0 0 0 0 0 0

σ1
y1 − t1
y1 − y0

(1− σ1)
y1 − t1
y2 − y1

0 0 0 0 0

0 σ2
y2 − t2
y2 − y1

(1− σ2)
y2 − t2
y3 − y2

0 0 0 0

0 0
. . . 0 0 0 0

0 0 0
. . . 0 0 0

0 0 0 0
. . . 0 0

0 0 0 0 0 σn−2
yn−2 − tn−2

yn−2 − yn−3
(1− σn−2)

yn−2 − tn−2

yn−1 − yn−2
0 0 0 0 0 0 0



.

(5.4.27)

2. Calculate B̃2E1

By (5.4.4), we have

B̃2E1 = B̃2 diag

(
1

y1 − y0
, . . . ,

1

yn−1 − yn−2

)
D1,

where D1 is the difference matrix defined in (5.4.8). Notice that the (i+1)-th

row of B̃2 diag

(
1

y1 − y0
, . . . ,

1

yn−1 − yn−2

)
is

[
0 · · · 0 σi

yi − ti
yi − yi−1

, (1− σi)
yi − ti
yi+1 − yi

, 0 · · · 0

]
,

where the first nonzero entry is at the i-th location in the row. Then we can
get the (i+ 1)-th row of B̃2E1 as[
0 · · · 0 σi

yi − ti
yi − yi−1

, −σi
yi − ti
yi − yi−1

+ (1− σi)
yi − ti
yi+1 − yi

, −(1− σi)
yi − ti
yi+1 − yi

, 0 · · · 0
]
,

where the first nonzero entry is also at the i-th location of the row.
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3. Calculate In + B̃2E1

It is easy to see that the (i+ 1)-th row of In + B̃2E1 is[
0 · · · 0 σi

yi − ti
yi − yi−1

, 1− σi
yi − ti
yi − yi−1

+ (1− σi)
yi − ti
yi+1 − yi

, (1− σi)
ti − yi
yi+1 − yi

, 0 · · · 0
]
,

which can be simplified as[
0 · · · 0 σi

yi − ti
yi − yi−1

, σi
ti − yi−1

yi − yi−1
+ (1− σi)

yi+1 − ti
yi+1 − yi

, (1− σi)
ti − yi
yi+1 − yi

, 0 · · · 0

]
,

(5.4.28)

where the first nonzero entry is also at the i-th location of the row.

In order to compare B2 with B̃0, we also list the (i+ 1)-th row of B2 here, i.e.[
0 · · · 0 Bi−1,2(yi) Bi,2(yi) Bi+1,2(yi) 0 · · · 0

]
,

which is[
0 · · · 0 σi

ti − yi
ti − ti−1

, σi
yi − ti−1

ti − ti−1
+ (1− σi)

ti+1 − yi
ti+1 − ti

, (1− σi)
yi − ti
ti+1 − ti

, 0 · · · 0

]
.

(5.4.29)

By examining the expressions of (5.4.28) and (5.4.29), we observe the following
relationship between them: If we switch the positions of t and y in the first
expression, we will get the second expression. In other words, these two vectors
have the duality property with respect to ~t and ~y. By extending this property to
the whole matrix, we get

B2(~t, ~y) = B̃0(~y,~t),

which is the same as (5.4.20), and we complete the proof.

From this theorem, we can easily get the following corollary.

Corollary 5.4.2. With the same conditions and notations as in Theorem 5.4.1,
we have the following identity:

(
B2 (~t, ~y)B2(~y,~t) − In

)1 y0
...

...
1 yn−1

 = 0. (5.4.30)
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Proof. By Theorem 5.4.1, we have

B2(~t, ~y) = B̃0(~y,~t),

or equivalently,
B̃0(~t, ~y) = B2(~y,~t). (5.4.31)

By the definition of approximate inverse, we have that

B−12 (~t, ~y)

1 y0
...

...
1 yn−1

 = B̃0(~t, ~y)

1 y0
...

...
1 yn−1

 . (5.4.32)

It follows from (5.4.31) and (5.4.32) that

B−12 (~t, ~y)

1 y0
...

...
1 yn−1

 = B2(~y,~t)

1 y0
...

...
1 yn−1

 ,
which is the same as (5.4.30), and we complete the proof.

Next we will use the band matrix B̃0 to construct a local quasi-interpolating
operator.

5.5 Local Quasi-Interpolating Operator for Lin-

ear B-Splines

(Compare our new result with the following identity:)

∞∑
k=−∞

p(k)Nm(x− k) =
m−1∑
k=0

Nm(k)p(x− k).

Looking from this angle: Switching the knots ~t and the sampling points ~y. For
the linear case (m = 2), there is a duality property between ~t and ~y. But for the
general case, this property may be lost.

With the explicit formula for the approximate inverse of B2 as in (5.4.20), we
can write the data-induced (DI) linear operator for B̃0 as follows.
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With n data samples ~y := {yi}n−10 on the interval [a, b] satisfying the end-
points interpolating property: y0 = a and yn−1 = b, we use the n linear B-splines
{Bi,2(x)}n−1i=0 on the interval [a, b] defined on the knots {ti}n−1 to define the follow-
ing linear operator:

B̃0
y : C[a, b]→ Sm,t with

(B̃0
yf)(x) =

n−1∑
k=0

(B̃0
~fy)kBk,m(x), (5.5.1)

where
~fy = [f(y0), · · · , f(yn−1)]

T . (5.5.2)

In order to see this operator clearly, we would like to write its expression explicitly.

First, let us write the matrix B̃0 explicitly. We use b̃i0, i = 0, 1, . . . , n − 1 to

denote the n rows of B̃0. Thus the matrix-vector product B̃0
~fy can be represented

as

B̃0
~fy =


〈b̃00, ~fy〉
〈b̃10, ~fy〉

...

〈b̃n−10 , ~fy〉

 ,
where the notation 〈·, ·〉 is the regular inner-product of two vectors. Hence, (5.5.1)
can be written as

(B̃0
yf)(x) =

n−1∑
i=0

〈b̃i0, ~fy〉Bi,m(x).

Furthermore, let us write the expression of 〈b̃i0, ~fy〉 explicitly. By (5.4.28), we have

〈b̃i0, ~fy〉 = σi
yi − ti
yi − yi−1

f(yi−1) +

(
σi
ti − yi−1

yi − yi−1
+ (1− σi)

yi+1 − ti
yi+1 − yi

)
f(yi) + (1− σi)

ti − yi
yi+1 − yi

f(yi+1).

In order to see a complete picture of (5.5.1), we write it as follows,

(B̃0
yf)(x) =

∑n−1
i=0

[
σi

yi − ti
yi − yi−1

f(yi−1) +

(
σi

ti − yi−1

yi − yi−1
+ (1− σi)

yi+1 − ti
yi+1 − yi

)
f(yi) + (1− σi)

ti − yi
yi+1 − yi

f(yi+1)

]
Bi,m(x).

(5.5.3)

In order to show that the linear operator in (5.5.1) is a quasi-interpolating opera-
tor, we need to show that

(B̃0
y1)(x) = 1 and (B̃0

yx)(x) = x.

The first identity can be verified easily by the partition of unity for B-splines as
follows,
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(B̃0
y1)(x) =

n−1∑
i=0

[
σi

yi − ti
yi − yi−1

· 1 +

(
σi

ti − yi−1

yi − yi−1
+ (1− σi)

yi+1 − ti
yi+1 − yi

)
· 1 + (1− σi)

ti − yi
yi+1 − yi

· 1
]
Bi,m(x)

=

n−1∑
i=0

[σi · 1 + (1− σi) · 1]Bi,m(x) =

n−1∑
i=0

Bi,m(x) = 1.

To verify the second identity, we need to calculate the following expression:

(B̃0
yx)(x) =

n−1∑
i=0

[
σi

yi − ti
yi − yi−1

· yi−1 +

(
σi

ti − yi−1

yi − yi−1
+ (1− σi)

yi+1 − ti
yi+1 − yi

)
· yi + (1− σi)

ti − yi
yi+1 − yi

· yi+1

]
Bi,m(x).

Let us simplify the coefficient for each Bi,m(x) first.

σi
yi − ti
yi − yi−1

· yi−1 +

(
σi
ti − yi−1

yi − yi−1
+ (1− σi)

yi+1 − ti
yi+1 − yi

)
· yi + (1− σi)

ti − yi
yi+1 − yi

· yi+1

=σi

(
yi − ti
yi − yi−1

· yi−1 +
ti − yi−1

yi − yi−1
· yi
)
+ (1− σi)

(
yi+1 − ti
yi+1 − yi

· yi +
ti − yi
yi+1 − yi

· yi+1

)

=σi ti + (1− σi) ti = ti.

With this simplification, we have

(B̃0
yx)(x) =

n−1∑
i=0

tiBi,m(x) = x,

where the last equality is based on the Marsden’s identity for the linear case.

Next Question: How to connect the following two identities?

∞∑
k=−∞

p(k)Nm(x− k) =
m−1∑
k=0

Nm(k)p(x− k)

and
B2(~t, ~y) = B̃0(~y,~t).

To see this, we need to go back to the definition of the approximate inverse and
the definition of the DI-operator.

First we simplify the first identity by using a monomial to replace the polyno-
mial, i.e., replacing p(x) by xr for some 0 ≤ r ≤ m− 1. We have

∞∑
k=−∞

krNm(x− k) =
m−1∑
k=0

Nm(k)(x− k)r.
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Here our focus is on: How the knot vector and the data sample vector switch.

In the Cardinal B-spline case, both the knot vector and the data sample vec-
tor are using integers. It is hard to separate them. Let us list the following two
properties.

Polynomial preservation property :

L


yr0
yr1
...

yrn−1

 =


ρr0,m
ρr1,m

...
ρrn−1,m

 , for r = 0, 1, · · · ,m− 1,

then
(Lyp)(x) = p(x), for all p ∈ πm−1,

where ρr0,m, . . . , ρ
r
n−1,m are the Marsden’s coefficients.

The B-spline interpolating operator preserves the polynomials.

B−1m


yr0
yr1
...

yrn−1

 =


ρr0,m
ρr1,m

...
ρrn−1,m

 .
For the linear case, we have the following results:

B−12 (~t, ~y)


yr0
yr1
...

yrn−1

 =


ρr0,2
ρr1,2

...
ρrn−1,2

 ,
which is equivalently as

B2(~y,~t)


yr0
yr1
...

yrn−1

 =


ρr0,2
ρr1,2

...
ρrn−1,2

 ,
For the Cardinal B-splines, we can view Nm(x− k) as Nk,m(x) for any integer

k. Now we can write

∞∑
k=−∞

p(k)Nm(x− k) =
[
· · · Nk−1,m(x) Nk,m(x) Nk+1,m(x) · · ·

]


...
(k − 1)r

kr

(k + 1)r

...
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Chapter 6

Conclusion and Future Research

In this work, we constructed a local quasi-interpolating operator for the linear
B-splines which can be used to do data interpolation without using any matrix
inverse. The construction is based on the matrix factorization technique. The suc-
cess of this method relies on a matrix criterion for the polynomial reproduction
using the coefficients of the Marsden’s identities.

We believe that this method can be extended to more general situation. For
example, we can consider the spaces generated by refinable functions. We can
also consider the basis functions on the real axis. In these cases, how to define
the approximate inverse concept, and what are the properties for the approximate
inverses in these general cases?

We also plan to apply our quasi-interpolation operators on some real-world ap-
plication problems. In many data processing problems, real-time response is very
important. Since our method avoids matrix inverse computation that is needed in
most existing data interpolating methods, we have a very good change to achieve
the linear (O(n)) performance in those problems.

We will develop computer programs in Matlab, R, and Python with user
friendly interfaces and make them available in the community, so that our methods
can be applied to many data processing problems in the community.

In order to get the approximate inverse formulas for m ≥ 3, we do the following
calculations for some special cases.
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6.1 Quadratic B-spline - General case

Next, we will do factorization on B3. Assume that we are given n sample points:
{yk}n−1k=0 spread on the interval [a, b] with the following condition:

a = y0 < y1 < · · · < yn−2 < yn−1 = b.

To do the quadratic B-spline interpolation on these sample points, we construct a
set of quadratic B-splines {Bi,3(x)}n−1i=0 using the knots {tk}nk=−2 with the following
form:

a = t−2 = t−1 = t0 < t1 < t2 < · · · < tn−3 < tn−2 = tn−1 = tn = b,

where the basis function Bi,3(x) is constructed from the knots: {ti−2, ti−1, ti, ti+1}
for i = 0, . . . , n − 1. Furthermore, the Shoenberg-Whitney condition must be
satisfied, that is,

ti−2 < yi < ti+1, for 1 ≤ i ≤ n− 2,

which implies that

yi−1 < ti < yi+2, for 1 ≤ i ≤ n− 3.

1. Find B̃1 and X̃1, such that

B3B̃1 − I = X̃1E1, (6.1.1)

where

E1 =


1

y1−y0
1

y2−y1
. . .

1
y8−y7


9×9


1 −1

1 −1
. . . . . .

1 −1


8×9

. (6.1.2)

We take B̃1 = I. Denote 19 as the column matrix with all entries 1, that is,

19 =


1
1
...
1


1×9

. (6.1.3)

The partition of unit property of the B-spline functions implies that

(B3B̃1 − I)19 = 0, (6.1.4)
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which allows us to do the following factorization:

B3B̃1 − I = X1D1, (6.1.5)

where

D1 :=


1 −1

1 −1
. . . . . .

1 −1


8×9

. (6.1.6)

To find X1 in (6.1.5), we need the pseudo-inverse of D1, that is,

D+
1 =


1 1 1 · · · 1
0 1 1 · · · 1

0 0
. . . · · · 1

0 0 0 · · · 1
0 0 0 · · · 0


9×8

. (6.1.7)

Thus, we have
X1 = (B3B̃1 − I)D+

1 = (6.1.8)

0 0 0 0 0 0 0 0
B01 −B21 0 0 0 0 0 0
0 B12 −B32 0 0 0 0 0
0 0 B23 −B43 0 0 0 0
0 0 0 B34 −B54 0 0 0
0 0 0 0 B45 −B65 0 0
0 0 0 0 0 B56 −B76 0
0 0 0 0 0 0 B67 −B87

0 0 0 0 0 0 0 0


9×8

,

where Bij means Bi,3(yj). Then we have

X̃1 = X1


y1 − y0

y2 − y1
. . .

y8 − y7


8×8

. (6.1.9)

Denote
dkj := yj − yj−k. (6.1.10)
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Now we can write X̃1 as follows

X̃1 =



0 0 0 0 0 0 0 0
d11B01 −d12B21 0 0 0 0 0 0

0 d12B12 −d13B32 0 0 0 0 0
0 0 d13B23 −d14B43 0 0 0 0
0 0 0 d14B34 −d15B54 0 0 0
0 0 0 0 d15B45 −d16B65 0 0
0 0 0 0 0 d16B56 −d17B76 0
0 0 0 0 0 0 d17B67 −d18B87

0 0 0 0 0 0 0 0


9×8

.

(6.1.11)

2. Find B̃2 and X̃2, such that

B3B̃2 + X̃1 = X̃2E2, (6.1.12)

where

E2 =


1

y2−y0
1

y3−y1
. . .

1
y8−y6




1 −1
1 −1

. . . . . .

1 −1


7×8

. (6.1.13)

Assume that

B̃2 =



0 0 0 0 0 0 0 0

b̃1 0 0 0 0 0 0 0

0 b̃2 0 0 0 0 0 0

0 0 b̃3 0 0 0 0 0

0 0 0 b̃4 0 0 0 0

0 0 0 0 b̃5 0 0 0

0 0 0 0 0 b̃6 0 0

0 0 0 0 0 0 b̃7 0
0 0 0 0 0 0 0 0


9×8

. (6.1.14)

We will determine b̃1, . . . , b̃7 such that

(B3B̃2 + X̃1)18 = 0, (6.1.15)
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that is,

1 0 0 0 0 0 0 0 0
B01 B11 B21 0 0 0 0 0 0
0 B12 B22 B32 0 0 0 0 0
0 0 B23 B33 B43 0 0 0 0
0 0 0 B34 B44 B54 0 0 0
0 0 0 0 B45 B55 B65 0 0
0 0 0 0 0 B56 B66 B76 0
0 0 0 0 0 0 B67 B77 B87

0 0 0 0 0 0 0 0 1





0

b̃1
b̃2
b̃3
b̃4
b̃5
b̃6
b̃7
0


=



0
−d11B01 + d12B21

−d12B23 + d13B32

−d13B34 + d14B43

−d14B45 + d15B54

−d15B56 + d16B65

−d16B67 + d17B76

−d17B78 + d18B87

0


.

(6.1.16)

Based on our experiment, we guess that

b̃1 = −t0 + t1
2

+ y1, b̃2 = −t1 + t2
2

+ y2, b̃3 = −t2 + t3
2

+ y3,

b̃4 = −t3 + t4
2

+ y4, b̃5 = −t4 + t5
2

+ y5, (6.1.17)

b̃6 = −t5 + t6
2

+ y6, b̃7 = −t6 + t7
2

+ y7.

To verify the correctness of each row in (6.1.16), we need to show that

b̃i−1Bi−1,i + b̃iBi,i + b̃i+1Bi+1,i = −d1iBi−1,i + d1i+1Bi+1,i. (6.1.18)

Let us verify it directly. We calculate the two sides of (6.1.18) separately.

LHS = b̃i−1Bi−1,i + b̃iBi,i + b̃i+1Bi+1,i

=
(
− ti−2+ti−1

2 + yi−1

)
Bi−1,i +

(
− ti−1+ti

2 + yi

)
Bi,i +

(
− ti+ti+1

2 + yi+1

)
Bi+1,i

= yi−1Bi−1,i + yiBi,i + yi+1Bi+1,i −
∑2

k=0

(
ti+k−2+ti+k−1

2

)
Bi+k−1,i.

The last summation term can be simplified by the Marsden’s identity as
follows

2∑
k=0

(
tj+k−2 + tj+k−1

2

)
Bj+k−1,3(yj) = yj. (6.1.19)

Thus we have (using the partition of unity)

LHS = yi−1Bi−1,i + yiBi,i + yi+1Bi+1,i − yi

= yi−1Bi−1,i + yiBi,i + yi+1Bi+1,i − yi(Bi−1,i +Bi,i +Bi+1,i)

= (yi−1 − yi)Bi−1,i + (yi+1 − yi)Bi+1,i = −d1i Bi−1,i + d1i+1Bi+1,i,

which is exactly the right-hand-side of (6.1.18).
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To get the factorization, we need to compute B3B̃2 + X̃1, that is,

B3B̃2 + X̃1 = (6.1.20)



0 0 0 0 0 0 0 0

b̃1B11 − d11B01 (b̃2 + d12)B21 0 0 0 0 0 0

b̃1B12 b̃2B22 − d12B12 (b̃3 + d13)B32 0 0 0 0 0

0 b̃2B23 b̃3B33 − d13B23 (b̃4 + d14)B43 0 0 0 0

0 0 b̃3B34 b̃4B44 − d14B34 (b̃5 + d15)B54 0 0 0

0 0 0 b̃4B45 b̃5B55 − d15B45 (b̃6 + d16)B65 0 0

0 0 0 0 b̃5B56 b̃6B66 − d16B56 (b̃7 + d17)B76 0

0 0 0 0 0 b̃6B67 b̃7B77 − d17B67 d18B87
0 0 0 0 0 0 0 0


(6.1.21)

To find X2, such that
B3B̃2 + X̃1 = X2D2, (6.1.22)

where

D2 :=


1 −1

1 −1
. . . . . .

1 −1


7×8

, (6.1.23)

we need to use the pseudo-inverse of D2, that is,

D+
2 =


1 1 1 · · · 1
0 1 1 · · · 1

0 0
. . . · · · 1

0 0 0 · · · 1
0 0 0 · · · 0


8×7

. (6.1.24)

Thus,
X2 = (B3B̃2 + X̃1)D

+
2 = (6.1.25)

0 0 0 0 0 0 0

−(b̃2 + d12)B21 0 0 0 0 0 0

b̃1B12 −(b̃3 + d13)B32 0 0 0 0 0

0 b̃2B23 −(b̃4 + d14)B43 0 0 0 0

0 0 b̃3B34 −(b̃5 + d15)B54 0 0 0

0 0 0 b̃4B45 −(b̃6 + d16)B65 0 0

0 0 0 0 b̃5B56 −(b̃7 + d17)B76 0

0 0 0 0 0 b̃6B67 −d18B87

0 0 0 0 0 0 0


9×7

.

Now we calculate

X̃2 = X2


y2 − y0

y3 − y1
. . .

y8 − y6


7×7

= (6.1.26)
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0 0 0 0 0 0 0

−(b̃2 + d12)d
2
2B21 0 0 0 0 0 0

b̃1d
2
2B12 −(b̃3 + d13)d

2
3B32 0 0 0 0 0

0 b̃2d
2
3B23 −(b̃4 + d14)d

2
4B43 0 0 0 0

0 0 b̃3d
2
4B34 −(b̃5 + d15)d

2
5B54 0 0 0

0 0 0 b̃4d
2
5B45 −(b̃6 + d16)d

2
6B65 0 0

0 0 0 0 b̃5d
2
6B56 −(b̃7 + d17)d

2
7B76 0

0 0 0 0 0 b̃6d
2
7B67 −d18d

2
8B87

0 0 0 0 0 0 0

 .

3. Find B̃3 and X̃3, such that

B3B̃3 + X̃2 = X̃3E3, (6.1.27)

where

E3 =


1

y3−y0
1

y4−y1
. . .

1
y8−y5




1 −1
1 −1

. . . . . .

1 −1


6×7

. (6.1.28)

Assume that

B̃3 =



0 0 0 0 0 0 0
c̃1 0 0 0 0 0 0
0 c̃2 0 0 0 0 0
0 0 c̃3 0 0 0 0
0 0 0 c̃4 0 0 0
0 0 0 0 c̃5 0 0
0 0 0 0 0 c̃6 0
0 0 0 0 0 0 c̃7
0 0 0 0 0 0 0


9×7

. (6.1.29)

We will determine c̃1, . . . , c̃7 such that

(B3B̃3 + X̃2)17 = 0, (6.1.30)

that is,

1 0 0 0 0 0 0 0 0
B01 B11 B21 0 0 0 0 0 0
0 B12 B22 B32 0 0 0 0 0
0 0 B23 B33 B43 0 0 0 0
0 0 0 B34 B44 B54 0 0 0
0 0 0 0 B45 B55 B65 0 0
0 0 0 0 0 B56 B66 B76 0
0 0 0 0 0 0 B67 B77 B87

0 0 0 0 0 0 0 0 1





0
c̃1
c̃2
c̃3
c̃4
c̃5
c̃6
c̃7
0


=



0

(b̃2 + d12)d
2
2B21

−b̃1d22B12 + (b̃3 + d13)d
2
3B32

−b̃2d23B23 + (b̃4 + d14)d
2
4B43

−b̃3d24B34 + (b̃5 + d15)d
2
5B54

−b̃4d25B45 + (b̃6 + d16)d
2
6B65

−b̃5d26B56 + (b̃7 + d17)d
2
7B76

−b̃6d27B67 + (b̃8 + d18)d
2
8B87

0


.

(6.1.31)
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The expressions of c̃1, . . . , c̃7 should be related to the quadratic Marsden’s iden-
tity.

Research Problem 1

Given n sample points: {yk}n−1k=0 on the interval [a, b] with

a = y0 < y1 < · · · < yn−2 < yn−1 = b,

consider the quadratic B-splines {Bi,3(x)}n−1i=0 defined on the knots {tk}nk=−2 with

a = t−2 = t−1 = t0 < t1 < t2 < · · · < tn−3 < tn−2 = tn−1 = tn = b.

Let B3 be the Shoenberg-Whitney matrix. How to find a band matrix B̃0, such
that

B−13

1 y0 y20
...

...
...

1 yn−1 y2n−1

 = B̃0

1 y0 y20
...

...
...

1 yn−1 y2n−1

 .
The reason to find this matrix B̃0 is that it can help us define a local quasi-
interpolating operator.

(For this problem, if we can find the explicit formulas for c̃1, . . . , c̃n−2 in above
discussion, we can find this B̃0.)

6.2 Cubic B-Spline - General Case

Next, we will do factorization on B4. Assume that we are given n sample points:
{yk}n−1k=0 spread on the interval [a, b] with the following condition:

a = y0 < y1 < · · · < yn−2 < yn−1 = b.

To do the cubic B-spline interpolation on these sample points, we construct a set
of cubic B-splines {Bi,4(x)}n−1i=0 using the knots {tk}nk=−3 with the following form:

a = t−3 = t−2 = t−1 = t0 < t1 < t2 < · · · < tn−4 < tn−3 = tn−2 = tn−1 = tn = b,

where the basis functionBi,4(x) is constructed from the knots: {ti−3, ti−2, ti−1, ti, ti+1}
for i = 0, . . . , n− 1. Furthermore, the Shoenberg-Whitney condition must be sat-
isfied, that is,

ti−3 < yi < ti+1, for 1 ≤ i ≤ n− 2,
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which implies that

yi−1 < ti < yi+3, for 1 ≤ i ≤ n− 4.

1. Find B̃1 and X̃1, such that

B4B̃1 − I = X̃1E1, (6.2.1)

where

E1 =


1

y1−y0
1

y2−y1
. . .

1
y9−y8




1 −1
1 −1

. . . . . .

1 −1


9×10

. (6.2.2)

We take B̃1 = I. Denote 110 as the column matrix with all entries 1, that
is,

110 =


1
1
...
1


1×10

. (6.2.3)

The partition of unit property of the B-spline functions implies that

(B4B̃1 − I)110 = 0, (6.2.4)

which allows us to do the following factorization:

B4B̃1 − I = X1D1, (6.2.5)

where

D1 :=


1 −1

1 −1
. . . . . .

1 −1


9×10

. (6.2.6)

To find X1 in (6.2.5), we need the pseudo-inverse of D1, that is,

D+
1 =


1 1 1 · · · 1
0 1 1 · · · 1

0 0
. . . · · · 1

0 0 0 · · · 1
0 0 0 · · · 0


10×9

. (6.2.7)
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Thus, we have
X1 = (B4B̃1 − I)D+

1 = (6.2.8)

0 0 0 0 0 0 0 0 0
B01 −B21 −B31 −B31 0 0 0 0 0 0
0 B12 −B32 −B42 −B42 0 0 0 0 0
0 0 B23 −B43 −B53 −B53 0 0 0 0
0 0 0 B34 −B54 −B64 −B64 0 0 0
0 0 0 B35 B35 +B45 −B65 0 0 0
0 0 0 0 B46 B46 +B56 −B76 0 0
0 0 0 0 0 B57 B57 +B67 −B87 0
0 0 0 0 0 0 B68 B68 +B78 −B98

0 0 0 0 0 0 0 0 0


.

Then we have

X̃1 = X1


y1 − y0

y2 − y1
. . .

y9 − y8

 . (6.2.9)

Denote
dkj := yj − yj−k. (6.2.10)

Now we can write X̃1 as follows

X̃1 =



0 0 0 0 0 0 0 0
d11B01 −d12(B21 +B31) −d13B31 0 0 0 0 0

0 d12B12 −d13(B32 +B42) −d14B42 0 0 0 0

0 0
. . .

. . .
. . . 0 0 0

0 0 0
. . .

. . .
. . . 0 0

0 0 0 0 d16B57 d17(B57 +B67) −d18B87 0
0 0 0 0 0 d17B68 d18(B68 +B78) −d19B98

0 0 0 0 0 0 0 0


.

(6.2.11)

2. Find B̃2 and X̃2, such that

B4B̃2 + X̃1 = X̃2E2, (6.2.12)

where

E2 =


1

y2−y0
1

y3−y1
. . .

1
y9−y7




1 −1
1 −1

. . . . . .

1 −1


8×9

. (6.2.13)
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Assume that

B̃2 =



0 0 0 0 0 0 0 0 0

b̃1 0 0 0 0 0 0 0 0

0 b̃2 0 0 0 0 0 0 0

0 0 b̃3 0 0 0 0 0 0

0 0 0 b̃4 0 0 0 0 0

0 0 0 0 b̃5 0 0 0 0

0 0 0 0 0 b̃6 0 0 0

0 0 0 0 0 0 b̃7 0 0

0 0 0 0 0 0 0 b̃8 0
0 0 0 0 0 0 0 0 0


10×9

. (6.2.14)

We will determine b̃1, . . . , b̃8 such that

(B4B̃2 + X̃1)19 = 0, (6.2.15)

that is,



1 0 0 0 0 0 0 0 0 0
B01 B11 B21 B31 0 0 0 0 0 0
0 B12 B22 B32 B42 0 0 0 0 0
0 0 B23 B33 B43 B53 0 0 0 0
0 0 0 B34 B44 B54 B64 0 0 0
0 0 0 B35 B45 B55 B65 0 0 0
0 0 0 0 B46 B56 B66 B76 0 0
0 0 0 0 0 B57 B67 B77 B87 0
0 0 0 0 0 0 B68 B78 B88 B98

0 0 0 0 0 0 0 0 0 1




0

b̃1
...

b̃8
0

 =



0
−d11B01 + d12(B21 +B31) + d13B31

−d12B12 + d13(B32 +B42) + d14B42

...
−d16B57 − d17(B57 +B67) + d18B87

−d17B68 − d18(B68 +B78) + d19B98

0


.

(6.2.16)

Based on our experiment, we guess that

b̃1 =
2a+ t1

3
− y1, b̃2 =

a+ t1 + t2
3

− y2, b̃3 =
t1 + t2 + t3

3
− y3,

b̃4 =
t2 + t3 + t4

3
− y4, b̃5 =

t3 + t4 + t5
3

− y5, b̃6 =
t4 + t5 + t6

3
− y6,
(6.2.17)

b̃7 =
t5 + t6 + b

3
− y7, b̃8 =

t6 + 2b

3
− y8.

In particular, we have

b̃0 =
a+ a+ a

3
− y0 = 0, and b̃9 =

b+ b+ b

3
− y9 = 0.

To verify (6.2.16), we consider the following two cases:
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• For 2 ≤ i ≤ 5, we need to verify that

b̃i−1Bi−1,i+b̃iBi,i+b̃i+1Bi+1,i+b̃i+2Bi+2,i = d1iBi−1,i−d1i+1(Bi+1,i+Bi+2,i)−d1i+2Bi+2,i,
(6.2.18)

which is equivalent to

(b̃i−1−d1i )Bi−1,i+b̃iBi,i+(b̃i+1+d
1
i+1)Bi+1,i+(b̃i+2+d

1
i+2+d

1
i+1)Bi+2,i = 0,

that is,(
xσ(j)−3 + xσ(j)−2 + xσ(j)−1

3
− yi

)
Bi−1,i+

(
xσ(j)−2 + xσ(j)−1 + xσ(j)

3
− yi

)
Bi,i+

(
xσ(j)−1 + xσ(j) + xσ(j)+1

3
− yi

)
Bi+1,i+

(
xσ(j) + xσ(j)+1 + xσ(j)+2

3
− yi

)
Bi+2,i = 0.

This formula is just the linear case of the Marsden’s identity:

yj =
3∑

k=0

(
xσ(j)−3+k + xσ(j)−2+k + xσ(j)−1+k

3
− yj

)
Bi−1+k,4(yj).

(6.2.19)

Research Problem 2

Given n sample points: {yk}n−1k=0 on the interval [a, b] with

a = y0 < y1 < · · · < yn−2 < yn−1 = b,

consider the cubic B-splines {Bi,4(x)}n−1i=0 defined on the knots {tk}nk=−3 with

a = t−3 = t−2 = t−1 = t0 < t1 < t2 < · · · < tn−4 < tn−3 = tn−2 = tn−1 = tn = b.

Let B4 be the Shoenberg-Whitney matrix. How to find a band matrix B̃0, such
that

B−14

1 y0 y20 y30
...

...
...

...
1 yn−1 y2n−1 y3n−1

 = B̃0

1 y0 y20 y30
...

...
...

...
1 yn−1 y2n−1 y3n−1

 .
The reason to find this matrix B̃0 is that it can help us define a local quasi-
interpolating operator.

For the general factorization, we would like to have the following results.
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Proposition 6.2.1. Given n data samples ~y := {yi}n−10 on the interval [a, b]
with the condition: y0 = a and yn−1 = b, we consider the m-th order B-splines
with n basis functions {Bi,m(x)}n−1i=0 on the interval [a, b] defined on the knots
~t := {ti}n−m+1. Assume that ~t and ~y satisfy the Shoenberg-Whitney condition.

Denote Bm as the Shoenberg-Whitney matrix with respect to ~t and ~y. Show that
for any n × (n − r) zero-row-ending matrix X̃r with 0 ≤ r ≤ m − 1, there exists
an n× (n− r) band matrix B̃r+1 of bandwidth up to max(2, r − 1), such that

BmB̃r+1 + X̃r = X̃r+1Er+1 (6.2.20)

for some n× (n− r − 1) zero-row-ending matrix X̃r+1.

Proposition 6.2.2. ., Given n data samples ~y := {yi}n−10 on the interval [a, b]
with the condition: y0 = a and yn−1 = b, we consider the m-th order B-splines
with n basis functions on the interval [a, b] defined on the knots ~x := {ti}n−m+1.
Assume that ~x and ~y satisfy the Shoenberg-Whitney condition. Denote Bm as the
Shoenberg-Whitney matrix with respect to ~x and ~y. Show that there exists an n×n
band matrix B̃0 with bandwidth 5, such that

BmB̃0 − I = X̃E4E3E2E1, (m ≥ 4) (6.2.21)

for some n× (n− 4) matrix X̃.

Proposition 6.2.3. Given n data points ~y := {yi}n−10 on the interval [a, b] with
the condition: y0 = a and yn−1 = b, we consider the m-th order B-splines with
n basis functions {Bi,m(x)}n−1i=0 on the interval [a, b] defined on the knots ~t :=
{ti}n−m+1 in the form of

{a, · · · , a︸ ︷︷ ︸
m

, t1, t2, · · · , tn−m, b, · · · , b︸ ︷︷ ︸
m

}

satisfying
a < t1 < t2 < · · · < tn−m < b.

Here we take

t−m+1 = · · · = t0 = a and tn−m+1 = · · · = tn = b.

Assume that ~t and ~y satisfy the Shoenberg-Whitney condition. Denote Bm as the
Shoenberg-Whitney matrix with respect to ~t and ~y. Show that there exists an n×n
band matrix B̃0 with bandwidth at most max(4, 2r − 2) for 1 ≤ r ≤ m, such that

BmB̃0 − I = X̃Er · · ·E1, (1 ≤ r ≤ m) (6.2.22)

for some n× (n− r) matrix X̃. Furthermore, the computation complexity for B̃0

is in O(n).

102



Proposition 6.2.4. With the same condition as above for m ≥ 4, show that there
exists an n× n banded matrix B̃0 with bandwidth 5, such that

B̃0

1 y0 y20 y30
...

...
...

...
1 yn−1 y2n−1 y3n−1

 =

1 ρ10,m ρ20,m ρ30,m
...

...
...

...
1 ρ1n−1,m ρ2n−1,m ρ3n−1,m


.

(6.2.23)
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