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ABSTRACT 

 

Zaagan, Abdullah Ahmed. Bayesian Approach of Joint Models of Longitudinal Outcomes 

and Informative Time. Published Doctor of Philosophy dissertation, University of 

Northern Colorado, 2020. 

 

 

Longitudinal studies are commonly encountered in a variety of research areas in 

which the scientific interest is in the pattern of change in a response variable over time. In 

longitudinal data analyses, a number of methods have been proposed. Most of the 

traditional longitudinal methods assume that the independent variables are the same 

across all subjects. It is commonly assumed that time intervals for collecting outcomes 

are predetermined and have no information regarding the measured variables. However, 

in practice, researchers might occasionally have irregular time intervals and informative 

time, which violate the above assumptions. Hence, if traditional statistical methods are 

used for this situation, the results would be biased. 

The joint models of longitudinal outcomes and informative time are used as a 

solution to the above violations by using joint probability distributions, incorporating the 

relationships between outcomes and time. The joint models are designed to handle 

outcome distributions from a normal distribution with informative time following an 

exponential distribution.  

Several studies used the maximum likelihood parameter estimates of the joint 

model. This study, however, presented an alternative method for parameters estimation, 

based on a Bayesian approach, with respect to joint models of longitudinal outcomes and 
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informative time. Using a Bayesian approach permitted the inclusion of knowledge of the 

observed data within the analysis through the prior distribution of unknown parameters.  

In this dissertation, the prior distribution adopted three scenarios: (1) the prior 

distributions of all unknown parameters are noninformative prior, which will set to be 

vague but proper prior: Normal(0, 1e6). (2) The prior distributions of all unknown 

parameters are informative prior, which will be set to be normal for unrestricted 

parameters, and inverse gamma (IG) priors for positive parameters such as the variance 

σ2. (3) A combination of two above scenarios, so the prior distributions of some unknown 

parameters are noninformative, and the others are informative. 

The procedure for estimating the model parameters was developed via a Markov 

chain Monte Carlo method using the Metropolis-Hastings algorithm. The key idea was to 

construct the likelihood function, specify the prior information, and then calculate the 

posterior distribution. Simulated observations were generated by the MCMC technique 

from the posterior distribution. 

Thus, the primary purpose of this study was to find Bayesian estimates for the 

unknown parameters in the joint model, with the assumptions of a normal distribution for 

the outcome process and an exponential distribution for informative time. The properties 

and merits of the proposed procedure were illustrated employing a simulation study 

through a written R program and OpenBUGS.  
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CHAPTER I 

 

INTRODUCTION 

The term “longitudinal data” is a popular name that is used instead of repeated 

measurements when the outcomes on the same subjects or experimental units are collected 

or measured for a relatively long period of time to evaluate the changes over a period of 

time. (Hedeker & Gibbons, 2006). One key attribute of longitudinal study designs is the 

exclusion of between-subject variability, focusing on trends or patterns in changes that 

occur for the subjects. Thus, it increases its power over traditional cross-sectional designs 

in terms of the ability to capture the within-subject effect. In addition, because of the 

exclusion of between-subject variability, it is possible to calculate the estimate of within-

subject effects with increased accuracy (Fitzmaurice, Laird, & Ware, 2012; Hedeker & 

Gibbons, 2006). Although longitudinal studies take a much longer time to complete, are 

more expensive, and can be harder to analyze, they have gained popularity because it is 

believed that the problem of causality can be solved (Twisk, 2013). Another attribute of 

longitudinal data is the correlation of all outcomes from one individual, requiring particular 

statistical methods to address this correlation. Therefore, it is particularly critical that the 

appropriate statistical methods are chosen to accommodate the specific type of outcome 

data and the covariates. For example, longitudinal data can take the form of continuous, 

binary, count, among others, and evaluation procedures need to fit the type of data. 

A longitudinal study has the ability to observe an outcome and predictors 

simultaneously, which can help to define if there were changes in predictors before changes 
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show up in outcomes and whether those changes affected the outcome.  Because of the 

different kinds of responses and independent variable types, a number of methods have 

been developed, which can range from simple to quite complex, depending on the study 

design and/or research objectives. Each method works under certain assumptions and for 

different types of situations; however, no one method can accommodate all of these 

situations. It is, therefore, incumbent upon the researcher to select the most appropriate 

method based on their research questions, purpose, and method of data collection. 

An inherent problem with longitudinal methods is the large data to be analyzed, as 

well as the complexity of the data structure. First of all, a basic assumption is that the 

measurements are correlated in some way with each other since the outcomes are collected 

repeatedly at multiple time points from the same subjects. Traditional approaches to 

analysis such as the simple method, Analysis of Variance (ANOVA), and Multivariate 

Analysis of Variance (MANOVA), though commonly employed in longitudinal research, 

are inappropriate in many cases due to an unrealistic assumption that outcomes are 

independent of each other, or at least they cannot be too correlated to each other. 

Tabachnick and Fidell (2012) suggest that no correlation should be above (r = 0.90). 

However, ignoring the correlation among outcomes, which cannot be true in a longitudinal 

design.  

Second of all, often, longitudinal studies take place over an extended period of time, 

during which many events may happen that affect the data collection but over which the 

researcher has no control. Participants may drop out for some reason or another or miss 

certain data collection points. Also, it is conceivable that individuals with poorer health 

outcomes will be asked to visit for more check-ups. Participants may not share common 

time occasions; instead, each participant may follow individual schedules for appointments 
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to gather data depending on their prior health outcomes (Lipsitz, Fitzmaurice, Ibrahim, 

Gelber, & Lipshultz, 2002). As a result, the final data bank may be incomplete or 

unbalanced or has missing data due to attrition, all of which add to the difficulties in 

analyzing the data, without any intention of the researcher initially. 

Given the variety and complexity in the difficulties arising from the analysis of 

longitudinal data, there have been multiple proposed methods that purport to handle these 

problems (Hedeker & Gibbons, 2006). Unfortunately, most of these methods are limited to 

cases which do have a complete data set (Davis, 2002). To address this situation, the 

mixed-effects model or the generalized estimating equation (GEE) has been developed and 

is gaining popularity among some researchers. However, due to the complexity inherent in 

these methods of analysis, many researchers continue to use traditional methods that are 

within their scope of understanding due to their relative simplicity of computation. Both the 

mixed-effects model and the generalized estimating equations (GEE) are associated with 

highly math-oriented or computer-based techniques as a way to accommodate the special 

characteristics of longitudinal data: the correlation among outcomes, and unbalanced data 

structure, which is unequal time points in gathering data for each subject. As a result, even 

though these methods yield more accurate estimations of changes over time, their 

computational complexity and advanced computer skills often detract from their being 

considered in research designs. Nevertheless, fields such as biology, pharmaceuticals, and 

economics have influenced researchers to consider these models in light of their accuracy 

and efficiency of the estimation.  

An added attraction of the GEE approach is its ability to handle binary and count 

outcomes as well as continuous outcomes. In addition, both the mixed-effects model and 

the GEE work under the assumption of fixed or predetermined times for data collection. 
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However, the estimators may be biased when the time points for data collection are 

irregular, or data unbalanced (Lin, Scharfstein, & Rosenheck, 2004). Thus, the studies 

continue for better and improved methods, as in finding an appropriate tool to analyze data 

when time is informative; that is, the upcoming time points for collecting measurements are 

adaptively determined based on the current outcomes for each subject. In this case, the 

methods mentioned above are not appropriate.  

The Joint Model 

In reality, there are occasions that alter unexpectedly the time points for collecting 

data, which can pose serious problems in longitudinal studies. Attrition is one of these 

occasions, along with situations that cause a delay or advance in time points due to 

sickness, family emergencies, vacation, and the like. Regardless of the reason, the effect is 

the creation of irregular time periods for collecting data, unbalanced data, and non-

ignorable dropouts. These events mark the absence of important information and should 

not be ignored. Informative time needs to be integrated into models of analysis that can be 

calculated along with the longitudinal variable so as to yield the best possible inference. 

The models discussed above do not account for informative time and therefore are not 

appropriate for this study whereas the joint model, which can accommodate informative 

time, offers a better approach (Henderson, Diggle, & Dobson, 2000; Kim, Zeng, 

Chambless, & Li, 2012; Liang, Lu, & Ying, 2009; Lipsitz et al., 2002; Qiu, Stein, & Elston, 

2013). Fundamentally, joint models are based on the joint distribution of outcomes and the 

time-related factor with maximum likelihood estimation and are versatile enough to apply 

to any kind of situation while providing more precise results (Qiu et al., 2013). 

Making adaptations to the joint model to reflect iconic circumstances need to be 

done carefully, dutifully considering the assumptions embodied within the specific model. 
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An example of a researcher making such an adaptation is Bronsert (2009), who presented a 

joint mode named Gaussian-Exponential Model, in which normally distributed longitudinal 

responses and intermittent informative times following an exponential distribution are 

combined. In this way, he demonstrated that the joint model has a very good ability to 

accommodate longitudinal data analysis when compared to the mixed-effects model in his 

simulation study. A few years later, Lin (2011) extended Bronsert’s study and showed that 

the parameters estimate to maintain the property of multivariate normality and that the joint 

model can be considered as an alternative method for the analysis of longitudinal data. 

Next, Seo (2015) developed an even further extension of Bronsert and Lin’s models, 

showing that the joint model can be an alternate method for analyzing longitudinal data 

from a normal response, or in general, from an exponential family. Then, in 2017, Alomair 

adapted Bonsert’s and Lin’s joint model to be able to incorporate informative time and 

time-dependent covariates with a longitudinal response. 

Purpose of the Study 

This study presents an alternative method for parameter estimation, based on 

Bayesian estimation, with respect to joint models of longitudinal outcomes and informative 

time. Using a Bayesian approach permits the inclusion of knowledge of the observed data 

within the analysis through the prior distribution of unknown parameters. In this 

dissertation, the prior distribution consists of two types based on whether or not applied 

researchers possess the knowledge concerning the parameters of interest prior to 

conducting the research (informative and noninformative prior). The product of the prior 

distribution and the sampling distribution from the data will yield the posterior distribution, 

which is the distribution of interest. Then, a statistical inference will be made to include the 

estimation of parameters. In general, estimation of the parameters in the joint model of 
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longitudinal and informative time is more commonly conducted empirically, regardless of 

previous information, in contrast to Bayesian methods, which do include prior information. 

The primary difference between classical statistical theory and the Bayesian approach is 

that the latter considers the parameters as random variables that are characterized by a prior 

distribution (Ntzoufras, 2009).  

Thus, the primary purpose of this study was to find Bayesian estimates for the 

unknown parameters in the joint model based on the three kinds of the prior distribution, 

(noninformative, informative, and semi-informative priors), with the assumptions of a 

normal distribution for the outcome process and an exponential distribution for informative 

time. 

Definition of Terminology 

The terminology used throughout this study is described below. 

Longitudinal Data is a set of outcomes or observations measured repeatedly at multiple 

time points on the same subjects over a given period of time. In general, time points 

are determined by researchers before outcomes are collected. 

Informative Time is the time period between each measurement for each individual. The 

next measurement is determined by the current outcome. Thus, all subjects may not 

share the common set of time intervals. 

Posterior distribution refers to the conditional probability distribution of the unobserved 

quantities of ultimate interest, given the observed data (Gelman et al., 2014).  

Prior distribution: refers to a probability distribution that treats parameter as a random 

variable, which may reflect previous information or belief as to what the true value 

of the parameter may be (Bain & Engelhardt, 1992). 
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Vague priors: Essentially, these are densities with high spread, such as a normal density 

with extremely large variance.  These give similar prior values over a large range of 

parameter values. 

BUGS: refers to the initials of the phrase “Bayesian inference Using Gibbs Sampling," 

which is a programming language-based software that is used to generate a random 

sample from the posterior distribution of the parameters of a Bayesian model. There 

are two main forms of BUGS, namely WinBUGS and OpenBUGS. 

Research Questions 

The question, “How will the Bayesian method be designed for estimating the 

parameters of the proposed joint models?”, was investigated in this dissertation through the 

following research questions. 

Q1   How will the Bayesian method be designed for estimating the unknown 

parameters on the proposed joint model constructed by Lin (2011) for a 

longitudinal response variable with a set of informative time?  

 

Q2   How are these Bayesian estimates of the proposed joint model influenced by a 

few select variations in subject sample size, types of design structures with a 

different number of observations for each subject, and the various parameter 

schemes, with three types of prior distribution on the parameters 

(noninformative, informative, and semi-informative priors)?  

 

Q3   How will the developed R program work closely together with OpenBUGS for 

fitting Bayesian models? Could that support researchers obtain the Bayesian 

estimations for the unknown parameters on the proposed joint model? 

 

Finally, the prior distribution in this dissertation will consist of three types based on 

whether or not applied researchers possess the information concerning the parameters of 

interest prior to conducting the research. 

Limitations 

The following limitations need to be taken into consideration by those researchers 

wishing to take advantage of this study: 
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1. This study will be limited to outcomes from a normal distribution with a single 

response variable. Thus, the model should not be applied to studies where 

outcomes are not normally distributed and/or contain multivariate responses. 

2. In this study, time is assumed to be exponentially distributed and to be 

considered before applying the results to future studies, which may have 

different time factor distribution assumptions. 

3. Moreover, currently, time and covariates will be assumed to be independent of 

each other. 

4. In this dissertation, we will adopt three scenarios for the prior distribution: 

i. The prior distributions of all unknown parameters will be noninformative 

prior, which will be set to be a vague or flat prior. 

ii. The prior distributions of all unknown parameters will be informative prior, 

which will be set to be normal for unrestricted parameters, and inverse gamma 

(IG) priors for positive parameters such as the variance σ2 

iii. A combination of two above scenarios, so the prior distributions of some 

unknown parameters are noninformative, and the others are informative. 

5. The evaluation of parameter estimates will be limited to some convergence 

diagnostics (visual and quantitative). 

6. Furthermore, prior distributions for all unknown parameters in the joint model 

will be assumed to be independent of each other. 

Therefore, this model should not be applied to any study without considering this 

limitation. 
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Summary 

The stellar characteristic of longitudinal data analysis is its ability to detect changes 

over time. Most frequently, the methods of analyzing longitudinal data assume or require 

that the time periods for data collection are fixed and predetermined by the researchers 

prior to the initiation of the study. However, there are certain circumstances where the time 

factor can be informative; i. e., the upcoming observation is determined by the previous 

outcome of the response variable. In these cases, approaches mentioned before are 

inappropriate and cannot be used as they will generate biased estimators. In order to 

combat this bias, Bronsert (2009) developed the joint model, combining the normally 

distributed longitudinal responses with the exponentially distributed informative time 

factor. This joint model was further refined by Lin (2011) and extended even more by Seo 

(2015) to present a joint model as an alternative method to analyze longitudinal data from a 

normal response or exponential family. The current study applied Bayesian approaches 

using simulation via Markov chain Monte Carlo (MCMC) methods to estimate the 

parameters of Lin’s extended joint model. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

A longitudinal study refers to a study where participant outcomes and possibly 

treatments or exposures are collected at multiple follow-up times. The outcome variables 

are measured repeatedly on the same cohort of individuals at multiple time-points, which 

provide the chance to observe individual patterns of change. The purpose of longitudinal 

research studies is to analyze data on growth, change, and development over time by 

measuring the change in outcomes at different time points on the same subjects. A variety 

of books recently have affirmed the nature of longitudinal data (Diggle, Heagerty, Liang, & 

Zeger, 2002; Fitzmaurice, Laird, & Ware, 2012; Hedeker & Gibbons, 2006; Verbeke & 

Molenberghs, 2000). In examining the historical background regarding the measurement of 

data on the same individual over time, termed continuous repeated measures data, the 

assumptions behind these measurements are that these data are gathered at regularly spaced 

observations times, and that of multivariate normality (Johnson & Wichern, 2007). 

The beginning of the twenty-first century has seen more attention placed on 

Bayesian methods as helpful techniques in the estimation of many models. Especially, 

longitudinal models that are complex and which would be very difficult or even impossible 

to estimate using the currently-available MLE-based software (Seo, 2015). In spite of the 

power of Bayesian models and the diversity of analytic models, because of the 

computational complexities and demanding programming involved, these methods are 

often avoided by researchers. Taken along with the complexities of the models that apply 
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Bayesian methods, these approaches appear out of reach for many empirical researchers. 

This has caused in the progress of more practical and straightforward methods that are 

based on Bayesian analyses, particularly in cases where there are different types of 

longitudinal data (Azevedo, Fox, & Andrade, 2016; Quintana, Johnson, Waetjen, & Gold, 

2016). 

Traditional Methods for Longitudinal Data 

The simplest method of longitudinal data is the paired t-test when there are only 

two measurement times. The paired t-test is a statistical procedure used to determine 

whether the mean difference between two sets of observations is zero. In a paired sample t-

test, each subject or entity is measured twice, resulting in pairs of observations. A common 

application of the paired t-test includes case-control studies. However, this method is not 

appropriate when there is more than two measurement time, which is generally the case in 

longitudinal studies. 

Instead, the univariate (single variable) repeated measures analysis of variance 

(ANOVA) model can be used with more than two repeated measurements. “The univariate 

repeated measures ANOVA model provides a natural generalization of Student (1908) 

paired t-test to handle more than two repeated measurements, in addition to various 

between-subject factors” (Fitzmaurice, 2008). Traditionally, repeated measures ANOVA 

has been applied in the analysis of longitudinal data involving more than two-time points, 

and when covariates are considered (Stevens, 1998; Tabachnick, 2007). Repeated measures 

ANOVA assesses group differences over time. Group sizes may be different, but subjects 

must be measured at the same number of time points. Several assumptions need to be 

confirmed to use any statistical model. In ANOVA, the response or outcome variable has to 

be normally distributed with the assumptions of independence of observations between 
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subjects and homogeneity of variance being met. In addition, the important assumption of a 

repeated-measures ANOVA is sphericity, which refers to the condition where the variances 

of the differences between all possible pairs of within-subject observations are equal (Hox, 

2002). Sphericity can be likened to the homogeneity of variances in a between-subjects 

ANOVA. Although all these assumptions are restrictive, the univariate repeated measures 

ANOVA model can be considered a pioneer of the more multilateral regression model for 

longitudinal data (Fitzmaurice, 2008), 

While the assumption of normality of distribution may be overlooked from time to 

time due to the robustness of ANOVA, the assumption of sphericity in repeated measures 

ANOVA must be met. Violating this may severely compromise the interpretation of the 

test results. Mauchly’s test can be used to checks this assumption (Davis, 2002). The 

univariate repeated measures ANOVA model can be written as: 

                                                     𝑌𝑖𝑗 = 𝑋𝑖𝑗
′ 𝛽 + 𝑏𝑖 + 휀𝑖𝑗 ,                                                     (1) 

where  𝑖 = 1,… ,𝑚 and  𝑗 = 1,… , 𝑛  and 

𝑌𝑖𝑗 is the outcome of interest,  

𝑋𝑖𝑗
′  is a design vector,  

𝛽 is a vector of regression parameters,  

𝑏𝑖 is the random effect,  

휀𝑖𝑗 is the measurement error.  

An unfortunate consequence of this ANOVA model is that, in spite of yielding an overall 

P-value, it is not possible to differentiate group means that are equal from those that are not 

equal (Fitzmaurice, 2008). The usual solution taken to answer this question is the 

performance of post hoc tests (comparisons made of either all possible combinations of 

means or of designated means that are of particular interest). However, this testing of 

https://en.wikipedia.org/wiki/Variance
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multiple null hypotheses creates an increased risk of a type I error if the significance 

criterion is not accordingly adjusted (Liu, Cripe, & Kim, 2010; Schober & Vetter, 2018)  

In addition, repeated measures ANOVA assumes the sphericity, which is the measured 

outcomes have equal variances, and covariances over time. This may be unrealistic since 

variances tend to increase with time, and covariances decrease with increasing intervals in 

time. Another disadvantage of repeated measures ANOVA is that time must be specified as 

a classification factor, and all-time points need to be fixed across all subjects, which is also 

considered unrealistic for the longitudinal data. Therefore, the repeated measures ANOVA 

model is inappropriate for our study on an informative time.  

Instead, multivariate repeated measures analysis of variance (MANOVA) could be 

used with its more flexible variance-covariance assumption. MANOVA does not assume 

sphericity and/or specific correlation structure, which is considered an alternative to 

repeated-measures ANOVA (Everitt, 2006; Schober & Vetter, 2018). However, if 

sphericity holds, ANOVA is more powerful than MANOVA because the sphericity 

assumption increases degrees of freedom, which increases the power of ANOVA (Hedeker 

& Gibbons, 2006). 

MANOVA still assumes the outcomes of the different subjects are independent, and 

the outcomes need to be multivariate normality distributed (Davis, 2002; Hedeker & 

Gibbons, 2006; Hox, 2002). MANOVA models treat the responses as a vector from the ith 

subject at time j, 

                                    𝒀𝑖 = (𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑛𝑖)
′
.                                                       (2) 

where 𝑖 = 1,… ,𝑚 and 𝑗 = 1,… , 𝑛𝑖 and 𝒀𝑖~𝑁𝑡(𝝁, 𝚺). The one sample MANOVA model is 

given by 

                                                         𝒀𝑖 = 𝝁 + 𝜺𝑖                                                                 (3) 
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where, 𝝁 is mean vector (𝑛 × 1) for timepoints, and 𝜺𝑖 is vector (𝑛 × 1) of errors, 

distributed as 𝑁(𝝁, 𝚺) in the population (Hedeker & Gibbons, 2006). 

We note that MANOVA requires complete data as does ANOVA because these 

methods cannot handle unbalanced or incomplete data. The measurements must be 

available for each subject at each time point.  A complete dataset is most probably 

unrealistic in longitudinal studies. Also, missing observations are quite common in 

repeated-measures designs (e.g., due to logistic reasons, withdrawal, or loss to follow-up). 

Therefore, MANOVA is not considered a good choice for longitudinal data (Hedeker & 

Gibbons, 2006; Ma, Mazumdar, & Memtsoudis, 2012). 

In summary, the repeated measures ANOVA assumes that the variance and 

covariance of the dependent variable across time are equal (i.e., compound symmetry). In 

contrast, MANOVA for repeated measures only includes subjects with complete data 

across time, which focus on the estimation of group trends across time with a little help in 

understanding individuals change across time (Hedeker & Gibbons, 2006). In sum, 

traditional longitudinal methods have a requirement of no missing data, which is 

impractical in longitudinal observational studies (Cooley & Lohnes, 1971). 

Modern Approaches for Longitudinal Data 

The methods of handling longitudinal data commonly used today vary among one 

another in relation to the flexibility of these methods (Zeger, Liang, & Albert, 1988). Using 

standard regression methods requires the acceptance of an assumption of independence of 

all observations, and when this is extended to longitudinal outcomes, it may result in 

invalid standard errors. In order to make valid inferences about the average response over 

time, two approaches at present are most commonly used that take advantage of the 

flexibility of regression models. The first approach is called the Mixed Effects Regression; 
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the second approach is the Generalized Estimated Equations (GEE). The selection of which 

of these two approaches to employ is dependent on the desired interpretation of the 

estimated effects and the purpose of the research (Schober & Vetter, 2018). 

Mixed-Effect Regression Models  

for Longitudinal Data 

 

The mixed-effects model is a model with both fixed effects and random effects, 

which is a univariate regression analysis on correlated responses (Davis, 2002; 

Fitzmaurice, 2008; Pinheiro & Bates, 2000). A variety of names have been adopted in 

describing and developing mixed effect models: random-effects model (Diggle et al., 2002; 

Fitzmaurice et al., 2012; Laird & Ware, 1982), random regression models, random 

coefficient model (Leeuw & Kreft, 1986), mixed models (Longford, 1987; Wolfinger, 

1993), multilevel model (Nash & Varadhan, 2011), hierarchical model (Lee & Nelder, 

1996; Raudenbush & Bryk, 2002), and mixed-effect regression models (Hedeker & 

Gibbons, 2006). 

The mixed-effects model has become popular for longitudinal data analyses for 

many reasons. One of them is the flexibility to handle unbalanced structures (incomplete 

data) and the ability to measure subjects at differently spaced time points (Raudenbush & 

Bryk, 2002; Snijders & Bosker, 1999). In addition, the mixed-effects model does not carry 

the assumption that all subjects are measured for outcomes at the same number of fixed 

time points. It is appropriate to model in cases where some subject is missing data or have 

incomplete data. By being able to include these subjects, the statistical power is thus 

increased (Hedeker & Gibbons, 2006). An added advantage of the mixed effect model is 

the ability to estimate change for each subject rather than obtaining an average change over 

time.  
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By using matrix notations, the mixed-effect model is given by:  

𝒚𝑖 = 𝑿𝑖𝜷 + 𝒁𝒊𝜸𝒊 + 𝜺𝑖,                                                         (4)   

where 

𝒚𝑖  𝑖𝑠  𝑛𝑖 × 1  dependent variable vector for individual i, 

𝑿𝑖   𝑖𝑠  𝑛𝑖 × 𝑝  covariate matrix for individual i, 

𝜷  𝑖𝑠  𝑝 × 1  vector of fixed regression parameters,  

𝒁𝑖   𝑖𝑠  𝑛𝑖 × 𝑟  design matrix for random effect, 

𝜸𝒊  𝑖𝑠  𝑟 × 1  vector of random effects, 

𝜺𝑖  𝑖𝑠  𝑛𝑖 × 1  vector for error and with the assumptions of 

𝜺𝑖~𝑁(𝟎, 𝜎
2𝑰𝑛𝑖)   ⟹    𝐸(𝜺𝑖) = 0      and     𝐶𝑜𝑣(𝜺𝑖) = 𝜎

2𝑰𝑛𝑖 = 𝑹𝑖,  

𝛾𝑖~𝑁(𝟎, 𝚺𝑖)   ⟹    𝐸(𝛾𝑖) = 0      and     𝑐𝑜𝑣(𝛾𝑖) = 𝚺𝑖 = 𝑮𝑖,  

𝜺𝑖 and  𝛾𝑖 are independent    ⟹   𝐶𝑜𝑣(𝜺𝑖, 𝛾𝑖) = 0.  

Thus, the expectation and variance-covariance matrix of the model are given: 

                                                           𝐸(𝒚𝑖) = 𝑿𝑖
′𝜷                                                             (5) 

            𝐶𝑜𝑣(𝒚𝑖) = 𝐶𝑜𝑣(𝒁𝑖𝛾𝑖 + 𝜺𝑖) = 𝒁𝑖𝐶𝑜𝑣(𝛾𝑖)𝒁𝑖
′ + 𝐶𝑜𝑣(𝜺𝑖) = 𝒁𝑖𝑮𝑖  𝒁𝑖

′ + 𝑹𝑖.              (6) 

Typically, the goal in mixed model analysis is to test and estimate the parameters in β, 

which require estimates of G and R. Davis (2002) suggested that the maximum likelihood 

(ML) estimation can be used to obtain parameter estimation for the random effects and 

fixed effects by using the numerical solution of a nonlinear optimization procedure. There 

is many statistical computing software that provides a variety of types of covariance 

structures for the G matrix, such as compound symmetry, unstructured, first-order 

autoregressive, or Toeplitz, etc., as an initial value of the iteration. Due to computational 

difficulties and bias for unbalanced designs in the ML estimation, the restricted maximum 
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likelihood (REML) approach was introduced as an alternative approach instead of the ML 

estimation (Davis, 2002; Patterson & Thompson, 1971). 

The mixed-effects model for longitudinal data, in spite of its advantages, also has 

some drawbacks. One drawback is the nonstationary attribute of the covariance matrix 

structure of the 𝑦𝑖 vector. Davis (2002) gave an example of the variance and covariance for 

collecting data from the same subjects at equally spaced time points are respectively:  

𝑉𝑎𝑟(𝑦𝑖𝑗) = 𝜎𝛼
2 + 2𝑗𝜎𝛼𝛽 + 𝑗

2𝜎𝛽
2 + 𝜎2,                                                 (7)   

                       𝐶𝑜𝑣(𝑦𝑖𝑗 , 𝑦𝑖𝑗′) = 𝜎𝛼
2 + (𝑗 + 𝑗′)𝜎𝛼𝛽 + 𝑗𝑗

′𝜎𝛽
2 ,         𝑗 = 𝑖, … , 𝑛,                      (8) 

the general trends, thus, are  

(1) the 𝑉𝑎𝑟(𝑦𝑖𝑗) increases after time 𝑗 when 𝑗 > −
𝜎𝛼𝛽

𝜎𝛽
2  ,  

(2) the 𝑉𝑎𝑟(𝑦𝑖𝑗) decreases up to time 𝑗 when 𝑗 < −
𝜎𝛼𝛽

𝜎𝛽
2  , 

which is not actual longitudinal data. The other drawback, which was demonstrated in a 

simulation study that showed the quality of the mixed-effects model, is substantially 

affected by what the variance-covariance matrix structure is chosen (Davis, 2002). In 

addition, the mixed-effects model treats time as fixed; therefore, this model is inappropriate 

for our study, including longitudinal outcome and informative time. 

Generalized Estimating Equations  

for Longitudinal Data 

 

The marginal model utilizes an approach termed the generalized estimating 

equations (GEE) as a way to analyze repeated measurements and extends the generalized 

linear model to the processes of longitudinal data analyses by accounting for the within-

subject correlation among the measurements. The marginal model using the GEE method 

to analyze repeated measurements was introduced and developed by Liang and Zeger 
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(1986). Circumvents many of the problems of previous models discussed inasmuch as the 

mean response is not influenced by previous responses or any random effects, and instead 

merely depends on the covariate ((Fitzmaurice et al., 2012; Seo, 2015). 

The marginal models are a regression model for the response mean employing with 

a function that links the marginal mean response to the covariates at each event and aims to 

make inferences about population means (Fitzmaurice, 2008). An advantage of the 

marginal model is that it is not necessary to hold any assumptions regarding the distribution 

of outcomes; the model only requires assumptions regarding the mean of responses. 

Therefore, this GEE model is very useful and used for categorical and count outcomes as 

well as continuous outcomes (Hedeker & Gibbons, 2006). The marginal models for 

longitudinal data contain three parts: 

1. The expected mean of each response given covariates, 

                𝐸(𝑦𝑖𝑗|𝑋𝑖𝑗) = 𝜇𝑖𝑗,                                                    (9) 

which can be rewritten with a link function as 

             𝑔(𝜇𝑖𝑗) = 𝒙𝒊𝒋
′ 𝜷,                                                                  (10) 

where:  

𝑦𝑖𝑗 is the response for subject 𝑖 at time 𝑗,  

𝑥𝑖𝑗
′  is 𝑝 × 1 vector of covariates,  

𝜷 is 𝑝 × 1 vector of unknown parameters,  

𝑔(. ) is the link function,  

𝜇𝑖𝑗 is the mean response. 

2. The variance of the response given the covariates,        

                                  𝑣𝑎𝑟(𝑦𝑖𝑗) = 𝜙𝑣(𝜇𝑖𝑗),                                                     (11) 
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where:  

𝑣(. ) is a known variance function, which is the relationship between the mean and 

the variance, expressing the variance as a function of the mean,  

𝜙 is a scale parameter that could be known or need to be estimated. The link and 

variance functions for normal outcomes are shown below: 

𝑔(𝜇𝑖𝑗) = 𝜇𝑖𝑗 = 𝑥𝑖𝑗
′ 𝛽,           𝑣𝑎𝑟(𝜇𝑖𝑗) = 1,         𝑎𝑛𝑑      𝑣𝑎𝑟(𝑦𝑖𝑗) = 𝜙𝑣(𝜇𝑖𝑗) = 𝜙. 

 

3. The ‘within-subject association’ among the responses is a function of the means 

and of additional parameters, say α, that may also need to be estimated.  

  Several advantages make the GEE method useful in the analysis of longitudinal 

data. The GEE method is flexible enough to allow the estimation of the mean and pairwise 

correlations among repeated measures. Also, it is able to accommodate situations where 

there is missing data or unbalanced data (Fitzmaurice, 2008). Additionally, subjects don't 

need to have the same number of outcomes that are gathered at the same time (Fitzmaurice, 

2008). 

There are, however, some disadvantages to the GEE method. One of which is that 

the GEE model is not an appropriate model when research questions to ask about 

estimating the variance-covariance structure. Another disadvantage lies in the assumption 

of this model that, although complete data across time for subjects is not necessary, there is 

an assumption that all the time points are fixed and that any missing responses must be 

missing completely at random (MCAR) (Hedeker & Gibbons, 2006). A third disadvantage 

is noted by Fitzmaurice (2008), who pointed out that the estimation of 𝜷 that used in this 

model is not as efficient when compared to the maximum likelihood-based estimation 

because of the lack of assumption on the distribution. Finally, as discussed by Pepe and 
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Anderson (1994), because parameter estimates of �̂� inconsistently estimate 𝜷 in cases 

where time-varying covariances are present in the regression model, this GEE model is not 

considered as a right choice for this study including longitudinal and informative time. 

Generalized Linear Model and Exponential Family 

 

The class of generalized linear model (GLM) was introduced by Nelder and 

Wedderburn in 1972. GLM proved to be popular with both practitioners and statistical 

researchers because of its ability to deliver a unified class of models of regression analysis, 

regardless of discrete or continuous outcomes (Dobson, 2001; Fitzmaurice et al., 2012; Das 

& Dey, 2006, 2007). Three components have been delineated as forming GLM 

(Fitzmaurice et al., 2012): 

(1) A random component (An observation model), which identifies the distribution of 

the outcome variable. GLM assumes that the outcome variable has a probability 

distribution from the exponential family of distributions and may include additional 

parameters 𝛾.  

                                                        𝑝(𝒴𝑖|𝜃𝑖, 𝛾),                                                                 (12) 

for data 𝑦𝑖 conditional on the expected response,  

                                                         𝐸[𝒴𝑖] = 𝜃𝑖,                                                                (13) 

which is called the canonical parameter, at each design point, 𝑖 = 1, 2,⋯ , 𝑛.   

The variance of the outcome can be written as a product of a single scale or dispersion 

parameter, ∅, and it is called the variance function: 

                                                         𝑉𝑎𝑟(𝒀) = ∅ 𝜈(𝜇).                                                     (14) 

(2)  a systematic component (The linear predictor), which identifies explanatory 

variables. These explanatory variables are combined into a linear format, and it is called the 

linear predictor: 
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                                        𝜂𝑖 = 𝑿𝑖
′𝜷 = 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 +⋯+ 𝛽𝑝𝑋𝑖𝑝,                                 (15) 

where, 

𝑿𝑖
′  is  𝑝 × 1 vector of continuous or categorical covariates at the 𝑖𝑡ℎ design point,  

𝜷   is the 𝑝 × 1 vector of unknown parameters.  

(3) A link function is a function that connects the linear predictor with the mean of the 

probability distribution. So, the function 𝑔(. ) must be inversely differentiable, and 

connects a random component to a systematic component, which can be written as 

                                         𝑔(𝜂𝑖) = 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 +⋯+ 𝛽𝑝𝑋𝑖𝑝 ,                                     (16) 

the model is the relationship between the expected response and the linear predictor. 

GLM has been used for modeling several types of data involving exponential 

family response with covariates. Typical examples include those for Poisson and binomial 

response data. A regression model determines the structure of the covariate information, 

where a link function specifies the relationship between the regression model and the 

expected values of the observation. However, a simple linear model with a normal error 

structure is a special case of GLM. All the distributions from the exponential family can be 

expressed as 

                                       𝑓(𝒴; 𝜇, ∅) = exp(
𝒴𝜃−𝑏(𝜃)

𝛼(∅)
+ 𝑐(𝒴 , ∅)) ,                                      (17) 

where,  

𝜃 is a canonical (natural) parameter,  

𝜙 is a scale dispersion parameter, 

The commonly used distributions of the outcomes are the Gaussian for normally distributed 

outcomes, which can be rewritten in an exponential family form of 
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𝑓(𝒴; 𝜇, 𝜎2) = (2𝜋𝜎2)−
1
2 exp (−

(𝒴− 𝜇)2

2𝜎2
) 

       = exp (−
1

2
log(2𝜋𝜎2)) exp (−

(𝒴−𝜇)2

2𝜎2
) 

        = exp(−
(𝒴2 − 2𝒴𝜇 + 𝜇2)

2𝜎2
−
1

2
log(2𝜋𝜎2)) 

                                              = exp(−
(𝒴𝜇+𝜇2 2⁄ )

𝜎2
−
1

2
(
𝒴2

𝜎2
+ log(2𝜋𝜎2))) ,                         (18) 

with a canonical parameter 𝜃 = 𝜇 ; and a dispersion parameter 𝛼(∅) = 𝜎2. 

Joint Model for Longitudinal Data 

Fundamentally, the joint model is based on the joint distribution of outcomes and 

the time-related factor with maximum likelihood estimation (combining longitudinal data 

and the time-related factor). More recently, a model referred to as the joint model has been 

gaining popularity as a way to deal with irregular occasions in the analysis process. The 

joint model is combining longitudinal data and time or other factors that the researcher is 

interested with fixed or random time (Diggle et al., 2002; Fitzmaurice, 2008; Henderson et 

al., 2000; Kim et al., 2012; Lin et al., 2004; Qiu et al., 2013; Wu, Liu, Yi, & Huang, 2012;). 

Recently, due to the importance of the joint model in studying and analyzing data for cases 

where the informative time and longitudinal outcomes were related, it has been used and 

developed among many current studies and research (Alomair, 2017; Bronsert, 2009; 

Huang, Wang, & Zhang, 2006; Liang et al., 2009; Lin, 2011; Lipsitz et al., 2002; Ryu, 

Sinha, Mallick, Lipsitz, & Lipshultz, 2007; Seo, 2015; Sun, Park, Sun, & Zhao, 2005).  

The joint model for longitudinal data was developed by Lipsitz et al. (2002). 

Assumptions of the joint model include time points not being fixed or dependent on 

previous outcomes, and that repeated measurements conform to a multivariate normal 
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distribution. For example, in a longitudinal study, patients may be followed over long 

periods with differing lengths of time. Through the follow-up, many patients drop out for 

various reasons. Patients may leave a cohort and then return or be lost to follow-up, 

resulting in a different number of visits for each patient and different visit schedules among 

patients (Fitzmaurice, 2008).  

Another example is when patients in the late stage of disease see doctors more 

times than those in early stages; ignoring the time informative leads to biased results (Song, 

Mu, & Sun, 2012). Previous examples explained cases for informative time with 

longitudinal outcomes where it is important to model both of them together in order to 

make a valid inference based on modeling the time distribution conditionally on the 

outcome measurements. The joint model grew out of the concept where time points depend 

only on previously observed data rather than the time points where the outcome measured. 

In order to handle informative time and normally distributed longitudinal outcomes, 

Bronsert (2009) proposed and presented his variation of the joint model to handle 

informative time component and normally distributed longitudinal outcomes. Bronsert's 

Gaussian-Exponential model comes with assumptions of a normal distribution for the 

outcome process and an exponential distribution for informative time, whereas the repeated 

outcomes depend on the most recent outcome and current time point, which is given by: 
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𝑓𝛩(𝒚𝑖, 𝒕𝑖) =
1

√2𝜋(𝜎2)
𝑒𝑥𝑝 (−

1

2

(𝑦𝑖1 − 𝑿𝑖1
′ 𝜷)2

𝜎2
) × 𝑓(𝑡𝑖1) 

                                      × ∏

{
 
 

 
 

1

√2𝜋(𝜎2)√1−𝜌𝑖
2

𝑒𝑥𝑝 (−
1

2

(𝑦𝑖1−𝛾𝑡𝑖𝑗−𝜙𝑦𝑖(𝑗−1)−𝑿𝑖𝑗
′ 𝜷)

2

𝜎2(1−𝜌𝑖
2)

) ×
𝑛𝑖
𝑗=2

                                                           𝑒𝑥𝑝(𝛼 + 𝛿𝑖𝑦𝑖(𝑗−1)) × 𝑒𝑥𝑝(−𝑒
𝛼+𝛿𝑖𝑦𝑖(𝑗−1)𝑡𝑖𝑗)

}
 
 

 
 

,            (19) 

where:  

𝒚𝑖 = (𝑦𝑖1, ⋯ , 𝑦𝑖𝑛𝑖) is 𝑛𝑖 × 1 a vector that includes 𝑖𝑡ℎ subject measurements at 

times 𝒕𝑖 = (𝑡𝑖1, ⋯ , 𝑡𝑖𝑛𝑖),  

𝑦𝑖𝑗 is the outcome for the 𝑖𝑡ℎ subject measured at the 𝑗𝑡ℎ time point. 

𝜷 is the effect of the independent variables on outcomes,  

𝑓(𝑡𝑖1) is the initial time point for the ith subject, 

𝜙 is the effect of the previous outcome on the mean response of the current 

outcomes,  

𝛾 is the effect of current time on the mean response,  

𝛼 is the constant parameter for the time process, 

𝛿 is the effect of the previous outcome on the mean time,  

𝑿𝑖1
′  is the initial observations of k independent variables,  

𝑿𝑖𝑗
′  is  𝑛 × (𝑘 + 1) design matrix contains the observations of k independent 

variables, where n is the number of subjects, 

𝜎2 is the variance of the distribution, and 

𝜌𝑖
2  is the relationship between two outcome variables at two-time points. 

https://en.wikipedia.org/wiki/Variance


25 

 

 

This Bronsert’s Gaussian-Exponential model was further modified and adjusted by 

Lin (2011), who eliminated the term 𝜌𝑖
2 in his model. Lin (2011) pointed out that there was 

already a term in the model, 𝜙, that took care of relationships between two responses and 

that therefore there was no need to include 𝜌𝑖
2. Lin’s modified model was:  

𝑓𝛩(𝒚𝑖, 𝒕𝑖) =
1

√2𝜋(𝜎2)
𝑒𝑥𝑝 (−

1

2

(𝑦𝑖1 − 𝑿𝑖1
′ 𝜷)2

𝜎2
) × 𝑓(𝑡𝑖1) 

                        × ∏ {
1

√2𝜋(𝜎2)
𝑒𝑥𝑝 (−

1

2

(𝑦𝑖1−𝛾𝑡𝑖𝑗−𝜙𝑦𝑖(𝑗−1)−𝑿𝑖𝑗
′ 𝜷)

2

𝜎2
) ×

𝑛𝑖
𝑗=2

                                             𝑒𝑥𝑝(𝛼 + 𝛿𝑖𝑦𝑖(𝑗−1)) × 𝑒𝑥𝑝(−𝑒
𝛼+𝛿𝑖𝑦𝑖(𝑗−1)𝑡𝑖𝑗)} .                         (20) 

Later, this modified model was then employed by Seo (2015). In his study showing 

that the joint models (Gaussian exponential model) of  Bronsert’s (2009) and Lin’s (2011) 

could be extended to handle longitudinal outcomes distribution from a member of the 

exponential family of distributions with the informative time that followed an exponential 

distribution.  

However, our studies will be adopted from the joint model of Lin (2011) with 

informative time with longitudinal responses. Lin (2011) and Seo (2015) used the classical 

method (maximum likelihood estimation) to compute the parameter estimates, while I will 

use the Bayesian Approach to estimate the model’s parameters.  

Bayesian Approach 

In general, there are two common approaches in statistical inference which are used 

to estimate a parameter, address hypothesis testing, and predict a new observation (Bolstad 

& Curran, 2016). These two approaches are referred to as:  
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1. Classical approach, which is based on all information from the random sample 

to model the likelihood of the observed data and make inference on the 

parameters of interests. This approach associates probability with long-run 

frequency (Fisher, 1925; Neyman & Pearson, 1933). 

2. Bayesian approach, which is a combination of the information from the random 

sample (likelihood function) and the information of previous research (prior 

distribution), to produce the posterior distribution that is used to make all 

inferences about the parameters of interests. This approach interprets probability 

as the subjective experience of uncertainty (De Finetti, 2017).  

The difference between Bayesian statistical and classical (frequentist) statistical 

methods is how we should deal with the nature of the unknown parameters. In the classical 

approach, all parameters of interest are assumed to be unknown but fixed. The Bayesian 

inference assumes that the data are fixed, and all unknown parameters are considered as 

random variables and treated as uncertain, and therefore should be described by a 

probability distribution. Bayesian inference has been referred to as the process to fit a 

probability model to a set of data and summarize the result by a probability distribution on 

the parameters of the model (Gelman et al., 2014). 

In the 21st century, the Bayesian approach has played a major role in statistical 

analysis and become more popular and widely used in many applied and fundamental 

research such as educational, economic, and medical research (Poirier, 2006). In addition, 

Bayesian applications have been increasing and taking place in developmental researches 

because the background knowledge is incorporated into the analyses and integrated into the 

statistical model. Also, due to the availability of Bayesian computational methods in 

popular software packages such as WinBUGS and OpenBUGS (Lunn, Thomas, Best, & 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158865/#b12
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Spiegelhalter, 2000), and a large number of packages within the R statistical computing 

environment (Albert, 2009). 

Why Would Researcher Use  

Bayesian Statistics? 

 

There are many advantages for using Bayesian methods in comparisons to 

frequentist statistics, and I will discuss some of them (Kruschke, 2011; Kaplan & Depaoli, 

2012, 2013): 

Bayesian approach does not depend on large samples. In the classical methods, 

when the sample size is small, and parameters are not normally distributed, it is often hard 

to formulate reasonable parameter estimates and attain statistical significant or meaningful 

results (Button et al., 2013; Scheines, Hoijtink, & Boomsma, 1999). However, the 

Bayesian method does not assume or require normal distributions underlying the 

parameters of a model, and the large sample size to make the statistical inference (Gelman 

et al., 2014). In addition, Bayesian methods may provide more accurate results as they can 

deal with small data set and asymmetric distributions and/or the whole distribution (Gill, 

2008; Muthén & Asparouhov, 2012; Scheines et al., 1999). However, if the sample size is 

large enough, the maximum likelihood estimation provides all information about parameter 

estimates from the data. This operation performs the same statistical inferences, in which 

both methods produce very similar results, as using asymptotic estimation theory 

(normality assumptions are satisfied) (Gelman et al., 2014).  

Common-sense interpretation of statistical conclusions. In both approaches, the 

interpretation of the results is very different. For any given sample, we can obtain the 

sample mean and compute the confidence interval. The right frequentist interpretation is 

that (1-α) % of these confidence intervals capture the true parameter under the null 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158865/#b28
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158865/#b1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158865/#b25
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158865/#b21
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158865/#b22
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hypothesis. Unfortunately, the results of the frequentist paradigm are often misunderstood 

(Gigerenzer, 2004). The Bayesian peer of the frequentist confidence interval is the 

credibility interval, which is a 95% probability that the population parameter lies between 

the two values. However, the credibility interval and the confidence interval may 

numerically be similar and might serve related inferential goals, but they are not 

mathematically equivalent and conceptually quite different. (Gill, 2008; Muthén & 

Asparouhov, 2012). 

Background knowledge can be incorporated into the analyses. Updating 

knowledge is another important argument for using the Bayesian approach, which allows 

researchers to incorporate background knowledge into their analyses instead of testing the 

same null hypothesis repeatedly. The Bayesian approach could incorporate uncertainty 

about unknown parameters, which are treated as random variables rather than fixed and 

assumed to have their own distributions. The distribution is referred to as a prior 

distribution. Bayesian statistical models incorporate both the sample information and prior 

information on the parameter estimates (Jiang & Mahadevan, 2009; Lynch, 2007). In 

conclusion, the higher the precision, the more influence the prior specification has on the 

posterior results.  

Allow coping with complex models. A complex model is a model with large 

numbers of parameters or multiple dimensions, which sometimes cannot be estimated using 

conventional methods. It cannot use a natural approach such as numerical integration, 

which is often required to estimates parameters based on maximum likelihood estimation, 

and this method is intractable due to the high dimensional integration needed to estimate 

the maximum likelihood (Dunson, 2000; Gill, 2008; Lynch, 2007; Muthén & Asparouhov, 

2012; Scheines et al., 1999). Therefore, Bayesian analysis is considered to be a 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158865/#b17
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computational tool for the study of complicated statistical models with complex data 

structures. 

The Components of Bayesian Statistics 

Prior Distribution 

The most important aspect of the Bayesian approach is to set up a proper prior to 

including in the model. Prior Distribution is the background knowledge on the parameters 

of the model being tested before seeing the data, such as previous studies on similar data 

(O’Hagan, 2006). Perhaps we can include even more information in our prior distribution 

to increase precision and therefore contribute to more accurate estimates. The prior reflects 

our knowledge about the parameters before observing the current data. Usually, knowledge 

of the prior will be available and included in the analysis as informative prior. Knowledge 

of the prior may be obtained from opinions of experts or because it reuses the posterior 

distribution from previous research, but if the knowledge of the prior is uncertain, lost, or 

ignored, non-informative prior is used. These different priors are called:  

Noninformative priors. From a Bayesian point of view, this lack of information is 

still important to consider and incorporate into our statistical specifications (Ibrahim & 

Laud, 1991). Using the noninformative (objective) prior can still benefit from using 

Bayesian statistics, as will be explained throughout the study. 

Jeffreys’ prior is kind of non-informative prior. Jeffreys’ prior is the square root of 

Fisher information written by π(θ) = |J(θ)|
1
2 with J(θ) is Fisher’s information, which is 

written as  

                                                 𝐽(𝜃) = −𝐸𝜃 (
𝜕2 𝑙𝑜𝑔𝑓(𝑌|𝜃)

𝜕 𝜃2
) .                                              (21) 



30 

 

 

If 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑝)
𝑇
 is a vector, it is used 𝜋(𝜃) = [det 𝑱(𝜽)]

1
2 with 𝑱(𝜽) is Fisher 

information matrix. The Fisher information is  

                                                𝐽𝑖𝑗(𝜃) = −𝐸𝜃 (
𝜕2 𝑙𝑜𝑔𝑓(𝑌|𝜃)

𝜕𝜃𝑖 𝜕𝜃𝑗
) ,                                             (22) 

with 𝑖 = 1, 2,⋯ , 𝑝 and  𝑗 = 1, 2,⋯ , 𝑝. 

Informative priors. For large samples, if a low-informative prior is stated, the 

results are hardly influenced by the type of the prior. The more prior information is added, 

the more subjective it becomes. Informative prior is beneficial because:  

(a) findings from previous research can be incorporated into the analyses.  

(b) Bayesian credible intervals will be smaller.  

Note that a prior distribution needs to be specified for each and every parameter in the 

model. It is assumed that a distribution for each and every parameter, including covariances 

for using Bayesian statistics.  

The conjugate prior is informative prior, which is an initial probability assumption 

expressed in the same distribution type (parameterization) as the posterior probability or 

likelihood function; for example, the beta distribution is a conjugate prior for the binomial 

distribution. This means the posterior is also beta. In addition, if the likelihood function is 

normal with known variance, then a normal prior gives a normal posterior. This means that 

the normal distribution is its own conjugate prior. 

Generally, selecting prior is based on the parameter information available or not. If 

the parameter information is available, we use informative prior. Informative prior has a 

significant effect on the posterior distribution and more subjective (Gelman et al., 2014). If 

the parameter information is not available, we use non-informative prior, which is more 

objective than most classical analyzes.  

https://deepai.org/machine-learning-glossary-and-terms/probability
https://deepai.org/machine-learning-glossary-and-terms/posterior-probability


31 

 

 

Likelihood Function 

The second element of Bayesian analysis is the information in the data themselves. 

It is the observed evidence for our parameters in the data. This information is obtained by 

the likelihood function containing the information about the parameters given the data set. 

The likelihood function is defined as a function of the parameter θ equal to (or sometimes 

proportional to) the density of the observed data with respect to a reference measure. The 

likelihood is a tool for summarizing the data’s evidence about unknown parameters. The 

likelihood function is one of the most fundamental concepts of modern statistics. It is an 

important component of both frequentist and Bayesian analyses, where it is also obtained 

when non-Bayesian studies are conducted using ML estimation. Note that the likelihood 

function is not a probability density function.  

In defining likelihood functions in terms of probability density functions, we can 

suppose the joint probability density function of your sample, 𝑌 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑛), is 

𝑓(𝑌|𝜃), where 𝑦𝑖 is independent, and 𝜃 is a parameter. 𝑌 = 𝑦 is an observed sample point, 

then the likelihood function defined as a function of 𝜃: 

                                                  𝐿(𝜃|𝑌) = ∏ 𝑓(𝑦𝑖|𝜃)
𝑛
𝑖=1 .                                                  (23) 

Posterior Distribution 

The third component is the posterior distribution, which is based on combining the 

first two components (the prior knowledge and the observed evidence) via Bayes' theorem. 

The posterior distribution reflects updating knowledge, balancing background knowledge 

(the prior) with observed data (the likelihood). The posterior distribution represents 

knowledge after taking the data into account (Bernardo & Smith, 2009). The posterior 

results are affected by the prior specification. The higher the prior precession, the smaller 

the posterior variance.  

https://www.statisticshowto.datasciencecentral.com/joint-probability-distribution/
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With a non-informative prior, the posterior estimate may not be influenced by 

choice of the prior much at all. In most cases, obtaining the posterior distribution is done by 

simulation, using the Markov Chain Monte Carlo (MCMC) methods (Gelman et al., 2014).  

Bayes’ Rule for Posterior: 

The Bayesian approach is of interest in computing the posterior distribution of the 

unknown parameter θ given the observed data Y, assuming the data are fixed and all 

unknown parameters as random variables. This is obtained by: 

                 𝑃(𝜃|𝑦) =
𝑃(𝑦, 𝜃)

𝑃(𝑦)
                                    [𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙] 

                   =
𝑃(𝑦|𝜃)𝑃(𝜃)

𝑃(𝑦)
                           [𝐵𝑎𝑦𝑠 𝑟𝑢𝑙𝑒]                     

                                      =
𝑃(𝑦|𝜃)𝑃(𝜃)

∫ 𝑃(𝑦, 𝜃) 𝑑𝜃
Θ

                        [𝐿𝑜𝑤 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦]          

                                           =
𝑃(𝑦|𝜃)𝑃(𝜃)

∫ 𝑃(𝑦|𝜃)𝑃(𝜃) 𝑑𝜃
Θ

 .              [𝐵𝑎𝑦𝑠 𝑟𝑢𝑙𝑒]                                   (24) 

The final result depends only on sampling distribution (Likelihood) 𝑃(𝑦|𝜃), and the prior 

distribution 𝑃(𝜃). Because the denominator 𝑃(𝑦) = ∫ 𝑃(𝑦|𝜃)𝑃(𝜃) 𝑑𝜃
Θ

  does not depend 

on θ, then we can consider it as a constant: 

                                                      𝑃(𝜃|𝑦) ∝ 𝑃(𝑦|𝜃)𝑃(𝜃),                                                (25) 

where. 

 𝑃(𝜃) Prior distribution function   

𝑃(𝑌|𝜃) Likelihood function, which is the joint probability function from Y as the 

random sample, if θ is known.  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158865/#b16
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𝑃(𝜃|𝑌) Posterior distribution function, which is essentially a combination of the 

evidence provided by the observed data and prior relevant data from past 

research evidence.  

The proportion of the product of the prior distribution of the parameters and the 

likelihood function of the sample data provides the posterior distribution, which could be 

used to obtain parameter estimates through Bayesian inference (Bernardo & Smith, 2009).  

Markov Chain Monte Carlo 

For estimating posterior distributions in Bayesian inference, Markov Chain Monte–

Carlo (MCMC) is a popular method for obtaining information about posterior distributions 

(Gilks, Richardson, & Spiegelhaler, 1996; Kruschke, 2014; Lee, 2012). When focusing 

upon posterior distributions using analytic examination, which are often difficult to work 

with, MCMC is the practical method which has led to an explosion of computational 

algorithms and created a real revolution in the implementation of Bayesian methods 

(Ravenzwaaij, Cassey, & Brown, 2018). If posterior distributions are characterized by 

closed forms (normal, gamma, beta, Poisson, etc.), it is possible to conduct simulations 

directly by using computer programming routines. In cases where the posterior 

distributions have complicated or unusual or high dimensional models, the achievement of 

an approximation of the posterior distribution can be obtained by aligning differing 

algorithms used to construct and sample arbitrary posterior distributions. In this case, the 

complex nature of posterior, using MCMC permits the approximation of posterior 

distributions that cannot be directly calculated (Gamerman & Lopes, 2006; Gilks et al., 

1996).  

Historically, the algorithms of the MCMC method have been used for close to 60 

years. They have served as a reference method to analyze Bayesian complex models, 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862921/#CR3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862921/#CR5
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particularly in the early 1990s. Gelfand and Smith (1990) and Gelman et al. (2014) noted 

that a particularly strong attribute of MCMC is its use in drawing samples from 

distributions even where that is known about the distribution is a method for calculating the 

density for different samples. 

Inspecting the name MCMC reveals the combination of two properties: Monte 

Carlo and Markov Chain. Monte Carlo is the practice of estimating the properties of 

distribution by examining random samples from the distribution. A Monte Carlo approach 

would draw a large number of random samples from the distribution, and calculate the 

properties of distribution (mean, variance, etc.) It can be much easier than calculating the 

properties of distribution directly from the distribution’s equations. This advantage is 

apparent in cases where it is easy to draw random samples, and the equations of the 

distribution are challenging to work with (Gilks et al., 1996).   

Markov Chain’s aspect of MCMC rests upon the construct that the random samples 

are obtained through a particular sequential process, where each random sample becomes a 

steppingstone in order to get the next random sample, hence the inclusion of the ‘chain.’ It 

is noteworthy to mention that in this process, each new sample is dependent upon the 

preceding sample, but any new sample is not dependent on any sample before the 

preceding one, which is called the Markov property (Ravenzwaaij et al., 2018). 

As Lee (2012) stated, MCMC methods provide an excellent approach for parameter 

estimation in a Bayesian framework. In addition, he pointed out that a key feature of 

MCMC approaches regards inferences about an analytically intractable posterior, often in 

high dimensions, and how they are conducted by generating a Markov chain converging to 

a chain of drawing taken from the posterior distribution. In summary, MCMC methods are 

used to draw samples from some target densities, which are mostly non-standard or 
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complex forms of distributions, where the target density in Bayesian applications is the 

joint posterior, or the posterior density of the model parameters (Ravenzwaaij et al., 2018).  

By using MCMC, it is possible to analyze all of the parameters or functions of 

parameters through a posterior distribution via Bayesian applications (O’Neill, 2002). 

Mathematically, the posterior summaries for individual parameters or joint distributions of 

parameters such as means, medians, variances. The Markov Chain Monte Carlo generates a 

sequence of 𝜃(1), 𝜃(2),⋯ , 𝜃(𝑡) random variables of some set T, (𝑡 ≥ 0), the next state 

𝜃(𝑡+1) is sampled from the conditional distribution of 𝜃(𝑡+1) given 𝜃(1), 𝜃(2),⋯ , 𝜃(𝑡) 

depending only on the current state of the chain, 𝜃(𝑡) (Gelman et al., 2014; Gilks et al., 

1996). Therefore, the unknown parameter at time t+1, 𝜃(𝑡+1), is conditionally independent 

of the previous values: 

                               𝑃(𝜃(𝑡+1)|𝜃(0), 𝜃(1),⋯ , 𝜃(𝑡)) = 𝑃(𝜃(𝑡+1)|𝜃(𝑡)),                                  (26)  

where the random variable at time t+1, 𝜃(𝑡+1), does not depend further on 𝜃(0), 𝜃(1),⋯, 

𝜃(𝑡−1).  (Gilks et al., 1996; Sitthisan, 2016). 

There are two primary sampling methods of constructing the chains within MCMC, 

including Metropolis-Hastings Algorithms, which was studied by Metropolis, Rosenbluth, 

Rosenbluth, Teller, and Teller (1953) and Hastings (1970) and Gibbs sampling, which was 

initially introduced by Geman and Geman (1984). 

The Metropolis-Hastings Algorithms 

Another sampling method that also functions as a basis for all other sampling 

methods was proposed by Metropolis et al. (1953), which used a modified Monte Carlo 

scenario. Later, the Metropolis et al. (1953) algorithm was adapted by Hastings (1970) in 

order to relax the assumption of asymmetric proposal distribution, and this adaptation has 

become known as the Metropolis-Hastings algorithm. This Metropolis-Hastings algorithm 
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is a form of the MCMC method often utilized in sampling from a specified target 

distribution that is itself a posterior distribution within Bayesian analysis (Gelman et al., 

2014). It is often employed in solving numerical problems related to statistical analysis as it 

is both simple but also powerful for a variety of issues (O’Neill, 2002). 

The Metropolis-Hasting algorithm is an MCMC method that can be used for 

sampling from the specified target distribution, which is a posterior distribution in 

Bayesian analysis (Gelman et al., 2014). Each iteration of the Metropolis-Hastings 

algorithm is divided into three steps:  

(a) Generate a line, which is starting point 𝜃(0) from a starting distribution 𝜋0(𝜃), 

by sampling from a candidate, proposal, or a jumping distribution 𝑞(𝜃∗|𝜃(𝑡−1)). 

(b) Propose a new state through the line, and evaluate 

                                             𝛼(𝜙|𝜃) = min [
𝜋(𝜙)𝑞(𝜃|𝜙)

𝜋(𝜃)𝑞(𝜙|𝜃)
, 1],                                                   (27) 

where, 

𝜋(𝜃) is a distribution 𝜋 with respect to a sequence of random variables 𝜃 =

𝜃(1), 𝜃(2),⋯, drawn via Markov chain, 

𝑞(𝜙|𝜃) is a transition kernel or a transition probability, which is constructed from 

the current state 𝜃(𝑡−1) = 𝜃 to the next realized state 𝜃∗ = 𝜙,  

𝛼(𝜙|𝜃) is the probability of moving, which is introduced to reduce the number of 

moves from 𝜃 to 𝜙, 

(Chib & Greenberg, 1995; Gamerman & Lopes, 2006; Mengersen & Tweedie, 1996; 

Roberts & Smith, 1994; Sitthisan, 2016; Tierney, 1994). 

(c) Accept or reject the proposed state according to the Metropolis-Hastings 

probability; or, keep the current state. 
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The decision to move the state can be made referring to the probability of the move, 

𝛼(𝜙|𝜃). If the chain is at a point 𝜃, then it generates a candidate value 𝜙 for the next step. 

If the candidate point is accepted, the next state becomes 𝜙, so the probability of going 

from state 𝜃 (i. e, 𝜃𝑡−1) to state 𝜙(𝜃∗) is shown as: 

                                       𝑝∗(𝜙|𝜃) = {
𝑞(𝜙|𝜃)𝛼(𝜙|𝜃)     if    𝜃 ≠ 𝜙
    0                          if    𝜃 = 𝜙

 ,                                  (28) 

which is also defined as the off-diagonal density of a Metropolis kernel (Lee, 2012; 

Tierney, 1994). If the candidate point is rejected, the chain remains in the present state 𝜃. 

The probability when the algorithm remains at 𝜃 is set as  

                                        𝑟(𝜃) = 1 − ∑ 𝑞(𝜙|𝜃)𝛼(𝜙|𝜃)𝜙 .                                                 (29) 

The simulation of a draw from a target (posterior) distribution can be summarized as: 

1. Draw a starting point 𝜃(0) from a starting distribution 𝑝0(𝜃). 

2. (a) Sample a proposal or a candidate point 𝜃∗ from a proposal distribution 

𝑞(𝜃∗|𝜃𝑡−1) at time t. 

 (b) Calculate the ratio 𝛼(𝜃∗|𝜃𝑡−1) =
𝜋(𝜃∗|𝑦)/𝑞(𝜃∗|𝜃𝑡−1)

𝜋(𝜃𝑡−1|𝑦)/𝑞(𝜃𝑡−1|𝜃∗)
 . 

3. Generate U from an independent Uniform distribution on (0, 1). 

4. Compare U with 𝛼(𝜃∗|𝜃𝑡−1), 

if U ≤ 𝛼(𝜃∗|𝜃𝑡−1) the move is accepted and define 𝜃𝑡 = 𝜃∗, 

if U > 𝛼(𝜃∗|𝜃𝑡−1) the move is accepted and define 𝜃𝑡 = 𝜃𝑡−1, 

5. Change the time t to t+1 and return to step 2 to get the sequence of random 

variable 𝜃(1), 𝜃(2), ⋯ , 𝜃(𝑡),  

(Chib & Greenberg, 1995; Gamerman & Lopes, 2006; Lee, 2012; Sitthisan, 2016). 
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Gibbs Sampling 

In Geman and Geman’s study (1984), the focus was upon image-processing models 

(Casella & George, 1992).  This original work yielded a widely accepted principle 

theoretical contribution for investigating the Markov random field in the sampling and 

computation of the mode of the posterior distribution. The applications of the Gibbs 

sampling have been used in sampling complicated models (those with various unknown 

parameters or high dimensional integration) by Smith and Robert (1993), Zhang, 

Hamagami, Wang, Nesselroade, and Grimm (2007), and Lu, Zhang, and Lubke (2011).  At 

this point, the Gibbs sampling has become the default algorithm in most software, where it 

uses an iterative process when all the parameters of the model (e.g., means, variances, 

regression parameters, etc.) are estimated repeatedly. These repeated estimations are able to 

be summarized by creating plot diagrams of the results from each iteration. Then, this 

distribution can be used in computing means or confidence intervals, allowing for multiple 

chains to be specified and sampling from a greater range of locations that are within the 

posterior distribution. Theoretically, the results of sampling multiple chains will, after 

many iterations, converge to reflect the same marginal distribution of the model parameters 

(Casella & George, 1992; Vehtari, Gelman, Simpson, Carpenter, & Bürkner, 2019). 

An integral characteristic of the Gibbs sampling technique is reflected by the 

drawing of samples from the full conditional distributions (Smith & Robert, 1993), which 

are distributions of the parameter of focus that is predicated on the known information 

available from all the other parameters. Gamerman and Lopes (2006) rephrased this key 

feature by stating that the Gibbs sampling approach relies upon the full conditional 

distributions. Let 𝜋(𝜽) be the density function of interest with q unknown parameters (𝜽 =

𝜃1, 𝜃2, ⋯ , 𝜃𝑞). Each component 𝜃𝑖 can be considered as a scalar, a vector, or a matrix 
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(Gamerman & Lopes, 2006). Let 𝜋(𝜽) = 𝜋(𝜃1, 𝜃2, ⋯ , 𝜃𝑞) denote the joint density 

function, then 𝜋𝑖(𝜽𝒊) = 𝜋(𝜃𝑖|𝜃1, 𝜃2, ⋯ , 𝜃𝑖−1, 𝜃𝑖+1, ⋯ , 𝜃𝑞 ) = 𝜋(𝜃𝑖|𝜃−𝑖 ), 𝑖 = 1, 2,⋯ , 𝑞 

denote the full conditional densities for each of the components 𝜃𝑖, given all the 

components of 𝜃, except for 𝜃𝑖 at the current values. Gibbs sampling provides an 

alternative scheme to draw samples directly from a known marginal distribution when the 

full conditional densities are known. This technique samples one parameter at a time. For 

each iteration of the Gibbs sampler, the value of each component cycles through the 

subvectors of 𝜃. At iteration t, each subset 𝜃𝑖
𝑡 is sampled individually from the conditional 

distribution given all the other components of 𝜃, 𝜋(𝜃𝑖
𝑡|𝜃−𝑖

𝑡−1). The Gibbs sampling 

algorithm is defined by the following iterations: 

1. Choose a starting values of the chain,  j = 0;  𝜽(0) = 𝜃1
(0), 𝜃2

(0),⋯ , 𝜃𝑞
(0); 

2. At time 𝑡, starting at j = 1, obtain the single cycle by drawing a new values 

𝜽(𝑡) = 𝜃1
(𝑡), 𝜃2

(𝑡),⋯ , 𝜃𝑞
(𝑡)

  from successive random drawings from the full 

conditional distributions 𝜋(𝜃𝑖
𝑡|𝜃−𝑖

𝑡−1, 𝑥), 𝑖 = 1,⋯ , 𝑘 as follows: 

sample 𝜃1
𝑡~𝜗1|𝜃2

𝑡−1, 𝜃3
𝑡−1, ⋯ , 𝜃𝑞

𝑡−1 

sample 𝜃2
𝑡~𝜗2|𝜃1

𝑡−1, 𝜃3
𝑡−1, ⋯ , 𝜃𝑞

𝑡−1 

sample 𝜃3
𝑡~𝜗3|𝜃1

𝑡−1, 𝜃2
𝑡−1, 𝜃4

𝑡−1, ⋯ , 𝜃𝑞
𝑡−1 

⋮ 

sample 𝜃𝑞−1
𝑡 ~𝜗𝑞−1|𝜃1

𝑡−1, 𝜃2
𝑡−1, 𝜃3

𝑡−1, ⋯ , 𝜃𝑞−2
𝑡−1 , 𝜃𝑞

𝑡−1 

sample 𝜃𝑞
𝑡~𝜗𝑞|𝜃1

𝑡−1, 𝜃2
𝑡−1, 𝜃3

𝑡−1, ⋯ , 𝜃𝑞−1
𝑡−1 

3. Increment t and repeat until the chain convergence criterion is satisfied (noting 

that convergence is to stationarity rather than to a point, as it would be for 

iteratively calculated randomization-based estimators). 
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When convergence is reached, this means 𝜃(𝑡) is sampled from 𝜋 (Gamerman & Lopes, 

2006; Sitthisan, 2016).  

Theoretically, both The Gibbs sampling method and the Metropolis-Hastings 

algorithm are simple and straightforward, utilized in simulations of a posterior distribution 

on spaces of fixed dimension (Richardson & Green, 1997). In addition, both of them are 

designed to ensure the final convergence to the stationary distribution. When the process 

stops, a Monte Carlo standard error indicates how close the last values are likely to be to 

the actual ML estimates (Agresti, 2015). 

Convergence of the Markov Chain Monte 

Carlo Algorithms 

 

Markov Chain Monte Carlo (MCMC) algorithms have been used frequently as a 

way to fit complicated statistical models when it is challenging to apply traditional 

estimation techniques. The concept of an MCMC algorithm is to develop a process that has 

a stationary distribution that matches a posterior distribution of interest. One problem in 

using an MCMC algorithm is in the determination of the convergence of the algorithm. 

Convergence technically happens when the Markov chain generated converges in 

distribution to be a posterior distribution of interest. The convergence is in distribution (not 

to point), and the generated values will vary even after convergence. As a way to calculate 

generally some form of statistical analysis to assess convergence of the MCMC algorithms, 

various convergence diagnostics have been suggested.  

It is important to raise a question that is related to applying the convergence 

diagnostics to a practical problem: “How many parameters to monitor?” Gelman and Rubin 

(1992) suggest monitoring the convergence of all the model’s parameters. Monitoring 

convergence only for the parameters of interest, particularly when the problem contains 
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high dimensional parameters, may lead to a mistake of diagnosing convergence too early 

(Carlin & Louis, 1996). 

With respect to another question that is frequently asked, “How many chains to 

employ,” there is a variety of expert opinions. Geyer (1992) recommends using one very 

long chain as he claims that will have the best chance of exploring the whole parameter 

space, particularly for a slowly moving chain. In contrast, Gelman and Rubin (1992) 

recommend running several long chains. It is important to note that some of the popular 

MCMC convergence diagnostics work only for multiple chains. Several diagnostic tests 

can be applied and will be reviewed in this dissertation. 

Convergence Diagnostics 

There are several numbers of samples tools currently in existence to make the 

MCMC convergence assessment and provide useful feedback about the convergence of the 

MCMC (Brooks & Roberts, 1998; Cowles & Carlin, 1996; Roberts & Smith, 1994), 

including: 

Trace plots (Time series plots). The trace plot, which is sometimes referred to as a 

time-series plot, shows the sampled values of a parameter over time. This is the plots of the 

iterations versus the generated values and helps in judging how rapidly the MCMC 

procedure converges in distribution 

Autocorrelation functions plot. Autocorrelation is a term that is used about a 

pattern of serial correlation in the chain, where sequential draws of a parameter, say 𝜃(𝑡), 

from the conditional distribution, are correlated. For this, the autocorrelation is computed 

as 

                                                    𝑐𝑜𝑟(𝜃(𝐵), 𝜃(𝐵+𝑡)),                                                           (30) 
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where B is the burn-in period. Monitoring autocorrelations has a handy feature since low or 

high values indicate fast or slow convergence, respectively. Since it will take a very long 

time to explore the entire posterior distribution, this feature is essential. It should be noted 

that if the level of autocorrelation is high for a parameter of interest, then a trace plot will 

be a poor diagnostic for convergence. 

Posterior variance of the parameter (�̂�). For any given parameter, the estimated 

posterior variance of the parameter, (�̂�), was used to assess convergence. The estimated 

posterior variance of the parameter was estimated by 

                                                     �̂� = √𝑣𝑎�̂�(
𝜓
𝑦⁄ )

𝑊
,                                                              (31) 

where 𝜓 was the simulated value, which was specified as 𝜓𝑖𝑗 , (𝑖 = 1,⋯ , 𝑛  ;   𝑗 =

1,⋯ ,𝑚). The subscripts 𝑖 and 𝑗 were specified after discarding the warm-up iterations. 

Then the post-burn-in iterations were split into the first and second half (i.e., 𝑚 is the 

number of subgroups and 𝑛 is the number of lengths of each chain). This posterior 

estimated variance consists of the between-sequence variances (B) and within-sequence 

variances (W). B and W can be computed from the following equations: 

  𝐵 =
𝑛

𝑚 − 1
∑(�̅�∙𝑗 − �̅�∙∙)

𝑚

𝑗=1

,    where,    �̅�∙𝑗 =
1

𝑛
∑𝜓𝑖𝑗

𝑛

𝑖=1

    and     �̅�∙∙ =
1

𝑛
∑𝜓∙𝑗

𝑛

𝑖=1

,           (32) 

                            𝑊 =
𝑚

𝑚
∑𝑠𝑗

2

𝑚

𝑗=1

,    where,    𝑠𝑗
2 =

1

𝑛 − 1
∑(𝜓𝑖𝑗 − 𝜓∙𝑗)

2
𝑛

𝑖=1

,                           (33) 

                                                  𝑣𝑎�̂� (
𝜓
𝑦⁄ ) =

𝑛 − 1

𝑛
𝑊 +

1

𝑛
𝐵,                                                     (34) 

where 𝜓∙𝑗 is the within-sequence means, �̅� is the grand mean, and 𝑠𝑗
2 is the variance within 

the chain (Gelman et al., 2014). 
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Heidelberger and Welch convergence diagnostic. This diagnostic applies to a 

single chain. The user pre-specifies ε, which is the desired relative half-width for 

confidence intervals. The stationarity test of Schruben, Singh, and Tierney (1983) is 

applied to the chain. If the test rejects the null hypothesis, the first 10% iterations of the 

chain are discarded. The stationarity test is repeated until 50% of iterations have been 

dropped. In this latter case, the failure of the chain to pass the stationarity test is an 

indication of the need to run the MCMC longer. A half-width test is performed on that 

portion of the chain that does pass the stationarity test for each parameter. Spectral density 

estimation yields an estimate of the standard error of the mean, leading to an estimated 

half-width of the confidence interval for the mean. In the case where the latter estimate is 

less than ε times the sample mean from the retained portion of the chain, the process is 

stopped, and the sample mean and confidence interval are reported. 

The convergence of the simulation is calculated from the unknown parameters to 

ensure a precise estimation. When all the convergence tests have been passed, the total of 

parameters will be summarized, based on the four groups for each estimation, as 

recommended by the Bayesian method.  

Bayesian Analysis 

While there are many attractive features of a Bayesian approach, Bayesian methods 

do insist that prior distributions that are not straightforward be specified, especially about 

variance components (Agresti, 2015). There is also the issue of computation because the 

commonly used implementation is through a Markov chain Monte Carlo (MCMC), 

requiring a large computational overhead. 

There has been increased interest in the simultaneous analysis of a joint model of 

longitudinal outcome and informative time in the last few years. It often appears in 
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practical applications. For example, in clinical trials, the measurements of some biomarkers 

are collected repeatedly over time for each patient, while some patients may experience 

death or dropout during the study. This can be seen in clinical trials involving the 

measurement of biomarkers, which are gathered repeatedly over time for each participant 

where there may be cases of death or participant dropout during the study. The joint model 

of longitudinal outcome and informative time is rapidly evolving (Alomair, 2017; Bronsert, 

2009; Liang et al., 2009; Lin, 2011; Seo, 2015). At present, longitudinal data analysis does 

not rest on any assumptions regarding regular times for observation, and due to a large 

number of parameters in relation to sample size, difficulties can arise in unstructured 

covariance matrices. This situation has led to the progress of a variety of statistical models 

and methods that can handle irregular correlated data (Pullenayegum & Lim, 2016).  

Baghfalaki, Ganjali, and Hashemi (2014) adopted the Bayesian approach using the 

Markov-chain Monte Carlo method for parameter estimation. Chan and Wan (2011) 

considered the Bayesian approach via MCMC method for the longitudinal bivariate binary 

data with informative dropout model. 

Employing a Bayesian analysis of generalized linear models necessitates the 

specification of a proper prior to account for the unknown parameters and can take a 

variety of forms (Agresti, 2015; Carlin & Louis, 2008; Gelman et al., 2014). In generalized 

linear models, the posterior distribution normally has no closed-form expression. A 

presenting difficulty is in the determination of the appropriate constant, which will allow 

the posterior to integrate to 1 by evaluating the denominator integral that determines the 

normalizing constant, which is often intractable, or overly complicated. The Markov chain 

Monte Carlo (MCMC) is commonly employed as the predominant simulation method. 

Sweeting (1981), for example, used noninformative priors in examining a more general 

https://onlinelibrary-wiley-com.unco.idm.oclc.org/doi/full/10.1002/bimj.201400064#bimj1636-bib-0010
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class of models beyond the GLM’s. Extending Sweeting’s findings to GLMs using 

informative normal prior to regression coefficients were West, Harrison, and Migon (1985) 

and Albert (1988). Ibrahim and Laud (1991) observed that uniform priors, Jeffrey’s prior or 

diffuse priors, serve very frequently as conventional noninformative priors. It is only with 

great difficulty, however, that priors are elicited directly on regression parameters in a 

GLM, with the possibility of obtaining improper posterior distributions, resulting in an 

undesirable uniform prior (O’Hagan, Woodward, & Moodaley, 1990). A more accessible 

alternative is to obtain prior to canonical parameters, as shown by Das and Dey (2007), in 

their study that obtained prior to canonical parameters. They demonstrated that with a full 

rank assumption of the design matrix, a proper prior to the regression parameters could be 

induced by the various elicited prior to canonical parameters. After that, the usual Bayesian 

analysis based on the induced prior can be carried out. 

Now that there is a user-friendly software program, WinBUGS and/or OpenBUGS, 

for use with Bayesian analysis that employs MCMC techniques, estimating parameters has 

become much more attainable for nonexperts (Spiegelhalter, Myles, Jones, & Abrams, 

2000). It is possible to extend Lin’s (2011) model in Bayesian inference utilizing the 

MCMC algorithm for the joint model of longitudinal outcome with informative time due to 

the computational ease, flexibility regarding model extension, and the good knowledge, 

where can be summarized into a prior distribution for some of the parameters of the model, 

but where knowledge on the rest of the parameters lacks or unavailable.  

Conclusion 

Longitudinal designs serve an important function in many areas of research that 

enhance our understanding of research objectives unattainable in other analytical 

approaches. The literature is replete with a large number of different longitudinal designs 
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and approaches with their model assumptions as an attempt to accommodate varying 

response data, types, and design issues. 

The key characteristic of longitudinal designs is their ability to measure the change 

in outcomes and/or predictors at an individual level over time. Although there have been a 

variety of methods developed and presented to address the many different outcomes, 

research design issues, nearly all these methods rest on assumptions regarding the time 

intervals that they are fixed and/or predetermined. In reality, however, there are occasions 

where time points need to be based on prior outcomes, resulting in an individual 

measurement of response at different sets of time points. For this particular kind of 

research design including irregular measurement, traditional methods are not appropriate 

for longitudinal design with informative time data, given their assumption of a fixed time. 

Giving rise to newer approaches, joint model, to better answer research objectives when 

time points are not fixed or predetermined. 

Thus, in the current study, I will use the Bayesian Approach (noninformative, 

informative, and semi-informative prior) to estimate the parameters of the joint model of 

Lin (2011). His model was designed to handle longitudinal outcomes that distributed to be 

a normal distribution with an informative time that followed an exponential distribution. 

Another aim of this dissertation is to present the Bayesian analysis and its terminology in 

an easier to comprehend manner without the use of large numbers of formulae. I will 

illustrate the attractions of the Bayesian approach and present an explanation on how to 

estimate a model developed within a Bayesian perspective that relies on background 

knowledge in the actual data analysis, followed by an interpretation of the results. Bayesian 

computation and an introduction to the Markov Chain Monte Carlo method will also be 

presented.
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CHAPTER III 

 

METHODOLOGY 

 

The joint model by Bronsert (2009) and extended by Lin (2011) was developed 

under the assumption that outcomes follow a normal distribution, and time follows an 

exponential distribution. Later, Seo (2015) adapted and modified Bronsert and Lin's joint 

model to show the parameter estimates of the extended joint models satisfy the normality 

assumption when the distribution of outcomes is a member of the exponential family of 

distributions. The purpose of this study is to find Bayesian estimates for the parameters of 

the joint model longitudinal outcomes and informative time, assuming that the outcomes 

will follow a normal distribution, whereas time will follow an exponential distribution. 

In order to employ the Bayesian model in estimating the value of unknown 

parameters, it is necessary to place previous knowledge about the parameters upon the 

model parameters in terms of the distribution. The distributions of these parameters are 

called prior distribution, which can take on different levels of information. In the review of 

the literature, I used in deriving the previous information for the unknown parameters, 

including both informative and noninformative priors. In the current study, I focus on three 

types of prior information (informative, noninformative, semi-informative priors). 

Using simulation for data sets via Markov chain Monto Carlo simulation, the 

Bayesian estimation approach was implemented to investigate the performance resulting to 

provide an estimate of the parameters of the joint model of longitudinal outcomes and 
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informative time. Finally, the statistical inference was conducted based on the samples 

from the posterior distribution created from the generated Markov chain.  

Joint Model with the Notation 

The outcome for the 𝑖𝑡ℎ individual measured at the 𝑗𝑡ℎ time point is given by 𝒴𝑖𝑗; so 

the 𝑖𝑡ℎ individual has a vector of outcomes 𝓨𝑖 = (𝒴𝑖1, 𝒴𝑖2, ⋯ , 𝒴𝑖𝑛𝑖)
′
 collected at a vector of time 

𝒕𝑖 = (𝑡𝑖1, 𝑡𝑖2, ⋯ , 𝑡𝑖𝑛𝑖)
′
,  

where, 

the individuals range from 𝑖 = (1, 2,⋯ ,𝑚),  

the time range from 𝑗 = (1, 2,⋯ , 𝑛𝑖),  

𝑛𝑖 allows the measured time to vary from one individual to another individual. The 

joint distribution of outcomes (𝓨
𝑖
) and time points (𝒕𝑖) is in general given by: 

                                            𝑓𝚯(𝓨𝑖
, 𝒕𝑖) = 𝑓𝚯(𝓨𝑖

| 𝒕𝑖) ∙ 𝑓𝚯(𝒕𝑖),                                                                (35) 

where, 

𝚯 is a vector of unknown parameters.  

A general model can be derived by using this joint distribution of (𝓨
𝑖
) and (𝒕𝑖). Therefore, 

the general model under the assumptions that the current outcome is dependent on the one-

step prior outcome (𝒴
𝑖𝑗−1
), current outcome (𝒴

𝑖𝑗
), and current time point (𝑡𝑖𝑗) becomes 

        𝑓𝚯(𝓨𝑖 , 𝒕𝑖) = 𝑓𝚯(𝒴𝑖1| 𝑡𝑖1) ∙ 𝑓𝚯(𝑡𝑖1) ∙∏𝑓𝚯(𝒴𝑖𝑗| 𝑡𝑖𝑗, 𝒴𝑖𝑗−1) ∙ 𝑓𝚯(𝑡𝑖𝑗|𝒴𝑖𝑗−1)

𝑛𝑖

𝑗=2

.              (36) 

Based on this general model, a joint model was developed for each member of the 

exponential family of distributions, while assuming time to follow an exponential 

distribution. The special case will be termed the Gaussian-Exponential model (GE), can be 

represented as the following: 
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𝑓𝚯(𝓨𝑖 , 𝒕𝑖) =
1

√2𝜋(𝜎2)
𝑒𝑥𝑝 (−

1

2

(𝒴𝑖1 − 𝑿𝑖1
′ 𝜷)2

𝜎2
) × 𝑓(𝑡𝑖1)

×∏{
1

√2𝜋(𝜎2)
𝑒𝑥𝑝 (−

1

2

(𝒴𝑖𝑗 − 𝛾𝑡𝑖𝑗 − 𝜙𝒴𝑖(𝑗−1) − 𝑿𝑖𝑗
′ 𝜷)

2

𝜎2
)

𝑛𝑖

𝑗=2

× 𝑒𝑥𝑝(𝛼 + 𝛿𝑖𝒴𝑖(𝑗−1)) 𝑒𝑥𝑝(−𝑒
𝛼+𝛿𝑖𝒴𝑖(𝑗−1)𝑡𝑖𝑗)} .                                             (37) 

It is assumed that 𝑓(𝑡𝑖1) does not depend on 𝚯, so for the purpose of the likelihood 

function, we can ignore it. Furthermore, the resulting function of the initial observation, 

 𝑦
𝑖1

 is conditioned on time of observation, 𝑡𝑖1, which is the same approach found in 

traditional longitudinal models. However, under the Gaussian-Exponential case, the 

response variable is considered to be conditionally normal given time, while the time of 

observation is assumed to be distributed exponentially. In addition, it is assumed that the 

initial observation is a function only of the unknown regression parameters and that the 

subsequent responses are then conditioned on these unknown parameters as well as the 

effects of the prior response outcome and observation times. This conditional association 

on prior response outcomes contributes to this model’s ability to analyze informative time 

data. 

Bayesian Estimation for the Joint Model 

Although the classical ML has theoretical appeal, its estimation of model 

parameters is complicated in that numerical methods are necessary to evaluate some 

complex marginal likelihood functions of the joint model in the equation. The rise of 

simulation-based Bayesian MCMC methods over the past few years has seen its acceptance 

as a popular tool for a variety of complicated statistical models. In fact, given a large 
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sample size and appropriate regularity conditions, the Bayesian estimator is deemed 

asymptotically equivalent to ML estimators (Ghosal, Lund, Moin, & Akselvoll, 1995). 

The Bayesian procedure, by incorporating both data and prior information for 

parameters, generates the posterior distribution of unknown parameters. With prior 

information unavailable, noninformative priors with large variance are used. With 

informative priors as normal for parameters are included, and inverse gamma (1G) priors 

for positive parameters as in the variance σ2, are adopted. In order to obtain the desired 

joint posterior distribution, the MCMC algorithm, with its ability to construct an irreducible 

and aperiodic Markov chain, is used to generate the equilibrium distribution. 

The application of the Gibbs sampler can produce a sequence of samples of one or 

more variables at a time that is taken from the set of full conditional distributions. To 

conduct a posterior analysis, outputs are taken from the simulated chain; i. e., parameters 

are estimated by their posterior means. In situations where the full conditional distributions 

are not standard, other methods are permissible, such as the Metropolis-Hastings. An 

advantage of the MCMC algorithm utilizing Gibbs sampler is its ease in implementation 

using Bayesian software OprnBUGS and R programming. 

High posterior correlations are present between some of the parameters because of 

the complexity of the models, slowing down convergence rates in the Gibbs samplers. As a 

way to address this predicament, the number of iterations needs to be substantial enough to 

obtain a stationary sample. Checking for independence and convergence of the sample is 

accomplished with trajectory plots, autocorrelation plots, of the simulated values. In 

addition, the convergence test uses the Cramer-von-Mises statistic to test the null 

hypothesis that the sampled values come from a stationary distribution is applied as well. 
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The Bayesian hierarchies and joint posterior distributions for all the models are then 

presented. 

Likelihood Functions 

An assumption of the model described above is that 𝑓(𝑡𝑖1)  does not depend on 𝚯𝒊, 

and can, therefore, be ignored with respect to the likelihood function. Also, the function 

thus obtained from the initial observation, 𝒴𝑖1, is conditioned on time of observation, 𝑡𝑖1, 

which is the identical approach found in traditional longitudinal models. However, 

subsequent observations of the response variable, 𝒴𝑖𝑗 , are no longer exclusively conditioned 

on time of observation, 𝑡𝑖𝑗, alone but are now also conditioned on the most recent previous 

observation, 𝒴𝑖𝑗−1, and time of observation. Thus, the likelihood function for the above joint 

model is the product of the density functions for m individuals, namely: 

𝐿(Θ,𝒴1,𝒴2, ⋯ ,𝒴𝑚) =∏𝑓𝚯(𝓨𝑖, 𝒕𝑖)

𝑚

𝑖=1

=∏{
1

√2𝜋(𝜎2)
𝑒𝑥𝑝 (−

1

2

(𝒴𝑖1 − 𝑿𝑖1
′ 𝜷)

2

𝜎2
)

𝑚

𝑖=1

×∏[(
1

√2𝜋(𝜎2)
∙ 𝑒𝑥𝑝(−

1

2

(𝒴𝑖𝑗 − 𝛾𝑡𝑖𝑗 − 𝜙𝒴𝑖(𝑗−1) −𝑿𝑖𝑗
′ 𝜷)

2

𝜎2
))

𝑛𝑖

𝑗=2

× 𝑒𝑥𝑝 (𝛼 + 𝛿𝑖𝒴𝑖(𝑗−1)) ∙ 𝑒𝑥𝑝(−𝑒
𝛼+𝛿𝑖𝒴𝑖(𝑗−1)𝑡𝑖𝑗)]} .                                      (38) 

Prior Distribution 

The model parameters that we need to estimate in the current dissertation project by 

using Bayesian approach, as shown in the likelihood function for the joint model, are a 

vector of explanatory variables (𝜷),  the variance (𝜎2), the coefficient (𝜙), accounts for the 



52 
 

 

effect of the prior outcome on the mean response, the coefficient (𝛾), accounts for the 

effect of the current time on the mean response, parameters associated with modeling time 

of observation include a constant parameter (𝛼), and a coefficient that maps time of 

observation (𝛿). 

Requirements for employing a Bayesian method for estimating the parameters in 

the joint model include the specification of the priors for the model parameters and the 

utilization of these priors for the calculation of the posterior distribution of each parameter. 

It is imperative that the priors be carefully selected for accuracy in making inferences for 

the parameters in the joint model. There can be a high relationship between the posterior 

distribution for each parameter and its prior chosen, which can extend to the priors selected 

for the other unknown parameters of the joint models. 

Priors can take two forms: informative and noninformative. Even though 

researchers commonly use a noninformative prior distribution in the Bayesian analysis, 

using informative priors is preferable (Depaoli, 2014). With this consideration, the current 

project takes into account both informative and noninformative priors in estimating the 

unknown parameters in the joint model. The noninformative priors on some of the 

parameters will be set up as a proper vague prior. In this dissertation, we will adopt three 

scenarios for the prior distribution:  

1. The prior distributions of all unknown parameters as shown in the likelihood 

function of this current dissertation, are informative prior, which will be set to 

be specific informative prior; such as normal for unrestricted parameters, 

N(a,b), where a and b are determined by previous studies; for positive 

parameters such as the variance σ2, should be inverse Gamma (IG) priors.  
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2. The prior distributions of all unknown parameters are noninformative prior, 

which will be set to be a uniform distribution or vague prior, such as N(0, 1e6). 

3. A combination of two above scenarios, so the prior distributions of some 

unknown parameters are noninformative, and the others are informative. 

The first scenario is all unknown parameters are informative prior. In this 

scenario, we have to determine the hyperparameters from the previous studies.  Since some 

historical datasets of the proposed joint model were available, then they can be used to 

estimate the hyperparameters and set up informative prior for this dissertation. The 

Bayesian approach with informative prior is conducted using the same model as the 

classical approach that used in the previous studies, such as Bronsert (2009), Lin (2011), 

and Seo (2015).  

Therefore, the prior for the vector of explanatory variables (𝜷) is the multivariate 

normal distribution denoted as 

                                                       𝜷~𝑁(𝝁𝛽 , 𝑎𝚺𝛽),                                                           (39) 

where 𝝁𝛽 is the hyperparameter representing the mean vector with the value of 0.4𝐈𝑚, and 

𝚺𝛽 is the hyperparameter representing the covariance matrix defined as the identity matrix, 

𝑰𝑚. The dimension of both depends on m individuals and the hyperparameter. a. is set to be 

4.0. The multivariate normal distribution has the density function 

                        𝑝(𝛽) = (2𝜋)
𝑚

2 |𝚺𝛽|
−
1

2 exp (−
1

2
(𝛽 − 𝝁𝛽)

′
(𝚺𝛽)

−1
(𝛽 − 𝝁𝛽)).                   (40) 

The priors for the amount of variance (𝜎2) is Inverse Gamma (IG) distribution 

denoted as 

                                                            𝜎2~𝐼𝐺(𝑎1, 𝑎2),                                                      (41) 
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where the hyperparameters 𝑎1and 𝑎2 are set to be 0.2. The inverse Gamma has density 

function, 

                                𝑝(𝜎2) =
𝑎2

𝑎1

Γ(𝑎1)
 (𝜎2)−(𝑎1+1)𝑒−𝑎2 (𝜎2)⁄ ,           (𝜎2) > 0.                       (42) 

The prior for the coefficient, (𝜙), which is accounts for the effect of the prior 

outcome on the mean response is normal distribution denoted as  

                                                            𝜙~𝑁(𝜇𝜙, 𝜏𝜙
2 ),                                                        (43) 

where 𝜇𝜙 is the hyperparameter, which is known with a mean vector with the value of 0.2, 

and the hyperparameter 𝜏𝜙
2  is set to be 0.2. the normal distribution has the density function 

                                             𝑝(𝜙) =
1

√2𝜋 𝜏𝜙
2
exp (−

1

2
(𝜙 − 𝜇𝜙)

2
).                                   (44) 

Similarly, the prior for the coefficient (𝛾), accounts for the effect of the current time 

on the mean response is normal distribution denoted as  

                                                             𝛾~𝑁(𝜇𝛾, 𝜏𝛾
2),                                                         (45) 

where 𝜇𝛾 is the hyperparameter, which is known with a mean vector with the value of 0.5, 

and the hyperparameter 𝜏𝛾
2 is set to be 0.5.  

The priors for the parameters associated with modeling time of observation include 

a constant parameter (𝛼), and a coefficient that maps time of observation (𝛿) are also the 

same as normal distribution denoted as  

                                 𝛼~𝑁(𝜇𝛼, 𝜏𝛼
2)         and         𝛿~𝑁(𝜇𝛿 , 𝜏𝛿

2),                                       (46) 
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where 𝜇𝛼 and 𝜇𝛿 are the hyperparameters, which is known with mean vectors with the 

value of 2.0 and 0.2 respectively, and the hyperparameter 𝜏𝛼
2  and 𝜏𝛿

2 are set to be 0.2 and 

0.1 respectively.   

The next step toward a more general joint model is to assume an independent prior 

distribution for all unknown parameters in the joint model. The subsequent discussion is 

the joint prior density, which must have the product from all unknown parameters. Based 

on the probability density function discussed above, the joint prior density for informative 

priors corresponds to  

𝑝(𝜷, 𝜙, 𝛾, 𝛼, 𝛿, 𝜎2) = 𝑝(𝜷) × 𝑝(𝜙) × 𝑝(𝛾) × 𝑝(𝛼) × 𝑝(𝛿) × 𝑝(𝜎2)

= (2𝜋)
𝑚
2 |𝚺𝛽|

−
1
2 exp(−

1

2
(𝛽 − 𝝁𝛽)

′
(𝚺𝛽)

−1
(𝛽 − 𝝁𝛽))

×
1

√2𝜋 𝜏𝜙
2

exp (−
1

2
(𝜙 − 𝜇𝜙)

2
) ×

1

√2𝜋 𝜏𝛾2
exp (−

1

2
(𝛾 − 𝜇𝛾)

2
)

×
1

√2𝜋 𝜏𝛼2
exp (−

1

2
(𝛼 − 𝜇𝛼)

2) ×
1

√2𝜋 𝜏𝛿
2

exp (−
1

2
(𝛿 − 𝜇𝛿)

2)

×
𝑎2

𝑎1

Γ(𝑎1)
 (𝜎2)−(𝑎1+1)𝑒−𝑎2 (𝜎2)⁄                                                                           (47) 

The second scenario is all unknown parameters are noninformative prior. Due 

to difficulties in the availability of scientifically solid prior information about the unknown 

parameters, most of the studies used by noninformative priors in Bayesian inference. 

Therefore, in this dissertation, the vague prior for all parameters were used as the 

following: The vague priors for the vector of explanatory variables (𝜷) is the multivariate 

normal distribution, which is denoted as 

                                                       𝜷~𝑁(𝟎𝑚, 10
6𝐈𝑚).                                                       (48) 
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The vague prior for the variance (𝜎2) is Inverse Gamma (IG) distribution denoted as 

                                                   𝜎2~𝐼𝐺(10−3, 10−3).                                                       (49) 

The vague prior for the coefficient (𝜙) is normal distribution denoted as  

                                             𝜙~𝑁(0, 106).                                                            (50) 

Similarly, the vague prior for the coefficient (𝛾) is normal distribution denoted as  

                                             𝛾~𝑁(0, 106).                                                            (51) 

The vague priors for the parameters (𝛼) and (𝛿) are also the same as normal distribution 

denoted as  

                                 𝛼~𝑁(0, 106)         and         𝛿~𝑁(0, 106).                                      (52) 

The final form for the joint prior density for noninformative prior distribution is:  

             𝑝(𝜷,𝜙, 𝛾, 𝛼, 𝛿, 𝜎2) = 𝑝(𝜷) × 𝑝(𝜙) × 𝑝(𝛾) × 𝑝(𝛼) × 𝑝(𝛿) × 𝑝(𝜎2).                    (53) 

The third scenario is some unknown parameters are informative prior and the 

others are noninformative prior. The informative prior distributions for the vector of 

explanatory variables (𝜷) and the amount of variance (𝜎2) are adopted, while for the other 

parameters, I assumed to be noninformative priors. Therefore,   

                                                         𝜷~𝑁(𝟎. 𝟒𝑚, 4𝑰𝑚),                                                    (54) 

                                                          𝜎2~𝐼𝐺(0.2,0.2).                                                       (55) 

The reasonable noninformative prior density for each of them, as in most previous 

studies, is also vague priors and they are independent of each other (Gabry, Simpson, 

Vehtari, Betancourt, & Gelman, 2019), therefore,  

                                 𝜙~𝑁(0, 106)         and         𝛾~𝑁(0, 106),                                      (56) 

                                 𝛼~𝑁(0, 106)         and         𝛿~𝑁(0, 106).                                      (57) 
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For all unknown parameters in the joint model is to assume to be an independent 

prior distribution, and based on the probability density function discussed above, the joint 

prior density for semi-informative prior correspond to  

𝑝(𝜷,𝜙, 𝛾, 𝛼, 𝛿, 𝜎2) = 𝑝(𝜷) × 𝑝(𝜙) × 𝑝(𝛾) × 𝑝(𝛼) × 𝑝(𝛿) × 𝑝(𝜎2) 

= (2𝜋)
𝑚
2 |𝚺𝛽|

−
1
2 exp (−

1

2
(𝛽 − 𝝁𝛽)

′
(𝚺𝛽)

−1
(𝛽 − 𝝁𝛽)) 

×
𝑎2

𝑎1

Γ(𝑎1)
 (𝜎2)−(𝑎1+1)𝑒−𝑎2 (𝜎2)⁄ × 𝑝(𝜙) × 𝑝(𝛾) × 𝑝(𝛼) × 𝑝(𝛿).                 (58) 

Posterior Distribution 

     As we have seen, the posterior distribution is proportional to the likelihood 

function multiplied by the prior distribution:  

𝑝(𝜷, 𝜙, 𝛾, 𝛼, 𝛿, 𝜎2|𝓨
𝑖
, 𝒕𝑖) = 𝐿(Θ,𝒴1,𝒴2, ⋯ ,𝒴𝑚) × 𝑝(𝜷, 𝜙, 𝛾, 𝛼, 𝛿, 𝜎

2).                (59) 

For each scenario, the estimation of unknown parameters is obtained by using 

Bayesian methods through the priors of unknown parameters in the joint model, and the 

likelihood function was previously specified. The marginal posterior distribution of the 

parameter of interest, which is the aim of Bayesian analyses, is hard to obtain because of 

high-dimensional integration in the model discussed. Therefore, MCMC techniques were 

used for the posterior computation of the proposed model in the current project. More 

specifically, when the dimension of the parameter space in Markov chain simulation 

changes from one iteration to the next iteration, the Metropolis algorithm using the method 

of reversible jump sampling is suitable to perform (Gelman et al., 2014). Then the posterior 

distribution of unknown parameters is obtained.  
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Markov Chain Monte Carlo Simulation 

In this dissertation, in order to obtain the posterior distribution of all parameters, the 

Metropolis-Hastings algorithm is employed as a part of the Markov Chain Monte Carlo 

simulation. This algorithm creates a new sample for all dimensions at one time by 

generating a sequence of samples iteratively with the distribution of the next sample where 

each sample is only dependent on the just prior sample from the current state of the chain 

(i.e., Markov chain). This allows one parameter to be updated in line with the acceptance 

probability, a specification within the Metropolis-Hastings formula.  

Convergence and Summary Statistics 

At this point in the analysis, an assessment is made of convergence, and the 

summary statistics are summarized. In order to demonstrate the application of the Bayesian 

approach, there usually needs to be a burn-in, or warm-up, period before to the 

convergence of the estimated unknown parameters in the distribution to the right posterior 

(Geyer, 1992). This burn-in period is that iteration in which a run needs to be discarded to 

prevent autocorrelation of the samples. The convergence of the chain with the stationary 

distribution takes place with a larger number of iterations within the algorithm (Leiby, 

Have, Lynch, & Sammel, 2014). As a result, a burn-in period is specified at 10,000 

iterations, with the next 10,000 iterations employed as post-burn-in iterations, as described 

by Depaoli (2014). This yields a total of 20,000 iterations in order to obtain convergence 

testing and data analysis.  

There is no straightforward method to calculate a convergence diagnostic. The 

general consensus in various proposed methods is to monitor common parameters in each 

of the models. So, with that in mind, I will assess convergence of the unknown parameters 
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using the Heidelberger and Welch (1983) diagnostic (HW), which calculates a test statistic 

to accept or reject the null hypothesis that the Markov chain is from a stationary 

distribution. The diagnostic consists of two parts. 

The first one is called the stationary test, which assesses the null hypothesis that the 

Markov Chain is in the stationary distribution and produces p-values for each estimated 

parameter. If the null hypothesis is rejected, then discard the first 10% of the chain, and 

calculate the test statistic to accept or reject the same null hypothesis. If it is rejected, then 

discard the next 10% and calculate the test statistic. Repeat until the null hypothesis is 

accepted, or 50% of the chain is discarded. If the test still rejects the null hypothesis, then 

the chain fails the test and needs to be run longer. 

The second part is called the halfwidth test, which indicates whether there are 

enough iterations to estimate the mean of a marginal posterior distribution with sufficient 

precision, assuming that the Markov Chain is in the stationary distribution. If the chain 

passes the first part of the diagnostic, then it takes the part of the chain not discarded from 

the first part to test the second part. The halfwidth test calculates half the width of the (1−α) 

% credible interval around the mean. If the ratio of the halfwidth and the mean is lower 

than some ϵ, then the chain passes the test. Otherwise, the chain must be run out longer. 

The HW tests were chosen because it requires only one realization of the MCMC to 

use. We used the R package coda with the OpenBUGS program to implement the 

diagnostic via the function heidle.diag(). The software produces a table showing for each 

parameter if the parameter passed or failed the stationarity test and halfwidth test, the 

number of iterations retained and discarded, the Cramer-von Mises statistic, the sample 

mean, and the estimated halfwidth. Default values were for all arguments of the function 

were used. In addition, each of the trace plots of the unknown parameter is presented to 
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examine any systematic deviation from the steady-state of a converged MCMC chain as 

well as the autocorrelation plots for the common parameters. The convergence of the 

simulation is calculated from the unknown parameters to ensure a precise estimation. When 

all the convergence tests have been passed, the total of parameters will be summarized as 

recommended by the Bayesian method.   

The Bayesian estimates theoretically are expected to be biased (Gifford & 

Swaminathan, 1990). In this way, the focus of this dissertation, to estimate the unknown 

parameters in the joint model simultaneously, will be obtained. Gelman et al. (2014) 

remarked that it is not possible to obtain an approximately unbiased estimator when several 

parameters are simultaneously estimated since the information or knowledge of these 

parameters is of relevance in estimating other parameters. Theoretically, the bias in the 

Bayesian estimates is expected, and investigations by Gifford and Swaminathan (1990) 

demonstrated that both joint maximum likelihood and Bayesian techniques contained 

biases in the estimation. This was confirmed by Ho et al. (2011) regarding bias in the 

posterior mean of the parameters. With this in mind, the current dissertation will omit the 

bias diagnosis across all model parameters in the summary statistics part.  

Verifying the Validity of a Simulation 

In order to gauge the validity of the MCMC method as a way to estimate unknown 

parameters on joint models, this dissertation will specify different scenarios and different 

prior by using the Markov chain Monte Carlo sampling in a Bayesian approach. 

Simplification of the presentation will be accomplished through simulation design, 

implementation, and data generation. 
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Analysis of Simulated Data 

Inasmuch as this study is an extension of Bronsert (2009), Lin (2011), and Seo 

(2015), most of the parameter values and simulation conditions were derived from the work 

of these authors. Table 1 parameter values and Table 2 simulation conditions were based 

on the work of Lin (2011). As a method to verify the properties of the MLEs, Monte Carlo 

simulations were used with SAS/IML and/or R in their model. However, in this 

dissertation, we will apply R with OpenBUGS programs to find Bayesian estimates for 

unknown parameters. It is assumed that parameters are the same across subjects for model 

simplicity. It is also assumed that the observations follow a normal distribution but that 

observations for the time intervals follow an exponential distribution in the joint model 

used in this study. 

When using simulated data, its basic structure comprises two categorical variables 

with three levels each along with two continuous variables associated with the response 

variable. To obtain the first outcome, data is gathered from the normal distribution; the next 

outcome is then calculated on the relationship between the previous outcome along with 

the previous time in order to predict the average outcome with fixed parameter values. 

Observation times follow the exponential distribution, adjusting the mean by the previous 

outcome. It is assumed that all parameter values are equal across subjects to simplify the 

model form in simulation studies. All terms with fixed parameter values were based on 

previous studies (see Table 1). 
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Table 1 

Parameter values for simulations 

α 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜷𝟑 𝜷𝟒 𝜷𝟓 𝜷𝟔 δ γ 𝝓 𝝈𝟐 

2 0.4 0.2 0.3 0.1 0.3 0.4 0.9 0.01 0.1 0.8 1 

1 0.4 0.2 0.3 0.1 0.3 0.4 0.9 0.02 0.1 0.8 1 

2 0.4 0.2 0.3 0.1 0.3 0.4 0.9 0.01 0.1 0.8 2 

1 0.4 0.2 0.3 0.1 0.3 0.4 0.9 0.02 0.1 0 2 

2 0.4 0.2 0.3 0.1 0.3 0.4 0.9 0.01 0.1 0 0.5 

1 0.4 0.2 0.3 0.1 0.3 0.4 0.9 0.02 0.1 0.8 0.5 

 

As seen in Table 2, the five sample sizes are incorporated with four types of design 

structures with a different number of observations to detect a certain pattern as the number 

of observations increases. For the replications, some researchers used 500 replications 

(Liang et al., 2009), some used 1,000 replications (Lipsitz et al., 2002; Qiu et al., 2013; & 

Seo, 2015), some used 2,000 replication (Alomair, 2017), and some used 5,000 replication 

(Lin, 2011). In this study, each simulation design will be run 1,000 times. Each prior 

distribution will have 120 simulation designs.  

To sum up, three different prior distributions of the unknown parameters will be 

applied based on whether the information about the parameters was known or not, along 

with the six parameter schemes and five different sample sizes, with four different numbers 

of observations (see Table 2). With all conditions applied, analyses for the total of 360 

simulation designs will be conducted on the joint models in the current dissertation.  
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Table 2 

Simulation designs  

Scheme  

Number 

Sample  

Size 

Number of 

Observation 

Design 

Structure  

Total Number of 

Observation 

1 18 10 Balanced 180 

2  5 & 3 Unbalanced 72 

3  10 & 5 Unbalanced 135 

4  20 &6 Unbalanced 234 

5 36 10 Balanced 360 

6  5 & 3 Unbalanced 144 

7  10 & 5 Unbalanced 180 

8  20 &6 Unbalanced 288 

9 54 10 Balanced 540 

10  5 & 3 Unbalanced 216 

11  10 & 5 Unbalanced 405 

12  20 &6 Unbalanced 702 

13 90 10 Balanced 900 

14  5 & 3 Unbalanced 360 

15  10 & 5 Unbalanced 675 

16  20 &6 Unbalanced 1170 

17 180 10 Balanced 1800 

18  5 & 3 Unbalanced 720 

19  10 & 5 Unbalanced 1350 

20  20 &6 Unbalanced 2340 
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Simulation Process 

Using concepts from Bayesian statistics, the fundamental information of population 

parameters will be exercised by updating the original distribution of the parameters of 

interest through the process of the conditioning on data via the likelihood function (Gill, 

2008). To better understanding the behavior of the statistical estimates through their 

sampling distributions, samples will be drawn from the target distribution or posterior 

distribution of all unknown parameters. Utilizing the Markov chain Monte Carlo with the 

Metropolis-Hastings algorithm, the sampling distributions will thus be derived from the 

data. 

The process of estimating the unknown parameters for the joint model data files 

comprises five steps: (a) data generation, (b) calculation of the likelihood function, (c) 

calculation of the joint prior distribution for all unknown parameters, (d) calculation of the 

joint posterior probability distribution, and (e) completion of the sampling from the joint 

posterior distribution of parameters and hyperparameters. After the joint posterior 

distribution is secured, the simulation procedures will be instituted utilizing the Metropolis-

Hastings sampling method. The generation of the Metropolis-Hastings algorithm samples 

from the point proposal distribution comprises the following four steps at each iteration: 

1. Generate Markov chains for model parameters via the Metropolis-Hastings 

algorithm, i.e., drawing samples from the posterior distribution by set the start 

values. The initial values for model parameters were assigned from other 

simulation studies with the joint model (Bronsert, 2009; Lin, 2011; & Seo, 

2015).  
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2. Run the Markov chain for 20,000 iterations where the first 10,000 constitute the 

burn-in period while the last 10,000 constitute the simulation draws, in order to 

assure the passing of the convergence test with no autocorrelation. 

3. Test the convergence of the Markov chains. 

4. Calculate the inferential statistics. 

As a way to estimate all unknown parameters in the joint model under a Bayesian 

approach, the Metropolis-Hastings algorithm will be implemented in the R program. The 

joint model will comprise 20,000 iterations, the first 10,000 for the burn-in, and the 

remaining 10,000 for the post-burn-in analysis to attain independent sample values. These 

sample values will then form the data bank for convergence testing and data analysis. The 

convergence of the simulated sequences will be monitored after the simulation has been 

running for a period of time. 

The Heidelberger and Welch tests of any given parameter will be computed in 

assessing convergence. The software produces a table showing for each parameter if the 

parameter passed or failed the stationarity and halfwidth tests. In the case of each 

simulation condition, the HW tests of each parameter will be computed and assessed 

convergence. Then. The summary statistics such as mean, standard deviation, and the 

average upper and lower limits of the 97.5% confidence interval will be presented based on 

the 20,000 iterations of the sampling run in the R and OpenBUGS programs. 

As described above, the Bayesian analysis will be employed for investigating 120 

data sets, where each of the data sets comes from the proposed joint model with the six 

parameter schemes and four different numbers of observations. The sample sizes will be in 

all cases N = 18, N = 36, N = 54, N = 90, N = 180. Every data set of the simulated joint 

model data will be calculated from one and/or three chains, each of which contains 20,000 
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iterations. The samples that will be drawn from a posterior distribution in each chain will 

be divided into two groups of 10,000 iterations each. The target distribution samples 

(posterior distribution) will be used in the calculation of inferential statistics. The 

parameters will then be estimated after fitting all unconditional joint models without 

covariances. P-value and 97.5% credibility intervals will be generated in the joint model 

estimates based on Markov chain Monte Carlo. Specification of the different degrees of 

prior knowledge for the model parameters will be presented, and the simulation outcomes 

across different prior distributions will be also compared.  

Applied Bayesian Modeling Using OpenBUGS via R 

A convenient way to fit Bayesian models using OpenBUGS is to use R packages that 

function as frontends. These packages make it easy to do all Bayesian data analysis in R, 

including estimate the model using MCMC and process the output of Bayesian models 

Gelman and Hill (2007). Fitting Bayesian models using OpenBUGS by installing and 

loading the respective package (R2OpenBUGS package) within R or Rstudio.  

R offers a variety of solutions to obtain convergence diagnostics. MCMC objects are 

a separate class of R objects that contain one or multiple Markov Chains and the respective 

information about iterations etc. that are needed to conduct convergence diagnostics. In R, 

there are a variety of commands for diagnostics and presentation using the coda package 

with MCMC, including density plot, trac plot, Autocorrelation plot, Geweke diagnostic, 

Raftery and Lewis diagnostic, and Heidelberger and Welch diagnostic (Plummer, Best, 

Cowles, & Vines, 2006). 
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CHAPTER IV 

 

RESULTS 

 

The primary purpose of this dissertation was to find Bayesian estimates for the 

unknown parameters in the proposed joint model based on the three kinds of prior 

distribution, (informative, noninformative, and semi-informative priors), with the 

assumptions of a normal distribution for the outcome process and an exponential 

distribution for informative time, by using developed R with OpenBUGS software. 

Analyses for a total of 360 convergence diagnostics were conducted on the proposed joint 

model. The 360 diagnostics refer to three different prior distributions of the unknown 

parameters, six parameter schemes, and five different sample sizes with four different 

numbers of observations (see Table 2). These diagnostics were run two times with 20,000 

iterations for each run, including one or three chains of MCMC.  

The convergence on all parameters in the proposed joint model was examined first. 

The parameter estimates on the joint models were then calculated based on the 

convergence diagnostic tests. The parameters of the proposed joint model such as the 

vector of explanatory variables (𝜷),  the variance (𝜎2), the coefficient (𝜙), accounts for the 

effect of the prior outcome on the mean response, the coefficient (𝛾), accounts for the 

effect of the current time on the mean response, parameters associated with modeling time 

of observation include a constant parameter (𝛼), and a coefficient that maps time of 

observation (𝛿) were estimated by using Bayesian approach. Moreover, the proposed joint 

model-generated data sets were fitted and analyzed using R with OpenBUGS. This chapter 
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presents the simulation results to verify the Bayesian estimates of the proposed joint model. 

To achieve these goals, the researcher attempted to study the following research questions: 

Q1   How will the Bayesian method be designed for estimating the unknown 

parameters on the proposed joint model constructed by Lin (2011) for a 

longitudinal response variable with a set of informative time?  

 

Q2   How are these Bayesian estimates of the proposed joint model influenced by a 

few select variations in subject sample size, types of design structures with a 

different number of observations for each subject, and the various parameter 

schemes, with three types of prior distribution on the parameters 

(noninformative, informative, and semi-informative priors)?  

 

Q3   How will the developed R program work closely together with OpenBUGS for 

fitting Bayesian models? Could that support researchers obtain the Bayesian 

estimations for the unknown parameters on the proposed joint model? 

 

The first and second questions were answered by a simulation study that was 

presented to evaluate the performance of the proposed Bayesian joint models using the 

Monto Carlo Markov Chain. To specify the performance of the Bayesian approach, sample 

sizes of 18, 36, 54, 90, and 180 were considered on each six parameter schemes with four 

different numbers of observations. Moreover, monitoring convergence was assessed first 

by calculating the Heidelberger and Welch tests of all parameters. The following section 

shows the estimation of all parameters in the proposed joint model by using R programs 

using a Bayesian approach. In conclusion, the summary of the results section shows the 

performance of the Bayesian method using a developed R with OpenBUGS programs for 

the current dissertation to estimate the parameters of the proposed joint model. 

Steps of Simulation 

A general description of the simulation procedures is as follows.  

Step1: A design matrix related to the outcome was generated with two continuous and two 

categorical variables with three levels each. 
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Step 2: A dataset that contains three variables (outcomes, time, and subject) was created 

based on the relations among previous and current outcomes, and the current time 

with the fixed parameter values shown in Table 1. 

Step 3: Bayesian models fit in OpenBUGS by installing and loading the respective package 

(R2OpenBUGS package) within R or Rstudio. The model for BUGS can be written 

in the R script, including the prior distribution.  

Step 4: The parameters whose posterior distributions the researcher is interested in 

summarizing later were defined. 

Step 5: The function of starting values for BUGS was created. It is a list that contains one 

element for each parameter. 

Step 6: OpenBUGS can be run from R by using bugs() function. Additionally, the location 

of the model file, the data, the parameters, and the initial values must be specified as 

well as how many chains the researcher wants to fit and how long he wants to run 

them.  

Step 7: After running, the OpenBUGS window will pop up, and R will freeze up. The 

model will now run in OpenBUGS for a while. When OpenBUGS is done, its 

window will close, and R will work again. 

Step 8: After finishing OpenBUGS running, the resulting data can be read into R by using a 

coda package for more analyses of the output, graphical summary of inference, and 

convergence diagnostics (Sturtz, Ligges, & Gelman, 2005). 

Step 9: The previous steps were repeated 1,000 times. Note that every single replication, 

the HW diagnostic was used every time to test the convergence of each parameter 

in the proposed joint model. Then the parameter estimates and another statistical 

inference can be calculated. 
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The test was conducted separately for the parameter estimates of the different prior 

distribution. Simulation designs are based on five sample sizes, four different observations, 

and six parameter schemes. Each prior distribution has 120 (5 * 4 * 6) simulation 

conditions, which makes 360 simulation designs in total for all three prior distributions. 

This section aims to answer the third research question, where the developed R with 

OpenBUGS codes for the above steps can handle the Bayesian estimations for the 

parameters on the joint model of an outcome from Gaussian distribution, and informative 

time, which follows an exponential distribution. These codes presented in Appendix A. 

After having all the input to use the R and OpenBUGS software, the codes compute the 

estimates and different convergence diagnostics. 

Model Convergence 

There is no straightforward method to calculate a convergence diagnostic. 

Therefore, one and three generating Markov chains with a total of 20,000 iterations each 

were run for the convergence testing. With the burn-in period of 10,000 iterations for each 

chain, the outputs of Heidelberger and Welch diagnostic (HW) tests of all unknown 

parameters were monitored. This diagnostic employs two tests. (1) The stationary test, 

which determines whether the trace of simulated values arises from a stationary stochastic 

process. (2) The halfwidth test, which determines if there are enough iterations to estimate 

the mean of the process with acceptable precision. The reason for choosing HW tests is 

because it only requires one realization of the MCMC to use. OpenBUGS with R package 

coda was used to implement the diagnostic via the function heidle.diag(). Since there is a 

huge number of test tables for all parameters in the proposed joint model that cannot be 

placed in this study, some examples are randomly introduced for the output of all 
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parameters with different prior (noninformative, informative, and semi-informative priors) 

are summarized in Tables 3 through 11.  

Table 3 

The Heidelberger & Welch (HW) tests (stationary and halfwidth tests) of all unknown 

parameters in the joint model for noninformative Prior (Suggested Example 1) 

Parameters 

Sample Size = 18 

Parameters Scheme = 6 

Design Structure = 20 & 6 

(Unbalanced) 

Sample Size = 36 

Parameters Scheme = 4 

Design Structure = 5 & 3 

(Unbalanced) 

Stationarity 

Test 

Halfwidth 

Test 
p-value 

Stationarity 

Test 

Halfwidth 

Test 
p-value 

𝜶 Passed Passed 0.1801 Passed Passed 0.6822 

𝜷𝟎 Passed Passed 0.2249 Passed Passed 0.7589 

𝜷𝟏 Passed Passed 0.1750 Passed Passed 0.3157 

𝜷𝟐 Passed Passed 0.1723 Passed Passed 0.4473 

𝜷𝟑 Passed Passed 0.6622 Passed Passed 0.9609 

𝜷𝟒 Passed Passed 0.1261 Passed Passed 0.7934 

𝜷𝟓 Passed Passed 0.6898 Passed Passed 0.5965 

𝜷𝟔 Passed Passed 0.2762 Passed Passed 0.3973 

𝜹 Passed Passed 0.4828 Passed Passed 0.7379 

𝜸 Passed Passed 0.6887 Passed Passed 0.5422 

𝝓 Passed Passed 0.8056 Passed Passed 0.8779 

𝝈𝟐 Passed Passed 0.2040 Passed Passed 0.1233 
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Table 4 

The Heidelberger & Welch (HW) tests (stationary and halfwidth tests) of all unknown 

parameters in the joint model for noninformative Prior (Suggested Example 2) 

Parameters 

Sample Size = 54 

Parameters Scheme = 2 

Design Structure = 10 & 5 

(Unbalanced) 

Sample Size = 90 

Parameters Scheme = 1 

Design Structure = 10 & 10 

(Balanced) 

Stationarity 

Test 

Halfwidth 

Test 
p-value 

Stationarity 

Test 

Halfwidth 

Test 
p-value 

𝜶 Passed Passed 0.1298 Passed Passed 0.1151 

𝜷𝟎 Passed Passed 0.3695 Passed Passed 0.4498 

𝜷𝟏 Passed Passed 0.2621 Passed Passed 0.2294 

𝜷𝟐 Passed Passed 0.1759 Passed Passed 0.1489 

𝜷𝟑 Passed Passed 0.6643 Passed Passed 0.4682 

𝜷𝟒 Passed Passed 0.2112 Passed Passed 0.0931 

𝜷𝟓 Passed Passed 0.6551 Passed Passed 0.7356 

𝜷𝟔 Passed Passed 0.3379 Passed Passed 0.3337 

𝜹 Passed Passed 0.1820 Passed Passed 0.0297 

𝜸 Passed Passed 0.4202 Passed Passed 0.7648 

𝝓 Passed Passed 0.7140 Passed Passed 0.5296 

𝝈𝟐 Passed Passed 0.1925 Passed Passed 0.1595 
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Table 5 

The Heidelberger & Welch (HW) tests (stationary and halfwidth tests) of all unknown 

parameters in the joint model for noninformative Prior (Suggested Example 3) 

Parameters 

Sample Size = 18 

Parameters Scheme = 5 

Design Structure = 10 & 10 

(Balanced) 

Sample Size = 180 

Parameters Scheme = 3 

Design Structure = 5 & 3 

(Unbalanced) 

Stationarity 

Test 

Halfwidth 

Test 
p-value 

Stationarity 

Test 

Halfwidth 

Test 
p-value 

𝜶 Passed Passed 0.1289 Passed Passed 0.0892 

𝜷𝟎 Passed Passed 0.1426 Passed Passed 0.7001 

𝜷𝟏 Passed Passed 0.0902 Passed Passed 0.5333 

𝜷𝟐 Passed Passed 0.0583 Passed Passed 0.3103 

𝜷𝟑 Passed Passed 0.4209 Passed Passed 0.9965 

𝜷𝟒 Passed Passed 0.1360 Passed Passed 0.2920 

𝜷𝟓 Passed Passed 0.1028 Passed Passed 0.7268 

𝜷𝟔 Passed Passed 0.4482 Passed Passed 0.0932 

𝜹 Passed Passed 0.1290 Passed Passed 0.0515 

𝜸 Passed Passed 0.9305 Passed Passed 0.0782 

𝝓 Passed Passed 0.8706 Passed Passed 0.3899 

𝝈𝟐 Passed Passed 0.3107 Passed Passed 0.2624 
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Table 6 

The Heidelberger & Welch (HW) tests (stationary and halfwidth tests) of all unknown 

parameters in the joint model for informative Prior (Suggested Example 1) 

Parameters 

Sample Size = 180 

Parameters Scheme = 5 

Design Structure = 20 & 6 

(Unbalanced) 

Sample Size = 18 

Parameters Scheme = 4 

Design Structure = 10 & 10 

(Balanced) 

Stationarity 

Test 

Halfwidth 

Test 
p-value 

Stationarity 

Test 

Halfwidth 

Test 
p-value 

𝜶 Passed Passed 0.1033 Passed Passed 0.1447 

𝜷𝟎 Passed Passed 0.4149 Passed Passed 0.2161 

𝜷𝟏 Passed Passed 0.2942 Passed Passed 0.1537 

𝜷𝟐 Passed Passed 0.2210 Passed Passed 0.1145 

𝜷𝟑 Passed Passed 0.1220 Passed Passed 0.7908 

𝜷𝟒 Passed Passed 0.0703 Passed Passed 0.2469 

𝜷𝟓 Passed Passed 0.6870 Passed Passed 0.7112 

𝜷𝟔 Passed Passed 0.3907 Passed Passed 0.4038 

𝜹 Passed Passed 0.0755 Passed Passed 0.0445 

𝜸 Passed Passed 0.6841 Passed Passed 0.9441 

𝝓 Passed Passed 0.6242 Passed Passed 0.8787 

𝝈𝟐 Passed Passed 0.3170 Passed Passed 0.2108 
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Table 7 

The Heidelberger & Welch (HW) tests (stationary and halfwidth tests) of all unknown 

parameters in the joint model for informative Prior (Suggested Example 2) 

Parameters 

Sample Size = 90 

Parameters Scheme = 3 

Design Structure = 5 &3 

(Unbalanced) 

Sample Size = 54 

Parameters Scheme = 1 

Design Structure = 10 &10 

(Balanced) 

Stationarity 

Test 

Halfwidth 

Test 
p-value 

Stationarity 

Test 

Halfwidth 

Test 
p-value 

𝜶 Passed Passed 0.1319 Passed Passed 0.1670 

𝜷𝟎 Passed Passed 0.3163 Passed Passed 0.8088 

𝜷𝟏 Passed Passed 0.3508 Passed Passed 0.4146 

𝜷𝟐 Passed Passed 0.2173 Passed Passed 0.2250 

𝜷𝟑 Passed Passed 0.8946 Passed Passed 0.8910 

𝜷𝟒 Passed Passed 0.1627 Passed Passed 0.1423 

𝜷𝟓 Passed Passed 0.5321 Passed Passed 0.6869 

𝜷𝟔 Passed Passed 0.6210 Passed Passed 0.1763 

𝜹 Passed Passed 0.0850 Passed Passed 0.1083 

𝜸 Passed Passed 0.7129 Passed Passed 0.7036 

𝝓 Passed Passed 0.7771 Passed Passed 0.3764 

𝝈𝟐 Passed Passed 0.1779 Passed Passed 0.2146 
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Table 8 

The Heidelberger & Welch (HW) tests (stationary and halfwidth tests) of all unknown 

parameters in the joint model for informative Prior (Suggested Example 3) 

Parameters 

Sample Size = 36 

Parameters Scheme = 6 

Design Structure = 10 & 5 

(Unbalanced) 

Sample Size = 180 

Parameters Scheme = 2 

Design Structure = 20 & 6 

(Unbalanced) 

Stationarity 

Test 

Halfwidth 

Test 
p-value 

Stationarity 

Test 

Halfwidth 

Test 
p-value 

𝜶 Passed Passed 0.9515 Passed Passed 0.7724 

𝜷𝟎 Passed Passed 0.3374 Passed Passed 0.3877 

𝜷𝟏 Passed Passed 0.3492 Passed Passed 0.2863 

𝜷𝟐 Passed Passed 0.2600 Passed Passed 0.2012 

𝜷𝟑 Passed Passed 0.6481 Passed Passed 0.1170 

𝜷𝟒 Passed Passed 0.1616 Passed Passed 0.0818 

𝜷𝟓 Passed Passed 0.9049 Passed Passed 0.6831 

𝜷𝟔 Passed Passed 0.6972 Passed Passed 0.3890 

𝜹 Passed Passed 0.9716 Passed Passed 0.7336 

𝜸 Passed Passed 0.6867 Passed Passed 0.5445 

𝝓 Passed Passed 0.8452 Passed Passed 0.4980 

𝝈𝟐 Passed Passed 0.2097 Passed Passed 0.3126 
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Table 9 

The Heidelberger & Welch (HW) tests (stationary and halfwidth tests) of all unknown 

parameters in the joint model for semi-informative Prior (Suggested Example 1) 

Parameters 

Sample Size = 90 

Parameters Scheme = 2 

Design Structure = 10 & 10 

(Balanced) 

Sample Size = 36 

Parameters Scheme = 5 

Design Structure = 20 & 6 

(Balanced) 

Stationarity 

Test 

Halfwidth 

Test 
p-value 

Stationarity 

Test 

Halfwidth 

Test 
p-value 

𝜶 Passed Passed 0.6421 Passed Passed 0.0976 

𝜷𝟎 Passed Passed 0.4473 Passed Passed 0.9400 

𝜷𝟏 Passed Passed 0.2181 Passed Passed 0.5867 

𝜷𝟐 Passed Passed 0.1192 Passed Passed 0.3233 

𝜷𝟑 Passed Passed 0.5898 Passed Passed 0.9776 

𝜷𝟒 Passed Passed 0.0895 Passed Passed 0.3212 

𝜷𝟓 Passed Passed 0.5517 Passed Passed 0.8434 

𝜷𝟔 Passed Passed 0.2557 Passed Passed 0.1572 

𝜹 Passed Passed 0.7519 Passed Passed 0.0760 

𝜸 Passed Passed 0.8316 Passed Passed 0.7414 

𝝓 Passed Passed 0.4136 Passed Passed 0.4563 

𝝈𝟐 Passed Passed 0.1555 Passed Passed 0.2064 
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Table 10 

The Heidelberger & Welch (HW) tests (stationary and halfwidth tests) of all unknown 

parameters in the joint model for semi-informative Prior (Suggested Example 2) 

Parameters 

Sample Size = 180 

Parameters Scheme = 3 

Design Structure = 5 &3 

(Unbalanced) 

Sample Size = 18 

Parameters Scheme = 6 

Design Structure = 10 &5 

(Unbalanced) 

Stationarity 

Test 

Halfwidth 

Test 
p-value 

Stationarity 

Test 

Halfwidth 

Test 
p-value 

𝜶 Passed Passed 0.0714 Passed Passed 0.3702 

𝜷𝟎 Passed Passed 0.6735 Passed Passed 0.7476 

𝜷𝟏 Passed Passed 0.5523 Passed Passed 0.3438 

𝜷𝟐 Passed Passed 0.2702 Passed Passed 0.5194 

𝜷𝟑 Passed Passed 0.9932 Passed Passed 0.8153 

𝜷𝟒 Passed Passed 0.2637 Passed Passed 0.8081 

𝜷𝟓 Passed Passed 0.6831 Passed Passed 0.8865 

𝜷𝟔 Passed Passed 0.1272 Passed Passed 0.3858 

𝜹 Passed Passed 0.0542 Passed Passed 0.3631 

𝜸 Passed Passed 0.6421 Passed Passed 0.7623 

𝝓 Passed Passed 0.3302 Passed Passed 0.4605 

𝝈𝟐 Passed Passed 0.2585 Passed Passed 0.1392 
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Table 11 

The Heidelberger & Welch (HW) tests (stationary and halfwidth tests) of all unknown 

parameters in the joint model for semi-informative Prior (Suggested Example 3) 

Parameters 

Sample Size = 36 

Parameters Scheme = 6 

Design Structure = 10 & 5 

(Unbalanced) 

Sample Size = 180 

Parameters Scheme = 2 

Design Structure = 20 & 6 

(Unbalanced) 

Stationarity 

Test 

Halfwidth 

Test 
p-value 

Stationarity 

Test 

Halfwidth 

Test 
p-value 

𝜶 Passed Passed 0.0610 Passed Passed 0.4275 

𝜷𝟎 Passed Passed 0.7919 Passed Passed 0.2811 

𝜷𝟏 Passed Passed 0.5591 Passed Passed 0.3526 

𝜷𝟐 Passed Passed 0.2896 Passed Passed 0.1803 

𝜷𝟑 Passed Passed 0.8834 Passed Passed 0.5279 

𝜷𝟒 Passed Passed 0.2128 Passed Passed 0.0927 

𝜷𝟓 Passed Passed 0.9648 Passed Passed 0.6303 

𝜷𝟔 Passed Passed 0.2391 Passed Passed 0.3327 

𝜹 Passed Passed 0.0224 Passed Passed 0.3724 

𝜸 Passed Passed 0.7390 Passed Passed 0.7704 

𝝓 Passed Passed 0.4479 Passed Passed 0.4283 

𝝈𝟐 Passed Passed 0.3329 Passed Passed 0.1448 

 

Tables 3 through 11 suggest examples randomly of HW outputs for all parameters 

had complete convergence for all joint models with different samples size, different prior, 

various parameter schemes, and different design structures. Fail indicates a problem with 

convergence testing that the simulation may need to run longer. Pass indicates that the 

sequences have been mixed, and the chain consists of a representative subset.  
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Another way to see if our chain has converged is to realize how well the chain is 

moving or mixing around the parameter space. If the chain is taking a long time to move 

around the parameter space, then it will take longer to converge. We can see how well the 

chain is mixing through visual inspection for every parameter. In addition, the trace plots is 

presented to examine any systematic deviation from the steady-state of a converged 

MCMC chain as well as the autocorrelation plots for unknown parameters.  

Some convergence diagnostic methods are required to run multiple chains to inspect 

convergence, such as Gelman and Rubin (1992) Diagnostic. Thus, the proposed joint 

model was a rerun, but instead of requesting one chain, I requested three chains that are 

computed at the same time. The trace-plot of the parameters mean, the density plots and the 

autocorrelations plots are displayed in Figures from 1 to 12. The three lines represent the 

three chains that ran parallel but are independent. To determine the convergence has 

occurred for a model, one should check how the Markov chain is moving around the state 

space, that is, how well it is mixing. Visible trends or changes in the spread of the trace plot 

suggest that the stationarity has not been reached yet. It is often said that a good trace plot 

should look like a hairy caterpillar. 

Since there is a huge figure to check the convergence for all parameters in each 

condition with each replication that cannot be placed in this study, as well, therefore, some 

examples are randomly proposed for all parameters with a different condition. Note that 

since the chain was run for long periods of time, most figures for each parameter are very 

similar. These visual inspections are shown in figures 1 through 12.  
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Figure 1. Density, autocorrelation, and trace plots for (𝛼) with three chains of 20000 

iterations. 

 

 

Figure 2. Density, autocorrelation, and trace plots for (𝛿) with three chains of 20000 

iterations. 
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Figure 3. Density, autocorrelation, and trace plots for (𝛾) with three chains of 20000 

iterations. 

 

 

Figure 4. Density, autocorrelation, and trace plots for (𝜙) with three chains of 20000 

iterations. 
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Figure 5. Density, autocorrelation, and trace plots for (𝜎2) with three chains of 20000 

iterations. 

 

 

Figure 6. Density, autocorrelation, and trace plots for (𝛽0) with three chains of 20000 

iterations. 
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Figure 7. Density, autocorrelation, and trace plots for (𝛽1) with three chains of 20000 

iterations. 

 

 

Figure 8. Density, autocorrelation, and trace plots for (𝛽2) with three chains of 20000 

iterations. 
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Figure 9. Density, autocorrelation, and trace plots for (𝛽3) with three chains of 20000 

iterations. 

 

 

Figure 10. Density, autocorrelation, and trace plots for (𝛽4) with three chains of 20000 

iterations. 
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Figure 11. Density, autocorrelation, and trace plots for (𝛽5) with three chains of 20000 

iterations. 

 

Figure 12. Density, autocorrelation, and trace plots for (𝛽6) with three chains of 20000 

iterations. 
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We can see a trace plot, which is a plot of the iteration number against the value of 

the draw of the parameter at each iteration, the density plots, and the autocorrelations plots 

between the draws of our Markov chain. From the trace plots, we see that the chains mix 

well. This is also corroborated by the autocorrelation plots. All plots are acceptable and 

looked satisfactory. However, detecting an unexpected anomaly in MCMC output cannot 

be noted in all convergence diagnostics. Each diagnostic test is constructed to detect 

different problems. Hence, some other diagnostics were examined to ensure that 

convergence has been reached, including the Geweke diagnostic and the Raftery-Lewis 

diagnostic. 

In general, convergence diagnosis for all parameters in the proposed joint model 

was not a problematic issue in the current project when MCMC was used. All informative, 

noninformative, and semi-informative priors, based on the design structure, had a similar 

representative region regarding parameter scheme. Therefore, whether or not the prior 

information on design structure was known did not affect the HW diagnostic in this case. 

Also, the sample size did not appear to have an effect on all convergence diagnostics when 

the simulation had been run long enough.  

As can be seen, the more iterations that are used, the higher the accuracy of the 

histogram, and the better the posterior distribution is approximated. After running enough 

iterations, MCMC should converge to the posterior distribution of interest. Typically, the 

more parameters that are needed to be estimated, the more iterations are required (Brooks 

& Roberts, 1998). Therefore, it would have been necessary for the application of Markov 

chain simulation to run around 10,000 iterations or more to ensure the accuracy of 

distributions for the required parameters. In this dissertation, I ran both one and three 

chains with 20,000 iterations in each chain, which passed the convergence testing.  



88 
 

 

Since the key purpose of the Markov chain simulation is to create a specific 

posterior or stationary distribution of the unknown parameters, it was necessary to verify 

the convergence value of the simulated sequences when the simulation had been applied. 

The results indicated that the distributions of the current draws were close to the posterior 

distribution. The convergence, in turn, allowed the inferential statistics to calculate the 

parameters of interest which are addressed in this chapter. Appendix A shows the details of 

implementation in the computer language of R. 

The Performance of the Estimation 

In order to answer the first and second research questions, the proposed joint model, 

as shown in Equation 37, was applied to simulate data sets to demonstrate the use of a 

Bayesian method on the estimation for all unknown parameters with three different prior 

distribution. Conditions set included different levels of sample size, parameter schemes, 

and different numbers of observations (design structure) (see Table 2). Three statistics, 

defined earlier, based on converged simulation of posterior sampling data sets, were 

considered. First, the average estimate was obtained. Second, standard deviations were 

calculated for each parameter. Third, the average lower and upper limits of the 97.5% 

confidence intervals were obtained.  

Since there are 120 (5 sample size * 4 levels of observation * 6 parameter schemes) 

simulation conditions, which makes 360 simulation designs in total for all three prior 

distributions to make statistical inference for 12 unknown parameters, that cannot be placed 

in this study. Therefore, the selected results for both different design structures (Balanced 

and Unbalanced) with five different sample sizes are presented in Tables 12 through 41. 

Each table shows the performance of the Bayesian method of estimation for all unknown 

parameters based on four selected parameter schemes (1, 3, 4, 6) with three different prior 
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distribution (noninformative, informative, and semi-informative). Note that the true values 

of unknown parameters are dependent on the parameter schemes and consistent with 

previous research (Alomair, 2017; Bronsert, 2009; Lin, 2011; Seo, 2015).  

Tables 12 through 17 provide the results for the joint model with four parameters 

schemes (1, 3, 4, 6) and both different design structures (Balanced and Unbalanced) at 

sample size 18, including three prior distribution (noninformative, informative, and semi-

informative), respectively. Tables 18 through 23 show the results for the joint model with 

four parameters schemes (1, 3, 4, 6) and both different design structures (Balanced and 

Unbalanced) at sample size 36, including three prior distribution, respectively. Also, Tables 

24 through 29 provide the results for the joint model with the same conditions at sample 

size 54, and Tables 30 through 35 give the results for the joint model with the same 

conditions as well at sample size 90, including three prior distribution, respectively. 

Finally, Tables 36 through 41 provide the results for the joint model with the same 

conditions at sample size 180, including three prior distribution, respectively. Values in the 

table mentioned above represent the estimation of the numbers of unknown parameters 

with 97.5% lower and upper confidence intervals, including the standard deviation for all 

selected conditions at all sample sizes.  

The detailed summary results from the true model with parameter scheme 1 and the 

true values of parameters (𝛼 = 2, 𝛽0 = 0.4, 𝛽1 = 0.2, 𝛽2 = 0.3, 𝛽3 = 0.1, 𝛽4 = 0.3,

𝛽5 = 0.4, 𝛽6 = 0.9, 𝛿 = 0.01, 𝛾 = 0.1, 𝜙 = 0.8, 𝜎2 = 1) for both design structure and 

sample size of N = 18 was obtained from Tables 12, 14 and 16, N = 36 was obtained from 

Tables 18, 20 and 22, N = 54 was obtained from Tables 24, 26 and 28, N = 90 was 

obtained from Tables 30, 32 and 34, and N = 180 was obtained from Tables 36, 38, and 40. 

All simulation samples passed the convergence as specified earlier. The findings for 
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parameter scheme 1 varied across all sample sizes with both design structures and prior 

information toward the unknown parameter 𝛼. Also, the unknown parameter 𝛿 showed a 

negative estimate. However, the rest of the parameters were not markedly different. 

Interestingly, at all sample sizes with both design structures, including all informative, 

noninformative, semi-informative priors, the true value of α, which is 2, was not contained 

within the 97.5% confidence interval of the estimation. For the rest of the parameters, the 

Bayesian method was estimated accurately, or at least, the true values of all parameters 

except α were contained within the 97.5% confidence interval of the estimation for some 

conditions. For parameter scheme 1, all parameters except 𝛼 and 𝛿 achieved adequate 

accuracy in cases when a noninformative prior was applied. For example, with N = 18 

based on a noninformative prior as reported in Tables 12, the point estimation for 𝛾 was 

0.100 (97.5% confidence interval [CI] = 0.080 – 0.121),  for 𝜙 was 0.787 (97.5% 

confidence interval [CI] = .0737 – 0.837), and for 𝜎2 was 1.006 (97.5% confidence interval 

[CI] = 0.815 – 1.241). When N = 90, 𝛾 was 0.100 (97.5% confidence interval [CI] = 0.094 

– 0.106),  for 𝜙 was 0.800 (97.5% confidence interval [CI] = .0783 – 0.816), and for 𝜎2 

was 1.001 (97.5% confidence interval [CI] = 0.939 – 1.069) (see Tables 23 and 24). the 

results yielded the narrowest interval. However, when N = 180, the range of the 97.5% 

confidence interval became wider, which is unexpected.   

The results from the true model with parameter scheme 3, which the true values of 

parameters are (𝛼 = 2, 𝛽0 = 0.4, 𝛽1 = 0.2, 𝛽2 = 0.3, 𝛽3 = 0.1, 𝛽4 = 0.3, 𝛽5 = 0.4,

𝛽6 = 0.9, 𝛿 = 0.01, 𝛾 = 0.1, 𝜙 = 0.8, 𝜎2 = 2) for both design structure and sample size 

of N = 18 was obtained from Tables 12, 14 and 16, N = 36 was obtained from Tables 18, 

20 and 22, N = 54 was obtained from Tables 24, 26 and 28, N = 90 was obtained from 

Tables 30, 32 and 34, and N = 180 was obtained from Tables 36, 38, and 40. All simulation 
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samples passed the convergence as specified earlier. For all prior distribution with both 

design structures, all estimations for all parameters except 𝛼 and 𝜎2 fall in the range of the 

97.5% confidence interval. When comparing the performance across sample sizes, with a 

sample size of 180, the results yielded the narrowest interval. In some conditions, the 

results of the big sample size are narrower range than the small sample size. This occurs 

throughout the results where parameter scheme 3 is set. The results theoretically confirmed 

that larger samples tend to give narrower confidence intervals for the estimation of 

parameters than that of smaller samples, which leads to more precise estimates. However, 

some results of the simulation conditions did not achieve that claim.  This is one advantage 

of the Bayesian approach, which may provide more accurate results as they can deal with 

small data set and asymmetric distributions and/or the whole distribution (Gill, 2008; 

Muthén & Asparouhov, 2012). 

As shown in Tables 14 with the true value of all parameters, at sample size of N = 

18 for informative prior, for balance design structure (10 & 10) the average estimate for 

parameters 𝛼, for example, was reported to be 0.138 (97.5% CI = 0.109 – 0.171), 𝛽1 = 

0.288 (97.5% CI = -0.287 – 0.873), 𝛽6 = 0.825 (97.5% CI = 0.416 – 1.230),  𝛾 = 0.100 

(97.5% CI = 0.054 – 0.146), 𝜙 = 0.777 (97.5% CI = 0.657 – 0.898),  and 𝜎2 = 4.017 

(97.5% CI = 3.167 – 5.079). Also, the average estimation for unbalance design structure 

(20 & 6)  at the same parameter scheme 3, sample size (N = 18), and prior (informative) 

was reported for the parameters, 𝛼 = 0.145 (97.5% CI = 0.115 – 0.182), 𝛽1 = 0.274 (97.5% 

CI = -0.238 – 0.797), 𝛽6 = 0.888 (97.5% CI = 0.623 – 1.150),  𝛾 = 0.100 (97.5% CI = 0.063 

– 0.137), 𝜙 = 0.785 (97.5% CI = 0.689 – 0.882),  and 𝜎2 = 4.004 (97.5% CI = 3.311 – 

4.849). As for results of the estimation related to noninformative priors at the same 

parameter scheme 3, and sample size (N = 18), the average estimate at the balanced design 
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structure (10 & 10) for parameters 𝛼, for example, was reported to be 0.248 (97.5% CI = 

0.363 – 0.144), 𝛽1 = 0.226 (97.5% CI = -0.516 – 0.974), 𝛽6 = 0.984 (97.5% CI = 0.531 – 

1.431),  𝛾 = 0.100 (97.5% CI = 0.060 – 0.141), 𝜙 = 0.765 (97.5% CI = 0.685 – 0.846),  and 

𝜎2 = 4.039 (97.5% CI = 3.270 – 4.985). Also, the average estimation for unbalance design 

structure (20 & 6)  at the same parameter scheme 3, sample size (N = 18), and prior 

(noninformative) was reported for the parameters, 𝛼 = 0.153 (97.5% CI = 0.119 – 0.212), 

𝛽1 = 0.214 (97.5% CI = -0.296 – 0.727), 𝛽6 = 0.947 (97.5% CI = 0.661 – 1.235),  𝛾 = 0.101 

(97.5% CI = 0.073 – 0.129), 𝜙 = 0.784 (97.5% CI = 0.729 – 0.839),  and 𝜎2 = 4.030 

(97.5% CI = 3.484 – 4.671). In addition, the estimation related to semi-informative priors 

at the same parameter scheme 3, and sample size (N = 18), the average estimate at balance 

design structure (10 & 10) for parameters 𝛼 was reported to be 0.836 (97.5% CI = 0.771 – 

0.910), 𝛽1 = 0.239 (97.5% CI = -0.094 – 0.580), 𝛽6 = 0.894 (97.5% CI = 0.689 – 1.098),  𝛾 

= 0.100 (97.5% CI = 0.080 – 0.120), 𝜙 = 0.792 (97.5% CI = 0.750 – 0.835),  and 𝜎2 = 

4.007 (97.5% CI = 3.605 – 4.457). Also, the average estimation for unbalance design 

structure (20 & 6)  at the same parameter scheme 3, sample size (N = 18), and prior 

(noninformative) was reported for the parameters, 𝛼 = 0.885 (97.5% CI = 0.858 – 0.913), 

𝛽1 = 0.208 (97.5% CI = -0.035 – 0.455), 𝛽6 = 0.905 (97.5% CI = 0.789 – 1.021),  𝛾 = 0.100 

(97.5% CI = 0.086 – 0.115), 𝜙 = 0.796 (97.5% CI = 0.766 – 0.825),  and 𝜎2 = 3.992 

(97.5% CI = 3.707 – 4.707). For all prior distributions, when comparing the performance 

between both design structures, the results for all parameters except 𝛼 were similar 

between them. Overall, the design structures, balanced or unbalanced, do not seem to affect 

the results of average estimation.  

As shown in Tables 18, 20, and 22, the estimation in terms of 97.5% confidence 

interval for all parameters were reported for all noninformative, informative, and semi-
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informative priors at the same parameter scheme 3, with sample size 36. For informative 

prior, the average estimation of parameters, 𝛼 = 0.137 (97.5% CI = 0.120 – 0.155), 𝛽1 = 

0.213 (97.5% CI = -0.289 – 0.725), 𝛽6 = 0.917 (97.5% CI = 0.697 – 1.137),  𝛾 =  0.101 

(97.5% CI = 0.071 – 0.130), 𝜙 = 0.785 (97.5% CI = 0.708 – 0.861),  and 𝜎2 = 4.030 

(97.5% CI = 3.483 – 4.670) (see Tables 20). Regarding correct estimation in terms of the 

95% confidence interval, the pattern was similar to that for noninformative priors. the 

average estimation of parameters, 𝛼 = 0.148 (97.5% CI = 0.119 – 0.197), 𝛽1 = 0.262 

(97.5% CI = -0.161 – 0.700), 𝛽6 = 0.885 (97.5% CI = 0.610 – 1.158),  𝛾 = 0.100 (97.5% CI 

= 0.073 – 0.128), 𝜙 = 0.789 (97.5% CI = 0.736 – 0.843),  and 𝜎2 = 4.017 (97.5% CI = 

3.473 – 4.652) (see Tables 18). Regarding correct estimation in terms of the 95% 

confidence interval except 𝛼 and 𝜎2, the pattern was similar to that for semi-informative 

priors. The average estimation of parameters, 𝛼 = 0.924 (97.5% CI = 0.902 – 0.946), 𝛽1 = 

0.220 (97.5% CI = -0.029 – 0.468), 𝛽6 = 0.902 (97.5% CI = 0.778 – 1.027),  𝛾 = 0.100 

(97.5% CI = 0.086 – 0.114), 𝜙 = 0.797 (97.5% CI = 0.769 – 0.826),  and 𝜎2 = 4.009 

(97.5% CI = 3.723 – 4.320) (see Tables 22). 

Also, for the proposed joint model with the true values of parameter scheme 3 for 

sample size 54, the pattern of correct estimation for the all parameters except 𝛼 and 𝜎2 in 

terms of 95% confidence interval was similar to the estimation for other sample sizes (see 

Tables 24, 26, and 28). When the simulation was run based on sample size 54 with the 

same previously specified conditions (parameter scheme 3), for informative prior, the 

average estimation of parameters are, 𝛼 = 0.603 (97.5% CI = 0.481 – 0.738), 𝛽1 = 0.238 

(97.5% CI = -0.085 – 0.563), 𝛽6 = 0.901 (97.5% CI = 0.736 – 1.066),  𝛾 = 0.100 (97.5% CI 

= 0.080 – 0.121), 𝜙 = 0.792 (97.5% CI = 0.7739 – 0.845),  and 𝜎2 = 4.011 (97.5% CI = 

3.620 – 4.446), (see Table 26). There were correct estimations on the parameters for 
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scheme 3 except 𝛼 and 𝜎2 in the form of 95% confidence interval for noninformative 

priors. For example, the average estimation of parameters, 𝛼 = 0.767 (97.5% CI = 0.693 – 

0.842), 𝛽1 = 0.237 (97.5% CI = -0.126 – 0.604), 𝛽6 = 0.901 (97.5% CI = 0.708 – 1.090),  𝛾 

= 0.101 (97.5% CI = 0.078 – 0.123), 𝜙 = 0.793 (97.5% CI = 0.751 – 0.836),  and 𝜎2 = 

4.019 (97.5% CI = 3.569 – 4.528), (see Table 24). Regarding correct estimation of 𝛼 and 

𝜎2 in terms of the 95% confidence interval, the pattern was similar to that for semi-

informative priors. The average estimations of parameters, 𝛼 = 0.625 (97.5% CI = 0.515 – 

0.745), 𝛽1 = 0.207 (97.5% CI = -0.257 – 0.680), 𝛽6 = 0.935 (97.5% CI = 0.671 – 1.200),  𝛾 

= 0.101 (97.5% CI = 0.077 – 0.125), 𝜙 = 0.786 (97.5% CI = 0.740 – 0.832),  and 𝜎2 = 

4.030 (97.5% CI = 3.545 – 4.584) (see Table 28). 

Additionally, when the simulation was run based on sample size 90 with the same 

previously specified conditions (parameter scheme 3), for informative prior, the average 

estimation of parameters, 𝛼 = 0.138 (97.5% CI = 0.111 – 0.169), 𝛽1 = 0.230 (97.5% CI = -

0.457 – 0.914), 𝛽6 = 0.881 (97.5% CI = 0.496 – 1.258),  𝛾 = 0.100 (97.5% CI = 0.054 – 

0.145), 𝜙 = 0.776 (97.5% CI = 0.675 – 0.877),  and 𝜎2 = 3.973 (97.5% CI = 3.102 – 

5.066), (see Table 32). Also, in terms of the 95% confidence interval, the pattern was 

similar to that for noninformative priors For example, the average estimation of parameters, 

𝛼 = 0.944 (97.5% CI = 0.930 – 0.957), 𝛽1 = 0.207 (97.5% CI = -0.021 – 0.434), 𝛽6 = 0.909 

(97.5% CI = 0.796 – 1.021),  𝛾 = 0.100 (97.5% CI = 0.088 – 0.112), 𝜙 = 0.798 (97.5% CI 

= 0.773 – 0.822),  and 𝜎2 = 4.006 (97.5% CI = 3.756 – 4.275), (see Table 30). Regarding 

correct estimation in terms of the 95% confidence interval, the pattern was similar to that 

for semi-informative priors. the average estimation of parameters, 𝛼 = 0.873 (97.5% CI = 

0.824 – 0.924), 𝛽1 = 0.241 (97.5% CI = -0.098 – 0.589), 𝛽6 = 0.906 (97.5% CI = 0.691 – 
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1.122),  𝛾 = 0.100 (97.5% CI = 0.080 – 0.119), 𝜙 = 0.794 (97.5% CI = 0.758 – 0.830),  and 

𝜎2 = 4004 (97.5% CI = 3.611 – 4.445), (see Table 34). 

Finally, when the simulation was run based on sample size 180 with the same 

previously specified conditions (parameter scheme 3), for informative prior, the average 

estimation of parameters, 𝛼 = 0.157 (97.5% CI = 0.21 – 0.220), 𝛽1 = 0.206 (97.5% CI = -

0.273 – 0.685), 𝛽6 = 0.925 (97.5% CI = 0.655 – 1.188),  𝛾 = 0.101 (97.5% CI = 0.074 – 

0.127), 𝜙 = 0.787 (97.5% CI = 0.735 – 0.840),  and 𝜎2 = 4.016 (97.5% CI = 3.498 – 

4.610), (see Table 38). Also, in terms of the 97.5% confidence interval, the pattern was 

similar to that for noninformative priors For example, the average estimation of parameters, 

𝛼 = 0.144 (97.5% CI = 0.099 – 0.198), 𝛽1 = 0.259 (97.5% CI = -0.466 – 0.982), 𝛽6 = 0.812 

(97.5% CI = 0.297 – 1.311),  𝛾 = 0.101 (97.5% CI = 0.034 – 0.168), 𝜙 = 0.770 (97.5% CI 

= 0.602 – 0.941),  and 𝜎2 = 4.011 (97.5% CI = 2.842 – 5.618), (see Table 36). Regarding 

correct estimation except  𝛼 and 𝜎2 in terms of the 95% confidence interval, the pattern 

was similar to that for semi-informative priors. The average estimation of parameters, 𝛼 = 

0.914 (97.5% CI = 0.896 – 0.930), 𝛽1 = 0.224 (97.5% CI = -0.043 – 0.493), 𝛽6 = 0.905 

(97.5% CI = 0.763 – 1.046),  𝛾 = 0.100 (97.5% CI = 0.085 – 0.115), 𝜙 = 0.796 (97.5% CI 

= 0.769 – 0.823),  and 𝜎2 = 4.013 (97.5% CI = 3.706 – 4.348), (see Table 40). In this 

process, the results of average estimation for unknown parameters is not stable at different 

level of sample size with different prior distributions.  For example, some results of small 

sample size are narrower in range than the big sample size. Also, in term of the different 

prior, the semi-informative prior sometimes gives a narrower range than the others, and 

sometimes noninformative prior gives a narrower range than the others. 

In addition to the above, the results from the true model with parameter scheme 4, 

which the true values of parameters are (𝛼 = 1, 𝛽0 = 0.4, 𝛽1 = 0.2, 𝛽2 = 0.3, 𝛽3 = 0.1,
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𝛽4 = 0.3, 𝛽5 = 0.4, 𝛽6 = 0.9, 𝛿 = 0.01, 𝛾 = 0.1, 𝜙 = 0, 𝜎2 = 2) and the results from 

the true model with parameter scheme 6, which the true values of parameters are 

(𝛼 = 1, 𝛽0 = 0.4, 𝛽1 = 0.2, 𝛽2 = 0.3, 𝛽3 = 0.1, 𝛽4 = 0.3, 𝛽5 = 0.4, 𝛽6 = 0.9, 𝛿 =

0.02, 𝛾 = 0.1, 𝜙 = 0.8, 𝜎2 = 0.5) for both design structure and sample size of N = 18 

was obtained from Tables 13, 15 and 17, N = 36 was obtained from Tables 19, 21 and 23, 

N = 54 was obtained from Tables 25, 27 and 29, N = 90 was obtained from Tables 31, 33 

and 35, and N = 180 was obtained from Tables 37, 39, and 41. The results for both 

parameter scheme 4, 6 with the same preconditions that were previously discussed, were 

somewhat similar to the previous one. Overall, in terms of the different schemes, some of 

the schemes give better results than the other, which can indicate that fitting the right 

parameters can help to have the best results. 

The comparison of all five-level of sample size received with different schemes and 

different prior (noninformative, informative, and semi-informative) produced the following 

results. The prior information concerning the unknown parameter of interest sometimes 

affected the estimation in that when informative priors were used; it was more likely to 

obtain a narrower confidence interval than the other priors. The narrower the interval 

indicates the more precise estimate for the parameter. Therefore, based on the different 

parameter schemes, representing the 97.5 % confidence interval included the true value of 

the parameters for each study conducted, with values falling somewhere between the lower 

and upper bound of the estimation. The performance of the estimates, when all parameter 

schemes were used, was also confirmed by the HW diagnostic test, which showed 

convergence for all conditions on all informative, noninformative, semi-informative priors. 

The results indicated that the estimation of parameters was accurate except 𝛼 and 𝜎2. 
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Table 12 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 18, Two of Design Structure, and four of Parameter 

Scheme for noninformative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. SD Upper Lower Est. SD Upper Lower 

Parameters Scheme = 1      

𝜶 0.306 0.094 0.452 0.167 0.160 0.035 0.237 0.120 

𝜷𝟎 0.436 0.192 0.822 0.062 0.416 0.135 0.686 0.153 

𝜷𝟏 0.223 0.187 0.595 -0.1465 0.208 0.129 0.465 -0.047 

𝜷𝟐 0.325 0.200 0.711 -0.068 0.317 0.135 0.578 0.053 

𝜷𝟑 0.093 0.202 0.484 -0.300 0.092 0.139 0.367 -0.188 

𝜷𝟒 0.300 0.208 0.696 -0.112 0.297 0.132 0.555 0.036 

𝜷𝟓 0.415 0.091 0.596 0.237 0.406 0.062 0.529 0.286 

𝜷𝟔 0.936 0.120 1.170 0.698 0.916 0.078 1.067 0.762 

𝜹 -0.014 0.008 -0.001 -0.026 -0.003 0.003 0.002 -0.010 

𝜸 0.100 0.010 0.121 0.080 0.100 0.007 0.114 0.086 

𝝓 0.787 0.025 0.837 0.737 0.794 0.018 0.829 0.759 

𝝈𝟐 1.006 0.109 1.241 0.815 1.011 0.076 1.171 0.874 

Parameters Scheme = 3      

𝜶 0.248 0.071 0.363 0.144 0.153 0.027 0.212 0.119 

𝜷𝟎 0.502 0.379 1.265 -0.237 0.437 0.264 0.964 -0.078 

𝜷𝟏 0.226 0.377 0.974 -0.516 0.214 0.259 0.727 -0.296 

𝜷𝟐 0.339 0.403 1.115 -0.449 0.321 0.269 0.841 -0.205 

𝜷𝟑 0.091 0.407 0.878 -0.698 0.100 0.278 0.650 -0.458 

𝜷𝟒 0.313 0.416 1.108 -0.513 0.308 0.263 0.823 -0.214 

𝜷𝟓 0.436 0.180 0.793 0.083 0.416 0.122 0.657 0.181 

𝜷𝟔 0.984 0.229 1.431 0.531 0.947 0.146 1.235 0.661 

𝜹 -0.008 0.006 0.001 -0.018 -0.002 0.003 0.002 -0.007 

𝜸 0.100 0.020 0.141 0.060 0.101 0.014 0.129 0.073 

𝝓 0.765 0.041 0.846 0.685 0.784 0.028 0.839 0.729 

𝝈𝟐 4.039 0.437 4.985 3.270 4.030 0.302 4.671 3.484 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 13 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 18, Two of Design Structure, and four of Parameter 

Scheme for noninformative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. SD Upper Lower Est. SD Upper Lower 

Parameters Scheme = 4      

𝜶 0.375 0.033 0.442 0.313 0.374 0.023 0.420 0.330 

𝜷𝟎 0.433 0.368 1.174 -0.283 0.403 0.256 0.910 -0.095 

𝜷𝟏 0.227 0.374 0.968 -0.508 0.224 0.258 0.734 -0.283 

𝜷𝟐 0.316 0.399 1.084 -0.465 0.324 0.267 0.841 -0.200 

𝜷𝟑 0.096 0.404 0.881 -0.685 0.079 0.277 0.627 -0.476 

𝜷𝟒 0.285 0.413 1.074 -0.534 0.291 0.262 0.801 -0.228 

𝜷𝟓 0.413 0.176 0.761 0.068 0.411 0.119 0.646 0.182 

𝜷𝟔 0.926 0.214 1.348 0.504 0.919 0.136 1.188 0.653 

𝜹 -0.006 0.013 0.018 -0.031 -0.007 0.009 0.010 -0.025 

𝜸 0.097 0.056 0.207 -0.014 0.100 0.039 0.178 0.023 

𝝓 -0.037 0.080 0.121 -0.194 -0.016 0.056 0.093 -0.125 

𝝈𝟐 4.035 0.436 4.981 3.265 4.024 0.302 4.664 3.477 

Parameters Scheme = 6      

𝜶 0.372 0.040 0.452 0.298 0.371 0.027 0.426 0.320 

𝜷𝟎 0.411 0.095 0.600 0.227 0.404 0.066 0.536 0.275 

𝜷𝟏 0.205 0.094 0.392 0.020 0.207 0.065 0.335 0.079 

𝜷𝟐 0.306 0.101 0.501 0.108 0.306 0.067 0.436 0.173 

𝜷𝟑 0.102 0.101 0.299 -0.095 0.100 0.069 0.237 -0.039 

𝜷𝟒 0.305 0.104 0.504 0.098 0.301 0.066 0.431 0.170 

𝜷𝟓 0.409 0.048 0.504 0.315 0.405 0.033 0.470 0.343 

𝜷𝟔 0.919 0.068 1.052 0.783 0.909 0.045 0.995 0.821 

𝜹 -0.006 0.008 0.009 -0.021 -0.007 0.005 0.003 -0.017 

𝜸 0.100 0.014 0.127 0.073 0.101 0.010 0.119 0.082 

𝝓 0.793 0.018 0.829 0.757 0.796 0.012 0.821 0.772 

𝝈𝟐 0.253 0.027 0.312 0.205 0.252 0.019 0.292 0.218 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 



99 
 

 

Table 14 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 18, Two of Design Structure, and four of Parameter 

Scheme for informative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.137 0.017 0.171 0.106 0.146 0.021 0.187 0.113 

𝜷𝟎 0.359 0.176 0.703 0.017 0.383 0.149 0.678 0.091 

𝜷𝟏 0.245 0.183 0.607 -0.108 0.225 0.155 0.531 -0.075 

𝜷𝟐 0.339 0.195 0.718 -0.042 0.313 0.157 0.614 0.002 

𝜷𝟑 0.158 0.191 0.535 -0.219 0.140 0.155 0.445 -0.169 

𝜷𝟒 0.342 0.187 0.708 -0.025 0.319 0.156 0.622 0.015 

𝜷𝟓 0.406 0.086 0.576 0.240 0.397 0.073 0.542 0.253 

𝜷𝟔 0.889 0.118 1.118 0.658 0.899 0.075 1.046 0.751 

𝜹 0.000 0.004 0.009 -0.009 -0.001 0.004 0.006 -0.009 

𝜸 0.101 0.012 0.124 0.077 0.100 0.010 0.119 0.080 

𝝓 0.787 0.041 0.868 0.707 0.793 0.033 0.857 0.728 

𝝈𝟐 1.006 0.122 1.274 0.792 1.005 0.099 1.218 0.831 

Parameters Scheme = 3      

𝜶 0.138 0.016 0.171 0.109 0.145 0.019 0.182 0.115 

𝜷𝟎 0.321 0.272 0.854 -0.210 0.367 0.244 0.845 -0.112 

𝜷𝟏 0.288 0.296 0.873 -0.287 0.274 0.264 0.797 -0.238 

𝜷𝟐 0.404 0.310 1.016 -0.207 0.334 0.267 0.853 -0.198 

𝜷𝟑 0.246 0.308 0.854 -0.360 0.185 0.264 0.706 -0.335 

𝜷𝟒 0.347 0.303 0.939 -0.248 0.358 0.265 0.874 -0.161 

𝜷𝟓 0.410 0.162 0.730 0.098 0.402 0.140 0.680 0.127 

𝜷𝟔 0.825 0.206 1.230 0.416 0.888 0.134 1.150 0.623 

𝜹 -0.001 0.004 0.007 -0.007 -0.002 0.003 0.005 -0.008 

𝜸 0.100 0.024 0.146 0.054 0.100 0.019 0.137 0.063 

𝝓 0.777 0.061 0.898 0.657 0.785 0.049 0.882 0.689 

𝝈𝟐 4.017 0.486 5.079 3.167 4.004 0.393 4.849 3.311 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 15 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 18, Two of Design Structure, and four of Parameter 

Scheme for informative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.380 0.040 0.463 0.306 0.375 0.032 0.441 0.315 

𝜷𝟎 0.308 0.270 0.834 -0.220 0.343 0.243 0.818 -0.134 

𝜷𝟏 0.289 0.296 0.872 -0.285 0.272 0.264 0.794 -0.240 

𝜷𝟐 0.389 0.309 0.999 -0.219 0.328 0.267 0.849 -0.204 

𝜷𝟑 0.254 0.307 0.860 -0.350 0.194 0.264 0.715 -0.326 

𝜷𝟒 0.341 0.302 0.932 -0.253 0.360 0.265 0.876 -0.158 

𝜷𝟓 0.409 0.160 0.725 0.102 0.392 0.140 0.671 0.117 

𝜷𝟔 0.805 0.202 1.203 0.404 0.881 0.129 1.134 0.626 

𝜹 -0.007 0.015 0.022 -0.037 -0.006 0.012 0.017 -0.030 

𝜸 0.099 0.063 0.222 -0.024 0.098 0.052 0.200 -0.004 

𝝓 -0.027 0.094 0.159 -0.211 -0.019 0.076 0.131 -0.169 

𝝈𝟐 4.009 0.485 5.067 3.160 4.021 0.395 4.868 3.326 

Parameters Scheme = 6      

𝜶 0.373 0.043 0.462 0.294 0.372 0.035 0.444 0.307 

𝜷𝟎 0.384 0.098 0.577 0.193 0.393 0.080 0.553 0.236 

𝜷𝟏 0.217 0.100 0.415 0.023 0.213 0.082 0.376 0.053 

𝜷𝟐 0.313 0.108 0.521 0.102 0.309 0.084 0.469 0.145 

𝜷𝟑 0.119 0.104 0.324 -0.088 0.108 0.082 0.269 -0.056 

𝜷𝟒 0.311 0.101 0.510 0.109 0.305 0.083 0.466 0.143 

𝜷𝟓 0.401 0.045 0.490 0.313 0.401 0.038 0.476 0.327 

𝜷𝟔 0.898 0.066 1.026 0.768 0.904 0.043 0.988 0.819 

𝜹 -0.003 0.013 0.024 -0.028 -0.005 0.011 0.016 -0.026 

𝜸 0.100 0.017 0.132 0.068 0.101 0.013 0.127 0.075 

𝝓 0.795 0.028 0.852 0.739 0.796 0.023 0.841 0.751 

𝝈𝟐 0.255 0.031 0.322 0.201 0.254 0.025 0.307 0.209 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 16 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 18, Two of Design Structure, and four of Parameter 

Scheme for semi-informative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.874 0.039 0.936 0.819 0.866 0.015 0.889 0.843 

𝜷𝟎 0.398 0.092 0.580 0.219 0.396 0.066 0.526 0.270 

𝜷𝟏 0.211 0.092 0.394 0.031 0.212 0.065 0.341 0.085 

𝜷𝟐 0.311 0.093 0.492 0.130 0.309 0.066 0.437 0.181 

𝜷𝟑 0.109 0.092 0.291 -0.072 0.102 0.065 0.230 -0.027 

𝜷𝟒 0.306 0.093 0.488 0.122 0.308 0.066 0.438 0.179 

𝜷𝟓 0.402 0.041 0.482 0.324 0.402 0.032 0.465 0.340 

𝜷𝟔 0.898 0.056 1.008 0.788 0.902 0.032 0.965 0.838 

𝜹 -0.053 0.002 -0.050 -0.057 -0.050 0.001 -0.049 -0.052 

𝜸 0.100 0.005 0.110 0.090 0.100 0.004 0.107 0.093 

𝝓 0.797 0.014 0.824 0.768 0.798 0.010 0.818 0.779 

𝝈𝟐 1.003 0.055 1.116 0.903 1.001 0.038 1.078 0.929 

Parameters Scheme = 3      

𝜶 0.836 0.046 0.910 0.771 0.885 0.018 0.913 0.858 

𝜷𝟎 0.379 0.166 0.705 0.058 0.394 0.123 0.637 0.155 

𝜷𝟏 0.239 0.172 0.580 -0.094 0.208 0.124 0.455 -0.035 

𝜷𝟐 0.337 0.174 0.675 -0.003 0.317 0.127 0.563 0.071 

𝜷𝟑 0.136 0.172 0.478 -0.198 0.113 0.125 0.361 -0.132 

𝜷𝟒 0.324 0.174 0.666 -0.021 0.317 0.127 0.567 0.067 

𝜷𝟓 0.405 0.077 0.558 0.254 0.403 0.063 0.526 0.282 

𝜷𝟔 0.894 0.104 1.098 0.689 0.905 0.059 1.021 0.789 

𝜹 -0.044 0.003 -0.041 -0.048 -0.045 0.001 -0.044 -0.046 

𝜸 0.100 0.010 0.120 0.080 0.100 0.007 0.115 0.086 

𝝓 0.792 0.022 0.835 0.750 0.796 0.015 0.825 0.766 

𝝈𝟐 4.007 0.218 4.457 3.605 3.992 0.153 4.301 3.707 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 17 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 18, Two of Design Structure, and four of Parameter 

Scheme for semi-informative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.371 0.016 0.404 0.339 0.370 0.011 0.393 0.348 

𝜷𝟎 0.354 0.162 0.671 0.040 0.383 0.121 0.621 0.149 

𝜷𝟏 0.246 0.171 0.585 -0.086 0.210 0.124 0.457 -0.033 

𝜷𝟐 0.344 0.173 0.681 0.005 0.305 0.126 0.550 0.059 

𝜷𝟑 0.135 0.171 0.475 -0.199 0.121 0.125 0.369 -0.125 

𝜷𝟒 0.317 0.174 0.658 -0.026 0.315 0.127 0.564 0.065 

𝜷𝟓 0.407 0.075 0.556 0.262 0.399 0.062 0.520 0.280 

𝜷𝟔 0.882 0.100 1.078 0.684 0.897 0.055 1.006 0.788 

𝜹 -0.007 0.007 0.006 -0.020 -0.007 0.005 0.002 -0.016 

𝜸 0.098 0.028 0.154 0.043 0.101 0.020 0.141 0.062 

𝝓 -0.006 0.041 0.076 -0.086 -0.004 0.029 0.053 -0.061 

𝝈𝟐 4.000 0.218 4.450 3.599 3.997 0.153 4.307 3.711 

Parameters Scheme = 6      

𝜶 0.369 0.019 0.406 0.333 0.370 0.013 0.395 0.346 

𝜷𝟎 0.397 0.047 0.490 0.307 0.399 0.033 0.464 0.336 

𝜷𝟏 0.203 0.047 0.297 0.111 0.202 0.033 0.268 0.138 

𝜷𝟐 0.304 0.048 0.397 0.211 0.303 0.034 0.368 0.238 

𝜷𝟑 0.104 0.047 0.197 0.011 0.102 0.033 0.167 0.037 

𝜷𝟒 0.305 0.048 0.398 0.211 0.301 0.034 0.366 0.235 

𝜷𝟓 0.401 0.022 0.444 0.359 0.401 0.017 0.435 0.369 

𝜷𝟔 0.902 0.032 0.964 0.838 0.902 0.019 0.939 0.864 

𝜹 -0.007 0.005 0.002 -0.015 -0.007 0.003 -0.001 -0.013 

𝜸 0.100 0.007 0.114 0.087 0.100 0.005 0.110 0.090 

𝝓 0.798 0.011 0.819 0.778 0.799 0.007 0.813 0.786 

𝝈𝟐 0.251 0.014 0.280 0.226 0.251 0.010 0.270 0.233 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 18 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 36, Two of Design Structure, and four of Parameter 

Scheme for noninformative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.153 0.031 0.223 0.119 0.725 0.052 0.806 0.645 

𝜷𝟎 0.391 0.126 0.644 0.144 0.392 0.104 0.598 0.191 

𝜷𝟏 0.219 0.123 0.465 -0.020 0.217 0.103 0.423 0.015 

𝜷𝟐 0.313 0.124 0.553 0.072 0.312 0.104 0.510 0.110 

𝜷𝟑 0.127 0.125 0.371 -0.120 0.116 0.107 0.323 -0.096 

𝜷𝟒 0.324 0.129 0.580 0.069 0.311 0.104 0.516 0.106 

𝜷𝟓 0.407 0.057 0.519 0.297 0.405 0.057 0.516 0.294 

𝜷𝟔 0.899 0.078 1.050 0.746 0.902 0.057 1.013 0.788 

𝜹 -0.002 0.003 0.002 -0.009 -0.043 0.003 -0.038 -0.049 

𝜸 0.100 0.007 0.114 0.086 0.100 0.006 0.112 0.089 

𝝓 0.796 0.018 0.831 0.762 0.797 0.015 0.826 0.768 

𝝈𝟐 1.005 0.075 1.164 0.869 1.000 0.061 1.127 0.888 

Parameters Scheme = 3      

𝜶 0.148 0.022 0.197 0.119 0.681 0.062 0.780 0.590 

𝜷𝟎 0.371 0.214 0.793 -0.049 0.374 0.184 0.734 0.017 

𝜷𝟏 0.262 0.220 0.700 -0.161 0.244 0.190 0.624 -0.128 

𝜷𝟐 0.344 0.222 0.777 -0.091 0.333 0.192 0.705 -0.041 

𝜷𝟑 0.169 0.223 0.609 -0.270 0.157 0.196 0.540 -0.234 

𝜷𝟒 0.365 0.230 0.818 -0.084 0.327 0.191 0.703 -0.051 

𝜷𝟓 0.426 0.109 0.640 0.215 0.415 0.110 0.630 0.200 

𝜷𝟔 0.885 0.140 1.158 0.610 0.903 0.103 1.105 0.699 

𝜹 -0.002 0.002 0.002 -0.007 -0.034 0.004 -0.029 -0.040 

𝜸 0.100 0.014 0.128 0.073 0.100 0.011 0.123 0.077 

𝝓 0.789 0.027 0.843 0.736 0.794 0.023 0.838 0.749 

𝝈𝟐 4.017 0.301 4.652 3.473 4.023 0.245 4.532 3.573 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 19 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 36, Two of Design Structure, and four of Parameter 

Scheme for noninformative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.373 0.023 0.419 0.329 0.371 0.018 0.408 0.336 

𝜷𝟎 0.352 0.207 0.761 -0.052 0.365 0.178 0.715 0.017 

𝜷𝟏 0.257 0.219 0.695 -0.165 0.233 0.189 0.612 -0.137 

𝜷𝟐 0.334 0.221 0.765 -0.100 0.325 0.191 0.696 -0.048 

𝜷𝟑 0.158 0.222 0.597 -0.281 0.155 0.196 0.537 -0.234 

𝜷𝟒 0.349 0.229 0.799 -0.097 0.332 0.190 0.706 -0.044 

𝜷𝟓 0.420 0.107 0.629 0.214 0.405 0.109 0.618 0.194 

𝜷𝟔 0.870 0.132 1.126 0.611 0.890 0.094 1.077 0.704 

𝜹 -0.007 0.009 0.010 -0.024 -0.007 0.007 0.007 -0.022 

𝜸 0.099 0.039 0.176 0.023 0.099 0.032 0.162 0.037 

𝝓 -0.013 0.055 0.096 -0.121 -0.011 0.045 0.078 -0.100 

𝝈𝟐 4.028 0.301 4.664 3.481 4.029 0.246 4.539 3.577 

Parameters Scheme = 6      

𝜶 0.372 0.026 0.426 0.323 0.370 0.022 0.414 0.329 

𝜷𝟎 0.394 0.065 0.524 0.267 0.401 0.053 0.506 0.297 

𝜷𝟏 0.211 0.064 0.338 0.085 0.203 0.053 0.309 0.099 

𝜷𝟐 0.311 0.065 0.436 0.185 0.305 0.054 0.407 0.201 

𝜷𝟑 0.108 0.065 0.235 -0.020 0.105 0.055 0.211 -0.005 

𝜷𝟒 0.309 0.067 0.443 0.176 0.304 0.054 0.410 0.198 

𝜷𝟓 0.405 0.030 0.464 0.346 0.402 0.030 0.460 0.343 

𝜷𝟔 0.902 0.045 0.990 0.813 0.903 0.035 0.970 0.833 

𝜹 -0.007 0.005 0.003 -0.017 -0.007 0.005 0.002 -0.015 

𝜸 0.100 0.010 0.119 0.081 0.100 0.008 0.115 0.084 

𝝓 0.798 0.013 0.823 0.773 0.798 0.011 0.820 0.777 

𝝈𝟐 0.252 0.019 0.291 0.218 0.252 0.015 0.284 0.224 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 20 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 36, Two of Design Structure, and four of Parameter 

Scheme for informative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.137 0.010 0.156 0.119 0.696 0.057 0.794 0.609 

𝜷𝟎 0.404 0.126 0.656 0.158 0.404 0.088 0.579 0.233 

𝜷𝟏 0.215 0.128 0.470 -0.037 0.200 0.090 0.378 0.023 

𝜷𝟐 0.310 0.129 0.558 0.059 0.298 0.091 0.474 0.120 

𝜷𝟑 0.090 0.132 0.348 -0.171 0.103 0.091 0.282 -0.078 

𝜷𝟒 0.300 0.132 0.561 0.039 0.307 0.092 0.486 0.126 

𝜷𝟓 0.402 0.057 0.514 0.292 0.400 0.040 0.480 0.321 

𝜷𝟔 0.908 0.060 1.025 0.791 0.903 0.046 0.994 0.812 

𝜹 -0.001 0.003 0.005 -0.006 -0.056 0.005 -0.048 -0.064 

𝜸 0.100 0.008 0.115 0.085 0.100 0.005 0.110 0.090 

𝝓 0.793 0.026 0.845 0.742 0.797 0.019 0.834 0.760 

𝝈𝟐 1.008 0.076 1.167 0.871 1.005 0.053 1.115 0.907 

Parameters Scheme = 3      

𝜶 0.137 0.009 0.155 0.120 0.568 0.090 0.717 0.436 

𝜷𝟎 0.408 0.252 0.907 -0.083 0.406 0.174 0.752 0.068 

𝜷𝟏 0.213 0.256 0.725 -0.289 0.198 0.179 0.553 -0.155 

𝜷𝟐 0.316 0.257 0.810 -0.187 0.310 0.182 0.662 -0.044 

𝜷𝟑 0.094 0.265 0.612 -0.428 0.092 0.181 0.448 -0.267 

𝜷𝟒 0.302 0.262 0.821 -0.217 0.300 0.183 0.657 -0.060 

𝜷𝟓 0.410 0.112 0.630 0.192 0.402 0.080 0.561 0.247 

𝜷𝟔 0.917 0.112 1.137 0.697 0.906 0.086 1.075 0.737 

𝜹 -0.001 0.002 0.004 -0.005 -0.037 0.007 -0.026 -0.049 

𝜸 0.101 0.015 0.130 0.071 0.101 0.011 0.122 0.081 

𝝓 0.785 0.039 0.861 0.708 0.792 0.028 0.847 0.738 

𝝈𝟐 4.030 0.302 4.670 3.483 3.997 0.211 4.433 3.607 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 21 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 36, Two of Design Structure, and four of Parameter 

Scheme for informative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.375 0.025 0.425 0.328 0.370 0.017 0.405 0.337 

𝜷𝟎 0.395 0.250 0.889 -0.093 0.400 0.173 0.743 0.063 

𝜷𝟏 0.211 0.255 0.720 -0.290 0.213 0.179 0.569 -0.140 

𝜷𝟐 0.330 0.256 0.822 -0.170 0.301 0.182 0.652 -0.053 

𝜷𝟑 0.100 0.264 0.616 -0.419 0.101 0.181 0.457 -0.259 

𝜷𝟒 0.312 0.260 0.826 -0.202 0.298 0.183 0.655 -0.062 

𝜷𝟓 0.403 0.111 0.619 0.186 0.406 0.079 0.565 0.251 

𝜷𝟔 0.907 0.109 1.121 0.693 0.906 0.083 1.071 0.742 

𝜹 -0.007 0.010 0.012 -0.026 -0.007 0.007 0.007 -0.021 

𝜸 0.100 0.041 0.179 0.020 0.099 0.028 0.155 0.044 

𝝓 -0.015 0.060 0.102 -0.132 -0.010 0.042 0.073 -0.093 

𝝈𝟐 4.002 0.300 4.636 3.458 4.007 0.212 4.444 3.615 

Parameters Scheme = 6      

𝜶 0.371 0.026 0.424 0.322 0.369 0.019 0.407 0.332 

𝜷𝟎 0.404 0.063 0.528 0.281 0.402 0.044 0.489 0.317 

𝜷𝟏 0.203 0.064 0.331 0.077 0.201 0.045 0.290 0.113 

𝜷𝟐 0.302 0.064 0.426 0.177 0.303 0.046 0.391 0.214 

𝜷𝟑 0.099 0.066 0.228 -0.031 0.099 0.045 0.188 0.009 

𝜷𝟒 0.301 0.066 0.433 0.170 0.301 0.046 0.391 0.210 

𝜷𝟓 0.402 0.029 0.459 0.345 0.400 0.021 0.441 0.360 

𝜷𝟔 0.902 0.034 0.966 0.836 0.902 0.026 0.952 0.851 

𝜹 -0.006 0.008 0.011 -0.022 -0.006 0.007 0.007 -0.020 

𝜸 0.100 0.010 0.120 0.080 0.100 0.007 0.114 0.086 

𝝓 0.797 0.018 0.833 0.762 0.798 0.014 0.825 0.771 

𝝈𝟐 0.252 0.019 0.291 0.217 0.250 0.013 0.277 0.226 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 22 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 36, Two of Design Structure, and four of Parameter 

Scheme for semi-informative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.903 0.012 0.922 0.883 0.589 0.120 0.761 0.404 

𝜷𝟎 0.400 0.066 0.531 0.274 0.376 0.163 0.702 0.059 

𝜷𝟏 0.203 0.065 0.332 0.074 0.248 0.161 0.571 -0.069 

𝜷𝟐 0.303 0.066 0.431 0.175 0.331 0.157 0.634 0.022 

𝜷𝟑 0.103 0.066 0.233 -0.027 0.120 0.149 0.415 -0.175 

𝜷𝟒 0.304 0.067 0.434 0.173 0.328 0.159 0.639 0.012 

𝜷𝟓 0.400 0.028 0.456 0.346 0.424 0.073 0.566 0.282 

𝜷𝟔 0.901 0.035 0.969 0.832 0.888 0.109 1.101 0.674 

𝜹 -0.049 0.001 -0.047 -0.050 -0.027 0.007 -0.016 -0.037 

𝜸 0.100 0.004 0.107 0.093 0.100 0.009 0.117 0.083 

𝝓 0.799 0.009 0.817 0.781 0.794 0.018 0.830 0.759 

𝝈𝟐 1.000 0.038 1.078 0.929 1.003 0.095 1.206 0.836 

Parameters Scheme = 3      

𝜶 0.924 0.014 0.946 0.902 0.711 0.110 0.874 0.544 

𝜷𝟎 0.394 0.124 0.639 0.153 0.352 0.261 0.865 -0.160 

𝜷𝟏 0.220 0.126 0.468 -0.029 0.315 0.269 0.851 -0.205 

𝜷𝟐 0.319 0.128 0.566 0.071 0.352 0.265 0.863 -0.169 

𝜷𝟑 0.120 0.127 0.370 -0.129 0.154 0.258 0.665 -0.350 

𝜷𝟒 0.313 0.128 0.562 0.061 0.395 0.272 0.926 -0.136 

𝜷𝟓 0.402 0.055 0.512 0.297 0.457 0.133 0.717 0.198 

𝜷𝟔 0.902 0.063 1.027 0.778 0.845 0.195 1.225 0.462 

𝜹 -0.043 0.001 -0.042 -0.044 -0.030 0.006 -0.020 -0.038 

𝜸 0.100 0.007 0.114 0.086 0.101 0.017 0.134 0.067 

𝝓 0.797 0.015 0.826 0.769 0.785 0.030 0.843 0.727 

𝝈𝟐 4.009 0.153 4.320 3.723 4.007 0.377 4.811 3.340 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 23 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 36, Two of Design Structure, and four of Parameter 

Scheme for semi-informative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.369 0.012 0.393 0.346 0.374 0.029 0.434 0.319 

𝜷𝟎 0.383 0.122 0.622 0.148 0.323 0.252 0.819 -0.169 

𝜷𝟏 0.216 0.126 0.463 -0.031 0.302 0.266 0.833 -0.214 

𝜷𝟐 0.314 0.127 0.560 0.067 0.343 0.263 0.851 -0.175 

𝜷𝟑 0.118 0.127 0.367 -0.132 0.172 0.257 0.683 -0.329 

𝜷𝟒 0.317 0.128 0.565 0.066 0.379 0.269 0.905 -0.148 

𝜷𝟓 0.403 0.055 0.512 0.298 0.425 0.123 0.663 0.187 

𝜷𝟔 0.900 0.059 1.015 0.784 0.828 0.190 1.200 0.457 

𝜹 -0.007 0.005 0.002 -0.016 -0.007 0.011 0.013 -0.028 

𝜸 0.099 0.020 0.139 0.060 0.097 0.048 0.191 0.004 

𝝓 -0.003 0.029 0.053 -0.060 -0.020 0.068 0.115 -0.152 

𝝈𝟐 4.010 0.153 4.321 3.723 4.006 0.377 4.809 3.340 

Parameters Scheme = 6      

𝜶 0.369 0.013 0.395 0.344 0.364 0.034 0.433 0.301 

𝜷𝟎 0.400 0.033 0.466 0.337 0.396 0.087 0.571 0.228 

𝜷𝟏 0.201 0.033 0.267 0.136 0.214 0.087 0.387 0.042 

𝜷𝟐 0.301 0.034 0.366 0.236 0.313 0.084 0.475 0.148 

𝜷𝟑 0.100 0.033 0.166 0.034 0.106 0.079 0.261 -0.050 

𝜷𝟒 0.300 0.034 0.367 0.234 0.310 0.085 0.475 0.140 

𝜷𝟓 0.400 0.015 0.429 0.372 0.409 0.040 0.487 0.331 

𝜷𝟔 0.900 0.020 0.940 0.860 0.901 0.061 1.020 0.781 

𝜹 -0.007 0.003 -0.001 -0.012 -0.005 0.005 0.004 -0.015 

𝜸 0.100 0.005 0.110 0.090 0.100 0.011 0.122 0.077 

𝝓 0.800 0.007 0.813 0.787 0.797 0.013 0.822 0.772 

𝝈𝟐 0.251 0.010 0.270 0.233 0.254 0.024 0.305 0.211 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 24 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 54, Two of Design Structure, and four of Parameter 

Scheme for noninformative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.760 0.046 0.831 0.687 0.915 0.019 0.945 0.884 

𝜷𝟎 0.391 0.103 0.595 0.192 0.393 0.082 0.556 0.234 

𝜷𝟏 0.216 0.101 0.417 0.019 0.209 0.080 0.367 0.051 

𝜷𝟐 0.312 0.103 0.511 0.111 0.315 0.083 0.474 0.154 

𝜷𝟑 0.119 0.107 0.325 -0.091 0.107 0.079 0.262 -0.050 

𝜷𝟒 0.312 0.104 0.516 0.106 0.302 0.083 0.464 0.138 

𝜷𝟓 0.402 0.047 0.493 0.311 0.404 0.038 0.479 0.330 

𝜷𝟔 0.902 0.053 1.005 0.797 0.902 0.051 1.001 0.801 

𝜹 -0.039 0.003 -0.035 -0.043 -0.054 0.001 -0.052 -0.056 

𝜸 0.100 0.006 0.111 0.089 0.100 0.005 0.109 0.091 

𝝓 0.797 0.013 0.824 0.771 0.798 0.012 0.821 0.775 

𝝈𝟐 1.003 0.061 1.130 0.890 1.004 0.047 1.100 0.917 

Parameters Scheme = 3      

𝜶 0.767 0.048 0.842 0.693 0.893 0.024 0.929 0.855 

𝜷𝟎 0.372 0.183 0.732 0.018 0.362 0.150 0.658 0.073 

𝜷𝟏 0.237 0.186 0.604 -0.126 0.231 0.152 0.528 -0.067 

𝜷𝟐 0.327 0.191 0.697 -0.047 0.323 0.156 0.624 0.018 

𝜷𝟑 0.153 0.197 0.534 -0.234 0.134 0.150 0.429 -0.162 

𝜷𝟒 0.344 0.192 0.721 -0.035 0.338 0.157 0.644 0.029 

𝜷𝟓 0.416 0.091 0.593 0.240 0.402 0.073 0.547 0.261 

𝜷𝟔 0.901 0.097 1.090 0.708 0.900 0.093 1.080 0.716 

𝜹 -0.036 0.002 -0.032 -0.040 -0.046 0.001 -0.044 -0.048 

𝜸 0.101 0.011 0.123 0.078 0.100 0.009 0.117 0.083 

𝝓 0.793 0.021 0.836 0.751 0.796 0.018 0.831 0.760 

𝝈𝟐 4.019 0.245 4.528 3.569 4.006 0.188 4.388 3.657 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 25 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 54, Two of Design Structure, and four of Parameter 

Scheme for noninformative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.372 0.019 0.411 0.336 0.370 0.014 0.398 0.342 

𝜷𝟎 0.362 0.179 0.712 0.014 0.378 0.145 0.663 0.100 

𝜷𝟏 0.240 0.186 0.606 -0.122 0.221 0.152 0.516 -0.077 

𝜷𝟐 0.333 0.190 0.702 -0.041 0.317 0.156 0.617 0.011 

𝜷𝟑 0.148 0.197 0.527 -0.239 0.130 0.150 0.426 -0.165 

𝜷𝟒 0.328 0.191 0.703 -0.050 0.326 0.157 0.630 0.019 

𝜷𝟓 0.403 0.089 0.577 0.231 0.404 0.072 0.547 0.265 

𝜷𝟔 0.895 0.089 1.070 0.717 0.890 0.087 1.059 0.718 

𝜹 -0.007 0.007 0.007 -0.021 -0.007 0.006 0.004 -0.018 

𝜸 0.100 0.032 0.162 0.038 0.099 0.024 0.148 0.052 

𝝓 -0.009 0.045 0.079 -0.097 -0.006 0.035 0.064 -0.075 

𝝈𝟐 4.025 0.246 4.534 3.573 4.011 0.189 4.395 3.662 

Parameters Scheme = 6      

𝜶 0.367 0.022 0.412 0.325 0.368 0.017 0.401 0.337 

𝜷𝟎 0.399 0.052 0.503 0.298 0.399 0.041 0.481 0.319 

𝜷𝟏 0.205 0.052 0.308 0.103 0.207 0.041 0.288 0.126 

𝜷𝟐 0.305 0.053 0.406 0.202 0.304 0.042 0.386 0.223 

𝜷𝟑 0.102 0.055 0.208 -0.006 0.101 0.040 0.180 0.022 

𝜷𝟒 0.301 0.053 0.406 0.195 0.301 0.043 0.384 0.217 

𝜷𝟓 0.401 0.025 0.449 0.353 0.401 0.021 0.441 0.361 

𝜷𝟔 0.901 0.031 0.962 0.840 0.902 0.030 0.962 0.842 

𝜹 -0.006 0.004 0.001 -0.014 -0.006 0.004 0.001 -0.014 

𝜸 0.100 0.008 0.115 0.085 0.100 0.006 0.112 0.088 

𝝓 0.799 0.009 0.818 0.781 0.798 0.009 0.816 0.781 

𝝈𝟐 0.252 0.015 0.283 0.223 0.251 0.012 0.276 0.230 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 26 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 54, Two of Design Structure, and four of Parameter 

Scheme for informative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.705 0.058 0.803 0.616 0.140 0.018 0.177 0.108 

𝜷𝟎 0.391 0.085 0.561 0.226 0.364 0.214 0.785 -0.053 

𝜷𝟏 0.207 0.088 0.380 0.035 0.230 0.193 0.612 -0.149 

𝜷𝟐 0.313 0.089 0.484 0.140 0.359 0.209 0.762 -0.047 

𝜷𝟑 0.108 0.089 0.282 -0.069 0.147 0.207 0.554 -0.260 

𝜷𝟒 0.309 0.091 0.488 0.130 0.357 0.209 0.766 -0.056 

𝜷𝟓 0.403 0.039 0.482 0.327 0.429 0.124 0.673 0.186 

𝜷𝟔 0.903 0.045 0.991 0.815 0.898 0.158 1.203 0.586 

𝜹 -0.056 0.005 -0.048 -0.065 -0.001 0.003 0.006 -0.007 

𝜸 0.100 0.005 0.111 0.090 0.101 0.012 0.124 0.077 

𝝓 0.796 0.018 0.832 0.761 0.787 0.033 0.851 0.723 

𝝈𝟐 1.002 0.053 1.111 0.904 1.003 0.126 1.278 0.782 

Parameters Scheme = 3      

𝜶 0.603 0.082 0.738 0.481 0.141 0.019 0.179 0.110 

𝜷𝟎 0.366 0.157 0.674 0.064 0.314 0.307 0.916 -0.289 

𝜷𝟏 0.238 0.165 0.563 -0.085 0.271 0.311 0.882 -0.339 

𝜷𝟐 0.335 0.167 0.661 0.007 0.415 0.320 1.044 -0.210 

𝜷𝟑 0.147 0.168 0.476 -0.183 0.192 0.327 0.841 -0.447 

𝜷𝟒 0.328 0.170 0.660 -0.007 0.424 0.324 1.058 -0.213 

𝜷𝟓 0.406 0.077 0.558 0.258 0.441 0.212 0.859 0.028 

𝜷𝟔 0.901 0.084 1.066 0.736 0.857 0.250 1.343 0.353 

𝜹 -0.039 0.006 -0.029 -0.049 -0.001 0.003 0.004 -0.006 

𝜸 0.100 0.010 0.121 0.080 0.100 0.023 0.145 0.054 

𝝓 0.792 0.027 0.845 0.739 0.776 0.049 0.873 0.682 

𝝈𝟐 4.011 0.212 4.446 3.620 4.020 0.504 5.125 3.139 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 27 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 54, Two of Design Structure, and four of Parameter 

Scheme for informative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.370 0.017 0.405 0.337 0.381 0.037 0.457 0.311 

𝜷𝟎 0.373 0.156 0.678 0.071 0.290 0.299 0.880 -0.290 

𝜷𝟏 0.233 0.164 0.558 -0.090 0.252 0.310 0.860 -0.355 

𝜷𝟐 0.324 0.167 0.649 -0.004 0.396 0.317 1.020 -0.224 

𝜷𝟑 0.122 0.168 0.451 -0.208 0.182 0.326 0.828 -0.454 

𝜷𝟒 0.325 0.170 0.656 -0.009 0.389 0.320 1.018 -0.241 

𝜷𝟓 0.404 0.076 0.554 0.258 0.427 0.206 0.831 0.022 

𝜷𝟔 0.895 0.082 1.057 0.733 0.811 0.238 1.281 0.336 

𝜹 -0.007 0.007 0.007 -0.020 -0.006 0.015 0.023 -0.035 

𝜸 0.099 0.028 0.155 0.044 0.097 0.064 0.221 -0.029 

𝝓 -0.007 0.042 0.076 -0.089 -0.028 0.092 0.153 -0.209 

𝝈𝟐 4.005 0.211 4.439 3.614 4.014 0.502 5.113 3.134 

Parameters Scheme = 6      

𝜶 0.370 0.019 0.408 0.333 0.375 0.040 0.457 0.299 

𝜷𝟎 0.398 0.044 0.485 0.313 0.389 0.123 0.633 0.150 

𝜷𝟏 0.203 0.045 0.292 0.115 0.214 0.106 0.424 0.007 

𝜷𝟐 0.304 0.045 0.391 0.216 0.322 0.118 0.552 0.091 

𝜷𝟑 0.102 0.046 0.191 0.012 0.116 0.114 0.338 -0.109 

𝜷𝟒 0.302 0.046 0.393 0.210 0.325 0.118 0.557 0.090 

𝜷𝟓 0.400 0.020 0.440 0.361 0.414 0.068 0.547 0.281 

𝜷𝟔 0.901 0.025 0.949 0.852 0.906 0.094 1.089 0.721 

𝜹 -0.007 0.006 0.006 -0.019 -0.005 0.009 0.014 -0.023 

𝜸 0.100 0.007 0.114 0.086 0.100 0.016 0.132 0.068 

𝝓 0.799 0.013 0.824 0.774 0.792 0.024 0.840 0.745 

𝝈𝟐 0.251 0.013 0.279 0.227 0.255 0.032 0.325 0.199 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 



113 
 

 

Table 28 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 54, Two of Design Structure, and four of Parameter 

Scheme for semi-informative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.627 0.079 0.752 0.515 0.893 0.028 0.936 0.851 

𝜷𝟎 0.419 0.120 0.661 0.187 0.400 0.100 0.598 0.205 

𝜷𝟏 0.201 0.118 0.437 -0.031 0.204 0.095 0.392 0.017 

𝜷𝟐 0.302 0.114 0.521 0.082 0.300 0.094 0.482 0.116 

𝜷𝟑 0.093 0.114 0.318 -0.134 0.111 0.097 0.301 -0.081 

𝜷𝟒 0.306 0.118 0.539 0.073 0.305 0.097 0.493 0.113 

𝜷𝟓 0.407 0.051 0.506 0.310 0.399 0.045 0.488 0.313 

𝜷𝟔 0.915 0.072 1.055 0.774 0.907 0.050 1.005 0.808 

𝜹 -0.037 0.006 -0.029 -0.045 -0.047 0.002 -0.044 -0.049 

𝜸 0.100 0.006 0.113 0.088 0.101 0.005 0.110 0.091 

𝝓 0.795 0.015 0.824 0.766 0.798 0.011 0.820 0.776 

𝝈𝟐 1.008 0.066 1.146 0.887 1.002 0.054 1.113 0.903 

Parameters Scheme = 3      

𝜶 0.625 0.075 0.745 0.515 0.889 0.028 0.935 0.846 

𝜷𝟎 0.434 0.234 0.902 -0.017 0.435 0.196 0.826 0.056 

𝜷𝟏 0.207 0.237 0.680 -0.257 0.209 0.190 0.583 -0.166 

𝜷𝟐 0.310 0.228 0.748 -0.132 0.312 0.187 0.677 -0.055 

𝜷𝟑 0.116 0.228 0.567 -0.338 0.083 0.193 0.463 -0.301 

𝜷𝟒 0.340 0.234 0.802 -0.122 0.291 0.193 0.666 -0.092 

𝜷𝟓 0.416 0.100 0.611 0.223 0.414 0.088 0.590 0.244 

𝜷𝟔 0.935 0.135 1.200 0.671 0.920 0.092 1.099 0.736 

𝜹 -0.030 0.005 -0.024 -0.038 -0.041 0.001 -0.039 -0.043 

𝜸 0.101 0.012 0.125 0.077 0.100 0.010 0.120 0.081 

𝝓 0.786 0.023 0.832 0.740 0.791 0.018 0.827 0.755 

𝝈𝟐 4.030 0.265 4.584 3.545 4.015 0.215 4.458 3.620 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 29 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 54, Two of Design Structure, and four of Parameter 

Scheme for semi-informative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.371 0.019 0.410 0.335 0.369 0.016 0.401 0.338 

𝜷𝟎 0.414 0.224 0.860 -0.023 0.410 0.190 0.788 0.042 

𝜷𝟏 0.210 0.236 0.683 -0.253 0.208 0.189 0.580 -0.163 

𝜷𝟐 0.307 0.227 0.743 -0.135 0.318 0.186 0.679 -0.047 

𝜷𝟑 0.090 0.228 0.538 -0.365 0.087 0.193 0.465 -0.295 

𝜷𝟒 0.297 0.230 0.750 -0.157 0.298 0.191 0.669 -0.082 

𝜷𝟓 0.408 0.098 0.601 0.216 0.403 0.086 0.575 0.236 

𝜷𝟔 0.908 0.125 1.154 0.662 0.905 0.082 1.066 0.744 

𝜹 -0.007 0.008 0.008 -0.022 -0.007 0.006 0.005 -0.019 

𝜸 0.100 0.034 0.168 0.034 0.100 0.028 0.154 0.046 

𝝓 -0.015 0.049 0.081 -0.109 -0.012 0.039 0.066 -0.089 

𝝈𝟐 4.035 0.265 4.589 3.546 4.004 0.214 4.448 3.609 

Parameters Scheme = 6      

𝜶 0.370 0.022 0.415 0.328 0.368 0.019 0.405 0.332 

𝜷𝟎 0.405 0.059 0.521 0.291 0.402 0.049 0.499 0.307 

𝜷𝟏 0.205 0.059 0.323 0.089 0.205 0.048 0.300 0.110 

𝜷𝟐 0.306 0.057 0.415 0.195 0.303 0.047 0.395 0.210 

𝜷𝟑 0.099 0.057 0.211 -0.014 0.100 0.048 0.195 0.004 

𝜷𝟒 0.302 0.060 0.420 0.183 0.301 0.049 0.395 0.204 

𝜷𝟓 0.405 0.027 0.458 0.353 0.402 0.023 0.448 0.357 

𝜷𝟔 0.907 0.042 0.988 0.824 0.904 0.029 0.961 0.845 

𝜹 -0.006 0.004 0.002 -0.015 -0.006 0.003 0.000 -0.012 

𝜸 0.100 0.008 0.116 0.084 0.100 0.007 0.113 0.087 

𝝓 0.797 0.011 0.819 0.776 0.799 0.008 0.815 0.783 

𝝈𝟐 0.251 0.017 0.285 0.221 0.250 0.013 0.278 0.226 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 30 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 90, Two of Design Structure, and four of Parameter 

Scheme for noninformative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.951 0.007 0.962 0.939 0.143 0.021 0.187 0.105 

𝜷𝟎 0.400 0.060 0.519 0.283 0.462 0.301 1.071 -0.130 

𝜷𝟏 0.201 0.058 0.315 0.087 0.208 0.294 0.786 -0.372 

𝜷𝟐 0.300 0.058 0.412 0.187 0.333 0.301 0.917 -0.261 

𝜷𝟑 0.099 0.057 0.211 -0.014 0.084 0.301 0.679 -0.513 

𝜷𝟒 0.298 0.059 0.414 0.184 0.286 0.296 0.869 -0.299 

𝜷𝟓 0.400 0.025 0.449 0.350 0.415 0.158 0.728 0.106 

𝜷𝟔 0.901 0.032 0.963 0.839 0.964 0.150 1.254 0.664 

𝜹 -0.049 0.000 -0.048 -0.050 0.000 0.007 0.015 -0.013 

𝜸 0.100 0.003 0.106 0.094 0.101 0.018 0.137 0.065 

𝝓 0.800 0.008 0.816 0.783 0.753 0.073 0.899 0.611 

𝝈𝟐 1.001 0.033 1.069 0.939 1.028 0.187 1.460 0.720 

Parameters Scheme = 3      

𝜶 0.944 0.008 0.957 0.930 0.144 0.021 0.187 0.105 

𝜷𝟎 0.397 0.117 0.629 0.170 0.541 0.594 1.745 -0.624 

𝜷𝟏 0.207 0.115 0.434 -0.021 0.218 0.588 1.374 -0.942 

𝜷𝟐 0.312 0.116 0.535 0.086 0.353 0.598 1.514 -0.828 

𝜷𝟑 0.103 0.115 0.328 -0.122 0.056 0.605 1.250 -1.144 

𝜷𝟒 0.305 0.118 0.535 0.077 0.298 0.595 1.466 -0.878 

𝜷𝟓 0.406 0.049 0.503 0.310 0.409 0.316 1.032 -0.210 

𝜷𝟔 0.909 0.057 1.021 0.796 1.021 0.272 1.546 0.480 

𝜹 -0.043 0.000 -0.042 -0.043 -0.001 0.005 0.010 -0.011 

𝜸 0.100 0.006 0.112 0.088 0.103 0.036 0.174 0.031 

𝝓 0.798 0.013 0.822 0.773 0.698 0.104 0.903 0.494 

𝝈𝟐 4.006 0.133 4.275 3.756 4.082 0.743 5.793 2.860 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 31 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 90, Two of Design Structure, and four of Parameter 

Scheme for noninformative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.369 0.010 0.389 0.351 0.395 0.055 0.510 0.294 

𝜷𝟎 0.402 0.113 0.627 0.181 0.423 0.581 1.599 -0.711 

𝜷𝟏 0.202 0.115 0.428 -0.025 0.235 0.581 1.377 -0.911 

𝜷𝟐 0.301 0.116 0.522 0.076 0.350 0.590 1.492 -0.815 

𝜷𝟑 0.105 0.115 0.328 -0.121 0.098 0.598 1.277 -1.088 

𝜷𝟒 0.304 0.117 0.534 0.077 0.330 0.587 1.485 -0.832 

𝜷𝟓 0.402 0.048 0.497 0.309 0.449 0.315 1.069 -0.167 

𝜷𝟔 0.905 0.052 1.008 0.804 0.973 0.258 1.470 0.461 

𝜹 -0.007 0.004 0.001 -0.015 -0.005 0.022 0.038 -0.048 

𝜸 0.100 0.017 0.134 0.066 0.101 0.098 0.294 -0.094 

𝝓 -0.004 0.025 0.044 -0.053 -0.100 0.142 0.178 -0.379 

𝝈𝟐 4.010 0.133 4.279 3.759 4.046 0.736 5.739 2.835 

Parameters Scheme = 6      

𝜶 0.368 0.011 0.389 0.347 0.390 0.055 0.505 0.289 

𝜷𝟎 0.400 0.030 0.458 0.342 0.424 0.151 0.728 0.127 

𝜷𝟏 0.200 0.029 0.258 0.143 0.208 0.147 0.497 -0.081 

𝜷𝟐 0.301 0.029 0.357 0.244 0.317 0.152 0.611 0.018 

𝜷𝟑 0.100 0.029 0.156 0.043 0.089 0.150 0.385 -0.210 

𝜷𝟒 0.301 0.030 0.359 0.243 0.299 0.148 0.590 0.007 

𝜷𝟓 0.401 0.014 0.427 0.374 0.407 0.080 0.564 0.251 

𝜷𝟔 0.901 0.019 0.938 0.864 0.928 0.088 1.096 0.753 

𝜹 -0.007 0.002 -0.002 -0.011 -0.002 0.022 0.042 -0.044 

𝜸 0.100 0.004 0.108 0.092 0.100 0.025 0.149 0.052 

𝝓 0.800 0.006 0.811 0.788 0.780 0.052 0.884 0.679 

𝝈𝟐 0.250 0.008 0.267 0.235 0.258 0.047 0.367 0.181 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 32 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 90, Two of Design Structure, and four of Parameter 

Scheme for informative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.140 0.016 0.172 0.111 0.136 0.011 0.158 0.116 

𝜷𝟎 0.385 0.192 0.762 0.007 0.376 0.147 0.669 0.089 

𝜷𝟏 0.212 0.232 0.665 -0.244 0.222 0.140 0.500 -0.051 

𝜷𝟐 0.347 0.196 0.728 -0.036 0.335 0.144 0.616 0.051 

𝜷𝟑 0.162 0.202 0.560 -0.234 0.141 0.143 0.423 -0.145 

𝜷𝟒 0.326 0.199 0.719 -0.070 0.332 0.147 0.623 0.041 

𝜷𝟓 0.410 0.170 0.741 0.078 0.405 0.066 0.535 0.277 

𝜷𝟔 0.912 0.117 1.141 0.677 0.904 0.078 1.054 0.749 

𝜹 -0.001 0.003 0.005 -0.008 -0.001 0.002 0.004 -0.005 

𝜸 0.100 0.012 0.124 0.077 0.100 0.008 0.117 0.084 

𝝓 0.785 0.035 0.854 0.717 0.792 0.024 0.840 0.744 

𝝈𝟐 0.997 0.125 1.273 0.777 1.007 0.088 1.194 0.850 

Parameters Scheme = 3      

𝜶 0.138 0.015 0.169 0.111 0.137 0.011 0.159 0.118 

𝜷𝟎 0.343 0.291 0.912 -0.227 0.337 0.240 0.809 -0.132 

𝜷𝟏 0.230 0.348 0.914 -0.457 0.274 0.243 0.758 -0.200 

𝜷𝟐 0.369 0.313 0.979 -0.243 0.370 0.249 0.858 -0.121 

𝜷𝟑 0.242 0.318 0.869 -0.383 0.181 0.247 0.668 -0.307 

𝜷𝟒 0.349 0.317 0.965 -0.273 0.374 0.252 0.868 -0.123 

𝜷𝟓 0.429 0.286 0.985 -0.129 0.401 0.125 0.650 0.158 

𝜷𝟔 0.881 0.193 1.258 0.496 0.894 0.138 1.161 0.622 

𝜹 -0.001 0.003 0.004 -0.006 -0.001 0.002 0.003 -0.005 

𝜸 0.100 0.023 0.145 0.054 0.100 0.016 0.132 0.068 

𝝓 0.776 0.051 0.877 0.675 0.783 0.036 0.854 0.713 

𝝈𝟐 3.973 0.498 5.066 3.102 4.001 0.349 4.743 3.378 

Note. P = Parameters of interest, Par. Sch. = Parameters Scheme. 
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Table 33 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 90, Two of Design Structure, and four of Parameter 

Scheme for informative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.382 0.036 0.455 0.314 0.375 0.026 0.427 0.327 

𝜷𝟎 0.317 0.284 0.873 -0.237 0.330 0.237 0.789 -0.132 

𝜷𝟏 0.234 0.348 0.918 -0.455 0.253 0.242 0.733 -0.218 

𝜷𝟐 0.346 0.310 0.950 -0.257 0.345 0.247 0.828 -0.142 

𝜷𝟑 0.246 0.317 0.870 -0.377 0.179 0.246 0.667 -0.308 

𝜷𝟒 0.345 0.316 0.959 -0.275 0.368 0.250 0.856 -0.123 

𝜷𝟓 0.418 0.286 0.974 -0.140 0.398 0.124 0.645 0.158 

𝜷𝟔 0.862 0.185 1.222 0.496 0.871 0.132 1.126 0.611 

𝜹 -0.007 0.015 0.022 -0.035 -0.007 0.011 0.014 -0.028 

𝜸 0.096 0.064 0.221 -0.030 0.099 0.045 0.188 0.011 

𝝓 -0.026 0.092 0.153 -0.207 -0.018 0.065 0.110 -0.145 

𝝈𝟐 4.015 0.503 5.121 3.135 4.009 0.350 4.753 3.384 

Parameters Scheme = 6      

𝜶 0.381 0.037 0.458 0.311 0.374 0.027 0.429 0.323 

𝜷𝟎 0.396 0.107 0.607 0.186 0.390 0.078 0.544 0.239 

𝜷𝟏 0.212 0.131 0.468 -0.045 0.214 0.074 0.360 0.070 

𝜷𝟐 0.316 0.109 0.526 0.102 0.311 0.077 0.459 0.161 

𝜷𝟑 0.113 0.112 0.332 -0.109 0.110 0.075 0.257 -0.041 

𝜷𝟒 0.309 0.110 0.528 0.090 0.313 0.078 0.468 0.159 

𝜷𝟓 0.408 0.093 0.590 0.227 0.403 0.035 0.472 0.336 

𝜷𝟔 0.914 0.072 1.052 0.769 0.906 0.047 0.997 0.811 

𝜹 -0.008 0.010 0.011 -0.028 -0.006 0.007 0.008 -0.021 

𝜸 0.100 0.017 0.133 0.068 0.101 0.011 0.123 0.078 

𝝓 0.792 0.025 0.842 0.744 0.795 0.018 0.831 0.761 

𝝈𝟐 0.257 0.032 0.328 0.200 0.252 0.022 0.298 0.212 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 34 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 90, Two of Design Structure, and four of Parameter 

Scheme for semi-informative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.881 0.029 0.928 0.837 0.933 0.012 0.953 0.913 

𝜷𝟎 0.391 0.094 0.576 0.209 0.400 0.074 0.547 0.255 

𝜷𝟏 0.213 0.093 0.399 0.032 0.208 0.069 0.344 0.072 

𝜷𝟐 0.305 0.092 0.481 0.128 0.310 0.072 0.451 0.169 

𝜷𝟑 0.112 0.090 0.287 -0.065 0.106 0.071 0.244 -0.034 

𝜷𝟒 0.316 0.092 0.496 0.136 0.304 0.072 0.446 0.163 

𝜷𝟓 0.406 0.049 0.501 0.312 0.403 0.031 0.464 0.343 

𝜷𝟔 0.902 0.060 1.020 0.783 0.903 0.041 0.983 0.822 

𝜹 -0.046 0.002 -0.043 -0.048 -0.045 0.001 -0.044 -0.046 

𝜸 0.100 0.005 0.110 0.090 0.100 0.004 0.108 0.093 

𝝓 0.798 0.012 0.821 0.775 0.798 0.009 0.816 0.780 

𝝈𝟐 1.000 0.054 1.111 0.902 0.999 0.041 1.082 0.922 

Parameters Scheme = 3      

𝜶 0.873 0.032 0.924 0.824 0.903 0.014 0.925 0.881 

𝜷𝟎 0.370 0.168 0.700 0.046 0.402 0.137 0.672 0.137 

𝜷𝟏 0.241 0.173 0.589 -0.098 0.228 0.133 0.490 -0.033 

𝜷𝟐 0.320 0.172 0.652 -0.014 0.325 0.138 0.594 0.055 

𝜷𝟑 0.144 0.168 0.476 -0.186 0.117 0.136 0.384 -0.151 

𝜷𝟒 0.336 0.172 0.672 -0.005 0.314 0.139 0.587 0.043 

𝜷𝟓 0.422 0.094 0.606 0.240 0.402 0.060 0.519 0.286 

𝜷𝟔 0.906 0.109 1.122 0.691 0.903 0.073 1.047 0.757 

𝜹 -0.041 0.002 -0.039 -0.043 -0.039 0.001 -0.038 -0.040 

𝜸 0.100 0.010 0.119 0.080 0.100 0.008 0.115 0.085 

𝝓 0.794 0.018 0.830 0.758 0.796 0.014 0.824 0.768 

𝝈𝟐 4.004 0.214 4.445 3.611 3.997 0.164 4.332 3.691 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 35 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 90, Two of Design Structure, and four of Parameter 

Scheme for semi-informative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.371 0.016 0.403 0.340 0.369 0.012 0.393 0.346 

𝜷𝟎 0.377 0.161 0.693 0.065 0.373 0.131 0.630 0.121 

𝜷𝟏 0.232 0.173 0.580 -0.105 0.223 0.133 0.484 -0.037 

𝜷𝟐 0.320 0.171 0.649 -0.014 0.322 0.137 0.589 0.052 

𝜷𝟑 0.128 0.168 0.460 -0.201 0.129 0.136 0.397 -0.139 

𝜷𝟒 0.317 0.171 0.652 -0.022 0.317 0.138 0.588 0.047 

𝜷𝟓 0.407 0.092 0.589 0.228 0.403 0.058 0.517 0.292 

𝜷𝟔 0.888 0.100 1.087 0.692 0.899 0.066 1.030 0.771 

𝜹 -0.007 0.006 0.005 -0.020 -0.007 0.005 0.002 -0.017 

𝜸 0.100 0.027 0.155 0.047 0.099 0.021 0.141 0.058 

𝝓 -0.007 0.039 0.071 -0.084 -0.002 0.030 0.058 -0.062 

𝝈𝟐 4.008 0.214 4.450 3.613 4.008 0.165 4.343 3.701 

Parameters Scheme = 6      

𝜶 0.369 0.018 0.405 0.335 0.369 0.013 0.394 0.343 

𝜷𝟎 0.401 0.047 0.493 0.310 0.399 0.037 0.472 0.327 

𝜷𝟏 0.203 0.047 0.298 0.110 0.202 0.035 0.272 0.133 

𝜷𝟐 0.305 0.047 0.395 0.213 0.304 0.037 0.376 0.232 

𝜷𝟑 0.104 0.046 0.194 0.013 0.101 0.036 0.172 0.031 

𝜷𝟒 0.304 0.047 0.396 0.212 0.300 0.037 0.373 0.228 

𝜷𝟓 0.403 0.026 0.454 0.353 0.402 0.017 0.435 0.369 

𝜷𝟔 0.905 0.035 0.973 0.835 0.901 0.025 0.950 0.852 

𝜹 -0.007 0.003 0.000 -0.013 -0.007 0.002 -0.002 -0.011 

𝜸 0.100 0.007 0.113 0.087 0.100 0.005 0.110 0.090 

𝝓 0.798 0.008 0.815 0.782 0.799 0.007 0.813 0.786 

𝝈𝟐 0.252 0.014 0.279 0.227 0.251 0.010 0.272 0.232 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 36 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 180, Two of Design Structure, and four of Parameter 

Scheme for noninformative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.142 0.028 0.200 0.093 0.138 0.016 0.170 0.109 

𝜷𝟎 0.365 0.229 0.820 -0.078 0.373 0.176 0.716 0.029 

𝜷𝟏 0.236 0.262 0.748 -0.280 0.241 0.187 0.611 -0.119 

𝜷𝟐 0.347 0.243 0.821 -0.126 0.328 0.191 0.702 -0.049 

𝜷𝟑 0.200 0.258 0.712 -0.312 0.135 0.187 0.502 -0.232 

𝜷𝟒 0.368 0.254 0.864 -0.134 0.339 0.186 0.701 -0.026 

𝜷𝟓 0.415 0.102 0.615 0.217 0.412 0.102 0.609 0.209 

𝜷𝟔 0.882 0.161 1.193 0.561 0.903 0.099 1.097 0.706 

𝜹 0.001 0.007 0.015 -0.012 0.000 0.005 0.011 -0.011 

𝜸 0.101 0.018 0.136 0.066 0.100 0.012 0.123 0.076 

𝝓 0.778 0.058 0.895 0.665 0.784 0.048 0.878 0.690 

𝝈𝟐 1.030 0.184 1.449 0.727 1.005 0.122 1.271 0.793 

Parameters Scheme = 3      

𝜶 0.144 0.026 0.198 0.099 0.138 0.015 0.169 0.111 

𝜷𝟎 0.341 0.324 0.978 -0.286 0.331 0.273 0.867 -0.206 

𝜷𝟏 0.259 0.369 0.982 -0.466 0.307 0.302 0.904 -0.282 

𝜷𝟐 0.373 0.359 1.081 -0.324 0.360 0.309 0.960 -0.252 

𝜷𝟑 0.297 0.369 1.022 -0.427 0.192 0.302 0.793 -0.398 

𝜷𝟒 0.416 0.364 1.119 -0.301 0.356 0.301 0.943 -0.234 

𝜷𝟓 0.422 0.186 0.790 0.057 0.411 0.187 0.776 0.041 

𝜷𝟔 0.812 0.259 1.311 0.297 0.876 0.176 1.218 0.525 

𝜹 0.000 0.005 0.010 -0.011 -0.001 0.004 0.007 -0.008 

𝜸 0.101 0.034 0.168 0.034 0.100 0.024 0.146 0.053 

𝝓 0.770 0.086 0.941 0.602 0.771 0.066 0.902 0.642 

𝝈𝟐 4.011 0.710 5.618 2.842 4.017 0.486 5.077 3.169 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 37 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 180, Two of Design Structure, and four of Parameter 

Scheme for noninformative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.396 0.060 0.521 0.288 0.382 0.038 0.460 0.310 

𝜷𝟎 0.348 0.320 0.976 -0.271 0.323 0.271 0.855 -0.210 

𝜷𝟏 0.249 0.369 0.970 -0.474 0.289 0.301 0.884 -0.298 

𝜷𝟐 0.389 0.359 1.096 -0.307 0.347 0.308 0.945 -0.263 

𝜷𝟑 0.283 0.368 1.007 -0.438 0.191 0.302 0.792 -0.400 

𝜷𝟒 0.408 0.363 1.108 -0.306 0.359 0.301 0.945 -0.229 

𝜷𝟓 0.418 0.186 0.785 0.054 0.400 0.186 0.762 0.032 

𝜷𝟔 0.801 0.254 1.291 0.296 0.869 0.174 1.208 0.523 

𝜹 -0.006 0.022 0.037 -0.048 -0.006 0.016 0.024 -0.037 

𝜸 0.096 0.092 0.278 -0.083 0.098 0.064 0.223 -0.028 

𝝓 -0.046 0.134 0.217 -0.308 -0.030 0.095 0.156 -0.218 

𝝈𝟐 4.022 0.711 5.631 2.851 4.022 0.486 5.083 3.172 

Parameters Scheme = 6      

𝜶 0.382 0.068 0.523 0.258 0.383 0.041 0.468 0.307 

𝜷𝟎 0.389 0.136 0.663 0.122 0.388 0.097 0.579 0.198 

𝜷𝟏 0.209 0.156 0.511 -0.098 0.217 0.102 0.419 0.020 

𝜷𝟐 0.308 0.140 0.580 0.035 0.315 0.104 0.518 0.111 

𝜷𝟑 0.137 0.153 0.441 -0.168 0.110 0.101 0.308 -0.089 

𝜷𝟒 0.331 0.150 0.628 0.034 0.307 0.101 0.506 0.110 

𝜷𝟓 0.409 0.054 0.515 0.305 0.404 0.054 0.509 0.298 

𝜷𝟔 0.902 0.094 1.084 0.715 0.908 0.058 1.022 0.791 

𝜹 0.001 0.022 0.047 -0.040 -0.007 0.018 0.028 -0.042 

𝜸 0.102 0.025 0.151 0.053 0.100 0.017 0.133 0.068 

𝝓 0.788 0.041 0.870 0.708 0.790 0.036 0.861 0.721 

𝝈𝟐 0.263 0.047 0.372 0.185 0.254 0.031 0.321 0.200 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 38 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 180, Two of Design Structure, and four of Parameter 

Scheme for informative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.172 0.046 0.273 0.122 0.902 0.034 0.957 0.854 

𝜷𝟎 0.413 0.122 0.659 0.175 0.410 0.095 0.599 0.226 

𝜷𝟏 0.203 0.121 0.442 -0.037 0.197 0.095 0.384 0.010 

𝜷𝟐 0.306 0.123 0.543 0.065 0.298 0.094 0.482 0.114 

𝜷𝟑 0.091 0.121 0.330 -0.150 0.100 0.093 0.282 -0.083 

𝜷𝟒 0.300 0.132 0.561 0.040 0.304 0.096 0.490 0.115 

𝜷𝟓 0.405 0.053 0.510 0.303 0.401 0.040 0.481 0.324 

𝜷𝟔 0.906 0.071 1.042 0.767 0.908 0.050 1.006 0.808 

𝜹 -0.004 0.004 0.002 -0.012 -0.052 0.002 -0.049 -0.055 

𝜸 0.100 0.007 0.113 0.087 0.100 0.005 0.110 0.090 

𝝓 0.796 0.016 0.829 0.764 0.797 0.013 0.823 0.771 

𝝈𝟐 1.006 0.071 1.155 0.876 1.003 0.055 1.116 0.902 

Parameters Scheme = 3      

𝜶 0.157 0.029 0.220 0.121 0.875 0.039 0.937 0.819 

𝜷𝟎 0.426 0.242 0.911 -0.045 0.408 0.187 0.780 0.047 

𝜷𝟏 0.206 0.242 0.685 -0.273 0.217 0.190 0.592 -0.157 

𝜷𝟐 0.327 0.245 0.799 -0.156 0.320 0.189 0.688 -0.050 

𝜷𝟑 0.086 0.243 0.563 -0.397 0.107 0.186 0.470 -0.261 

𝜷𝟒 0.303 0.263 0.824 -0.214 0.304 0.192 0.676 -0.075 

𝜷𝟓 0.414 0.105 0.622 0.214 0.407 0.078 0.563 0.256 

𝜷𝟔 0.925 0.137 1.188 0.655 0.907 0.095 1.092 0.719 

𝜹 -0.002 0.003 0.002 -0.008 -0.045 0.002 -0.042 -0.048 

𝜸 0.101 0.013 0.127 0.074 0.100 0.010 0.121 0.080 

𝝓 0.787 0.027 0.840 0.735 0.793 0.021 0.834 0.751 

𝝈𝟐 4.016 0.284 4.610 3.498 4.014 0.219 4.466 3.609 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 39 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 180, Two of Design Structure, and four of Parameter 

Scheme for informative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.372 0.022 0.418 0.330 0.371 0.017 0.405 0.338 

𝜷𝟎 0.414 0.238 0.889 -0.048 0.407 0.183 0.771 0.053 

𝜷𝟏 0.193 0.241 0.669 -0.285 0.198 0.190 0.571 -0.174 

𝜷𝟐 0.304 0.244 0.772 -0.175 0.308 0.188 0.673 -0.061 

𝜷𝟑 0.095 0.243 0.572 -0.388 0.091 0.186 0.453 -0.276 

𝜷𝟒 0.299 0.262 0.816 -0.217 0.307 0.191 0.678 -0.070 

𝜷𝟓 0.406 0.103 0.611 0.210 0.405 0.076 0.559 0.257 

𝜷𝟔 0.914 0.134 1.173 0.650 0.901 0.089 1.076 0.724 

𝜹 -0.007 0.009 0.009 -0.024 -0.007 0.007 0.006 -0.020 

𝜸 0.101 0.037 0.173 0.028 0.099 0.029 0.156 0.043 

𝝓 -0.018 0.053 0.087 -0.121 -0.009 0.041 0.072 -0.090 

𝝈𝟐 4.015 0.284 4.609 3.497 3.996 0.218 4.448 3.593 

Parameters Scheme = 6      

𝜶 0.369 0.026 0.422 0.320 0.368 0.019 0.407 0.331 

𝜷𝟎 0.403 0.060 0.524 0.286 0.402 0.047 0.496 0.311 

𝜷𝟏 0.203 0.061 0.323 0.083 0.203 0.048 0.297 0.109 

𝜷𝟐 0.304 0.062 0.423 0.182 0.305 0.047 0.398 0.213 

𝜷𝟑 0.100 0.061 0.220 -0.020 0.099 0.046 0.190 0.007 

𝜷𝟒 0.300 0.066 0.431 0.170 0.298 0.048 0.391 0.203 

𝜷𝟓 0.403 0.028 0.458 0.350 0.403 0.021 0.444 0.363 

𝜷𝟔 0.905 0.038 0.979 0.830 0.903 0.029 0.959 0.846 

𝜹 -0.006 0.005 0.004 -0.016 -0.006 0.004 0.002 -0.014 

𝜸 0.100 0.009 0.118 0.083 0.100 0.007 0.114 0.087 

𝝓 0.798 0.011 0.820 0.775 0.798 0.009 0.817 0.780 

𝝈𝟐 0.251 0.018 0.288 0.219 0.251 0.014 0.279 0.226 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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Table 40 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 180, Two of Design Structure, and four of Parameter 

Scheme for semi-informative Prior  

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 1      

𝜶 0.930 0.009 0.945 0.914 0.939 0.003 0.943 0.933 

𝜷𝟎 0.392 0.074 0.540 0.247 0.397 0.053 0.500 0.293 

𝜷𝟏 0.210 0.071 0.350 0.071 0.205 0.050 0.302 0.107 

𝜷𝟐 0.311 0.071 0.448 0.173 0.305 0.050 0.401 0.206 

𝜷𝟑 0.104 0.070 0.241 -0.034 0.104 0.050 0.202 0.007 

𝜷𝟒 0.305 0.071 0.445 0.165 0.304 0.051 0.404 0.205 

𝜷𝟓 0.402 0.033 0.468 0.337 0.401 0.022 0.445 0.358 

𝜷𝟔 0.901 0.039 0.977 0.824 0.902 0.028 0.955 0.846 

𝜹 -0.041 0.000 -0.040 -0.041 -0.039 0.000 -0.039 -0.039 

𝜸 0.100 0.004 0.108 0.093 0.100 0.003 0.105 0.095 

𝝓 0.799 0.008 0.815 0.783 0.800 0.006 0.812 0.787 

𝝈𝟐 0.998 0.041 1.082 0.922 1.000 0.029 1.059 0.945 

Parameters Scheme = 3      

𝜶 0.914 0.010 0.930 0.896 0.960 0.003 0.965 0.955 

𝜷𝟎 0.390 0.138 0.662 0.123 0.398 0.100 0.595 0.203 

𝜷𝟏 0.224 0.136 0.493 -0.043 0.208 0.097 0.399 0.016 

𝜷𝟐 0.322 0.136 0.586 0.057 0.310 0.098 0.499 0.118 

𝜷𝟑 0.124 0.134 0.389 -0.139 0.113 0.097 0.306 -0.079 

𝜷𝟒 0.317 0.137 0.586 0.048 0.308 0.100 0.504 0.113 

𝜷𝟓 0.407 0.065 0.536 0.280 0.403 0.044 0.489 0.318 

𝜷𝟔 0.905 0.072 1.046 0.763 0.902 0.050 0.998 0.802 

𝜹 -0.036 0.000 -0.035 -0.037 -0.036 0.000 -0.036 -0.037 

𝜸 0.100 0.008 0.115 0.085 0.100 0.005 0.111 0.089 

𝝓 0.796 0.014 0.823 0.769 0.798 0.010 0.818 0.779 

𝝈𝟐 4.013 0.165 4.348 3.706 4.008 0.117 4.244 3.787 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 



126 
 

 

Table 41 

Parameters Estimates, 95% Confidence Intervals, and Empirical Standard Errors, for 

Parameters of Joint Model with N = 180, Two of Design Structure, and four of Parameter 

Scheme for semi-informative Prior (continued) 

 
Design Structure = 10 &10 

(Balanced) 

Design Structure = 20 & 6 

(Unbalanced) 

   97.5% CI   97.5% CI 

P Est. Emp. Upper Lower Est. Emp. Upper Lower 

Parameters Scheme = 4      

𝜶 0.369 0.013 0.394 0.345 0.369 0.009 0.386 0.353 

𝜷𝟎 0.379 0.132 0.639 0.126 0.384 0.095 0.570 0.199 

𝜷𝟏 0.224 0.135 0.493 -0.042 0.215 0.097 0.406 0.024 

𝜷𝟐 0.318 0.135 0.581 0.053 0.314 0.098 0.503 0.122 

𝜷𝟑 0.126 0.134 0.392 -0.137 0.114 0.097 0.307 -0.077 

𝜷𝟒 0.320 0.136 0.587 0.052 0.312 0.100 0.507 0.117 

𝜷𝟓 0.401 0.064 0.527 0.278 0.401 0.043 0.485 0.319 

𝜷𝟔 0.892 0.064 1.019 0.765 0.898 0.045 0.986 0.810 

𝜹 -0.007 0.005 0.002 -0.017 -0.007 0.003 -0.001 -0.014 

𝜸 0.099 0.021 0.141 0.057 0.100 0.015 0.130 0.071 

𝝓 -0.003 0.030 0.056 -0.063 -0.003 0.021 0.039 -0.045 

𝝈𝟐 4.018 0.165 4.353 3.710 4.003 0.116 4.238 3.782 

Parameters Scheme = 6      

𝜶 0.367 0.015 0.396 0.339 0.368 0.009 0.386 0.350 

𝜷𝟎 0.401 0.037 0.475 0.329 0.399 0.026 0.450 0.348 

𝜷𝟏 0.202 0.036 0.273 0.131 0.202 0.025 0.251 0.153 

𝜷𝟐 0.301 0.036 0.371 0.231 0.302 0.025 0.351 0.252 

𝜷𝟑 0.102 0.035 0.171 0.032 0.102 0.025 0.151 0.053 

𝜷𝟒 0.300 0.037 0.372 0.229 0.300 0.026 0.351 0.249 

𝜷𝟓 0.400 0.018 0.435 0.366 0.401 0.012 0.424 0.377 

𝜷𝟔 0.901 0.023 0.946 0.856 0.900 0.017 0.933 0.866 

𝜹 -0.006 0.002 -0.002 -0.011 -0.007 0.002 -0.003 -0.010 

𝜸 0.100 0.005 0.110 0.090 0.100 0.004 0.107 0.093 

𝝓 0.799 0.006 0.811 0.788 0.800 0.005 0.809 0.791 

𝝈𝟐 0.252 0.010 0.273 0.232 0.251 0.007 0.265 0.237 

Note. P = Parameters,  Est. = Parameter Estimate,       SD = Standard Deviation. 
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The point estimates, confidence intervals, and standard deviations provide 

information to assess the performance of the Bayesian method and to estimate unknown 

parameters of the proposed joint model (𝛼, 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛿, 𝛾, 𝜙, 𝜎
2). 

Looking across all parameter schemes considered in this study, there are a few general 

trends worth noting. First, the parameter schemes influence heavily the estimation of 

unknown parameters of the joint model except 𝛼 and 𝜎2. For any of the parameter 

schemes, Bayesian estimation seems to be the appropriate method for identifying all 

unknown parameters except 𝛼 and 𝜎2 on the joint model. The estimates are significantly 

higher or lower than the true values of (𝛼 = 1 𝑜𝑟 2, 𝑎𝑛𝑑 𝜎2 = 0.5, 1, 𝑜𝑟 2), depending on 

the parameter schemes, which are severely misleading even though the model has 

converged. Further, the Bayesian method correctly identified the other remaining 

parameters (𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛿, 𝛾, 𝜙) (all true values were contained in the 

95% CI) on the proposed joint model for all sample sizes and prior distributions.  

Second, the design structures (balanced or unbalanced) had relatively little 

influence on parameters estimation. Third, it is interesting to observe that all parameter 

schemes correctly specified all model parameters except 𝛼 and 𝜎2, as shown by falling in 

the range of the bounds. Depending on the narrowest range of 97.5% confidence intervals, 

the estimation of model parameters that used informative priors produced sometimes more 

accuracy in the estimation than the others (noninformative, semi-informative). On the other 

hand, sometime noninformative priors produced more precision in the estimates than the 

others (semi-informative and informative). It is surprising that the results of average 

estimation for unknown parameters were not stable at a different kinds of the prior 

distributions, which was disappointing.  
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Specifying informative priors on unknown parameters indicates that the researcher 

has knowledge about the unknown parameters. Previous information of all unknown 

parameters was added. It was of interest whether or not these priors were appropriate and 

would be able to identify the correct extraction of model parameters with ignorance about 

the other conditions of the proposed joint model. Fourth, the minor difference between 

large and small sample sizes in all conditions not only demonstrates that the Bayesian 

method used in the study can estimate the parameters of the proposed joint model quite 

adequately, even with small sample sizes but also eliminated the problem of failing to 

converge. 

In general, the Bayesian method performed well under conditions of parameter 

schemes regardless of the size of the observations and the design structures of data 

collection. As can be seen from the findings of this dissertation, the estimation for the 

model parameters showed a minor difference between informative, noninformative, and 

semi-informative priors in each case. 

Summary of the Estimation 

The summary results are concerned with the point estimation of the parameters of 

interest, (𝛼, 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛿, 𝛾, 𝜙, 𝜎
2) of each condition. The Bayesian 

method using the MCMC algorithm with and without information set on the unknown 

parameters estimated the model parameters accurately. The accuracies were seen across a 

parameter’s schemes regardless of the information of prior and sample size. As a result, the 

estimation was most likely to identify all model parameters except 𝛼 and 𝜎2 for all levels 

of information of prior distribution. The reason that the estimate of both parameters (𝛼 and 

𝜎2) are severely misleading may be that they were placed in incorrect prior distributions. 

The Bayesian method, however, was accurate in certain settings. 
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CHAPTER V 

 

CONCLUSION AND DISCUSSIONS 

 

The purpose of this dissertation is to develop an R program with OpenBUGS 

software to obtain Bayesian estimates for the unknown parameters of the proposed joint 

(Gaussian-Exponential) model (Bronsert, 2009; Lin, 2011). In this dissertation, a joint 

model was developed to model a longitudinal outcome with an informative time jointly. 

The outcome distribution considered in this study was the Gaussian distribution. Also, it is 

assumed that time and covariates are independent of each other, and that time should be 

informative and exponentially distributed.  

The simulation studies were conducted with six parameter schemes to observe how 

the results change with different parameter values, two different design structures 

(balanced and unbalanced),  and five sample sizes, to evaluate the performance of a 

program by using Bayesian approach of estimation in the proposed joint model analysis 

with different level of information concerning the parameters of interest. Furthermore, the 

computing package using R with OpenBUGS was developed to handle and fit the proposed 

joint model in order to obtain parameter estimates to ensure the accuracy of the R package 

estimation for applied researchers conducting the joint model analysis. The joint models 

presented in this study rely on the relation among the one-step prior outcome, current time, 

and potential covariates. If any of these assumptions are not satisfied, the joint models 

proposed in this study should be considered with caution. In this chapter, I summarize and 
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discuss the prior distribution, convergence, and parameter estimates. Then, 

recommendations for future research are presented. 

Prior Distribution 

The main concern in applying Bayesian estimation using the MCMC algorithm is 

the prior distribution of unknown parameters, which was of interest in the current 

dissertation. As can be seen, in this dissertation, the prior distributions were placed on all 

unknown parameters in the proposed joint model, as specified in Chapter 3. However, 

determining three forms of prior information (informative, noninformative, and semi-

informative) about the parameters of interest, (𝛼, 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛿, 𝛾, 𝜙,

𝜎2), were applied through an MCMC algorithm. 

Since convergence was not an issue, it was concluded that 20,000 iterations of the 

simulation are enough to yield the proper posterior distribution of all unknown parameters. 

However, the current investigation showed in the results that there was variation in the 

sample of the unknown parameters in each iteration of the simulation method. Thus, in 

calculating the posterior mean of the unknown parameters from this posterior distribution, 

it was found that some parameters were not accurate in some conditions. As a result, the 

prior distributions on these parameters should be changed; otherwise, the MCMC algorithm 

can be considered an inappropriate method for posterior distribution sampling. 

Some results that showed up in this dissertation concerned the effect of 

noninformative, informative, and semi-informative priors, including:  

1. The estimation performance of the unknown parameters showed a lack of 

difference in identifying the correct parameters for all types of priors while 

holding the sample size constant. It was known that informative prior provides 
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influence positively on the validity and accuracy of parameter estimates; it was 

also found that influence when noninformative prior was used.  

2. It is surprising that the impact of the degree of informativeness in the current 

project was not stable when the sample size was constant. For example, in terms 

of the 97.5% confidence interval, semi-informative priors sometimes give the 

narrowest range than the others, and sometimes noninformative priors gave the 

narrowest range as compared as the others when the sample size was constant. 

Some unknown parameters were more sensitive to small samples than others were. 

In other words, with small sample sizes, the value of the estimated parameter increased 

when the value of the hyperparameter on the prior distribution increased in the analysis of 

the model (Berger & Bernado, 1992; Lambert, Sutton, Burton, Abrams, & Jones, 2005). 

When applying the Bayesian approach for the unknown parameters in the joint model, it is 

important to consider prior distributions for two main reasons:  

1. When the research was conducted with small amounts of data, the estimation of 

some unknown parameters becomes sensitive to the hyperparameter specified in 

informative priors (Gifford & Swaminathan, 1990). This suggests that 

researchers desiring to uphold the use of the MCMC method to assess these 

parameters on the proposed joint model should change the type of prior 

distribution on these parameters. For example, t distribution, Cauchy 

distribution, or any different distribution other than normal distribution. 

Alternatively, researchers could maintain the same type of those prior 

distributions but instead change the hyperparameter for each one. 

2. Researchers need to take into account the effect of the priors’ input on the other 

parameters of the joint model. It is well to consider that prior information 
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regarding these parameters may have an important influence when estimating 

other parameters in the same model. 

Convergence 

In order to express the representative subset of the parameter space, convergence 

diagnostics were performed for all unknown parameters. Within the variety of ways for 

testing convergence of iterative simulations or joint posterior density such as Heidelberger 

and Welch diagnostic (HW) tests and trace plot, for this study, the monitoring of the output 

of the HW test was selected. There are 12 unknown parameters in the proposed joint model 

that needed to be estimated, so all of them were diagnosed for the convergence because of 

the parameters’ characteristics (Gelman et al., 2014). This particular diagnostic consists of 

two tests: 

1. The stationary test, which determines whether the trace of simulated values 

arises from a stationary stochastic process. 

2. The halfwidth test which, determines if there are enough iterations to estimate 

the mean of the process with acceptable precision.  

In this dissertation, there were no problems in convergence overall with the 

proposed joint model data generated. Convergence results across all parameters in the 

model with various sample sizes were almost identical and were 1 for both tests. The HW 

tests equal one means passed test, and the sequences of samples have mixed, showing a 

good indication of representativeness of the sample in the simulation. Another way to see if 

the chain has converged is to see how well the chain is moving or mixing around the 

parameter space through visual inspection, for example, the trace-plot of the parameters 

mean, the density plots, and the autocorrelations plots, that are displayed and monitored for 

each parameter as well. In this dissertation, 20,000 iterations could represent an adequate 
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number of iterations for running Markov Chain Monte Carlo simulations for the estimation 

of unknown parameters in the proposed joint model regardless of sample sizes. The finding 

in the current dissertation confirms that the sequences are mixed and suggests that it is not 

necessary to run any more simulations. 

Parameter Estimates 

The R program developed for the current dissertation was tested using 120 data sets 

with six parameters schemes, five sample sizes, and four different observations on the 

proposed joint model, including three types of prior distributions, resulting in 360 

simulations. Each simulation was run one and three times with 20,000 iterations each to 

provide one and three chains of posterior distributions of each parameter, respectively. For 

Bayesian inference, four important values to assess the performance of MCMC applied in 

this dissertation are the estimated parameters, 97.5% confidence intervals on the posterior 

inference for a parameter, and standard deviations. The properties of the simulation seem 

acceptable. That is, the sequences of the values in the chain were mixed, which means that 

there was no autocorrelation of simulations, indicating it was not necessary to run any more 

simulations.  

However, when 97.5% posterior inference for a parameter of interest was 

introduced across sample size, parameter schemes, and prior information on unknown 

parameters, the true values for 𝛼 and 𝜎2 in the proposed joint model were out of bounds for 

most situations. In general, for the proposed joint model, all true values of parameters 

except 𝛼 and 𝜎2 were contained in the 97.5% confidence interval. The true values of 

unknown parameters are dependent on the parameter schemes and consistent with previous 

research (Alomair, 2017; Bronsert, 2009; Lin, 2011; Seo, 2015).  
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As expected, there was a higher level of accuracy seen in the larger sample size. 

However, unexpectedly, there was a higher level in the accuracy of estimations in the 

smaller samples as well. Inspecting the 97.5% posterior inference confidence intervals very 

carefully sometimes did not indicate that the narrowest interval occurred with a large 

sample size as was expected for some conditions regardless of the number of observations 

or parameter schemes. The narrowest interval sometimes happened with a small sample 

size. However, the posterior mean of all unknown parameters was estimated. Theoretically, 

the sample mean of all Markov chain Monte Carlo samples should be a reasonably good 

estimate whenever the mean is calculated from large sample sizes. But it was not always 

true for Bayesian estimation in the current dissertation. Nevertheless, it should be noted 

that MCMC under the Bayesian framework permits a very large amount of model 

flexibility when evaluation of high-dimensional integration around the unknown 

parameters (Gelman et al., 2014).  

The other finding in the current dissertation is a demonstration of the advantage of 

the Bayesian approach in comparison with the frequentist approach as it treats unknown 

parameters as random variables. It can be seen how important the role of the posterior 

distribution is, providing researchers with a way of obtaining the inferential statistics in 

which they are interested.  

Recommendation for Future Research 

Carrying out further simulation studies and/or real longitudinal data investigation 

may shed additional light in determining the helpfulness of the Bayesian approach for the 

evaluation of the appropriateness of constraints that are imposed on the estimation and 

might clarify the comprehensive development of a statistical software program for 

estimating the unknown parameters within the proposed joint model in Bayesian 
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framework. One particular need is the continuing exploration of the impact of different 

informative prior distributions on the parameters. 

 It is essential that researchers who conduct joint model analysis employing the 

MCMC algorithm sampling method keep in mind the characteristics of the parameters and 

the distribution that matches them, in line with previous studies. For example, researchers 

who are interested in adapting the MCMC algorithm sampling technique should need the 

recommended to conduct joint model analysis that includes covariates with both small and 

large sample sizes for comparison purposes of their performance. Additionally, research is 

also indicated in the development of methods using the Bayesian approach for simulating 

posterior distributions.  

Furthermore, the joint models carry multiple assumptions, limiting the use of these 

joint models. When those assumptions are relaxed, it then is possible to expand the joint 

models to be more flexible. Next, the researchers can attempt to find parameters estimation 

for the extended model with the new assumption by applying the Bayesian approach. For 

example: 

1. The response in the proposed joint model in this study is assumed to be 

dependent upon the one-step prior outcome. However, the current response may 

depend on the two-step prior outcome or even three-step prior outcome. Next, 

the Bayesian approach can be applied to find parameters estimation for the 

extended model with the new assumption 

2. Time is assumed to follow an exponential distribution. The distribution of time 

can be different based on the research design. If that is the situation, the 

appropriate distribution can be applied to the time process; then, the Bayesian 
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parameter estimates from the time process can be obtained. Also, this study 

considers the outcome variable to follow a normal distribution. 

However, Seo (2015) developed and extended the current model to handle longitudinal 

outcomes distribution from a member of the exponential family of distributions such as 

Bernoulli, Poisson, and Gamma. Next, the Bayesian parameter estimates from generalized 

linear models can be obtained. 

3. In the current model, time and covariates are assumed to be independent of each 

other. If they are related, another term can be added to define the relations 

between them in the models. However, Alomair (2017) adapted the current 

model to be able to incorporate informative time and time-dependent covariates 

with a longitudinal response. Next, the Bayesian parameter estimates from 

depended covariate models can be obtained. 

All of the alternative assumptions mentioned above are technically possible; and can be 

further explored by a researcher in order to improve the joint models, and then the 

Bayesian approach can be applied to the improved model. Finally, Bayesian predictions are 

recommended as it is an important objective of the joint model besides the estimation and 

the testing. Bayesian predictions are outcome values simulated from the posterior 

predictive distribution, which is the distribution of the unobserved (future) data given the 

observed data.  

Conclusion 

This dissertation provides a demonstration into the extent to which an alternative 

method under the Bayesian framework was able to estimate all unknown parameters in the 

proposed joint model. There is a little previous research to estimate parameters of joint 

model in Bayesian approach which has manipulated a variety of fit indexes and tests for 
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determining the correct parameter estimation. In this dissertation, OpenBUGS with R code 

was developed to both generate data sets for the proposed joint model and analyze the data 

drawn using the MCMC algorithm as a sampling method to estimate the unknown 

parameters in joint model with different prior information. It is particularly striking that 

there was correct identification of the hyperparameters of prior distribution in at least some 

cases. This method of estimation, however, performs accurately in most conditions, and it 

can be considered as the pioneer of using the theory associated with a Bayesian approach 

on joint models in estimating the unknown parameters. Further validation employing joint 

models or adopting more advanced methods in both the MCMC technique and Bayesian 

estimations will clarify and expand the usefulness of this approach.
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################################################################## 

# Packages # 

################################################################## 

install.packages('R2OpenBUGS')            # provide rep(dat,times) 

install.packages('MASS')                  # provide rep(dat,times) 

install.packages('coda')        # provide rep(dat,times) 

install.packages('maxLik')                  # maxLik 

install.packages('AlgDesign')                  # gen.factorial 

install.packages('mefa')        # provide rep(dat,times) 

install.packages('doParallel')        # provide rep(dat,times) 

install.packages('parallel')        # provide rep(dat,times) 

 

library(R2OpenBUGS) 

library(MASS) 

library(coda) 

library(maxLik) 

library(AlgDesign) 

library(mefa) 

library(doParallel) 

library(parallel) 

 

################################################################## 

# Parameter Setting (Pscheme: 1 to 6) # 

################################################################## 

parameter = matrix(c(1,1,2,2,0.5,0.5, #1:sigma 

                     0.4,0.4,0.4,0.4,0.4,0.4, #2:beta0 

                     0.2,0.2,0.2,0.2,0.2,0.2, #3:beta1 

                     0.3,0.3,0.3,0.3,0.3,0.3, #4:beta2 

                     0.1,0.1,0.1,0.1,0.1,0.1, #5:beta3 

                     0.3,0.3,0.3,0.3,0.3,0.3, #6:beta4 

                     0.4,0.4,0.4,0.4,0.4,0.4, #7:beta5 

                     0.9,0.9,0.9,0.9,0.9,0.9, #8:beta6 

                     0.8,0.8,0.8,0.0,0.0,0.8, #9:phi 

                     0.1,0.1,0.1,0.1,0.1,0.1, #10:gamma 

                     2,1,2,1,2,1, #11:alpha 

                     0.01,0.02,0.01,0.02,0.01,0.02),#12:delta 

                   nrow=6) 

 

################################################################ 

# create design matrix (X) with two cat & two cont vars # 

################################################################ 

design=function(level=c(3,3),m=18,c=2){ 

  catg=gen.factorial(levels=level,center=FALSE,factors='all') 

  ext=rep(catg,m/(prod(level))) 

  des=model.matrix(~.,data=ext) #'~.' is supported by {AlgDesign} 

  cont=data.frame(matrix(NA,nrow=m,ncol=c)) 

  for (i in 1:c){ 
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    cont[i]=rnorm(m) 

  } 

  xmatrix=as.matrix(cbind(des,cont)) 

  xmatrix 

} 

 

################################################################ 

# Create Data: c('outcome','time','subject') # 

################################################################ 

outcome<- function(m=m,num=num,parm=parm){ 

  if (num == 1) {n1 = 10; n2=10} 

  if (num == 2) {n1 = 5; n2=3} 

  if (num == 3) {n1 = 10; n2=5} 

  if (num == 4) {n1 = 20; n2=6} 

  ndesign = matrix(c(rep(n1,m/2),rep(n2,m/2)),byrow=T) 

  nn=cumsum(c(1,ndesign[-length(ndesign)])) 

  raw = matrix(NA,sum(ndesign),3) #Null matrix 

  mu = xmatrix %*% parm[2:8] # mu is matrix 

  raw[nn,1]= mu + rnorm(m)*parm[1] 

  raw[nn,2] = rexp(m) 

  for (i in 1:m){ 

    for (j in 2:ndesign[i]){ 

      yjmin1 = raw[nn[i] - 1 + j - 1,1] 

      raw[nn[i] - 1 + j,2] = rexp(1)* 

        exp(parm[11] +parm[12] * yjmin1) 

      raw[nn[i] - 1 + j,1] =mu[i] + yjmin1 * parm[9] + 

        raw[nn[i]-1+j,2]*parm[10]+rnorm(1)*parm[1] 

      raw[nn[i],3]=i 

      raw[nn[i]-1+j,3]=i 

    } #j 

  }#i 

  result=list(raw=raw,nn=nn,ndesign=ndesign) 

  result 

} #outcome 

 

########################################################## 

# The Bayesian Model   #   First scenarios 

########################################################## 

## Instead of writing the model in a text editor, we can enter it in R script: 

 

sink("bayesmod1.txt") 

cat(" 

model{ 

  for (i in 1: m){ 

    y[nn[i]] ~ dnorm(mu[nn[i]], tau)    #initial obs for each subjects  

       mu[nn[i]] <- inprod(xmatrix[i,], beta[]) 
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    for (j in 2:ndesign[i]){ 

      y[nn[i]+(j-1)] ~ dnorm(mun[nn[i]+(j-1)], tau) 

      t[nn[i]+(j-1)] ~ dexp(theta[nn[i]+(j-1)]) 

      mun[nn[i]+(j-1)] <- gamma * t[nn[i]+(j-1)] + phi * y[nn[i]+(j-2)] + mu[nn[i]] 

      theta[nn[i]+(j-1)] <- alpha + delta * y[nn[i]+(j-2)] 

       

    } 

  } 

    ####    Prior Distribution     #### 

    ## First scenario: Informative Prior ## 

     

    #Priors on the coefficients of covariates  

    for (k in 1: p+1){ 

        beta[k] ~ dnorm(0.4, 4.0) 

    } 

    gamma ~ dnorm (0.5, 0.5) 

    phi ~ dnorm (0.2, 0.2) 

    alpha ~ dnorm (2.0, 0.2) 

    delta ~ dnorm (0.2, 0.1) 

    tau ~ dgamma(0.2, 0.2) 

    sigma <- 1/tau    # sigma: variance of the normal distribution 

} 

 

", fill=TRUE)  

sink() 

 

########################################################## 

# The Bayesian Model   #   Second scenarios 

########################################################## 

## Instead of writing the model in a text editor, we can enter it in R script: 

 

sink("bayesmod2.txt") 

cat(" 

model{ 

  for (i in 1: m){ 

    y[nn[i]] ~ dnorm(mu[nn[i]], tau)    #initial obs for each subjects  

       mu[nn[i]] <- inprod(xmatrix[i,], beta[]) 

      

    for (j in 2:ndesign[i]){ 

      y[nn[i]+(j-1)] ~ dnorm(mun[nn[i]+(j-1)], tau) 

      t[nn[i]+(j-1)] ~ dexp(theta[nn[i]+(j-1)]) 

      mun[nn[i]+(j-1)] <- gamma * t[nn[i]+(j-1)] + phi * y[nn[i]+(j-2)] + mu[nn[i]] 

      theta[nn[i]+(j-1)] <- alpha + delta * y[nn[i]+(j-2)] 

       

    } 

  } 

    ####    Prior Distribution     #### 
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    ## Second scenario: Noninformative Prior ## 

     

    #Priors on the coefficients of covariates  

    for (k in 1: p+1){ 

        beta[k] ~ dnorm(0.0, 1.0E-6) 

    } 

    gamma ~ dnorm (0.0, 1.0E-6) 

    phi ~ dnorm (0.0, 1.0E-6) 

    alpha ~ dnorm (0.0, 1.0E-6) 

    delta ~ dnorm (0.0, 1.0E-6) 

    tau ~ dgamma(0.001, 0.001) 

    sigma <- 1/tau    # sigma: variance of the normal distribution 

} 

 

", fill=TRUE)  

sink() 

 

########################################################## 

# The Bayesian Model   #   Third scenarios 

########################################################## 

## Instead of writing the model in a text editor, we can enter it in R script: 

 

sink("bayesmod3.txt") 

cat(" 

model{ 

  for (i in 1: m){ 

    y[nn[i]] ~ dnorm(mu[nn[i]], tau)    #initial obs for each subjects  

       mu[nn[i]] <- inprod(xmatrix[i,], beta[]) 

      

    for (j in 2:ndesign[i]){ 

      y[nn[i]+(j-1)] ~ dnorm(mun[nn[i]+(j-1)], tau) 

      t[nn[i]+(j-1)] ~ dexp(theta[nn[i]+(j-1)]) 

      mun[nn[i]+(j-1)] <- gamma * t[nn[i]+(j-1)] + phi * y[nn[i]+(j-2)] + mu[nn[i]] 

      theta[nn[i]+(j-1)] <- alpha + delta * y[nn[i]+(j-2)] 

       

    } 

  } 

    ####    Prior Distribution     #### 

    ## Third scenario: Semi-informative Prior ## 

     

    #Priors on the coefficients of covariates  

    for (k in 1: p+1){ 

        beta[k] ~ dnorm(0.4, 4.0) 

    } 

    gamma ~ dnorm (0.0, 1.0E-6) 

    phi ~ dnorm (0.0, 1.0E-6) 

    alpha ~ dnorm (0.0, 1.0E-6) 
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    delta ~ dnorm (0.0, 1.0E-6) 

     tau ~ dgamma(0.2, 0.2) 

    sigma <- 1/tau    # sigma: variance of the normal distribution 

 

} 

", fill=TRUE)  

sink() 

 

########################################################## 

# Simulation # 

########################################################## 

#Pschem = r  # parameter schemes, 1 to 6 

 

m = 18      # sample sizes, 18, 36, 54, 90, 180 

num = 4    # design structure 1(10,10), 2(5,3),3(10,5),4(20,6) 

p = 6         # the explanatory variables.  

 

xmatrix=design(level=c(3,3),m=m,c=2) 

 

fsim<-function(){ 

  out = array(NA,c(6,ncol(parameter), 4)) 

  for (r in 1:6){ 

    parm = parameter[r,] 

  

   # compute some info to be used in optimization 

    result=outcome(m=m,num=num,parm=parm) 

    y=c(result$raw[,1]) 

    t=c(result$raw[,2]) 

    nn=c(result$nn) 

    ndesign=c(result$ndesign) 

    p = 6  # the explanatory variables.  

     

    # Read in the data frame for BUGS: 

    sim.dat.bugs <- list( "y" , "m" , "p" , "t", "nn", "ndesign", "xmatrix") 

 

    ## Define the parameters whose posterior distributions we are  

    ## interested in summarizing: 

    bayes.mod.params <- c("sigma", "beta", "phi", "gamma", "alpha", "delta", "tau") 

 

    ## Define the starting values for BUGS.  

    bayes.mod.inits <- function(){  

      list("tau" = parm[1], "beta" = parm[2:8], "phi" = parm[9],  

           "gamma" = parm[10], "alpha" = parm[11], "delta" = parm[12]) 

    } 

     

    ## Now, we are ready to use the bugs() function, which calls OpenBUGS.  

    ## We have to specify the location of the model file, the data, the parameters,  
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    ## the initial values, as well as how many chains we want to fit and how long  

    ## we want to run them.  

 

    bayes.mod.fit.R2OpenBUGS <- bugs( data = sim.dat.bugs, 

                                      model.file = "bayesmod1.txt",  

                                      parameters.to.save = bayes.mod.params,  

                                      inits = bayes.mod.inits,  

                                      n.chains = 1,  

                                      n.iter = 20000,  

                                      n.burnin = 10000,  

                                      n.thin = 1,  

                                      debug=FALSE, 

                                      codaPkg=TRUE) 

     

    code.object <- read.bugs(bayes.mod.fit.R2OpenBUGS) 

    ## Heidelberger and Welch Convergence Diagnostic 

    hw <- heidel.diag(code.object)[[1]][,1][-c(10,14)] 

 

    hw1[hw==""]<-0 

    hw1[is.na(hw)] <- 0 

     

    ## 1 = pass the stationarity test and halfwidth test 

    ## 0 = failure of the chain to pass 

    if (sum(hw)==12){ 

      Bayes.Est1 <- summary(code.object)$statistics[,c("Mean","SD")][-c(10,14),] 

      Bayes.Est2 <- summary(code.object)$quantiles[,c("2.5%","97.5%")][-c(10,14),] 

      Bayes.Est <- as.matrix(cbind(Bayes.Est1,Bayes.Est2)) 

    } else { 

      Bayes.Est <- NA 

    } 

    out[r,,]=Bayes.Est 

  } 

  return(out) 

} 

 

cl <- makeCluster(32)                        ########################################## 

registerDoParallel(cl)             ## TO MAKE SIMULATION FASTER THAN USUAL ##  

pack<-c("R2OpenBUGS","coda")     ########################################## 

rep=1000 

 

system.time({ results<-foreach(r=1:rep, .packages=pack) %dopar% fsim() }) 

 

results 
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