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Abstract

The prevalence of the separation of multicomponent non-stationary sig-
nals across many elds of research makes this concept an important subject
of study. The synchrosqueezing transform (SST) is a particular type of re-
assignment method. It aims to separate and recover the components of a
multicomponent non-stationary signal. The short time Fourier transform
(STEFT)-based SST (FSST) and the continuous wavelet transform (CWT)-
based SST (WSST) have been used in engineering and medical data analysis
applications. The current study introduces the dierent versions of FSST and
WSST to estimate instantaneous frequency (IF) and to recover components.
It has a good concentration and reconstruction for a wide variety of ampli-
tude and frequency modulated multicomponent signals. Earlier studies have
improved existing FSSTs by computing more accurate estimates of the IFs of
the modes making up the signal. The higher order approximations for both
the amplitude and phase were used. Therefore, there is a better concentra-
tion and reconstruction for a wider variety of AM-FM modes than what was
possible with current synchrosqueezing techniques. In this study, we propose
to improve the adaptive FSST, the adaptive WSST, and to introduce a new
type of 2nd-order FSST with a new phase transformation. We use higher
order approximations for both the amplitude and phase function. We study
the higher order adaptive FSST and adaptive WSST. The result shows an
even better concentration and reconstruction for a wider variety of AM-FM
modes with the higher order adaptive SSTs. We also study the theoretical
analysis of the 2nd-order FSST with a new phase transformation. The new
phase transformation introduced by us is much simpler than the convectional
one, while the performance in IF estimation and component recovery of the
new 2nd-order FSST is comparable with, and even better in some cases than,
that of the conventional 2nd-order FSST.
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Chapter 1

Introduction

Non-stationary signals can be modeled as superpositions of band limited,
amplitude and frequency modulated (AM-FM) sub-signals. Non-stationary
signals can be shown as,

K

(t) = Ag(t) + Y Ap(t)cos(2mey(t)) (1.0.1)

k=1

with Ag(t) and ¢} (t) > 0, where Ay () is the instantaneous ampllitude (TA),
and ¢} () is the instantaneous frequenc (IF) of x(t). The study of separating
multicomponent non-stationary signals is a significant research topic in many
different fields such as engineering and medical data analysis applications.

In non-stationary signal analysis [1, 2, 3|, one of the most important
tools is the time-frequency analysis (TFA). The continuous wavelet trans-
form (CWT) and the short time Fourier transform (STFT) are the most
common methods in TFA. CWT and STFT are linear time-frequency rep-
resentations and applicable to component reconstruction. CWT and STFT
have suffered because of the uncertainly principle that imposes an unavoid-
able tradeoff between time and frequency resolutions (see e.g. [3, 4, 5] ).

The synchrosqueezing transform (SST) is a particular type of reassign-
ment method on the CWT and STFT used to sharpen the time-frequency
representation of signals and recover the components of a multicomponent.
In previous research, the SST has introduced and further developed (see

6, 7]). Using the CWT-based SST(WSST) [7, 8], Thakur and Wu pro-
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posed an extention of the SST given by the STFT-based SST (FSST) [9].
Then, researchers investigated the SST to greater lengths. The FSST and
the WSST were also topics of study for Daubechies, Meignen, Wu, Iatsenko
(7, 10, 11, 12, 13]. The 2nd-order SST is proposed in [10, 11]. Likewise, the
adaptive FSST, the adaptive 2nd-order FSST with a time-varying, the adap-
tive WSST, and the adaptive 2nd-order WSST with time-varying have been
studied [14, 15]. Recently, Sheu, Hsu, Chou, and Wu introduced a method
to select the time-varying window width for sharp SST representation by
minimizing the Renyi entropy [16]. The SST is a useful tool in engineering
and medical data application. This includes radar, sonar, anesthesia evalu-
ation, and heartbeat classification. In 2017, Pham and Meignen improved
existing STFT-based SSTs by computing more accurate estimates of the in-
stantaneous frequencies (IFs) of the modes making up the signal [17]. They
used higher order approximations both for the amplitude and phase. They
concluded that there is a better concentration and reconstruction for a wider
variety of AM-FM modes than what was possible with current synchrosqueez-
ing techniques. In this study, we used the same technique. We propose to
improve the WSST, the adaptive WSST,the adaptive FSST, and the FSST
with a new phase transformation by using higher order approximations both
for the amplitude and phase. The result also shows an ideal concentration
and reconstruction for a wider variety of AM-FM modes.

The theorretical analysis of the 2nd-order FSST was proposed in [18].
Very recently, the theoretical analysis of the FSST obtains the error bounds
for the instantaneous frequency (IF) estimation and component recovery with
the conventional 2nd-order FSST as was introduced in [16, 19]. We study the
theoretical analysis of the 2nd-order FSST with a new phase transformation.

The organization of the remainder of this dissertation is as follows. First,
we start with an overview of CWT-based SST and the adaptive CWT-based
SST with a time-varying parameter as shown in Chapter 2. The STFT-based
SST and the adaptive STFT-based SST with a time-varying parameter are
also derived in Chapter 2. In Chapter 3, we propose the higher-order WSS
and FSST and the new higher order FSST with the new phase transforma-
tion. We address the numerical simulation in Chapter 4. The theoretical
analysis of the new formulation of the FSST is described in Chapter 5. Fi-
nally, we present the conclusion and future work in Chapter 6.



Chapter 2

Preliminaries

In this chapter, some of the basic concepts are presented. The continuous
wavelet transform-based synchrosqueezed transform (WSST) are discussed
in Section 2.1. WSST with a time varying parameter is studied in Section
2.2. In addition, Section 2.3 is devoted to the short-time Fourier transform-
based synchrosqueezed transform (FSST). FSST with a time varying param-
eter are discussed in Section 2.4. The analysis of FSST and adaptive FSST
are provided in Section 2.5 and 2.6.

2.1 Continuous wavelet transform-based syn-
chrosqueezed transform (WSST)

A funcation ¢(t) € Ly(R) is called a continuous wavelet if it satisfies (see e.g.
20, 21]) the following condition

Coi= [ IHOPTE <00 and wuslt) = o

)

a

where 1@ is the Fourier transform of a signal ¢ (¢) is defined by

_ / Tt e,



Definition 2.1.1. We can define the continuous wavelet transform (CWT)
of a signal z(t) € Ly(R) with a continuous wavelet (t) as

Wela) = [ ato(— D= [ @i @

In this instance, a is the scale variable, and b is the time variable.

Note that Fourier transform tq(€) of 1q4(t) is ¥(a&)e 2™, For more
details see [7].

proposition: A function x(¢) is an analytic signal if it satisfies 2(£) =0
for € < 0. This is defined by

W,(a,b) = /0 T HE)D(a) ™ e, (2.1.2)

Proof. If a and b are two real numbers, then the Fourier transform is

&a b / wa o(t 7217Tb§tdt / _w( ) 72i7rb£tdt

A change of variable y = =2, which implies

Yap(€) = / Y(y)e Hmerdy
_ 6—2i7rb§/ w(y)e‘%”“yfdy:6‘2”1’%(@5)

Then we have

Wola,b) = < by >=< &, ep >
~ [ a@iege g

- / #(6)0(ab) e de

—00



If (t) is analytic or 1(t) is analytic, then for a > 0 and € < 0, 1h(a€) = 0.

0 _ ' 00 _ '
Wa(a,b) = / i(é)w(ag)ezmbfngr/o Z(€)(ag)e¥ ™ de

O

properties(Fourier Transform). Let x,y € Ly(R) are two signals, then
we have

/ Gl / e

/ T aele)de = / (e

2
’

Example: Let a be a positive real. We define the function f,(x) = e=*
then we have

fa(g) = / f(t)e—Ziwﬁtdt — / e—Ziﬂfte—atht

Consider the function

g(y) = / e_“t2+ytdt, foryeR

Completing squares, we have

gly) = / e‘““‘zya)“ﬁdt:i@ﬁ/ o

[e.e]

Vva
1 2 2
= —\/Ee%ﬁ = \/geza

2
Let h(y) = \/gezfa be extended to be entire analytic functions, and since
they agree on R as shown, they must agree on the complex plane C. In
particular, by setting y = —2in&, we have

oo
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P o ; —24m 2
Bo = [ ﬁdt:\ﬁH
e @ (2.1.3)

T —4n2e?
— —e 4a
a

Examples of Continuous Wavelet Transform

Bump Wavelet: The Bump wavelet is defined by

~

[ S
P(§) =e e 1 (2.1.4)

where o, 4 > 0, such that opu > 1.

Morlet Wavelet: Morlet wavelet 1, is defined by the function

1 2 .
Valt) = e e (¢ — ) (2.1.5)

where o > 0, u is a constant.

Lemma 2.1.2. Let 0 > 0 and p two constant, then the Fourier transform
of Mortlet wavelet given by

~

Po(£) = e 2 ONETN? _ o2 NE ),

Proof. Let 1, Morlet’s complex wavelet, the Fourier transform of zﬁg is
defined by

oV 2m

1 i l am22o? [ 2 2
= - 2W< e 2T 32 gt — e 72T HE e 2imte ﬁdt)
— —0o0

[e.e]

A 1 oo —2imét 2 it —2n2p20? > —2imét 2
V(&) = e e 2Ze L — e TTH e e 202 dt
—o0 —0o0

According to the example of Fourier transform (2.1.3)

11



Go© = = (Fu e =) ey a(0))

oV 2 \" 202

= L (v 20262 (En) _ pm2miutat 27?026_2”252>

oV 2T
— (6—27r202<s—u) _ 6—27r202(§2+142)>_

(Il
Maxican hat Wavelet:
Let o > 0, then the Maxican hat wavelet is defined by
2
Uo(t) = (1= —)e 2 (2.1.6)

Lemma 2.1.3. The Fourier Transform of Maxican hat wavelet is given by

o (€) = (210€)2V2m02e 27 for € >0
710 for £ <0

Proof. The Fourier Transform of Maxican hat wavelet function 1,

(2.1.7)

A = t? — 2 —2imte
¢O’(§) = / (1 - —2)6 20° € dt

oo o
[e¢] 2 0 o0 t2 +2 2
= e 2% e 2t 4 —e e Tt
— 00 — 00
. J/ N J/
' '
I I

Calculation of the integral I; = ]:<fﬁ)(€) — 2ro2e 2%

Calculation of the integral I, = F(t%e” % )(€). Using the Fourier transform
derivation formula F((—2imt)™f(t))(€) = (F(f))™(€)

F(-2mtP 1, (00O = (FULIEN = g (Varote 7€)

it (VI amate o)

= St Bt | gt e

12



This result in

FIESLONO) = —pam(VIrohe 7) (e + £2n'0*C)

—Am252

= V2r02e 77 (1 — 1%62¢2)
We group the integrals calculation above
B(E) = V2rmo2e ™ —\omg2e 2 (1 — dno?E?)

V2ro2e 7 (1 — 12 + An02€2)
= (2n0€)2V2m02e 2

Inverse Continuous Wavelet Transform

Theorem 2.1.4. (Inverse CWT)
Let x(t) € Lao(R) and ¥(t) is continuous wavelet, the inverse wavelet
transform can be recover the signal x(t) (see e.g. [20, 22, 23, 2/])

1 [~ [ da
= C—¢/Oo /oo We(a, b)%,b(t)dbm (2.1.8)

where Cy = [ 1&(5)‘ ‘dé < 00

oo

If x(t) is analytic or ¥(t) is real, then:

/ / W (@, b)tba (¢ )db— (2.1.9)

&~ o0,

where Cy, = I ‘1@( T

Proof. If z(t) € L2(R) and 9 (t) a continuous wavelet, then we have

/OOO /_Zwa,b)wab b2 / / / ) et (1) b




af wa zZTrb{ dé—

#(¢ af) Wfdb df

o0

I
. O\..c\go\.)
25—

o (2.1.10)
= [ ae)enme / \w(a@ ™ e
= Gy [ alepenmde = Cualt
O
note we assume that a continuous wavelet ¢(t) also satisfies
0¢C¢_/ % ¢ (2.1.11)

Theorem 2.1.5. (Inverse CWT involving a for analytic signal )
Suppose x(t) € La(R) and 1(t) is a continuous wavelet. If x(t) is analytic,
then

1 [ da
2(b) = E/o Wola,5) (2.1.12)

where Cy, is defined 0 # Cy = [J° Qﬁ(f)% < oo.

Proof. From (2.1.2), we have

/ Wz(&, b)@ — / a€)€2iwb§d£@
0 a 0 0 a

- [ et 2““’5/ o) ™ e
:/0 2mbgdg/ e da

= ¢y /0 h 3(&)e*™ 8 de = cyx(b)

14



O

Furthermore, a real signal z(t) € Ly(R) can be recovered from its CWT
with an analytic continuous wavelet by the following formula which does not
involve the time variable b either.

Theorem 2.1.6. (Inverse CWT involving a for a real signal (refer to [7]))
Suppose x(t) € Lao(R) and ¢ (t) is a continuous wavelet. If x(t) is real and i
1s analytic, then

da
z(b) = Re( Cw/ W, (a,b)— ) (2.1.13)

where Cy, is defined 0 # Cy = fo df < oo0.

Proof. When x(t) is real, we have (&) = 2(—¢), thus,

/ :ﬂs)eﬂ””fdf: | it - / (©)eizmiede

and hence

o) = [ agersac= [ aoermsier [T s

= 2Re( / 2(€)e™ ™ dg)
0

(2.1.14)

From (2.1.1) and the proof of theorem 2.1.4, we have

& da e i2mbe
/0 Wx(a,b);—cw/o #(&)e™ e dg¢

Therefore,

z(b) = 2R€</0°° 2(€)e?™dg) = Re(% /000 W, (a, b)c%a). (2.1.15)
O
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2.1.1 1st-order WSST

The Ist-order WSST was introuced in [14]. The WSST is designed to re-
assign the scale variable a to the frequency variable. Let’s start with the
most classic example. The CWT of z(t) = Acos(2rct) where ¢ is a positive
constant. Then the Fourier transform of x is defined by

z(§) = A/ cos(2met)e” 2™ dt

—0o0

62i7rct +672i7rct

We use the fact that cos(2wct) = 5

i) = g(/ €2i7rct€2iw§tdt+/ e*Qimte*Zi“étdO o1
_ A 7_22)#(570) —2it(§+-c) _Oi A -
- e e HmEr0) = 2 (5,(6) +6..(6) )

Thus for a > 0

—_

~

We(a,b) = /oo i(ﬁ)l/;(aﬁ)e%”bgdg - _A¢<ac)e2i7rbc

—00

[\

The instantaneous frequency (IF) of x(t) is represented as ¢

%Wx(a, b) = %A@/;(ac)ei%bc = 2imrcW,(a,b).

This implies that

2 W,(a,b) _
2irW,(a,b)

For a general z(t), at (a, b) for which W, (a,b) # 0, a good approximation for
the phase transformation (also called theinstantaneous frequency (IF)) of x

: 1st
18 W,

16



0
wlst(&’ b) _ %Wx((l, b)

_ e\ %) W, (a,b) # 0.
@ dirWo(a ) o7 Welab)#

The 1st-order WSST of a signal x(t) is defined by

da

TSt (€, b) = / W(a,0)8(w*(a, b) — €)%, (2.12)
a€R 4 : W (a,b)#0 a

where ¢ is the frequency variable.

The input signal x(t) can be recovered from its WSST. For the analytic
x(t) € Lo(R), we have

£(b) =+ / T (€, b)de:

Cy Jo

and for a real-valued z(t) € Ly(R)

o) = re( 2 [ 22 b)),

Cy Jo

where C, is defined 0 # Cy = foooiﬂ(é‘)% < oo.

For a multicomponent signal z(t) = Ag(t)+3 0, x(t), z(t) = Ap(t)cos(rrgy(t))
with Ay(t) = 0, each component x(b) can be recovered from WSST:

2
o)~ Re( | 71 (6. b)de).
Gy S|l (b)|<D

for certain I > 0.

17



2.1.2 2nd-order WSST

The 2nd-order WSST was proposed in [14]. This defines a new phase transfor-
mation more precise than that of 1st-order w?"?. This 1st-order is associated
with the 2nd order partial derivatives of the CWT of z(t); when z(t) is a
linear frequency modulation signal (linear chirp), then w?"? is exactly the IF
of z(t). Therefore, z(t) is a linear frequency modulation (LFM) signal if

o(t) = ()0 = A(t)er 37 girlettor)

with phase function ¢(t) = ct+3rt?, IF ¢/(t) = c+rt and chirp rate ¢ (¢) = r,
IA A(t) = Ae”™t3” In the following we derive the phase transformation
w2 For a given wavelet 1, W,(b,a) is the CWT of z(t) with ¢ defined by
(2.1.1). For ¢y (t) = ty(t), W¥ (b, a) denotes the CWT of z(t) with 1 (t) and
represents the integral on the right-hand side of (2.1.1) with ¥(¢) replaced
by 11(t). The derivative of the signal = is given by

2'(t) = (p+ qt +i2n(c+ rt))z(t)

W, (b,a) = / h (b + at)y(t)dt.

—00

The derivative of the CWT with respect to the variable b is

oWb,a) — / T b+ aty oDt

0

= /OO (p+q(b+ at) +i2m(c+ rb + rat))x(b+ at))maltzl-l)

= (p+qb+i2n(c+rb))Wy(b,a) + (g + i27r)aW (b, a).

At (a,b), on which W,(a,b) # 0, we then denote that

8{;Wm(b, CL)
W, (b, a)

Wt (b, a)

=P+ b+ idn(etrb) +(g+i2m)ag— s

18



9 (abW_wcz)) = (¢ + i27r)U(a,b)

da\ W,(b,a)
where
0 (aWyi(b,a)y Wi (b,a) 0 (W¥i(b,a)
Ula,b) = aa< W, (b, a) )_ W, (b, a) a%( W, (b, a) >

If U(a,b) # 0, then

¢ i = 1 0 <3bW (b, a))

Ula,b) a \ W,(b,a)

Then, we have

BWy(b,a) , WY (b,a) 0 0,W,(b,a)
We(bya) pab+i2m(c+rb) + aWz(b, a)U(a,b) da ( W, (b, a) )
Thus,

a $1 .a z(0,a
¢'(b) =c+rb= Re{%} - “Re{ W:(ZagbU(i b) % (zgl;rml/;/(?b 3)) }

Therefore, we define the second-order phase transformation w?"? by the
formula

a Y1 a O ,a .
(. b) R{ﬁ%&@}cmdwmxum%@%mggh it Ua,b) # 0, Wa(b,a) # 0
t Re{ gy - if  U(a,b) = 0,W,(b,a) #0.

We define the 2nd-order WSST of a signal z(t) as

ﬁ“@m:/ W, (a,5)8(w? (0, ) — )22
a€R W, #0

a

19



where ¢ is the frequency variable.

To recover the input signal z(¢) from its WSST for analytic z(t) € Ly(R),
we say that

1 = 2nd
o) = oo | e

0

and for a real valued x(t) € Ly(R),

2(b) = Re(% /0 (e e

where ¢, (b) is defined by

OO/\_d
07 Co= [ UOF <o

For a multicomponent signal z(t), we can recover each component xy(b)

from the WSST:

2

) = Rel /|£ o T2 D)

for certain I > 0.

2.2 WSST with a time varying parameter

Continuous wavelets 1, are dependent on the function o defined by

The CWT of a signal x(t) with a time-varying parameter is defined by
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Wx(a,b) = /_00 :c(t)éwa(b)(t ; b)dt _ /_oo (f)wo (a€)emede.

o0 o0

We call Wx(a, b) the adaptive CWT of z(t) with 1,. If ¥, is an analytic
wavelet or x(t) is analytic, then we have a > 0

—~

Walah) = [ 5(6) 0 ad)e™ e

An analytic signal z(t) can be recovered back from its CWT

—~ da

where Cy(b) is defined by

= d [, |
%@(s)f: / g<f—a<bm>§.

If 2(t) is a real signal, then we have

da,

2.2.1 Adaptive 1st-order WSST

The adaptive lst-order WSST was introduced in [14]. In order to define
the adaptive CWT, we must first define the w42 Let 1, (¢) and ¥2(t) =
£¢'(£)e”™ be the continuous wavelet. Denote Ww (a,b) defined by

— © 1, t—b * t
W) = [ etz (S = [l an o

o0 a o0

Je i,

q |~
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One can obtain that

~

Vo (&) = —9(o(§ — w) — (€ = w)(9) (0§ — ).

To define the phase transformation w2 (a,b), we consider x(t) = Ae??™,
From

— 0 - SO 1 t )
Wx b) = b by (t dt = A i2me(b+-at) szﬂutdt
(a,b) /_Oo 2(b+ at)yo) (1) /_Ooe s 070

We take the partial derlvatlve > to both sides, and we have

OW,(a,b) = / " (i2me)e z2m(b+af)ﬁg(ﬁ)6_i%“tdt
af azézyg%(?wdt
+ /_Oo el ”C(““t)(/(j(b)g )g’(a@ (f 2mt gy
= i2ncW,(a,b) — (;((:))W( b) — ‘;((g))’v@( b)
If W,(a,b) # 0, then
21, (a,b) A OO WY (a,b)
i27W,(a, b) 2ro(b)  o(b) 20 W,(a,b)

Thus, the instantaneous frequency (IF) ¢ of z(t) can be denoted by

ng (a,b) o Nf a,
c= Re{ o )} * a((:)) Re{z’QV:Wi(a?Z) }

For a general signal z(t), at (a,b) for which W,(a,b) # 0, denote
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o117 T2
- =W, (a,b (b W (a. b
wist,adp(a’b) :Re{ 8b~(a ) }+U( )Re{ :/C-v(a7 ) }
i2rWo(a, b)) o(0)  Li2n W, (a,b)
The quantity w2 (a, b) is called the "phase transformation.” The WSST

with a time-varying parameter (also called the adaptive WSST) of z(t) is de-
fined by

e ) = | W, (0, D@ (a,) — % (2.2.)

{a€R Wi (a,b) £0} a
where ¢ is the frequency variable.

The input signal x(¢) can be recovered from its adaptive WSST for the
analytic z(t) € Ly(R). We have

_ 1 OO st,adp

and for a real valued z(t) € Ly(R)

z(b) = Re(

OO 1st,adp
o, T

0

where ¢, (b) is defined by

Cy(b) = /OOO @@a(b)(f)dg_g = /Oooﬁ(f - U(b),u)%.

The following formula can be used to recover the k-th component zy(b)
of a multicomponent signal from the adaptive WSST

2
b) = 1st,adp b)d
Ik( ) Re(gﬂ}({)) /;¢/(b)|<I‘1 Tm (57 ) 5)
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for certain I'y > 0.
Remark: Here, we may say that if ¢, is the simplified version of Morlet’s
wavelet given by

~

wo(é') _ €—2ﬂ202(£—u)2 and 1&3(5) _ (47T202(§ o M)Q o 1)6_%202@_#)2.

Next, we calculate:

Wﬁ(@,b) = / j(g)l/}g(b)wg)eizﬁbgdg _ Aﬂg(b)mc)ei%bc
= A(4r?0*(b)(ac — p)* — 1) 7" OE=w)*

—~

(47202 (b)(ac — p)? — 1)W,(a, b).
Thus,
WY (a,b) 1

P (.b) = %(47r202(b)(ac —p)?—1).

In this case the phase transformation w, of the Morlet’s wavelet is defined
by

W, (a, b) }

wistadp (g b) = Re{ —
i2nW,(a,b)

2.2.2 Adaptive 2nd-order WSST

The adaptive 2nd-order WSST is proposed in [14]. To find the adaptive
2nd-order WSST, the CWT is a time-varying parameter. Let 1, (t) of the
continuous wavelet be defined as

)ei27r,ut'

I~

Denote ¢2(t) = Lg'(£)e™ and let W¥*(a,b) denote the CWT. We
define
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¢c1r(t) = §¢U(t) = %g(i)eﬂﬂ'ut'

o o

Let WY1 (a,b) denote the CWT of z(t) with 1} (¢)

W4 (a,b) = /Z x(t)é¢;(t)(t ; b)dt — /Z z(b + at) Uf({))ﬂ%)e—izmdt
(2.2.1)
9L() = 5-(9) (016 — )

If v, is Morlet’s wavelet defined by

then

lgclr(g) = _i27TU(£ _ M)e—27r2()'2(§_u)2'

For a similar calculation presented in the case of 2nd-order WSST non
adaptive, the phase transformation @?"%%% is defined by

Re{ 8*’%(1)’“))} + 2 Re{ Wﬁz(b’“))} — aRe{MRo(a, b)},

i2n W, (b,a o(b) i2nWa (b,a i2mWo (b,a)
~2nd,adp __ e 0 w (b,a) W
pynd.adp — 2 if 2 (a o > £ 0, W,(b,a) 0
Oy W (b,a) o' (b) WY (b,a) o9 WY (b,a)) N T
Re{mm(b,a)} ™ a(b) Re{mm(b,a) }’ if da (a We(ba) ) 0, We (b, a) # 0.

where




The 2nd-order adaptive WSST of a signal z(t) is defined by

_ N d
Tfnd,adp(& b) — / V[/x(a7 b)é(wind,adp<a’ b) _ 5)_(1
{a€R W0} ¢

(2.2.2)

where ¢ is the frequency variable.

The input signal z(t) can be recovered from its adaptive WSST for ana-
lytic z(t) € Ly(R), and we have

1 e 2nd,adp
o) =g [ e D

0

and for a real valued z(t) € Lyo(R)

x(b) = Re(

2 00
T2nd,adp b)d
o ), T

where ¢, (b) is defined by

<
:

For a multicomponent signal x(t), each component x4 (b) can be recovered
from adaptive WSST

Culb) = / N z&db)(@‘i—f - / N aEom

— 2 2nd,adp
n(b) = Rel oy /f T ) (223)

for certain I'y > 0.

2.3 Short-time Fourier transform-based syn-
chrosqueezed transform (FSST)

Definition 2.3.1. The short-time Fourier transform (STFT) of z(t) €
Ls(R) with a window function g(t) € Ly(R) is defined by
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Ve(t,n) = /00 z(T)g(r — t)e 2™ dr (2.3.1)

[e.e]

= / h (z +7)g(T)e ™ dr, (2.3.2)

[e.e]

where t is the time variable and 7 is the frequency variable.

The STFT is written as follows

(e 9]

Va(t,n) = / " alm)glr — e Ndr = / #(€)g(n — §)e™™dg(2.3.3)

[e.e] —00

To prove the result in equation (2.3.3) we start writing the short-time
Fourier transform V,, in the form

Vo(t,1) =< @, Yy >L@) With y,,(7) = g(T — t)e" 2=
which implies
Valtn) =< &ty 1= | 5(€)T@1E (234
and the calculation g ,(£) denotes
Gin(8) = /_ Z g(T — )Tt g i2mEr g (2.3.5)
9n(€) = /_ Z g(y)e™mmeT B dy = /_ Z g(y)e™ 1y e = (5 — €)e™ .

a(n—€)

Therefore, we have
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o0

Vilton) =< &y >nm= | 5050 - e (230)

—0o0

We can recover the original signal x(¢) from its STFT:

1 oo [ - .
x(t) = W/ / Vi (t,n)g(t — 7)e” 2™V drdp. (2.3.7)
2 J—o0 J—00

Theorem 2.3.2. (Inverse STFT ).
Involving & suppose g(t) € Lo(R) with g(0) # 0 Then for x(t) € Ly(R), we
have

£(t) = —= / Vit )y (2.3.8)

/Z Va(t,n)dn = /Z /Z #(6)4(n — €)e™ dedn
/

— / g(n)ei27r><0><77dn / :i,(g)ei%rtfdg
= 9(0)z(?)
O

Theorem 2.3.3. (Inverse STFT).
Involving n for real signal. Suppose the window function g(t) € Lo(R) is real
with g(0) # 0. Then for a real-valued x(t) € Ly(R), we have

2 oo
(1) = e /0 Vi (t,n)dn). (2.3.9)

Proof. Let g(t) and z(t) be two real functions, we have
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2.3.1

1st-order FSST

The 1st-order FSST was proposed in [12, 15]. We derive the FSST through
the STFT. We begin with the STFT of z(t) = Ae™®™ (for more detail, see
[12]) where A and ¢ are constants and ¢ > 0. We have

Va(t,n)

/ Aei?ﬂ'c(t—l—T)g(T)e—i?Wn’rdT

A€i27rtcg<,r] _ C) )

Thus, we can obtain the instantaneous frequency (IF), defined here as ¢, of

x(t) by

2V, (t,n)
20V (t,m)

For a general signal x(t), at (t,n) for which V,(¢t,n7) # 0 and where ¢ =
w,(t,m), a good candidate for the instantaneous frequency (IF) of x(t) is
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0
5 Ve(t,n)
1st t — Bt ) .

This is also called the "reference IF function” or the ”phase transformation.”
The FSST reassigns the frequency variable ¢ by transforming the STFT

V.(t,€) of z(t) to a quantity, denoted by R (¢,71), on the time-frequency
plane:

RY(t,€) = / Vi (t, )8(w(t, ¢) — €)d,
{¢: Ve (¢,¢)#0}

where ¢ is the frequency variable.

We can recover the input signal z(t) from its FSST. If we say g(t) € La(R)
with a window function where g(0) # 0, then for x(t) € La(R),

1 > 1st
ot = 5 / R (¢, €)de. (2.3.1)

If g(t) and z(t) are also real-valued, then

() = %Re(/ooo R}jt(t,g)dg). (2.3.2)

We denote a multicomponent signal z(t) as

K
wr(t) =Y Ap(t)e o),

k=1 k=1

M)~

x(t) =

when Ay (t) and ¢k (t) satisfy certain conditions, each component x(t) can
be recovered from its FSST (see e.g. [12])

n(®)~ s [ RY(t,€)de.
SAGIESS
for certain I' > 0.
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2.3.2 2nd-order FSST

Daubechies, Lu, and Wu introduce the 2nd-order SST in [7]. The focus
of this paper to define a new phase transformation w?"?. This new phase
transformation is associated with 2nd order derivatives of the STFT of x(t)
such that when z(t) is a linear frequncy modulation (LFM) signal (linear
chirp), then w?™ is exactly the IF of x(t). We say z(¢) is a LFM signal if

.I’(t) _ A(t)ei27r¢(t) _ Aept+%t26i2ﬂ'(ct+%rt2)

with phase function ¢(t) = ct+3rt?, IF ¢/(t) = c+rt and chirp rate ¢ (t) = r,
and TA A(t) = AeP'*3” where p, ¢ are eral numbers and [p|, |¢| are much
smaller than c. For u(t) = tg(t), V.**(t,n) denotes the STFT of z(t) with
uy(t) (see e.g. [15])

7' (t) = (p+ qt +i2m(c+ rt))x(t).

From

Vit = [ alt+ mg(r)e e,

o0

we can say

it = [ o ngme s

— o0

- /oo (p+q(t+7)+2m(c+rt+t7))a(t + 7)g(r)e > dr

—00

= (p+qt+i2n(c+rt))Vao(t,n) + (¢ + 27r) V21 (¢, n).

Hence at (t,7) on which V,(t,7) # 0, we have

2 (t,m) Vi (t.m)(tn)
ot Vx\by _ 9 9 P s s
SR ptagt+i2n(c+rt)+ (¢+1i WT>—Vx(t,77)
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) (%Vm(t,n)

(Vi ) — (g + 27Ut n)

where we use U(t,n) to denote

Ulty) = 9 (‘@“l(t,n)(tm))

B 8_77 Vx(ta 77)

Thus if U(t,n) # 0, then

S A )
4= U(t,n)0_n< Va(t,n) )
8th(t, 77) . . 1 0 8t‘/z(t7 7]) V;rm (t7 7])
Va(t,m) (i) +i2m(ctrt) + U(t,n)8_n< Va(t,m) )< Va(t,m) )

This implies

ety OVeltn) phgt  ViR(tn) 3( atv;c(t,n))
2nV,(t,n)  2n Vu(t,m)U(t,n) dn\i2aVy(t,n)/’
So we have

(1) :Hﬁ:Re{ OVa(t,n) }_Re{v Virtn) 0 < 0, Ve (t,n) )}

27V (t,n) (t,mU(t,n) on \i2aV,(t,n)
2nd

Hence, the phase transformation w;" is defined as

127V (t,n) Ve (6, U (t,n) " 0 \ 27V (t,n)
Re| et | if U(t,n) =0, Vi(t.n) #0

127V (t,n)

s 1) R 2Veltm) | _ Re{ Valtn) @ (atvz(t,n) )} if U(t,n)#0, Vi(t,n) #0
Wy ) =

The FSST reassigns the frequency variable ¢ by transforming the STFEF'T
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Vi(t,n) of z(t) to a quantity, denoted by by R, (t,&), on the time-frequency
plane:

Ren(1,€) = / Va(t, Q6w (2,C) — €)dC
{¢:Va (¢,0)#0}

where ¢ is the frequency variable.

We can recover the input signal x(t) from its FSST. If ¢g(¢) € Lo(R) and
is window function with ¢g(0) # 0. Then for z(t) € La(R),

x(t) = g—/_ R (¢, €)dE. (2.3.1)

o0

If in addition, ¢g(t) and x(t) are real-valued, then

(t) = ﬁm(/j Rﬁ”d(t,g)dg). (2.3.2)

For a multicomponent signal z(t) given by
K
p(t) =Y ap(t) =D Ap(t)em ),
k=1 k=1

each component x(t) can be recovered from its FSST

1

t) ~ — R¥™(¢ £)dE.
xk() g(o> /|§—¢;€(t)|<f‘ T ( 5)5

for certain I' > 0.
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2.4 FSST with a time varying parameter

the window function given by g,«)(t) = ﬁ g(ﬁ) where o > 0 is a parame-

ter, and g € L*(R) is a function with g(0) # 0. If g(¢) = \/Lz?e_%, the g, (7)
is the Gaussion window function. (see e.g. [15, 13])

For a signal x(t), we define the STFT of z(t) with a g, parameter as

‘7;3(15,7]) - /_ x<7>ga(t)(7'—t)e*w”"(T*t)dT
_ [ (T R o= i2m0(7)
/gg ( +t)a(t)g(a(t)) d
= /_ 2(€) o) (x — &)e™™dE
= [T a0 - 9pesie

A signal z(t) can be recovered from its adaptive STFT

o) (<o
o) = 2t / Valton)dn

If in addition ¢(¢) is real-valued, then for real-valued z(t), we have

x(t) = i}i(()t)) R€</Z \Z(t,n)dn).

2.4.1 Adaptive 1st-order FSST

In order to define the adaptive 1st-order FSST introduced in [14], we must
define the phase transformation w2 associated with the adaptive STFT. Let

9-(t) and g2(t) = 4 ¢’ be the continuous wavelet. V9’ (¢, n) is defined by

o2

VY (t,n) = /_Z (T + 1) 02T(t) g'(ﬁ)e‘i%mdr

To define the phase transformation w??, we consider z(t) = Ae™*™, so that

34



Va(t,m) = / 2t + 7)go(e (T)e > dr = A / omiten
- N .

therefore, we have

aa—%(t,n) - /_ Z(iQWC)eizm(t”)%g(%)e_’%mcﬁ
+ o f_eencgtge e
LA /_ el < (;‘Ztg';i r)d (%) e g
= i2ncV,(t,n) — Z((f) Va(t.m) — Z((;)) V()
If V,(t,n) # 0, we then have
GVeltn) o) o) VE(Ln)

= =C— — —E _
2wV (t, n) 2imo(t)  o(t) i2xV,(t,n)
The IF of x(t) can therefore be obtained by

Vet o) o) V()
- {i27ﬂ~/x(t,77) " 2iro(t)  al0) 'z'27ﬂ7x(t,n)}'

o’'(t)
2imo(t)

Moreover, if ¢ is real function Re{ } = 0, we have

o= Re %‘Za(t,n)>} . 0’(t)R€{ ‘ZQQ(t,n))}.

27V (t,m olt) iV, (t,n

This quantity is also called the phase transformation or the reference IF

function, and we denote it by @, (t,7) :

plstadp(t ) = RG{M} + L@Re{M}, if Vx(t,n) # 0.

z'27ﬂ7x(t, n olt) i27ﬂ7x(t, n
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The adaptive FSST of z(¢)with a o(t) parameter is defined by
Retww(ne) = [ Ts@en () - O (241)
{n€R:Vz(t,m)7#0}
where ¢ is the frequency variable.

The input signal z(t) can be recovered from its adaptive FSST:

_ ﬂ OO 1st,adp

If x(t) is also real-valued, then for real-valued z(t), we denote that

(t) = 2;(3;) Re( /_ : R;St’“dp(t,f)d{’).

We may use the following formula to recover the k-th component z(b) of a
multicomponent signal from the adaptive FSST

o 20(t) e Lst,adp
nlt) = Srre( [ R )

for certain I > 0.

Remark: )
If g is the Gaussion function defined by ¢g(t) = \/12—6 % for a signal

z(t) = Ae®™ we have (refer to [15])

"Zn(ta n) — / Aez27rc t+T o(t) (T)efi27rn7—d7_
_ 227rctgo_( )(n C)
Aeszcte—%r o(t)? (n—c)Q.
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815‘/35@, 77) — 97 Aez’27rct€—27r2a(t)2(n—c)2 + Aei27rcte—27r2cr(t)2(n—c)2(_47T2)<n o C)2O'<t)0'/(t)
= i2meVy(t,n) + Va(t, n) (—47°) () — %o ()’ (2).

Thus, we have

8t‘7;3(t, 7])

2V () =c+i2m(n — c)°o(t)o’(t).

Both ¢ and 27(n — ¢)?0(t)o’(t) are real, so the phase transformation of z(t)

can be obtained by
¢ = Re ) OVatm) |
27V, (t,n)

Thus if ¢ is the Gaussian function for a general signal z(t), we may write the
phase transformation as

. AVt .
wist,adp = Re M’ , fOT Vx<t, 77) 7& 0.
2wV (t,m)
Vi lt, . . .
istadn(p ) — Re{%} 2 if g (Gaussion function)
‘ Y 0V (tm) o(t) v (L) :
Re{ i27r‘7z(t7n)} 5w Re{ 27V (1) }’ otherwise

2.4.2 Adaptive 2nd-order FSST

In order to define the adaptive 2nd-order FSST, we apply a timevarying pa-
rameter to the STFT. Let g ) (t) = %ﬂg(ﬁ) be the window function. We

define g;(t) (t) = UQt(t) g(ﬁ) and gg(t)(t) = #@g’(ﬁ) (see e.g. [10]).
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We use Zgl(t, n) to denote the STFT defined by

V() = [ el =02 = [ et ) sa( e
and V¢ (t,7) to denote the STFT defined by
17;:92 (t,n) = /_OO x(T + t)JQ(t) g/(ﬁ)e*mnmdﬂ
we then can note that
- R 1 R - > )\ TN i
WVi(t,n) = /_Ooq; (t+7)ﬂg( i ) dr + /_OO x(t+7)( a(t)Q)g(a t))e dr
e a'(t)y ,, 7T o~ i2mnT
" /_oox(t—l—T( T o) ar
= (p+qt+i2n(c+ rt))Vz(t, n) + (¢ + 27r) /_OO Ta(t + T)%g(%)e‘ﬂmﬁh
- Tt - T )
= (rat+izmte ) = ZETalton) + (g + i2en)o 072 () - T T (),
and if V,(t,7) # 0, we have
OV, (1) o'(t) | . | Ve (tm) () VE (tn)
) =p+qt+ 0 +2m(c+1t) + (q +i27r)o(t) Vi o) Vi)

Therefore, if in addition, %(%(tn ) # 0, then (q + i27r)o(t) = Ro(t,n)
with
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g(av_un)) _i_L(t))aQ(‘;é;?(t,n))
t) On ,

Fo(t ) = o) T8 () (2.4.1)
g(vg’ (t n))
M\ Vu(tm)
. o o(tﬂ?)
q+i27r = (1)

A,V (t, O Ve'(t, '(t) (VI (8,
asAGAA (t.n) =p+qt — () +i2m(c+1t) + Ro(t,n)—= (tm) _ o )< Z ( 77))
Vai(t,n) a(t) Va(t,m) o) N Vy(t,n)

Thus

For a signal z(t) in the following, we define the phase transformation

C"Jind,adp as

AR v (1) o) o f V() o (V2 ()
®2nd,adp — Re{iQsz(t,n)} Re{i%ﬂ?@(t,g) R()(t, 77)} t o(t) Re{ Vo (tm) }’ if 87]( Vzl(t,n) ) 7& 0
¥ 8V (tm) o’ (t) V2 (¢m) oo (V) _
Re{m%(t,n)} oW Re{ Ve (t) } if 0n< Ve (t) ) =0

The adaptive 2nd-orded FSST of a signal x(t) is defined by

R?cndﬂdp(u 5) - / T ‘7x<t7 n)d(mgndﬂdp(tv 77) - é)d?% (2'4'2>
{neR:Vy (t,n)#0}

where ¢ is the frequency variable.

To recover the input signal x(t) from its adaptive FSST, we have

- @ > 2nd,adp
3
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If in addition z(¢) is real-valued, then for real-valued x(t), we have

20(t)
9(0)

(t) = Re( /_ Z Ri”d’“d”(t,g)dQ*).

We may use the following formula to recover the k-th component zx(b) of a
multicomponent signal from the adaptive FSST

20(t)

b) = R RZredb (¢ b)d
xk( ) g(O) €</|§—¢’(t)|<f‘ x (57 ) 77)

for certain I > 0.

2.5 Analysis of FSST

In this section, many pre-established concepts are reiterated and then ex-
panded upon. Refrences to these materials can be found in [19].

2.5.1 STFT-based synchrosqueezing transform

The short-time Fourier transform (STFT) of x(t) € Ly(R) with a window
function g(t) € Ly(R) given by (2.3.3). For a signal z(t), at (¢,n) for which
Vi(t,n) # 0, note that

we(t,n) = Re(M).

2imV,(t,n

The FSST reassigns the frequency variable 7 by transforming STFT V. (¢, )
of z(t) to a quantity, denoted by

— 1 f—wz(tﬂ?))
Ry (t,€) _/|Vz(t,n)|7é7%<t’n))‘h(—/\ )dn (2.5.1)

where h(t) is a compactly supported function with certain smoothness and
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Jg h(t)dt = 1. f\Vx(tm)l>7 means the integral f{n:IVx(tm)IM} with 7 over the
set {n : |Va(t,n)| > v}. We consider multicomponent signals z(¢), defined as
follows

SL'(t) = Zxk(t), with l’k<t) = Ak<t>€i2ﬂ-¢k(t), (252)
where Ay (t) and ¢ (t) satisfy

Ap(t) € C'(R) N Lo (R), ¢r(t) € C*(R), (2.5.3)
Ag(t) >0, g}f% o (t) > 0, sup o (t) < oo. (2.5.4)

Let € > 0 and A > 0, and let 5. o denote the set of multicomponent
signals satisfying (2.5.3), (2.5.4), and the following condition:

[Ar(t)] < edp.(t), [0k (t)] < edfp(t),t € R, My = sup |k (t)] < o0, (2.5.5)

Gp(t) — P (1) > 24, 2< k<K, teR. (256)

The condition (2.5.6) is called the well-separated condition with resolution
A. For the well-separated condition, [9] uses a stronger condition than that
in (2.5.6):

inf (1) —sup g, (1) > 27, 2< k< K. (2.5.7)

teR
The condition (2.5.5) considered in [12] implies that A(¢) and IF ¢ (¢)
change slowly as compared with ¢}.(¢). The Fourier-based synchrosqueezing
transform, [25], uses another condition for the change of Ax(t) and IF ¢ (1):

|AL(t)] <e, and |¢,(t)] <e, for t€R. (2.5.8)

Let fB.a denote the set of multicomponent signals that satisfy (2.5.3),
(2.5.4), (2.5.8), and well-separated condition (2.5.6). For 1 <k < K let
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={n:|n—¢(t)] <A} (2.5.9)

Hence, the well-separated condition (2.5.6) implies that Z; are not over-
lapping. We denote

K K
To(t) = MIy + 7l Ay(t), and To(t) = ML + 7l Y Ay(t),(2.5.10)
k=1 k=1
where
I, —/]T g(T)|dr, and I, _/|7' 7)|dr, for n=1,2,... (2.5.11)

Theorem 2.5.1. As stated in [19], let x(t) € B.a and g be a function in

the Schwartz class with supp(§) C [—=A, A]. Let To(t), To(t) be defined by
(2.5.10). Then we have the following.

(a) Suppose € satisfies € > €l'o(t). Then for any n with |V,(t,n)| > &, there
exists a unique k € {1,2,..., K} such that (t,n) € Z.

(b) Suppose (t,n) satisfies |Vi(t,n)| > € and (t,n) € Zy. Then
1~
wa (t, 1) — G (1)] < (Fo( JA+ o -To(?)) (2.5.12)
(c) Suppose that € satisfies (o(t)A + 5 Fo( ))g < &3 <A, we have

lim L
A—0 g(O)

/‘ o FaA:0)0E — (D) <

(d) If x(t) € B, then the above statements (a)-(c) hold with T'y(t) and
Lo(t) in (2.5.10) replaced by
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Do) = 3 {a;;(t)zl 4 %M,gfz + A (S0 T + %M,ZI@]&.M)
T = 3 {ohOF + METs + w0 + g pfs19

we may note that € and €5 in Theorem (2.5.1) could be a function of t.
If we choose € = 5%, and if € 1s small enough, such that

F< mz’n{A, L } (2.5.16)
ITo()A + 5=To(t)]

then €(To(t)A + %fa(t)) < 1. Hence,

1~ ~
(Co(H)A + —To(t)S < E< A. (2.5.17)
2m 3
Thus, the conditions in the Theorem (2.5.1) are satisfied, and Theorem
(2.5.1) (with €5 = €) can be defined in theorem (2.5.2).

Theorem 2.5.2. As stated in [12, 19, 25], let 2(t) € B.a, and € = e3. Let
g be a function in he Schwartz class with supp(§) C [—A,A]. If € is small
enough, then the following statements hold.

(a) For(t,n) satisfying |Vi(t,n)| > €, there exists a unique k € {1,2,..., K}
such that (t,n) € Zj

(b) Suppose (t,n) satisfies |Vi(t,n)| > € and (t,n) € Zy Then

wa(t, ) — ¢;(z)\ <z (2.5.18)

(c) Forany k€ {1,2,... K},

1

4A
lim—/ R (t,€)dE — ay(t g
A0 g(o) |5*¢§c|<5 ) ( ) k( )

SR (2.5.19)
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7¢ is small enough” in Theorem (2.5.2) implies that & defined by & = =
satisfies some inequalities like (2.5.16). Most theorems on the WSST and
FSST analysis are stated in the form of Theorem 2.5.2, see e.g. [7, 9, 12,
18, 25]. Part (b) and part (c) in theorem 2.5.1 denote more direct bounds
of the estimates. The quantity on the left-hand side (LHS) of (2.5.12) the
IF estimate error. Additionally, we call that on LHS of (2.5.13) the error of
component recovery or component separation. The statements in Theorem
2.5.1 can be found in [12, 18, 25] with some different IF estimate errors. For
example, [18, 25] gave IF estimate error %(Fo(t)(A—I—QqS;C(t))—k%fg(t)) instead
of £(T'o(t)A + %f‘vo(t)) in (2.5.12). One can also find that Theorem (2.5.1) is
a special case of Theorem (2.6.1).

Observe that the condition (2.5.5) or (2.5.8) requires the slow change of
the IF ¢}.(t) of each component xy(t). There is no mathematical guarantee
that the IF estimate and the component separation for a multicomponent
signal z(t) with a component x(t) will have a fast-changing frequency. For
example, the changing rate of IF of x(t) is not very small in the second
derivative ¢} (t). To address this, the 2nd-order FSST was introduced in
[10], and the 2nd-order WSST was proposed in [11]. The theoretical analysis
of the 2nd-order FSST is established in [18].

If V.(t,n) # 0 and 075(8‘/1—“7)) = 427, then

(tm)

t<3tVz(tﬂ7))

~ Ve (t,m)
q(t,n) = AT (2.5.20)
ZQ?T_at( V(tn;])

The 2nd-order FSST in [18] is defined as

1 Qnd
R = [ w2 s
7 Vi (ta) [ A A

where w?"(t,7) is the phase transformation for the 2nd-order FSST. For
(t,n) with Vi (t,n) # 0,

01V ( , 00 Ve
W2 elsmvim) + Rela(t Moy it o) £
( 77) R 0 Vi t’?) O h ( )
{2mvz tr])} therwise.
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Lete > 0and A > 0. Bg& is the set of multicomponent signals satisfying
(2.5.4), the well-separated condition (2.5.6), and the condition:

Ap(t) € C*(R) N Loo(R), i (t) € C3(R), ¢ (t) € Loo(R), (2.5.23)
A0 e laib] << ol @) <cte ®). (2529

Then, when z(t) € Bg&, statements for the 2nd-order FSST that are simi-
lar to (2.5.2) hold under certain conditions that are more complicated than
(2.5.16) because no hand-limited window functions and the 2nd-order phase

transformation w?"4(t,n) are involved. The deffinition of Ba(a has no direct
boundedness restriction on ¢} (t). See [18] for the details.

2.6 Analysis of Adaptive FSST

In this section, many pre-established concepts are reiterated and then ex-
panded upon. Refrences to these materials can be found in [19].

2.6.1 Adaptive FSST with a time-varying parameter

We begin with the window function given by

), (2.6.1)

where o > 0 is a parameter and g(t) € Ly(R) with g(0) # 0. In addition,
g(t) has a decaying order as t — oo. If

g(t) = e 2, (2.6.2)

then ¢,(t) is the Gaussian window function. The parameter o is also the
window width in the time-domain of the window function g,(t) because the
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time duration Ay, of ¢,(t) is o (up to a constant ). A, = oA, where A,
is the time duration of g.

For a signal z(t), the STDT of z(¢) with a time-varying parameter, as
defined in [15] is

Vattan) = [ atr)gniolr =0 0dr = [ alt+1)—al o) 263)

where 0 = o(t) is positive function of t. V,(¢,n) is the adaptive STFT of
x(t) with g,.

Before review the SST associated with the adaptive STFT, we must in-
troduce some notations used in this and the next two subsections. Note
that

g1(7) = 79(7), 92(7) = 7g(7), g3(7) = 74'(7).

Therefore,

T T 7'2 T T T

91.0(T) = ;9( ), 92,0 (T) = ;9( ), 93.0(T) = ;9/(;)-

o o
We use V%(t,n) and VY (t,n) to denote the adaptive STFT is defined by
1
(2.6.3). gj. replaces g, and ¢, (1) = —g’(z) where 1 < j < 3.

o’ o

For z(t) = Ae’>™ we can prove that, if V,(¢,7), then

% (tm) >
z\Y / / g3
wgdp,cu) 77) — ot _ 4 g (t) + g (t) ‘/x~(t7 77) )
i2rVi(t,m)  i2mo(t) - o(t) 27V, (t,m)

(2.6.4)

Furthermore, w®(t,n) is ¢, the IF of x(t). For a general z(t) at (t,7), we
must then define the real part of the quantity of w?®<(t,n) in the above equa-
tion. This real part denoted by w(t,n) and as the phase transformation of
the adaptive FSST (see[15]):
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at<v ( ))} + U/(t) Re vxg?)(tv??)

ot "o iy T Ve HRED)

wWi™(t, 1) = Re{

Then, the 1st-order adaptive FSST, or R is defined by

T,y

ad,
RatP(4,€) = /w Lt minE—E D )
=(tn)| >

We must now consider the 2nd-order adaptive FSST. For a linear chirp signal,

i2m (ct+—=rt?)

z(t) = Ae?™0 = Ae 2 (2.6.7)

Adaptive short-time Fourier transform and synchrosqueezing transform for
non-stationary signal separation [15] shows w®P2nd<defined below as c+1t,
as the IF of z(t):

adp2nd,c _ O () %‘Z(t,n) V2 (t,m) o'(t) Vi (t,m)
= e it 2evaom T o) et
for (t.1) satisfying - <Vg(1(j:)> £ 0 and V,(t,5) # 0, where
L0 m%) s e Tre
Py(t,n) = a(vgl( o +a(t)8_n( Tt )} (2.6.9)
oV, (t,m)

Li, Cai, Han, Jiang, Ji define the real part of w3®274¢ as the phase transfor-
mation for the 2nd-order adaptive FSST (see [15]). The phase transformation
wadp2nde ig defined by
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r 0 ~

- Va(t,n) V(¢ (¢ V93 (¢
Re( Iy~ pe( YD p gy TW e YLD
27V, (t,n) 2V (t,m) o(t) 2V, (t,n)
. g v (tﬂ?) 7
wgdp’%d’c t,n) = if —(=== 0 and V,(t, 0,
(1) o okl (t.n) #
iy ) v v
. Y\l / g3 g1 ~
Re( Dy TW o VI y 5 O V2D g (1,1 5
(2 V(t,n) o(t) 2wV, (t,m) o V(t,n)
. o o, Vo .
The adaptive FSST with V,.(t,7) # 0 and —(= ) # 0 described by
0"V, (t,n)

thresholds v, > 0, 72 > 0. More precisely:

~ o V9t

quantity in(2.6.8), if Vx(t,n)‘ >y and |— M
adp,2nd,c _ 877 %(t’ 77)

w (t,n) = (2.6.11)

TY1,72 17
~ g Vot
quantity in(2.6.4), if Vz(t,n)‘ >y and |— M <
- Va(t,n)
Again, let h(t) be a compactly supported function with certain smooth-
ness and [ h(t)dt = 1.
The 2nd-order adaptive FSST, R4%2'4A is defined as
R A A ) e e VAR
{n: |V () [ >, | o (Vi (£0) / Ve ()| 72}

2.6.2 Analysis of adaptive FSST

The analysis of adaptive FSST was studied in [19]. A sinusoidal signal locally
approximates each component of z,(t) = A (t)e?™+(®). We assume A} (t) and
@, (t) are small.
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V,(t,n) = / z(1)g(T — t)e 2D dr (2.6.2)
R
for some positive number €1,¢2. Let Dy, ., denote the set of the set of mul-

ticomponent signals.

Let z(t) € D, -,. We write zx(t + 7) as

r(t+71) = wzi(t)e i2n g, (t)T + (Ap(t+7) — ) 2Pk (t+7)

An(t
+ 1 (1) 2O (2 (@1 (T =Sk (D=1 (OT) _ 1),

If we simplify the expansion, we obtain
ap(t+7) = (Ag(t +7) — Ap(t)) e o) gy (1) (@R =0k(0)

Then, we have

1 .
zp(t+717)— (—T e T dr

o0 (1)

M)~
—

Vo(t,n) =

/ 1 .
xk z27r¢ ®r g( U )6—227rn7'd7_ + remy

o(t)” ot

[
]~
 —

B
Il
—

K
~ o b 1 ;
Ve(t,n) = E xg(t) /Reﬁmk(m—g(ﬁ)eﬁ”mdr + remg (2.6.3)

= Y w30 (t)(n — G4(1)) + remy (2.6.4)

where rem, is the remainder for the expansion of V,.(¢,7) in (2.6.4) given

by
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remy = Z / (Ap(t +7) — Ap(t))e2 ottt %g< T )i 4

+ Z/ 127r¢k(t z27r(¢k(t+7)7¢k(t)7¢>;€(t)7') . 1) 1 ( T )67i27r177'd7_
with [Ap(t 4 7) — Ag(t)] < &1 || and

Gt =0 0600 1| < 9 [(Bu(t +7) — 0u(t) — Gh(D)7] < meal
we have

remo| < i [ \g<L> d¢+§4k<t> [ ettt o \g<£> r

= Ke Lio(t) + mealbo?(t) Y Ap(t),

-

where I, is defined in (2.5.11). Hence we have

|remo| < a(t)Ao(t) (2.6.5)

where

)=

Ao(t) = K{fl]l + 7T€2]20'(t) Ak(t) (266)

k=1

We can extend V' (t,n) as (2.6.4) with remainder remj. In (2.6.5), rem,
is defined as remq in (2.6.5) with g(7) replaced by ¢’(7). Then we have the
estimate for the remainder similar to (2.6.5). More precisely, we have

Ireml| < o (t)Ao(t), (2.6.7)

where
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No(t) = KeiIh + mesloo(t) S Ag(t) (2.6.8)

I

with I,, defined in (2.5.11).

If the remainder remyg in (2.6.4) is small, then the term x4 (¢)g(o(t)(n— ¢} (t))
in (2.6.4) gives the time-frequency zone of the STFT V,, of the kth compo-
nent zx(t) of x(¢). Additionally, if g is band-limited, that is ¢ is compactly
supported. Therefore, if (§) C [-A,A], then zx(t)g(a(t)(n — ¢,.(t)) lies
within the zone:

((t) : Iy — ()] < %,t R},

The multicomponent signal z(t) is well-separated (that is Z,NZ; = @, k # 1),
provided that o(t) satisfies

S 2A
— O(t) = P ()

o(t) teR k=2 . K. (2.6.9)

If g is not compactly supported, we must define the”support” of § outside
of g (§) = 0. Specifically, for a given threshold 0 < 75 < 1, if |§(£)| < 7 for
| X| > «, then we say (&) is "supported” in [—a,«]. When |g(§)| is even
and decreasing for £ > 0, then a can be obtained by solving

|9(a)| = 7o. (2.6.10)
For instance, when g is the Gaussian function with g(§) = e~27°¢ the cor-
responding « is given by
1 1
a=—/2ln(—). (2.6.11)
2 To
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Thus, g with §(§) is "supported” in [—a, a], and we define the time-frequency
zone Z of the kth-component z(t) of x(t) by

Zr ={(t,;n) : |9(e()(n — ¢.(1)| > 70,8 € R} = {(t,n) = In — G ()] < o€ ®6.12)

a
t
If o(t) satisfies

- 2/
— () = 9 (1)
the multicomponent signal x(t) is well-separated.

In this case Z, N Z, = &,k # . When o(t) satisfies (2.6.13), since ¢} (t) is
bounded, we can say

a(t)

teER k=2, ..,K, (2.6.13)

1
o(t)|]o
In this case, we may also say
o(t) ¢ (t) — git)| > 20 |k — 1] (2.6.14)

Theorem 2.6.1. [19] Let x(t) € D., ., for small 1,65 > 0. Then we have
the following

(a) Suppose & satisfies £ > o (t)Ao(t)+70 Son_, Ap(t). Then for (t,n) with

Vx(t,n)) > £1, there exists k € {1,2,3,..K} such that (t,n) € Zj

(b) For (t,n) with |V,(t,n)| # 0, we have

Remy

WPt (t,m) — ¢ (t) = —=——
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(c)

where

Remy = i2m(n — ¢y (t))remo — % +i2m Y @ (t)(B)(t) — ¢()a(a(t)(n — ¢ (1))
k£l

Hence, for (t,n) satisfying Vm(t,n)’ > &1 and (t,n) € Zy, we have

W () = 64,0 < bl

bd, —= %(aAo(t)+%K0(t))

b masieqs,o { 3 AO[dE) — G0 st + o6k (0) - )]}

k£l

Suppose that £1 satisfies the condition in part (a) and that bdy in part
e ~ L ~ Q
(b) satisfies bdy < ——. Then for &3 satisfying bd; < &5 < —— we

o(t) o(t)

have

. U(t)/ adp,\
lim 2 R (t,f)df—xk(t)‘ <bds,  (2.6.15)
30 9(0) Jie—gpi<ss ’

where

1 ~
by = m{%z(a(t))Ao(t) +81) + Axlt)

/|u|2a f](u)du’ - Z Al@)ml,k(@.FlG)

14k
with

mhk(t) =

/| St o 0(6(1) - (0)du
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2.6.3 Analysis of 2nd-order adaptive FSST

For a given t, Gi(§) denotes the Fourier transform of gimo (D (D g(T), namely
(see [19]),

Gul©) = F(em OO g(r)) (¢)

_ / eiﬂa(t)¢;€’(t)’r2g(T)e—iQﬂfrdT
R

r(t+7) = a;k(t)ei2W(¢L(t)T+%¢Z(t)72) + (Apt+7) - Ak(t))ei27r¢k(t+7)
bt O 27 (o) —sr - (-1 ()r) _ ).

Then, we have
1 T
t

rp(t +7)—=<g(——)e ™ dr

o(t)" a(t)

=
s
I
]~
T

i
I

xk(t)ei2w(¢;(t>v+%¢;’<t)r2>L T e P dr 4 res,

=GR

I
]~
—

B
Il
—

where

K
resy = Z/{(Ak(t—|—7') —Ak(t))ei%d”“(HT)
k=1 7R

5 / 1! N / /! 2 1
+ xk(t)GZQT(((bk(t)7+%¢k(t)72)(e’LQﬂ'(¢k(t-‘rT)—(f)k(t)—(f)k(t)T—%(f)k(t)’r ) B 1)}7)9(
N K
Volt,n) = > a®Gx (o) = (1)) ) + reso (2.6.3)
k=1

with
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Akl +7) = Ax(t)] < el
and

(= OO 4HO) | < o zsupyerlgf? ()7 < Tealrf

we have

1 T ™ g 1 T
resol < 3 [ ailrl—slalrlar+ 3 A [ Zalrf'—la(slar

where I, is defined in (2.5.11). Hence,

resol < o(t) [](0). (2.6.4)

where

]~

H(t) = K{fljl + %63130'2(t)

0 k=1

Ar(t). (2.6.5)

Therefore, if 1, £ are small enough, then |resy| is small as well. Gy, <o(t)(n—

<;5;€(t))) also provides the time-frequency zone for V,, (£,1). To describe those

time-frequency zones mathematically, let 0 < 75 < 1 be a given small number
and the threshold:

O = {(t.m) : G (o) = 640 )| > 70, ¢ € R}, (2:6.6)
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Assuming |G (€)] is even and decreasing for & > 0, then we may write Oy,
as

677

Ou={(t.m):In = (0] < 175

t € R} (2.6.7)

where oy = ay(t) is obtained by solving |G (£)| = 70.In this instance, we will
say that multicomponent signal x(¢) is well-separated and there is o(t) such
that

OLNO; =0,k +#1.

We can use a Gaussian function defined in (2.5.24) as an example. For
this g, we can obtain (see [15]),

- o (1+i2mgy ()02 (1))
Gi(u) = ¢1_@~2ﬁl¢g<t>aa<t)e L+ rof(Be2()?
Thus,
22
Gelw)| = ! e L+ Crol0°(M)) 2,
(1+ (2rg}(6)2(1))2)4
2m%u?

- 1
The solution of |Gy (u) = 79| & e L+ (2mi(t)o?(t))* = To((1+(27¢g<t)02<t>>2)1

1
Therefore, in this case, assume 74((1 + (27Tq5’k'(t)02(t))2)1 <1,

=1+ <2w¢g<t>a2<t>>2>%¢2zn<i> — 51+ (a1 (1)),

To

The main theorem on the 2nd-order adptive FSST can be written in more
notations observe:

56



Cialt,n) = /R 2RO+ S8 07 )%}19( T (268)
= F(em O ig(1)) (o) (0 - 64(1))). (2.6.9)
Clearly,
Gox(t,n) = Ge(o(n — ¢,(1))),
and, when j > 1, we can see that
Gip = ;G,(j) (o(t)(n — &4 (1)) (2.6.10)

(—i2m)J

Let resy,resqe, res), and res| be the residuals defined as resy in (2.6.2)
with g(7) replaced respectively by g1(7), g2(7), ¢'(7), and g3(7) = 7¢'(7). We
therefore have the estimates for these residuals that are similar to (2.6.4).

resi| <o) [J(),  Iressl <o ), Iresol < o] ] (@), Iresil < o], (1),

1
1 2

where
K
H( ) Kéllg -+ 63]40’ ZAk H K81[3 + —63150' Z Ak
1 2

—~ K —~

[1,0 = Keili + Seslio’(t ZAk [1,() = Kalo + Zeslio®( ZAk
k=

with I,,, I, defined in (2.5.11).
Denote:
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Bi(t,n) =Y () (¢i(t) = ¢p(0)Goult.m),  Di(t,n) = Y ()@ (1) — ¢(1)) Gty ),

E(t,m) l%; n()(G)(t) = (1)) Gra(t,m),  Fi(t,m) g; 1 (2) (91 (t) — ¢ (1)) G,(t, m)
and
Res, = i2nBy(t, ) + i2n0 Dy(t, n) + i2m(n — &, (t))reso — % — 27! (1) o (H)rE36.11)
Resy = 4n%c(t)Ei(t,n) + 470 (t) Fr(t) (2.6.12)

+ i2mresy + 4% (n — ¢ (t))o(t)res; + i2nres| — 4n* ) (t)o* (316:43)

Lemma 2.6.2. [19] Let Res; be the quantity defined by (2.6.11). Then,

aVa(tm) = (i2ndf (1) - %)%(t,n) + i2ngf{(Do (VS (t,n) - %)m% (1) + Res.14)
Lemma 2.6.3. [19] For (t,n) satisfying V,(t,n) # 0 and %(%) 40,
we have
Py(t,n) = i2mo ¢ (t) + Ress (2.6.15)
where
Res, — V,(t,n)Resy — 0,Va(t, n) Res, (2:6.16)

Vot )0,V (8,m) = Vi (8, m)0, Vet )
with Res; and Resy defined by (2.6.11)and (2.6.13) respectively.
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Theorem 2.6.4. [19] Suppose z(t) € D)., with a window function g(t) for
some small 1,69 > 0. Then, we have the following:

(a) Suppose & satisfies €1 > c0 S n_y Ap(t)+0(t)o(t). Then for (t,n) with

‘/Zr(t,n)) > &1, there exists k € {1,2,..., K} such that (t,n) € O.

(b) Suppose (t,n) satisfies |V, (t,n)| > &1, 8,7(‘7;’1 (t,n)/%(t,n)) > &9, and
(t,n) € Ok. Then

wPb2nde(t ) — dat (t) = Resy, (2.6.17)
where
191
Res, — Iiesl W (tin)Resg. (2.6.18)
i2nVi(t,m)  i2aVi(t,n)
Furthermore,
|wPd2nd(¢ ) — ¢l (8)| < Bd (2.6.19)
where
) Resi| | 1 |, - -
i = s sup {52+ s [P ([t 1+ v s )}

1
(c) Suppose that €1 satisfies the condition in part (a) and Bd; < §Lk(t),

where

1
Li(t) = %mm{ak + a1, 0 + gt} (2.6.20)
-~ o ~ 1
Then for any €3 = £3(t) > 0 satisfying Bdy < g3 < §Lk(t),
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t
lim 20 / RIPP2IA (¢, €)dE — :vk(t)‘ < Bd,, (2.6.21)
A=09(0) Jie—gp ez 70

where Bdy = Bdy + Bdy with

U 1 ~
Bd, = —|g(0)|{2ak(€1+0(t)H0(t))+Ak(t)‘/u>ak Gk(U)dU‘Jr;Az(t)Mz,k(t)},
Bl = e {2M00(0) + Ax(t) g 1 120 + 3 A Mue(t)}
9(0) ~

and | Z;| represents the Lebesgue measure of the set Z;

Zt - {T] : <t777) € Ok> ‘/Jﬁ(tan)) > gl??

OV )/ Valtm)| < &}
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Chapter 3

Higher-order SST

3.1 High-order Synchrosqueezing transform

3.1.1 The higher-order wavelet synchrosqueezing trans-
form

Higher-order WSST
Consider the Nth-order polynomial-phase signal

z(t) = Ae?m) (3.1.1)

with ¢(t) = rit + %Tgtz 4t %TNtN, and ¢/(t) = ry + - +rytV L
We have 2/(t) = i2n¢/(t)x(t) and

: _ gy @ (b)at oM (b)aN N
¢'(b+at) = ¢'(b) + —7— + T (3.1.2)
We recall the CWT definition of the signal z(t)
W,(a,b) = / (b + at)y(t)dt. (3.1.3)
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Thus, we have

HWola,b) = / h ' (b + at)y(t)dt = / h i21¢) (b4 a)x(b+ at)(t)dt

— 0 (e 9]

= / 21 (ry + ro(b+ at) + - - 4+ ry(b+ at)N " z(b + at)y(t)dt
o . 3.1.4)
. 00 ) gb”(b)at gb(N)(b)aN 1tN 1 - (
= @27r/oo (gb(b)—f—T—l—----I— (N =11 ).x(b—l—at)@b(t)dt
. , ¢(2) b)a aN=14(N) N-1
— a2 (¢ (O)Walb,a) + %W;f’l(b, @)+ + T b,0))
where
WY (b, a) = / (b + at)t o (t)dt. (3.1.5)
P N i2mah (k) W
We can then write 5 W,(b,a) = kz; = 1>!¢ (b)WE=1(b, a).
The goal is to determine ¢! (b) according to W, (b, a), W¥* (b, a), ..., Wi~ (b, a)
WWe(b,a) ! ag}k_l(by a) , k)
AT A ; G0l Wb ¢ 0 (BL6)

We can write the equation in the form of a scalar product:

wy(a,b) = [z1(b), ..., 2x(D)][1, Vai(b,a),. .., Vni(b,a)]”,

8bWx(b7 a)

227 and 2,(b) = 6™ (). fork =1.... N.
ZQWWw(b, a) an Ik( ) ¢ ( )7 or ) )

where w,(a,b) =

To solve the problem, we pass through successive derivatives of equation
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(3.1.6) according to the variable a.
To get sequence (xk(b))l <peno We create up a system of N equations with
variables z(b). Let us denote

y = V. X5 (3.1.7)

Wlth VN = []_, ‘/2,1(b7 a), ceey VN71(b, (I)] and XN = [Zli'l(b), Ce ,$N(b)]
Computing the partial derivatives:

_ Oayi(b, a) 0aVy1(b,a)

b = ————and V(b =7 7 3.1.8
ya(b: a) 0aVa (b, a) and Vi.»(b,a) daVa1(b,a)’ ( )
which implies the following expression:
ya2(b,a) = 0,1, Vaa(b,a), ..., Vya(b, a)| X% (3.1.9)
0aVi1(b,a)
Vio(b,a) = ————=, fork=3,...,N.
k72( ? CL) 8&‘/271(b, a) Y or ) 9

To get the % equation. We repeat the same process iteratively. We define
the new parameter for the Ay matrix for j =2,..., N and k = j,..., N by:

. 3aVk7j_1 (b, CL)

= 1.1
8an,j_1(b, CL) <3 O>

yi0,0) = 2 (o)

= d V(b
3(1‘/]-,]-_1(17, (l) ) At kJ( ’ a)

Then,
yj(b, CL) = [O, O, ceey 1, ‘/j—i—l,jy ceey VNyj]XJ’I\;.

63



We group the N equations and get a good linear system

n T
: = Axn : (3.1.11)
YN TN
where
1 Voi ..o ... VN
0 1 Vio ... VN2
Ay =|: . (3.1.12)
o 0 ... 1 Vnnoa
o o0 ... 0 1

Since the Ay is an upper triangular matrix with a nonzero diagonal, the
solution of the linear system is given by

ajN(b) = yN(b> CL)

N
0) = y;ba) — 3 Vis(ba)ma(d), forj=N—1,...,1.
k=j+1

3.1.13)

We can write this idea in the form of an algorithm.

Determination of the Nth-order local phase transformation

Step 1. We define the matrix Ay by (3.1.12) with V} ; obtained by the following
formula:

. Yh—1(p o
o Vii(b,a) = (Zk_ll), W;”,Vz(bﬁ)’ L fork=2,...,N

° ande,j(b,a):g“:/v’;j—m, forj=2,....N, k=j,...,N

e The matrix Ay is defined by :
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1 ‘/'271 cee e VN71

0 1 ‘/2572 R VN,2
Ay = | :

0 0 1 Vv

o
(@]
(@)
—_

Step 2. We compute y1, 9o, ..., yn by

_ OpWy(b,a)
( ) )_ z?l;rW (b,a)

,fory=2,....N

Step 3. We solve (3.1.11) and obtain

xN(b) = yN(bv a)

N
Z'](b) = yj(bv (Z) - Z Vk,j(ba Cl)l‘k(b), fOI'j =N-1,.. 1

k=j-+1

Step 4. The Nth-order phase transformation w? is defined by

W (a,b) = w, (b, a) ZV’“ (b, a)xk(b), if Wy(b,a) # 0 and daVj,;_1(b,a) # 0
wz(b, a), it Wa(b,a) #0

Adaptive higher-order WSST

For a signal with Nth-order polynomial-phase, we define adaptive higher
order synchrosqueezing transform w,". We start with the CWT with a
time-varying parameter o(t).

t

Wo(a,b) = /OO 2(b+ at) Ty (B)dt = /_OO (b + at)ﬁg(g(m

—00 0

e 5t .14)
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The partial derivative of W (a,b) is given by

%Wz(a,b) = /_Oox’(b—l—at)ig(

We can simplify the expression

W,(a,b) = b x’ a Lot e Tt — o) a,b) — 7' (0) G2 a
OT.fa.t) = [0k at) (i) = T 0.0) = S )
where

7 74 - 1 t —i2mpt
W.(a,b) = /_OO z(b+ at)wg(%)e dt
=2 Oo t ot —iomut
WY (a,b) = /OO z(b+ at)a(b)zg (%)e dt.
Observe that
8;,Wx(a, b) + Ual(i))) (Wx(a, b) + W;"Q (a,b)) = /_OO 2'(b+ at)ﬁg(ﬁ)emwtdt.
we denote: 3(a,b) = 9,W,(a,b) + %(Wm(a, b) + W2 (a,b)).
Therefore,
Py > / 1 t —i2mnt
Bla,b) = /_Oox (b+at) ol e (3.1.15)



In addition for a signal x defined in (3.1.1), B(a, b) satisfies

Bla,b) = /_OO i27r<¢/(b)+---+w%lv))x(bijf)—

[e.9]

= a2n (Wola D)/ (0) + -+ e TTE 0, B)0) (1)

where for k =1,...,N —1

[ee} k —t

W% (a, b) = / v(b+ at)%b)g(a(b)

Thus, we have

Blab) o W
iQWWx(a,b)_¢(b)+ }(a,b)¢ Ot W, (a,b)

~apy _
with T 1(a,b) = W%Z (;flj;’b) (Z}ill)!. It remains only to determine ¢*)(b) for
k=1,... N

Bla,b)

N
B Gl A AT Tra(a,b)p™ (b).
i2nW,(a, b) # H; k(@ D)6 (D)

We denote

Bap) — o®dWa(ab)+ ') (Wx(a, b) + W (a, b))

yi(a,b) = —— = ‘ ~—
i2nW,(a,b) i2mo(b)W,(a,b)

N
p(ab) = i)+ > Tha(a,by(®), with xu(b) = 6P (b), k= 1,...,N.

k=2
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We can also put y; in the form of a scalar product defined as follows

X1(Z) 1 X1(2)

2 T2 1 2

yl((l,b) = [1,T2’1(a7b>,...7TN’1(CL,b>] X ( ) =< 7 i X ( ) > .
xn~(b) Ty xn (D)

Similarly, applying the algorithm (3.1.1) in the case of ¢ is constant. The
Nth-order phase transformation or the reference IF function estimate o is
defined by

PN Tio1 (b, a)x(b), if Wo(b,a) # 0 and 8,T;;1(b,a) # 0
&, (a,b) = ZQﬂ'W( kz; ol F (b,a) G.i-1(b;a)

B(a.b) T
D) if Wy(a,b)#0
3.1.2 The higher-order short time Fourier synchrosqueez-
ing transform

Higher-order FSST

Definition 3.1.1. Given a signal z(7) = A(7)e™®™™ in L2(R) with A(7)
and ¢(7) are equal to their Lth-order and N-order respectively, the Taylor
expansion for 7 close to t (see[17]):

The signal x is defined as above, with L < N, can be written as:

L (log(A))® N k)
x(1) = exp (Z —(1 g(i)') ®) (1 — t)k> exp <i27r Z ¢ k!(t) (1 — t)k>

Bl
Il
o

1
k!

WE

= oxp (Y 5 ([log(A) V(1) + i2n6M (1) (7 — 1))

e
Il

0
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Since (log(t))®(t) = 0if L+1 < K < N, we define the STFT for a signal
x by:

VI(t,n) = /Ra:(T +t)g(r)e 2™ dr. (3.1.2)

Applying the derivative of STFT, we have:

otvVi(t,n) = /R at[exp(i%([mg(m]%)(t)+¢2m<k>(t))(f)k)g(f)e—ﬂﬂdT

wnltin) = g =5 i (314
TAT k=1 T\
- —(1og§12472)’(t) +t)+ ) —vamg (i(’;’)n)rk(t) (3.1.5)

where 7, (t) = <i[log(A)](k) () + qb(k)(t)), fork=1,...,N

(k=D \ 27

wnltn) = 3 Y 1) g QoBANO) |y

The Nth-order IF estimate follows:
N
Re{wm(zﬁ, )+ > () (— Pty n))} = (1) (3.1.6)
k=2
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k—1

where Pj1(t,n) = %, for k=2,...,N.

Moreover, we can put equation (3.1.5) in the form

Tl(t)
wo(t,n) = [1, Pos(t,1), ..., Py (t,n)] Tth) = Py.RY.
TN(t)

In the same way, we can present the previous cases to the algorithm 3.1.1
to provide the parameters ry,...,ry.

Definition 3.1.2. If s € L*(R), the Nth-order local complex IF estimate
or phase transformation w? is defined by (see [17]):

wi\/(t7 T]) _ wz(t> 77) + ZTIC(t)( - Pkal(tv 77)) if V;:g(ta 77) 7é 0 and anpjyjfl(t 77) 7é Q317)

k=2

we(t,m) if V9(t,n) # 0 and 0, F; ;_1(t,n) # 0.

Adaptive higher-order FSST
We recall the STFT of the signal z(t) denoted by

1

Vet = [ a(t+7) ()

Taking the derivative by ¢

DYty = /]R 2(t + 7) () e~




To simplify the calculation, we note the following expression

TR = [t (Gt e
¢ (t),v/gQ(t n) = /x(t+7)<_0/(t)r>g'( T )e"ZdeT
oty * V7 R a3 (t) o(t)

=1 — - (3.1.8)

where

= ‘73-;(2:77)2; G _1 0 (%[log(/l)](’“)(t) + ¢““)(t)) /R (t + T)Tkg(ULt))e_izdeT
2T o ity
=€%m;wmom
with 7, (t) = G _1 o <%[log(z4)](k)(t) + d)(k)(t)), fork=1,...,N.
Thus, we have
Lo ST 0 g T
we denote:

L1 eVt ) | SV (L)
wx(’")_izn(@a(m) ot) o) Vg ,,7))



Then,

log(A)™(t)

127

The IF function is obtained by

$0(t) = Re{wztn > onio Ve tn))}.

= Vi (

We can use the equation (3.3.2) to apply the unknowns 7(t),...,rn(t)
in the form of a scalar product previously solved by the algorithm (3.1.1):

r1(t)
~ TQ(t) T
wv’v(t’n) = [1782,1(t7n)7'"aSNJ(t?T/)] . :SN‘RN
()
Ntkg
where Sy, 1(t,n) = Vx—(t) for k=2,...,N.
VI (t,n)
any] 1( 77)

Let us denote yi(t,n) = wy(t,n), y;(t,n) = and Sy,;(t,n) =

onSy,;—1(t,n)
onS;j-1(t,n)

OnSjj-1(t,n)’
In the same way, algorithm (3.1.1) solves the problem.

3.2 New FSST transform

A new phase transformation for the 2nd-order adaptive FSST was proposed
in [26]. We consider the new second order FSST associated with STFT. For
a signal z(t) defined by

42 4 142
.I'(t) _ Aept+2t 6127r(ct+2rt )’
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The STFT of z(t) € Ly(R) with a window function ¢(t) € Lo(R) is defined
as

Vit ) = /R 2(F)glr — t)e— =Dy (3.2.1)

where t is the time variable and 7 are is the frequency variable.
As in previous cases, we have

OVa(t,n) = (p+ gt +i2m(c+rt))Va(t,n) + (g +2mr) VI (7).

Thus at (¢,7) on which V,(¢,n7) # 0

8tvm <t7 77)
ngl (t7 77)

Ve (t,m)

+ (q +i27r).

Taking partial derivative J,, then we have

o (&Vz(t, 1)

an \ VI (t.n) ) = (p+qt +i2m(c+rt)) Pot, ) (3.2.2)

where we use FPy(t,n) to denote

P, = — (s 2 = on '
O(tan) an <ngl (t)n)> = (p+qt+7/ 7T<6+ Tt)) Po(t,n) 877 (ngl (t777)>
Thus,
 ptgt 1 9/ Vilt,n)
chrt=—mp ot i2m Po(t,m) On (ngl (t,n) )

Thus for a general x(t), we define a new phase transformation for the 2nd-
order FSST, denoted by wew:nd  as
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on
. Vi (t,m)
Wi\few,chl(t7 77) 127 o ( VI (o) )

8V (t,m) e 0 Valtm) ) _
Re{z‘%vz(:n)}’ if %(Vgl(t?n» =0, Valt;n) #0

3.2.1 New higher-order FSST

Definition 3.2.1. Given a signal z(7) = A(7)e™®™™ in L2(R) with A(7)
and ¢(7) are equal to their Lth-order and N-order respectively, the Taylor
expansion for 7 close to t:

the signal x is defined as above, with L < N, can be written as:

Mh

z(r) = exp(

log(A))® k R K
W(T—t) )exp (zQW;gbk—!(t)(T—t) )

i
o

1
k!

WE

= exp (Y 5 (log(A) Y (1) + 2o (1) (r — )F).

i

0

Since (log(t))®(t) = 0if L +1 < K < N. Next we define the STFT for
a signal = by:

VIt ) = /R 2 + £)g(r)e2 7 dr. (3.2.2)

Applying the derivative of STFT, we have:
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oVi(t,n) = /R@t [exp (ﬁ: <%W + i27r¢(k)(t)>7-k> g(,r)e—i27rn7':| dr

_ Z( D 1 ot ))vt’“ 9(t,m) (3.2.3)
k=0
0
mitn) = 2 =3
_ (Uog(A))'(t) ( n) | (log(A)"(t) | » m
= (RS o +¢())Vtg( T +¢(t>+k3 i O

where 7(t) = % + oW (t), for k=1,...,N.

Taking the derivative by 7 for the equation (3.2.4), we have:

x 7 x

A, wa(t, 1) = (%ﬂy@)a (Vg ) f: (Vtk ! (,tn;?)>m(t)'

Therefore, if in addition, O (—) # 0, then
New (log(A))'(t) 3 Ve e(t )
wy Y (t,m) = ( o ) +Z a n( o >7“k(8)2.4)
= a’7(Vt9( )> = ()
where the function w*" is defined by
1 0 VI(t,m)
whe(t, 0, AE R : 3.2.5
o)
T\ Vi (tm)
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In addition, we can write equation (3.2.4) in the form

W () — 3 Wia(t mra(t) = S8 4 )

127

Ve (t,m)
here Wii(t,n) = ———a, (L2 BN for k=3, N.
where W, (2, 1) 8,,<M> ’7< Vi(t,n) > or e

t
Va:g(t"fl)

The new version for the Nth-order IF estimate is defined by the STFT:

%{ New(t, p) + 3 () Wkltn))} &' (4). (3.2.6)

k=3

Moreover, we can put the equation (3.2.4) in the form:

New(t 77) [17 W3,1<t7 77)7 W471(t7 77)7 SR WN,1<t7 77)] T4(t) = WN 1 R% 1°

In the same way the previous cases used the algorithm (3.1.1) to provide the
parameters 71,713,174, ...,7y, We can denote k = 3,..., N by computing the
partial derivatives:

aanew(

) and Wi (t, ) = 2Vl 1)

t, _ 3.2.7
y2( 77) 8W31( ) aW31( ) ( )
which implies the following expression

yg(t, ’)7) = [0, 1, W472(t, 77), ceey WN72(t, n)]R%—l (328)

76



To find the j** equation, we do the same process iteratively. We define the
new parameter for the Ay_; matrixforj =2,... ., N—land k= j+1,.N—1
by:

Onyj-1(t,n) Oy Wij—1(t,n)
y;(t,m , and Wy ;(t,n) = : . 3.2.9
(t.) = OWis15-1(t,n) () IWit15-1(t,n) (3:2:9)
Then,
yj(t, 77) == [O, 0, ey 1, W/j+27j, ey WN,j]R%_l
We group the NV — 1 equations and get a good linear system:
U1 1 W371 . e WN71 1
Y2 0 1 W472 e WN72 T3
Y3 =1: T4 (3.2.10)
: 0 0 e 1 Wy n_2 :
YnN-1 0 0 . 0 1 rN
YN_1 = AN_l.[RN_ﬂT (3211)

Since the Ay_; is an upper triangular matrix with a nonzero diagonal, the
solution of the linear system is given by

rn(t) = yn-1(t,n)

ri(t) = yj-a(t,m) — ZW’W o(t,m)ri(t), forj=N—1,...,3.
k=j+1

Definition 3.2.2. Let z € L*(R). The New version for Nth-order local
complex IF estimate or phase transformation w"V* is defined by

(3.2.12)

N
N,New(t 77) _ New t 77 + Zrk Wkl t 77)) if 8,7Wj,j_1(t,n) 7’é 0
T ) —3

New(t 77) lf 817‘/[/}‘73'_1(@ 77) = 0

W
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Chapter 4

Numerical simulation

4.1 Numerical Simulation

In this section, we present some experimental results for the new second order
of the phase transformation w?"?. Let z(t) be a signal with two linear chirps:

1 1
x(t) = z1(t) + 22(t) = cos (27 (c1 + §blt)t) + cos (27 (ca + §b2t)t),t €[0,1]
(4.1.1)
where the reference frequencies are ¢; = 12, ¢o = 34, and the chip rates
are by = 50, by = 64. Here, z(t) is sampled uniformly with N = 256 sample
points.
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New 2nd-order FSST with 0=0.025

~
L
>
|9
C
(0]
3
O
o
L
0 0.5 1
Time (s)

Old 2nd-order FSST with ¢=0.025

100

Frequency (Hz)

0 0.5 1
Time (s)

We proceed with two representative signal types.
Example 1: Our first signal is a signal with three components, given by
s(t) = s1(t) + s2(t) + s3(1),
where

s1(t) = cos(118x(t — ) 4+ 1007 (t — 5)*) 11 .

2 =
so(t) = cos(94mt + 1107t* + 13 cos(4nt — B)). (4.1.2)
s3(t) = cos(194mt + 1127rt.2)1[07%].
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The signal s(t) The component s1(t)

3 1
2
@ 4 o 05
O o
S S
=0 = 0
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0.5
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= =
g 3
€
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Time (s) Time (s)

Figure 4.1: The signal s(t) and its components s;(t), so(t) and s3(¢)

We use the relative “root mean square error” (RMSE) to evaluate the
separation performance, which is defined by

2k — 2kl
RMSE = Z TR

where Z; is the reconstruction result of z;, K is the number of components.

Here, we test some parameters of o from 0.001 to 0.1. The best value for
the reconstrucation signal and its components from FSST2 can be obtained
by minimizing the RMSE for both approaches of FSST2. Then, ooy =
onew = 0.023. We colculated the following results.
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o [ 0.015 | 0.020 | 0.023 | 0.025 [ 0.030 |

RMSE for Old | 0.1375 | 0.0860 | 0.0798 | 0.0843 | 0.0922
RMSE for New | 0.1091 | 0.0720 | 0.0717 | 0.0782 | 0.0888

Table 4.1: Some differents values of o and their RMSE.

The value of RMSEs

0.25

—RMSE for Old FSST2
—RMSE for New FSST2| |

o
N

The RMSE
o
=
Ul

5 . .
0.01 0.02 0.03 0.04
Sigma test

Figure 4.2: RMSE for FSST2 Old and New with o € [0.001, 0.04]

As we can see, the best value for minimizing the value of RMSE is o ~
0.023. This value shows the difference between the original IFs and the
reconstrucation using the FSST2 old and FSST2 new.

The exactly IF's

200
— —¢, ()]
150 R
E T
_— / N | —0
2100 / %0
< s0
.
0 0.5 1
Time (s)

Figure 4.3: The original IF of the signal s(t)
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Recons IFs by FSST2 New

Figure 4.4: Difference of reconstructed IFs with original IF's by old 2nd-order
and new 2nd-order FSST.
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-0.01
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-0.015
0

The difference by FSST2

+ FSST2 with =0.023
FSST2 New with ¢=0.023

0.5
Time (s)

The difference for s2(t)

0.5¢

Amplitude

+ FSST2 with 0=0.023

FSST2 New with ¢=0.023]

0.5
Time (s)

The difference for s1(t)

0.2}

Amplitude

+ FSST2 with ¢=0.023
FSST2 New with 0=0.023

0.5 1
Time (s)
The difference for s3(t)

0.4

0.2

Amplitude

+ FSST2 with ¢=0.023
FSST2 New with 0=0.023] |

0.5 1
Time (s)

Figure 4.5: Difference for the reconstructed sy, so, s3 with original component
s1(t), s2(t), s3(t) by old 2nd-order and new 2nd-order FSST.
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Example 2: The second signal is a signal with two components, given
by the signal s(t) = s1(t) + s2(t), defined by

s51(t) = cos(2m(12t + 25t%)) and sy(t) = cos(2m(34t + 32t%)).  (4.1.3)

The signal s(t)

Amplitude
o
_—

0 0.5 1
Time (s)

Figure 4.6: The signal s(t)

The component s1(t) The component s2(t)

o 0.5+ o 0.5 ‘
S S ‘ ‘
= 0 = 0 |
[} [} ‘
€ & '
<.0.5¢ <.0.5
-1 : -1 :
0 0.5 1 0 0.5 1
Time (s) Time (s)

Figure 4.7: The components of the signal s(t) one by one s1(¢)(left), and
So(t)(right)
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Here, we test some parameters of o from 0.001 to 0.1. The best value for
the reconstrucation signal and its components from FSST2 can be obtained
by minimizing the RMSE for both approaches of FSST2. Then, oo =
ONew =~ 0.05. We colculated the following results.

o | 0.04 | 0.042 | 0.045 | 0.047 [ 0.050 |

RMSE for Old | 0.0893 | 0.0897 | 0.0802 | 0.0827 | 0.0824
RMSE for New | 0.0893 | 0.0893 | 0.0800 | 0.0823 | 0.0822

Table 4.2: Some Examples for differents parameter of o.

The value of RMSEs

——RMSE for Old FSST2
0.8 ——RMSE for New FSST2| 1

0 0.05 0.1
Sigma test

Figure 4.8: RMSE for Old and New FSST2 with o € [0.001, 0.1]

As we can see, the best value for minimizing the value of RMSE is o ~
0.045. This value demonstrates the difference between the original IFs and
the reconstrucations using the FSST2 old and FSST2 new.
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Figure 4.9: The original IF of the signal s(t)
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Figure 4.10: Difference of reconstructed IFs with original IFs by old 2nd-
order and new 2nd-order FSST.
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Figure 4.11: The difference for the signal s(t)
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Figure 4.12: Difference for the reconstructed si(t), so(t) with original com-
ponent s1(t), s2(t) by old 2nd-order and new 2nd-order FSST.
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Chapter 5

Analysis of Adaptive Shor-time
Fourier Transform-based
Synchrosqueezing Transform

5.1 Analysis for new approach of FSST2

The Fourier transform of e )7 g(7), which we denote by G(€), is defined
by (refer to [19]):

Gue) = F(eMHO7g(n))(€)

_ / eiﬂ'qbg(t)TQg(T)e—iQTrf‘rdT
R

r(t+71) = xk(t)ei%(%(t)f%%(t%z) + (Ak(t +7)— Ak(t))€i27r¢k(t+7—)
4 xk(t)eizwwg,(t>f+§¢g(t)f2>(em(¢k<t+r)—¢k(t)—¢;(t>r—%¢z(t)72) ~1).

Then, we have

rp(t +7)g(T)e *™dr

]~
—

Va(t,m) =

B
Il
—

xk(t)eiZ”(d’;f(t)”%‘z’g(t)TZ)g(T)e”Q”"TdT + resy.

e
Il
—

I
M)~
5 —
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where

résp = lec{:l f]R{ (Ak(t +7) — Ak(t))eﬂmz)k(ﬂﬁ)

+ a2t 12T (67, () T+ 507 (1) ) ( oi2m (¢k(t+f)—¢k(t)—¢’k (=3¢ (t)TQ) _

resol < (%)

where

H(t) = K€1]1 + g?’:?g]g ZAk(t)

0 k=1

We introduce more notations defined as follows

Gj,k (t, 77) — / €i2ﬂ(¢;€ (t)T-i-%d’g(t)‘r?)Tjg(T)€i27r777'd7_.
R

= F(em A0 g(r) ) (n - 64(0)).

We also note

Gy, (77 — ¢t ) Goi(
1 J _
Gk = gy & (0= 040 >)

Lemma 5.1.1. [19] Let x(t) = A(t)e®™® ¢ L2(R), we have

0:Va(t,n) = i2m ¢}, ()Va(t, n) + 27 (VI (t,n) + Res:

where

(Bi1.1)

1) }g(r)e~ 2™ dr.

(5.1.2)

(5.1.3)

Resy = i2n B (t,n) + 27 Dy(t,n) + i2w(n — ¢ (t))reso — resy — i2w gy (t)res;.
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Proof. V' is defined by (see [19]):

K K
Ve =i2m > a(t)(n — ¢)(t)) Goult,n) — i2m Y x(1)] (1) Gra(t,n) + res).

/=1 /=1

Taking the derivatve by the time variable ¢, we obtain
Vit m) = i2mnVa(t,n) — Vi (t,1m). (5.1.4)

Using the derivative of the time variable (5.1.4), we have

OVa(t,m) — a2 () Vi (t,m) — 20 @R ()VE (¢, m)
= i2m(n — (1)) Valt,n) — V& (t n) — 2wy (t)VI' (t, )
= i2r(n — ¢}, (t)) Valt, —227T25Ue (n — ¢4(t)) Goult,n) — res

K
+ iQWZW(tW}/(t)GLe(tu n) —i2my (VI (¢, n).

In addition, we define the expression of V,(¢,7) and V7' (¢,n) in the form

K
Vﬂ?(t7 77) = Z xf(t)GO,f(t7 T]) + resg
12

=1
K
ngl (ta 77) = Z x£<t>G1,€<t7 77) + resi.
/=1

Then, we have
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O Va(t,n) — Z27T¢’() 2(t,m) — 2m (VI (E,m)

= i2n(n — ¢, (1) (er (t)Goe(t,n —|—7’eso> - 2271'21‘@ (1 — ¢4(t))Gou(t,n) — res;

+ iQWng(t)qS’f’(t)Gu(t,n) i2m (¢ (ng VG (t, 17)+r651)
(=1
= i2m Y w(t)(9)(t) — ¢1,(1)) Goelt,n) + Z27TZIW 7 (t) = 61(t)) Gre(t,m)

#k t#k
+ 27 (n — ¢ (t))resy — resy — 2w (t)res;

= 21 By(t,n) +i2aDy(t, n) + i2m (n — ¢, (t))reso — resy — i2n @ (t)res;

= Res;

= 2o(t) (¢)(t) — }(1)) Goelt, m)

04k

ton) = Y we(t)(¢7(t) — 1 (8)) Grelt, ).

£k
O

We recall the definition of the new phase transformation for the 2nd-order

STFT, which V,(t,n) # 0.:

( 1
A o (aValt )
Re{ oD ( Vo (t) ) 6_77(\/51 ((t,g))>} it 5 < VI > #0, Vi (t,n) #0

w;ew,?nd(t’ 77) =

0V (t,m) e 9 (0Va(tm) ) _
\ Re{m;w(t,nn) }7 if 377(\;51(@:77)) =0, V(tm) #0.
Then, the new second order complex IF is defined as follows

New,an,c( ) _ Pl(tv 7])
v , 7;271-@1@? 77)
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where P, and (), are defined by

a 8tvx<t’77) 8 Vx<t’77)
Pi(t,n) = a_n(m> and Qy(t, 1) = a—n(m> (5.1.5)

Lemma 5.1.2. For (t,n) such that V9'(t,n) # 0 and Py(t,n) # 0, as defined
in the equation (5.1.5), we have

Py(t,n) = i2mgi (D)@Q1(t, n) + Ress (5.1.6)

and we note that Ress = 0, Res;(see[1Y]), where

ResyVIL(t,n) — 0,V (t,n)Res;
(Vi (t.m)” |

Proof. Using the result of lemma (5.1.1), we have

Ress =

OV (t,m) = i2rn ), (t)Va(t,n) + 2w} (t)VI' (t,n) + Res;. (5.1.7)

Therefore, in the equation (5.1.7), therefore, thus

Res;
Vi (t,m)

atv:’ﬂ(t’ 77)
ngl (t7 7])

O A CL LR ST

eae (5.1.8)

Taking the derivative by 7, then yields

a(%%) = i2ﬂ¢%(t)8n<%> + &7(%) (5.1.9)

We replace in the equation (5.1.9) with the expression of the P, and Q;:
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Pi(t,n) = 2 ¢, (t)Q1(t, n) + Ress. (5.1.10)

This completes the proof of lemma (5.1.2).
0

Theorem 5.1.3. Let x(t) € D., ., for small €1,e2 > 0. We have the follow-
ing results:

K
(a) Suppose €1 satisfies €1 > Ily(t) + ToZCkAk(t), and for (t,n) with
k=1

\VI1(t,n)| > 1. Then, there ezists k € {_1, ..., K} such that (t,n) € O

(b) If (t,n) such that |V,(t,n)| > 1,

then, we have

8n< Va(L11) )‘ > g9 and (t,n) € O,

V2L (tm)

wh 2t m) — ¢l (t) = Resy
where

Resy V7' (t,n) — 0,V (8, m) Res

Resy, = )
i2 (O, Vb mVE (t,0) = O,VE () Valt,))

In addition, we have

w2t ) — ¢(t)] < Bd,

where

Bd, = max sup {
1<k<K 50,

e (sl [V 1.0)| + e 0,2 e
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(¢) If ey satisfies the condition in part (a) and Bd, < Lj(t), then

Lk(t) = min {Oék + Qp_1, 0 + Oék+1}.

1
Then for any e3 = e3(t) > 0 satisfying Bdy < e3 < §Lk(t)’

1 /
lim R (1, €)d€ — (1) < B
=0 9(0) Jiemgp e

where Bdy = Bd, + Bd} with

/ _L @ < ujau ! Lk
By =y 2en IO+ + 401 [ Gl + 32 A0
" 1
Bd, =) {21_[ ) + Ax(t) Hglh\Zt\+ZAz<t)Ml,k(t>}

14k

and with |Z;| represents the Lebesgue measure of the set Z;

an(%)‘ <al.

Proof Part (a). Assume (t,7) ¢ UX O;. Then for any k, by the
definition of O in (2.6.6) with o = 1, we have |G(n — ¢}.(t))] < 7o. Hence,
by (5.1.1) and (5.1.2), we have

= {r- e <OuN >

|Gk (n = ¢4(1))] < ekl Grn — @1, (1))] (5.1.11)
where ¢ is a polynomial of (|¢r_1(t) — ¢r(t)| + i), therefore, thus

Vart,n)| < Z|$k )G (n — & (1)] + [resol

< 7 ZAk(t)Ck +Io(t) < ey,

k=1
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which contradiction the assumption |V9'(¢,7n)| > ;. Therefore, (a) holds.

Proof Part (b). Using the result of Lemma (5.1.2),

Py(t,n) = i2mdf(t)Q1(t, n) + Ress. (5.1.12)
Then we have

wNeu),2nd,C(t’ n) — ¢§§(t) = Resy

T

where

Ress

Res; = ——3
T 2rQa(tn)

(Val(t, 7]))2R683
i2 (9 Vit V' (8 ) — 0,V (t,m)Valt,m))

However, the formula of Ress is defined in the lemma (5.1.2), and we obtain
(Vou(t, n))2R633 = Res, VI (t,n) — 0,V.I' (t,n)Res;.

Then,

Resy VI (t,n) — 0,V (t,n) Res,
i2m (9, V(b VA (1) — ,VE (1 m)Valt,m) )

Resy =

Next, we have
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|Res,|

IN

IN

where

Bd; = max sup {
1<k<K peo,

Proof Part (c). First, we have the following result from [7] on p.254

where

X = {77:

Denote

Vo= {n: V2 ()] > e,

‘/xgl(tan)‘ > €1,

VoL (t,n)?

‘ Res VIt (t,n) — 0,V (t,n)Res;
Vi (t,m)?

1 ‘Resﬂ/xgl (t,n) — 0,V (t,n)Resy ‘

2meq Vit (t,m)?
1 | Res,| 8,7V91 (t,n) ‘
z R )
2m2<|vxgl<t,n>| VE @ |
smore, (1Resal V2 t)| + | Resi|0,V2 (0.m)] )

2medey

i27 (9, V2 (6, )V (t.m) - 9,

(IRess |1V (1 m)] + | Resa |,V (8 m)]) |-

Vﬁ%tnﬂ@@ﬂﬁ)‘

lim R (4. &)dE = [ Vi(t,n)dn (5.1.13)

T,E1,E2
A0 Jje—g! (1) <e3 X

Vit (t, )

@,&%)} > ey and (t,n) € Ok}.

According to theorem (2.6.4) part(b), if n € Y;, then

W (t,m) — ¢ (t)] < Bdy < e.
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Thus, n € X;. This which implies the first inclusion Y; C X;.

Using theorem (2.6.4) part(a), if n € X,

then |V9'(t,n)| > €1 and there exists [ € {1, 2,... 7K} such that (t,n) € O;.
If [ # k, then

w8 ) — (6] = @) — G1(B)] = 61(t) — wiera™ (t, ).
We use the following inequalities

|04(t) = ¢1()] > Ly and |¢j(t) — wpsla(t,n)| < Bdy < e5.

T,€1,€2

Therefore,

wNew,?nd(t, n) _ Qﬁ;g(t) > Lk(t) — &3 > €3,

T,E1,€2

and contradicts the assumption n € X;.

Therefore, | = k and n € Y;, implying the second inclusion X; = Y;. We
recall

Zt = {77 : (tv 7]) € Ok7 |‘/xgl<tan)| > €1,

(i) <)

The fact that X; =Y; and Y; N Z; = ¢, with the equation (5.1.13), imply
that
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k/; Vi(t,m)dn = lim RZ (¢ )de.

A=0 Jle— gt (1) <es

= Vm(t,n)dn—/ Vi (t,m)dn (5.1.14)
Y:UZy Z

= Vx(t,n)dn—/ Va(t,m)dn
{IVat @t m)|>e1 }n{n:(t,) €0} Zy

Using this equalition

/ Ve(t,m)dn = / Vi (t,m)dn
(Vi (tn) |21 0 {n: (t,m) €Ok } {n:(tm)E€0k}

/ Ve (t, m)dn
{‘vltn (tan)|§€1}m{ni(tvn)60k}

we have

Valtn) dy— g(0)ai (1)
= | im0
{n:@t;m €0k}

{IVa" (¢m) | <e1}n{m:(t,m) €Ok}

< | Va(t,m)dn — g(0)z(t) |
{773(t777)60k}

’ /{IVzg1 (&m>e1}n{n:(t,n) €0k}

J/

TV
Termq

/’ Va(t,m)di
{|Va (t,m)|<e1}n{m:(t,n) €0k}

(. J/
-~

Terms

We recall that Oy = {(t,n) : ‘77 - %(t)‘ <o, tE€ R}
For the first term, we get the following results:
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Term,; = ’ /{77 eon Va(t,m)dn — 9(0>xk(t)’

k
< ) / <Z 21 (t)Goa(t, m) + 7"€So>d77 - 9(0)»’%(75)’
{m:(t;m€O0k}
< | resfdn |t [ Gt = g00)
{m:(¢, ﬁ)GOk} N {n:(t,m) €0}
T
+ le ‘/ Go,(t,n)dn
175143 {n:(t,n) €0k}
Ts
T, = / reso|dn = |reso| 1dn = 2ag|reso
{n:(tvn)eOk} {775(t:77)60k}
7 = |o® [ Gt - 90
{n:(t:m) €0k}

= | [ Gl ok - 900)

Using change of variable u = n — ¢,.(t),

T = |ae(t) /| |< Giulw)) — g(0)z(1)|
= (gl <o>xk<t>—xk<t> / Gy (u)du) |

[u|>ag

= Ja)| /| . =] [ Gty

o= 2 lal) /{n (tm) €0} Gosltsmidn |
= Z | 2,(t) | ‘/ Go,l(t,n)dn‘ = ZAz(t)Ml,k(t)

1£k (t.n)€0k} 1£k
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substituting the parameters estimated above we get

Term; < 2|resglay, + Ak(t)’ / Gk(u)du‘ + ZAl(t)Ml,k(t).
[u|>o 1#k

¢k( )+
Termy, < 50/ 1dn:50/ 1dt < 2epcy,.
(t,n)€0k (D)=

We group all parameter estimates, we find the following results

Ve (t,n)dn — g(0)xx(t) |

< 2(|reso| + o) + Ax(t) ‘ / )du‘ + ZAl<t)Ml,k(t)

lu|>a 1#k

!
{IVZE (tm)|>e1 0 {n:(t,n) €0k }

1

L / Vot m)dy — 2 (t) |< Bd,
9(0) Jqver ml>enynm(tm eon)

/]RGk(u)du = /R F (P07 () (u)du = g(0).

Hence, we have

\/ Va(t,n)dn| = ‘/ Zl"e )Go(t, n)+7"680)d77‘
Z4 Z

< |reso|2ag + Ag(t) sup |Gk n— ot ))“Zt|

+ YAl ]/ Coe(t,n)in)
-k M€}
< 2[reso|ay, + Ak( Mgl Zel + >~ Au(t)Moy(t) < Bdy"
£k
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Then we have the result

1
lim —— / Reo200 (¢ €)de — (1) < B,
350 9(0) Jiemgr<es

This completes proof of Theorem. O
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Chapter 6

Conclusion and future work

In this study, we introduced a generalization of the STFT-based SST (FSST)
with time-varying, CWT-based SST (WSST), the WSST with time-varying,
and the FSST with a new phase transformation by using higher order ampli-
tude and phase approximations. This generalization allows us to better assess

a wide variety of multicomponent signals containing very strongly modulated
AM-FM modes.

We also studyed the theoretical analysis of the 2nd-order FSST with a
new phase transformation. The new phase transformation is much simpler
than the convectional one. The new FSST performance in IF estimation and
component recovery is comparable with that of the conventional 2nd-order
FSST. In some cses, the new FSST perfermed even better than its conven-
tional counterpart.

Since the result showed a better concentration and reconstruction for a
wider variety of AM-FM modes, we will continue working on the adaptive
FSST with a new phase transformation by using higher order approximations
both for the amplitude and phase.
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