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Abstract 

In this paper, we suggest a new neural network architecture for vanishing point detection in 
images. The key element is the use of the direct and transposed fast Hough transforms separated 
by convolutional layer blocks with standard activation functions. It allows us to get the answer in 
the coordinates of the input image at the output of the network and thus to calculate the coordi-
nates of the vanishing point by simply selecting the maximum. Besides, it was proved that calcula-
tion of the transposed fast Hough transform can be performed using the direct one. The use of in-
tegral operators enables the neural network to rely on global rectilinear features in the image, and 
so it is ideal for detecting vanishing points. To demonstrate the effectiveness of the proposed ar-
chitecture, we use a set of images from a DVR and show its superiority over existing methods. 
Note, in addition, that the proposed neural network architecture essentially repeats the process of 
direct and back projection used, for example, in computed tomography. 
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Introduction 

The vanishing point (VP) is the intersection point of 2D 
projections of straight lines that are parallel in 3D space. In 
the field of computer vision, the problem of VP detection 
regularly arises in a great number of applications. It includes 
an analysis of both 2D and 3D scenes using images obtained 
by various types of cameras. In the 2D case, for example, we 
encounter all kinds of flat objects, such as documents with 
text (ID cards, bank cards, scanned pages, etc.). The current 
solution, in this case, begins with searching for the rectangle 
of the object [1] followed by straightening [2] for further 
recognition. The problem is that it is not always possible to 
find the rectangle because it may be beyond the edges of the 
image, merged with the background or obscured by other 
objects. There is an alternative group of methods that solve 
this problem using VP detection. In the case of a 3D scene, 
the detection of vanishing points is necessary to find objects, 
to assess their orientation or the orientation of the camera 
[3]. An example is shown in Figure 1. The vanishing point 
there (V in Figure) is the intersection point of the road edges. 
Similar images are used in this paper for VP detection. 

The classical approach to VP detection is presented in 
the work of Stephen Barnard [4]. The author uses a 

Gaussian sphere located in the optical center of the cam-
era. Each point in the image corresponds to a point on the 
sphere, which is regarded as a radius vector. In this way, 
we can get mappings of infinitely distant points into a fi-
nite space and process them using conventional methods. 
In this case, the radius vector of an infinitely distant point 
will have the zero coordinate z. To find vanishing points, 
it is necessary to find the intersection points of all the 
lines in the image, and then to combine them into clus-
ters. All the lines belonging to the same cluster represent 
a bunch of parallel straight lines in a certain perspective. 
For example, in [5], the authors propose to find the base-
lines of a text and the inclination angle of the characters 
using clusters of points on the Gaussian sphere. The main 
problem of the method is that the detection of straight 
lines is not so simple in images of natural scenes. 

Another approach to VP detection is based on finding 
the intersection point of lines in the image. The following 
model is used to describe it: Let P = pi, i = 1n be 
straight lines on flat images representing parallel lines in 
space. The line pi is described by a linear equation: 

  | ,  i i i ip x y a x b y c   . (1) 
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Thus, the vanishing point V(x, y) is an approximate so-
lution to the system of linear equations 1 because there 
may not be an exact solution (when, for example, there 
are more than two straight lines and there is no unique in-
tersection point). To find the VP using this model, we 
need to find straight lines in the image. A standard ap-
proach to finding them is to use the Hough Transform 
(HT). The paper [6] demonstrates various possible appli-
cations of such algorithms. 

 
Fig. 1. Vanishing point 

In [7], the author uses this algorithm to detect three 
vanishing points, but he notes that his method works only 
when applied to good synthetic data. The authors of [8] 
search for the VP successively applying two Hough trans-
forms, but this method is very unstable to noise and the 
presence of outliers. A specific application of the Hough 
Transform for camera calibration is presented in [9]. The 
authors do not use information about camera parameters, 
but instead, transform the image of a chessboard because 
it contains a set of contrasting orthogonal lines that are 
easy to detect.  

Recent papers show that artificial neural networks be-
gan to be used in VP detection. For example, [10] con-
tains a solution to the problem of finding a vanishing 
point in images of road views using convolutional/fully 
connected neural network architectures with a large num-
ber of learning parameters (AlexNet, VGG). It also can 
be seen there that the method shows a low quality of 
work on images other than images from the training sam-
ple. Another application of convolutional neural networks 
in a similar problem is proposed in [11]. The authors 
trained the network to detect the horizon lines in the im-
age. However, the use of these architectures for such 
tasks contains one serious problem: in the general case, 
the problem of the vanishing point detection cannot be 
solved only on local features, as it is done in fully convo-
lutional networks, and the application of fully connected 
layers to the whole picture typically adds a huge number 
of learning parameters and significantly increases the 
amount of data required for training.  

The idea of the convolutional network and FHT com-
bination for VP detection have already been discussed 
[12]. The architecture suggested in that work contained 
two FHT layers interlaid by convolutional ones and had a 
fully-connected layer at the end. Such kind of architecture 
was used for proper comparison with the results stated in 

[10], where authors did not use FHT layers but ended the 
architecture with the fully-connected one. The problem of 
this layer is that poorness of train data makes it learn par-
ticular coordinates. However, removing the fully-
connected layer from the previously suggested architec-
ture will lead to the input connected with the output by 
the piecewise projective transform, whereas using the 
transposed FHT layer allows to get the output in the orig-
inal image coordinates. 

Note, that all the approaches [13] based on Hough 
transform use only its direct version. It means that finding 
VP location in the original image relying on the answer 
of such an algorithm is non-trivial. However, using it in 
pair with another transform converting a coordinate sys-
tem into the initial state can make the algorithm more 
convenient to use. For example, an inverted Hough trans-
form may be used, but the task of inversion is very com-
plicated for that kind of transforms [14]. In [15] authors 
use the Moore-Penrose Pseudo Inverse because the ma-
trix of the forward-projection operator cannot be inverted.  
Taking into consideration the presence of compound fil-
tering between integral layers we can use transposed 
Hough transform instead. This transform is easy to con-
struct, and in our work, we will prove that it is possible to 
compute it with the help of direct fast Hough transform. 

In this paper, we propose the architecture of a neural 
network, which is a combination of convolutional layers, 
of the fast Hough transform (FHT), and of a transposed 
FHT, which will enable the neural network to use not only 
local (as is the case with fully convolutional neural net-
works), but also global features. The idea of such a net-
work architecture was based on the provided proof of the 
possibility to compute the transposed FHT using direct 
one, that allowed to exclude the explicit matrices multipli-
cation. The interpretation of the network response will be 
reduced to a simple choice of the maximum owing to the 
use of the transposed HT. The effectiveness of the pro-
posed approach will be demonstrated based on the task of 
the VP detection on road images taken from DVRs. 

1. The proposed approach 

The proposed method is very similar to the filtered 
back projection used in computer tomography [16]. It is 
based on the Radon transform, discrete form of which is 
often referred as Hough transform. 

The simplified idea of using a combination of the 
FHT and the transposed HT is shown in Figure 2. As an 
example, we took image 2a containing three lines with a 
common intersection point and a fourth line lying sepa-
rately. Image 2b is the result of applying the FHT; it 
shows four blurry points, one for each straight line in the 
original image. The result of applying the transposed HT 
for a set of mostly horizontal lines to image 2b is shown 
in image 2c. The brightest point corresponds to the line 
on which the most points of the image 2b lie. Figures 2a-
c are inverted for visibility. 
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Here we did not include the results of the transfor-
mation along vertical lines because they did not provide 
any useful information in this case (there are only mostly 
horizontal lines in the image). 

 (a)  (b)  (c)  

(d)  (e)  (f)  
Fig. 2. Hough transform for vanishing point 

But applying the direct and transposed HT to natural 
images does not simplify the task of the vanishing point 
detection (see fig. 2d, 2e, 2f). An additional non-trivial 
image filtering is required in this case at each of the steps 
(as well as filtering the features of lines with certain in-
clination angles in the first case), which in our method 
will be done by blocks of convolutional layers. The paper 
[17] shows that the detection of straight lines by means of 
the HT with non-ideal data and the presence of over-
shoots implies the use of window operations. In addition, 
such a network will be able to rely not only on intensities 
along rectilinear objects but also on more complex non-
linear statistics. Although there are studies where the 
Hough transform is used in conjunction with neural net-
works, for example, as described in the papers [13,18], 
we failed to find any references to learning through it. 

It is expected that the output of the last convolutional 
layer will produce an image containing bright points at 
positions related to vanishing points in the input image. 
There are several options for further actions. For exam-
ple, the image can be covered with a grid of arbitrary 
size, and the softmax classifier can be trained to “recog-
nize” the cell that contains the desired vanishing point, as 
it is done in [12]. Alternatively, we can construct an esti-
mate of each point (x, y) of the original image, which de-
notes the probability that it is a vanishing point. But in 
our case, the pixel with the maximum brightness value at 
the output of the last convolutional layer will correspond 
to the vanishing point in the original image. 

2. Basic units 
Neural network layers 

An artificial neural network is an information pro-
cessing paradigm built from the model of biological neu-
ral network functioning. It was first introduced in 1943 
by Warren McCulloch and Walter Pitts [19]. The network 
is based on a set of connected units called artificial neu-
rons. The neurons are combined into layers of various 

types, which can perform different kinds of transfor-
mations of input data. 

The neural networks with convolutional layers (con-
volutional neural networks) have been used since 1980 
[20]; they have been developing rapidly since then and 
are currently one of the most popular and powerful image 
analysis tools. The input and output data of convolutional 
neural networks are images. A convolutional layer con-
sists of a set of filters, each of which has its kernel. The 
filters are applied to different image areas spaced with a 
predetermined interval, for which reason convolutional 
layers are much less likely to be overfitted than fully 
connected ones, which ensures a better generalizing abil-
ity. The main drawback of convolutional neural networks 
is their high consumption of computational time re-
sources, but numerous methods have already been devel-
oped to solve this problem from concurrent recognition 
on the GPU and CPU using fixed-point arithmetic to the 
tensor decomposition of filters. 

Fast Hough transform 

The Hough transform is a linear transform [20] that 
associates each straight line in the input image with a 
point in the output image. The result is the space H  R2. 
The point (s, )  H contains the sum of the pixel intensi-
ties of the input image I along a line l where s is the dis-
tance from the line to the origin and  is the angle be-
tween the line and the positive direction of the abscissa 
axis on I. That is, l(s, ) = {(x, y) | s = xcos + ysin}. 

   
( , ) ( , )

,  , .
x y l s

H s I x y
 

    (2) 

The computational complexity of the classical algo-
rithm is O(n3), where n is a linear size of the image. This 
paper uses the fast Hough transform [6] to save pro-
cessing time. This version of the algorithm is faster due 
to the use of self-similar patterns for integration along 
straight lines with the calculation of partial sums. It is 
important to note that such recursive patterns approxi-
mate real lines in images with an accuracy sufficient for 
most problems [22, 23]. The computational complexity of 
the fast Hough transform is O (log (n) n2). 

In this part we consider the FHT algorithm for mostly 
horizontal straight lines directed downward for the imag-
es of size (2p, 2p), where p  . 

The FHT algorithm is defined in the paper [22]. Input 
and output of this algorithm are images that have the 
same size. The brightness of each pixel in the output im-
age is the sum of the brightness of pixels belonging to 
one discrete line (dyadic pattern) in the input image. You 
can see all dyadic patterns of length 4 in figure 3. A pixel 
Out(x0, ) in the output image contains information about 
the pattern that have the slope  pixels and starts at the 
pixel I(x0, 0). In the paper [22] author gives the analytic 
definition of patterns. This definition is equivalent to the 
recursive definition (that can be derived from the defini-
tion of the FHT algorithm). Let us define the function of 
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indentation of patterns’ pixels: if n = 2p is a length of the 
pattern, 0, 1t n   is the indentation of the whole pattern, 

0, 1x n   is the number of the pixel position, 
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are decompositions of x and t by powers of 2, then the in-
dentation equals  
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




 . 

 
Fig. 3. Patterns of length 4 

Transposed Hough transform 

In this paragraph, we will prove that for calculating 
transposed fast Hough transform we just need to flip ver-
tically input and output image of FHT algorithm. 

The set of all images with shape (n, n) can also be 
considered as a vector space X. Let us enumerate image 
pixels row-wise: * : , , 1,  ,i n j ijI I i j n I X      and assign 
basis vector xm to pixel Im for each m. Define the inner 
product in this space by the dot product. The brightness 
of each pixel in the output image is the linear combina-
tion of brightness of pixels in the input image and the 
output image X, hence the action of the FHT algorithm 
can be considered as the action of the linear operator 
 : XX. Denote by A matrix of . A will be also called 
the FHT matrix. The Gram matrix of X is the identity ma-
trix, hence the matrix of * (transpose of ) is AT. 

Lemma 1. H(x, t) = H(t, x) for fixed n. In other words, 
a matrix that consists of the patterns indentations is sym-
metric.  

Such a matrix for the patterns of length 4 is presented 
in figure 4. 

 
Fig. 4. Matrix of patterns indentations 

Proof of this lemma was given in paper [24], but it 
was based on another definition of the pattern. In the pa-
per [23] the author uses the same definition as was given 
earlier, but he uses this statement without proof. 

Proof. Let us replace x by its decomposition by pow-
ers of 2 and then replace the fraction inside the sign of 
rounding by the sum of fractions:  

1 1 1

0 0 0

2 2 2
( , ) [ ] [ ]

2 1 2 1

p p pr r i
i

r rp p
r r i

x x
H x t t t

  

  

 
   

.  (3) 

Note that  

2 2
2

2 1 2 1

y y p
y p

p p
y


   

 
 , 

 there fore 0, 1r p   : 

2 2 2
{( ), 0, 1} {( ), 0, 1} :

2 1 2 1

r i i
i i

p p

x x
i p i p S     

 
. (4) 

Let us note two important properties of S: only one 
element in S can be bigger than 1/2: (xp–12p–1)/(2p–1), and 
also the sum of all elements in S is not bigger than 1:  

1 1 1

0 0 0

2 2 1
( 2 ) 1

2 1 2 1 2 1

p p pi i
i i

p p p
i i i

x  

  

  
     . (5) 

Now let us rewrite (3):  

1 1

0 0

1 1

0 0

2 2 2 2 2 2
[ ] [ ( ( ))]

2 1 2 1 2 1

2 2 2 2
[ ( )].

2 1 2 1

p pr i r i r i
i i i

p p p
i i

p pr i r i
i i

p p
i i

x x x

x x

 

 

 

 

    
  

   
 

 

 
 (6) 

Note that if (y)<1/2, therefore y = [y]. From this and 
two properties of S we can conclude that 

0
1

1 1

0

2 2 2 2
[ ]

2 1 2 1

p pr i r i
i i

p r
i i
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x x
x


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



   
   , (7) 

and 
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( )
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

 



 .  (8) 

Finally combine results (3), (6), (7) and (8): 
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 (9) 

◄ 
Let us consider the FHT matrix as a block matrix B 

with all blocks having a size (n, n) (see figure 5). Blocks 
Bi,j will be also denoted as (i,j) -blocks. 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

n

n

n n n n

A

 
 
   
  
 

B B B

B B B

B B B




   


. 
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(a)   (b)  
Fig. 5. Compare blocks of matrices with equally numbered 

areas on figure 4: (a) FHT matrix; (b) FHT matrix if we will 
rotate input image before algorithm (AC) 

Lemma 2. Blocks are symmetrical.  
Proof. Am,q is the projection of the input pixel q on the 

output pixel m, therefore Bi,j is the projection of the input 
row of pixels {( 1)* , 1, }j n k k n    on the output row of 
pixels {( 1)* , 1, }i n k k n   . Therefore 

 
, ,

1, if ( , ) (mod  );
( )

0,  else,
i j k l

H k l n i j n   
 


B  

where H is previously defined indentation function. From 
lemma 1 H(k, l) = H(l, k), therefore, Bi,j is symmetrical. ◄  

Lemma 3. Bi,j
 = B(i+k–1)(mod n)+1, (j+k–1)(mod n)+1 for all 

, 1, , 0, 1i j n k n   .  
Proof. The FHT algorithm input image rows rotation 

will rotate the output image rows. The FHT matrix col-
umns are the output images of X basis vectors. Hence 
columns xi and xi+n are rotated cyclically by n pixels, 
then Ai,j

 = Ai+n,j+n. Therefore, elements of B in one diag-
onal are equal. ◄ 

Let  be the operator that flips an image: ei*n+j
 = e(n+1–

i)*n+j, where , 1,i j n , C is a matrix of ). 
Denote n×n blocks of matrix AC by ijB  (see figure 

5b) and blocks of matrix CAC by ˆ
ijB . 

Lemma 4. AC is symmetric.  
Proof. Right multiplication of matrix A by matrix C 

permutes columns of the matrix A. Even more from the C 
definition we can conclude that this multiplication permutes 
columns of the matrix B, i.e. it does not change the disposi-
tion of the A columns inside a group  
{(i–1)*n+k, k = 1, n}, i=1, n. , 1 ,i j n i j B B , 
 , 1 1 , 1 ( , ) (1,1) ( 1 )j n i n j n i i j n i j           B B B . From lemma 3 
Bi,j=B(i+j)+(1,1)×(n+1–i–j), therefore, B  is symmetric. From lem-
ma 2 Bi,j are symmetric and thus AC is also symmetric. ◄ 

Theorem 1.  =* (or CAC =AT.  
Note that C = C–1, therefore AT is also a matrix of  in 

basis < xi >. We will prove the theorem using lemmas 1, 
2, 3, 4. 

Proof. , 1 ,i j n i j B B . From lemma 4 AC is symmetric 
therefore 1 , , 1n i j j n i   B B  . Left multiplication of matrix 
AC by matrix C permutes rows of matrix AC and matrix 
B . Therefore , , 1 , 1 ( 1 ) ,

ˆ ˆ
i j j n i j n n i j i       B B B B . From 

lemma 2 all Bi,j are symmetric, therefore, CAC =AT. ◄ 

The Hough transform as a neural network layer 

To train a neural network to detect lines and vanishing 
points, it is necessary to calculate the FHT inside the neu-

ral network. Our first implementation was based on the 
idea that both the classical and fast Hough transform can 
be calculated using an untrainable fully connected layer 
with pre-calculated weights. This approach makes it pos-
sible to use standard training tools without any changes. 
The main disadvantage of this method is that it requires 
O(n2) memory, where n is the length of the input vector. 
Another problem is that the weight matrix contains many 
zero values, which indicates unnecessary time costs. 

For this reason, the next step was the implementation of 
a new FHT layer, which simply calculates the transfor-
mation inside the neural network. Since learning layers are 
located before the FHT layer, it was necessary to imple-
ment the backpropagation of the gradient for it. We used 
the FHT for forward propagation and equation (10) for 
backpropagation, which corresponds to the transposed 
Hough transform. The equation was obtained numerically. 

   
  (, , )

,  , ,H
s l x y

I x y H s


   (10) 

where IH is the transposed Hough transform and 
lxy

 ={(s, )| s = xcos + ysin} is the set of Hough-
parameters of all lines passing through the point (x, y) in 
the space of the image. According to theorem 1 (10) can be 
computed using FHT algorithm in O(log(n)n2) operations. 

3. Experiments 

We used data from [10] for a numerical experiment. 
This dataset consists of frames of records from DVRs of 
cars, buses, or trucks found on YouTube and made in 
traveling around America. The frame size was 300×300 
pixels. There were 9972 images in total, which were ran-
domly divided into a training sample (8974 images) and a 
test sample (998 images). Examples of the images are 
shown in Figure 6.  

To estimate the error, we used the method also pro-
posed by the author of the dataset. Each image was cov-
ered with 10×10, 20×20, and 30×30 grids, and the answer 
was considered correct if the resultant vanishing point fell 
into a cell with the correct answer. At first, we tried to use 
the proposed AlexNet architecture but later realized that 
the declared quality can be achieved with a simpler archi-
tecture of the neural network. The convolutional network 
architecture consisted of four convolutional layers and one 
fully connected layer. And the input images had to be 
resized to 227×227 pixels as required by the original archi-
tecture. The main difference between our base architecture 
and AlexNet is that it has a smaller number of convolution 
kernels and just one fully connected layer. 

The detailed description of the basic architecture is 
presented in Table 1. The network with a new architec-
ture was trained after training the core network. The in-
novation was training through the layers of the direct and 
transposed FHT, which we added between the layers of 
convolutions. Moreover, we removed the fully connected 
layer and searched instead for the pixel with the maxi-
mum brightness value in the output image because the 
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image remained in the original coordinates after the ap-
plication of the direct and transposed FHT. The descrip-
tion of the proposed architecture is presented in Table 2. 
Padding layers were used before applying the FHT and 

transposed HT to compensate for the reduction in image 
size due to the use of convolutional layers without pad-
ding. Thus, just a “frame” of zero values around the pic-
ture was created in these layers. 

     

     
Fig. 6. Images examples 

Table 1. Base architecture 

# Type Parameters 
Activation 
function 

1 Convolutional 
32 filters 11×11, 

no padding, stride 
4×4  

relu 

2 Convolutional 
32 filters 5×5, 
padding 2×2, 

stride 1×1 
relu  

3 Convolutional 
32 filters 3×3, 
padding 1×1, 

stride 1×1 
relu 

4 Convolutional 
32 filters 3×3, 
padding 1×1, 

stride 1×1 
relu 

5 Fully-connected  - 
6 Softmax  - 

The total number of learning coefficients in the basic ar-
chitecture was 170967, 516576, and 1092576 for grids of 
10×10, 20×20, and 30×30, respectively, while the new net-
work had 25309 learning coefficients regardless of the grid 
size. It should be noted that we used a heavily modified ver-
sion of cuda-convnet for training the networks [25]. In the 
proposed architecture, a hyperbolic tangent was chosen as an 
activation function for convolutional layers and the function 
(11) for layers following the direct and transposed FHT. 

[ , ]
| |

a

a

x
rf a b

b x



. (11) 

It was found empirically that this kind of function 
qualitatively improves the network convergence. We as-
sume that the presence of an inflection point at zero plays 
the role of an amplifier of local extrema on Hough imag-
es, but this issue requires additional research. 

4. Results 

As a result of this study, an improved algorithm of 
training the convolutional neural network through the 

Hough transform layers was implemented. Although this 
type of layer can be expressed with fully connected and 
theoretically there is no need to invent anything, the ma-
trix of this layer will consist of n2 units, where is the 
length of the input vector. For example, the weight matrix 
will have 4∗1010 units for an image of 100×100×20 in 
size (relatively small for a convolutional neural network). 
The approach thus implemented makes it possible to cal-
culate direct and back passages through the HT layers 
without using this type of matrix. Moreover, it was 
proved that it is possible to calculate transposed FHT 
without explicit matrices multiplication using direct FHT. 
It means that the computational complexity of the pro-
posed transposed FHT algorithm is O(log(n)n2). 

Table 2. Improved architecture 

# Type Parameters 
Activation 
function 

1 Convolutional 
12 filters 5×5, no 

padding, stride 1×1  tanh 

2 Convolutional 
12 filters 5×5, no 

padding, stride 3×3 
tanh 

3 Convolutional 
12 filters 3×3, no 

padding, stride 1×1 
tanh 

4 Convolutional 
12 filters 3×3, no 

padding, stride 1×1 
tanh 

5 Padding 4×4 - 
6 FHT  rf[3,1] 

7 Convolutional 
12 filters 5×5, no 

padding, stride 1×1  tanh 

8 Convolutional 
12 filters 5×5, no 

padding, stride 1×1  
tanh 

9 Convolutional 
12 filters 5×5, no 

padding, stride 1×1  
tanh 

10 Padding 6×6 - 

11 
Transposed 

HT 
 rf[3,1] 

12 Convolutional 
12 filters 5×5, no 

padding, stride 1×1  
tanh 

13 Convolutional 
12 filters 5×5, no 

padding, stride 1×1  
tanh 

14 Convolutional 
12 filters 5×5, no 

padding, stride 1×1  
rf[2,1] 
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Figure 7 shows examples of the operation of the pro-
posed algorithm and visualizes the purpose of the FHT layer. 
Since the intermediate outputs of the network are multichan-
nel, we selected for illustrations the channels that we thought 
to be the most illustrative. 7a shows the original image, 7b is 
the image obtained after the first block of convolutions, 7c is 
the output of the fast Hough transform layer, 7d is the output 
of the FHT after the second block of convolutions, 7e is the 
output of the layer of the transposed FHT, and 7f is the im-
age obtained at the output of the network - a bright spot at 
the assumed location of the vanishing point. It can be seen 
that by using the proposed method it is possible to train con-
volutional layers to select suitable straight lines and bounda-
ries and to solve the problem after that. 

Table 3 presents error values for basic and proposed 
methods for various net sizes and different numbers of 
point alternatives. Our method demonstrated a higher de-
tection accuracy. Moreover, it weakly depends on the size 
of the net due to the absence of a fully connected layer at 
the end. 

Table 3. Basic and suggested methods error values 
for different grid sizes 

Grid 
size 

Base – 
top 1, % 

Base – 
top 5, % 

Ours – 
top 1, % 

Ours – 
top 5, % 

10×10 31.7 5.2  1.5 0.7 
20×20 44.5 16.1 5.4 2.3  
30×30 52.9 25.6 6.2 3.1 

To show the tolerance of the proposed method to dif-
ferent image corruption we made an additional experi-
ment. We took the suggested network and modified test 
data so that the rectangles of different sizes with centers 
at the positions of vanishing points became blurry. Ex-
amples of the corrupted data are depicted in figure 8. 

  
Fig. 7. Examples from the neural network: (a) Input image; 
(b) Image after the first convolutions block; (c) FHT layer 

output; (d) Transposed FHT input; (e) Transposed FHT output; 
(f) Neural network output 

a)  b)  
Fig.8. Examples of defferent-sized images corruption: 

a)100×100; b)60×60 

The results of the second experiment where we used 
corrupted data are presented in figure 9. Graphs show er-
ror dependence on the size of a blurred area for different 
grid sizes.  

(a)    (b)  
Fig. 9. Suggested method errors for grids of sizes 10×10, 20×20 and 30×30: (a) Top 1 point; (b) Top 5 points 

It can be noticed that proposed method does not re-
quire the presence of the vanishing point in the image to 
locate it. The reason for it is that FHT layers rely on 
global rectilinear features in the image. This fact makes it 
possible to broaden the class of problems that can be 
solved using this method. 

According to the graph, the error of the variant using 
top 5 points remains the same to a certain size of blurred 

area for every grid size. This points to the fact that partial 
image corruption does not affect the result. The absence 
of a vanishing point in the image is quite conceivable, for 
example, in a road scene it can be obstructed by a car. 
Thus, according to experiment results suggested method 
is applicable enough to this problem because truly uses 
global features rather than local ones. Consequently, none 
of the usual convolutional networks with the finite recep-
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tive field can approximate the network with the proposed 
architecture. The experiment demonstrates that the sug-
gested network does not find a local intersection point it-
self but relies on lines segments around and finds their in-
tersection point. 

It is important to note that the FHT layer has no learn-
ing coefficients, so it does not complicate the network ar-
chitecture in terms of the number of weights. All opera-
tions on this layer are predetermined and do not change in 
the process of training. 

Finally, it is necessary to estimate the contribution of 
the FHT layer to the computational complexity of the al-
gorithm. The number of the required operations is about 
cs2log(s), where c is the number of image channels and s 
is the linear image size. The convolutional layer needs 
about cs22m operations, where f is the linear size of the 
filter and m is the number of filters. The ratio of the com-
putational complexities of the convolutional and FHT 
layers is (2m) / log(s) . Hence, the contribution is small 
and practically negligible in the case of deep convolu-
tional networks. 

Conclusion 

In this paper, we suggest a new neural network archi-
tecture based on using the direct and transposed fast 
Hough transforms. The theorem about the possibility to 
calculate transposed FHT without explicit matrices mul-
tiplication and with the same asymptotical complexity as 
the direct FHT was stated and proved. This theorem pro-
vided the basis for the proposed architecture. Its effec-
tiveness was demonstrated on the task of vanishing point 
detection in road images. In this case, the main advantage 
of the proposed method is that it avoids attempts to detect 
the vanishing point in some position in favor of finding 
suitable elements in the input image using convolution 
filters and constructing the resultant VP based on these 
elements. What is more, the proposed architecture does 
not contain fully-connected layers and, thus, less vulnera-
ble to overfitting and transposed FHT layer instead of the 
direct one allows us to treat answer coordinates normally 
instead of invoking piece-wise projective transform. 

The experiments thus conducted have shown that a 
trained network with the proposed architecture has a sig-
nificantly higher quality of detection and at the same time 
a much lower number of trainable parameters. In addi-
tion, due to the absence of fully connected layers, the 
neural network builds its answer regardless of the posi-
tion and hence is not overfitted on the positions of correct 
answers in the training sample. 

As part of further studies, it is planned to test this ap-
proach on other tasks from image segmentation to deter-
mining the orientation of objects. Additional research is 
needed for the use of a special activation function after 
the layers of the direct and transposed Hough transform. 
It is also planned to use other error functions to improve 
the learning process and convergence.  
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