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Abstract 

We present a generalization of standard leap-frog plus Yee mesh approach for Cauchy problem 
in electrodynamics simulations on unstructured triangulated mesh. The presented approach still in-
herits from finite-difference time-domain and do not use techniques developed in finite-volume 
time-domain approach. In the paper the whole flow from mesh creation to actual simulation is pre-
sented. The proposed computation flow is parallel ready and can be implemented for distributed 
systems (computation servers, graphical processing units, etc.). We studied the influence of non-
regular triangulation on stability and dispersion properties of numerical solution. 
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Introduction 

Typically dynamics of electromagnetic fields in vacu-
um or media is calculated via advancing of electromag-
netic field values set in the nodes of regular Manhattan 
Yee [1] mesh according to Maxwell equations plus equa-
tion for media response. In some cases the above ap-
proach is reduced to some scalar equations [2], lower or-
der with respect to time derivative [3, 4, 5] etc. In this pa-
per we will discuss those cases when vector nature of 
electrodynamic radiation matters and pure Maxwell equa-
tions should be solved [6, 7, 8]. In the case of free space 
or interaction of electromagnetic radiation with soft-
bounded media e.g. air plasma [9] regular Manhattan 
meshes seems to work fine if resolution is enough for 
media gradients and wavelengths under consideration. In 
the cases when electromagnetic radiation interacts with 
condensed media the geometry starts to play a significant 
role. Even if boundaries are straight lines (e.g. triangle 
particle) but those lines does not match mesh constraints 
the local amplification of electromagnetic fields instantly 
occurs along whole particle surface. These amplifications 
can be treated in average and for linear problems does not 
play a significant role. In cases of non-linear problems 
such amplifications can lead to over estimation of nonlin-
ear terms or/and result in some instabilities. In such cases 

the general type of meshes has to be used to match the 
geometry of the objects in simulation area. The most nat-
ural mesh is triangulated mesh. 

In the next section we will discuss the implementation 
of algorithm that can advance field values to simulate dy-
namics of electromagnetic radiation. Then we will study 
properties of the proposed method. In the last section we 
will describe how the mesh can be generated and opti-
mized for parallel calculations. 

Before getting to the details let us to present basic 
idea of switching from regular quad meshes to triangulat-
ed meshes. Standard Yee mesh shown in Fig. 1a assumes 
setting electrodynamic fields in some specially shifted 
positions. This allows using a simplest form of discrete 
approximation of partial derivatives. In Maxwell equa-
tions and linear hydrodynamic equations all partial deriv-
atives are of the first order so the best approximation is 
achieved exactly in middle point with respect to the nodes 
of operator operands. Very similar thing can be naively 
achieved if we bind all E and j vectors to the edges of the 
triangle mesh, magnetic field B vector will be then bound 
to some center point of triangles. For plasma like media 
we can attach charge density n to the nodes of the mesh 
(see Fig. 1). 

(a)      (b)  
Fig. 1. Generalization of quad mesh (a) to triangle mesh (b)for electrodynamics simulations 
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Note that the above approach differs from another 
known approach utilizing benefits of unstructured meshes 
FVTD [10, 11]. In that approach both field values E and 
B per current cell are bound to same cell point (typically 
some center point) and both values are known at the same 
moments of time. In our methodology the field values are 
known in different time points shifted by t / 2 allowing 
us to adopt leap-frog approach. The stated approach was 
also studied in papers [12, 13, 14] and in [15] as well. 

1. Numerical simulation 

We will consider Maxwell equations in vacuum, gen-
eralization to plasma like media will be given in the end 
of this section. We will not consider dielectric media 
here. In case of dielectric media more accurate analysis 
should be done for “mass matrices” which represent dis-
cretization for dielectric and magnetic permittivities [12, 
13]. The discrete formulation for unstructured mesh re-
mains its general form: 
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Here linear operators ˆ
EL  and ˆ

BL  are discrete formula-
tions of curl operator. It is worth to introduce the follow-
ing short notation for above system as well: 
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Let us accurately write down the exact form of L̂  op-
erators on triangular mesh. In the Fig. 2 we present all 
necessary symbols to compose those operators. 

 
Fig. 2. Ei is the projection of electric field to i-th edge in the 
center of the edge, Bi is a single magnetic field component 
(along y0 orth) in the center of circumcircle of i-th triangle,  

ei is an edge vector with arbitrary direction(since edges  
are shared we cannot apply any winding rule to choose  

some specific direction for edge vectors) 

Using notation from Fig. 2 operators ˆ
EL  and ˆ

BL  will 
obtain the following form: 
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Here R(i) and L(i) are the indexes of right and left trian-
gles correspondingly with respect to i-th edge. A(i, j) is 
the index of j-th edge adjacent to i-th triangle. Oi is a cir-
cumcircle center of i-th triangle and Ci is the center point 
of i-th edge. 

It can be noted that at least ˆ
BL  approximation does 

not achieve its best at the point where E vector is set 
since E is not necessary falls exactly between OR and OL. 
The best approximation is achieved for mesh of equilat-
eral triangles. We will discuss meshing and quality crite-
ria two sections later. 

It is worth to note that like in structured quad mesh 
from (3) it follows that divE remains constant over time. 
We will not prove this fact in details in order to not over-
load the scheme in Fig. 2 with additional notations. We 
will just notice that div can be calculated as a flux of E 
through the boundary of the Voronoy [16] diagram cell. 

To generalize such an approach to plasma like media 
one can add current vector j to each center of mesh edge. 
In that case equations for currents become local and 
without any matrix formalism can be written in the fol-
lowing form: 

n
t


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
j

E j , (5) 

where n and ν are plasma density and collision frequency 
correspondingly. Since electromagnetic field E and cur-
rent density j are set in the same point and are parallel so 
no extra interpolation is needed. According to Maxwell 
equations current should be added to Eq.(3) as: 
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Here we used dimensionless equations, thus no speed of 
light, electric charge or 4π factor appears in above equa-
tions. This natural generalization of vacuum problem (3, 4) 
gives the system (4, 5, 6) that can be solved with leap-frog 
method [17]. In the Fig. 3 we present snapshots of solution 
achieved for a bounding box having plasma like triangle 
inside and B∑ = 0 boundary condition. As seen from pre-
sented snapshots the quasi planar wave hits the triangle and 
reflects on it. Solution is stable with criteria for dt dis-
cussed below. Fig. 3a and 3c show the results achieved 
with unstructured mesh, Fig. 3b and 3d show the results for 
the same problem obtained with classic FDTD with Yee 
mesh (the full movie for modeling with unstructured mesh 
is available at [18]). The source code can be found in 
GitHub page (see the link in the end of the paper). 

In the next chapters we will carefully study how 
switching from structured quad mesh to unstructured tri-
angle mesh impacts dispersion and stability. 
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Fig. 3. Snapshots of magnetic part of p-polarized 

electromagnetic wave dynamics in the presence of plasma-like 
object (triangle in the center) calculated with unstructured  

grid – (a), (c) and with structured Yee-like grid (b), (d).  
The source is located in the bottom and appears  

to be a radiating line. Each inset has step label indicating 
sequential index of iteration over time. Arrow in (d) inset  

shows a wavy field pattern not observed in (c) 

2. Solution properties 

In this section we will study how switching from clas-
sic Yee mesh [1] to triangle based unstructured mesh af-
fects stability of solution and it’s dispersion properties. 
First we will discuss the dispersion properties for the dis-
crete formulation of Maxwell PDEs on unstructured 
mesh. We will start from energy conservation law which 
is preserved for discrete approximation of operator M̂ . 
Using this relation we will derive some properties of ex-
act solution for discrete problem (i.e. with continuous 
time). Such an approach was also utilized in paper [14] 
where authors studied properties of similar operator M̂  
for orthogonal unstructured rectangular grid. It was 
shown that the operator preserves second order of ap-
proximation. Here we will focus mostly on dispersion 
properties of our spatial operator. 

In the second part of the section we will discuss sta-
bility of leap-frog type of solution for Cauchy problem 
with finite time step dt.  

Energy momentum 

To calculate full electromagnetic energy 
W = ∫(|E|2 + |B|2)dS one should choose the specific form of 
scalar product for vector V. We will introduce the follow-
ing scalar product: 
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where ne and nt are the number of edges and triangles cor-
respondingly. From the chosen metrics it follows that elec-
tromagnetic energy momentum W can be calculated as: 
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Using equations (1, 2) for the first derivatives of E 
and B the first derivative of the above quantity can be re-
written as: 
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Last member of right hand side of the above equality 
can be rewritten in ‘per edge’ form instead of the above 
‘per triangle’ notation. In such a new notation it is easier 
to find discrete analog of energy conservation law. We 
will also assume that electric field set for outer edge cen-
ters is zero which corresponds to ideal resonator case. 
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More accurately the above equation can be rewritten 
in a divergent form for Poynting vector, but for the sake 
of simplicity we restricted ourselves with ideal resonator 
case with boundary conditions E∑ = 0, where ∑ is any 
boundary edge index. 

From discrete energy conservation law(10) it follows 
that 

 all eigenvvalues  of M̂  operator are real; 
 every two eigenvectors with different eigenvalues are 

orthogonal in the scope of metric (7). 
To solve eigenvalues problem Galerkin method is used 

typically [8]. Here with the above conclusions we can use 
“complex time” method to find eigenvectors and eigenval-
ues which does not require any zero approximation. The 
idea is based on the fact that if t is substituted by it new ei-
genvalues will become real, which does actually follow 
from energy conservation law (10). First eigenvector with 
maximal eigenvalue can be then found by updating new 
system with either Euler or leap-frog method. Being nor-
malized at each step at some point any random initial vec-
tor will converge to first eigenvector since all other solu-
tions will not survive due to lower eigenvalues. Next ei-
genvectors can be found using the fact that all eigenvectors 
with different eigenvalues are orthogonal in metric (7). So 
we can withdraw found eigenvector from any initial vector 
and start from it. By removing first eigenvector at each step 
we then will not allow this dominant eigenvector to rise 
from round-off errors, and finally will come to next eigen-
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vector. Complete solution can be found in GitHub (see the 
link in the end of the paper). 

In the Fig. 4 we plotted eigenvalues for all electro-
magnetic modes of rectangular resonator. The number of 
that eigenvalues equal to the number or cells in mesh or 
number of B vector components. Note that all eigenval-
ues has their copies with negative signe. We also have a 
number of zero eigenvalues describing eigen-subspace of 
static solutions. From Fig. 4 it is well seen that for lowest 
eigenvectors all three unstructured, structured and analytic 
solutions are quite close, and then analytic solution starts to 
show a difference while structured and unstructured ones 
remains quite close. This is a natural behavior for discrete 
problems related to so-called numerical dispersion. Then 
unstructured solution suddenly drops of the structured one. 
This happens due to completely different type of eigenvec-
tors for structured and unstructured triangle meshes (com-
pare colormap insets for mode number 68). 

 
Fig. 4. Eigenvalues λ against mode (eigenvector) index i for 

rectangular resonator with dimensions 70 × 101. Comparison 
of structured quad mesh against unstructured triangle mesh and 

exact analytic solution (see markers in legend). Modes are 
shown as colormap insets plotted for magnetic field value. 

Tilted colormaps are for unstructured mesh, straight ones are 
for structured mesh; mode number is specified near each inset 

The main conclusion here is that for eigenvectors that 
barely correspond to “physical” modes of ideal resonator 
the structured and unstructured discretization give very 
close results. We will get back to Fig. 4 right away after 
introducing a stability criterion for leap-frog scheme. 

Stability 

To study stability of proposed numerical scheme we 
will follow Taflove [15] and investigate stability of solu-
tion for modes discussed in previous section. Briefly 
speaking we will generalize well known leap-frog method 
stability criteria for oscillatory motion [17]. First we will 
write the system of equations for i-th mode, having ei-
genvalue i: 
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Now by applying leap-frog method we will achieve 
the following (further i is omitted): 
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By substituting the equations to each other we are 
making sure that for both E and B sub-vectors we have 
the same equation. Now let us consider this equation for 
any vector X: 
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Let us study solution properties by substituting expo-
nential solution A0 exp(i ω(t + dt)): 
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Note that in above expression if the square root is real ar-
gument of exponent can be treated as pure complex num-
ber. So we come to stability criteria in the following form: 

   if   d 2t   . (20) 

Stability is achieved if for every mode the above crite-
rion is fulfilled. So for whole scheme stability is achieved 
if dt < 2/max, where max is the cyclic frequency of highest 
mode. Obviously the criterion (20) is also true for struc-
tured mesh. Getting back to Fig. 4 it is well seen that un-
structured mesh is a little more unstable than structured one 
and requites smaller time steps. But at the same time it has 
less electric field components: 3/2 per magnetic field com-
ponent compared to 2 in case of quad structured mesh. 

3. Mesh generation  

In order to create a mesh for simulation one need to 
seed geometry i.e. add points to contours of boundary, 
objects and possibly some paths. Then using same seed-
ing parameter one should add some volume(area in 2d) 
nodes to mesh. For this node cloud classical Delaunay 
method [19] can be used to make triangles covering the 
convex hull of node cloud. 
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The first problem of above scheme is that generated 
triangles can cross the geometry. As non-robust solution 
we use ‘flip’ refinement method that flips pair of triangles 
contacting the edge that crosses the geometry (see 
Fig. 5a). This method has a drawback when multiple ad-
jacent triangles cross the geometry edge. 

The next problem is seeding of volume. This is ex-
pected to create a uniform fill but having some predefined 
geometry we can produce very small triangles. According 
to our results from previous chapter this is not acceptable 
for leap-frog scheme. Each tiny triangle will produce a 
mode with very high oscillatory frequency forcing us to 
lower dt and loose performance. To overcome the above 
problem we can run an iterative process of mesh refine-
ment which will shift nodes in a way to make nodes that 
are far from each other to become closer and vice versa. 
This can be done by solving a physical problem of nodes 
connected by springs along triangle edges (black springs 
in Fig. 5b) and along heights (gray springs in Fig. 5b). 
Both types of springs are needed to make triangle elastic 
enough since black springs only may allow for collapsing 
of the triangle. The initial spring length can be calculated 
in assumption that we magically generated mesh of per-
fect triangles covering whole volume. This will make uni-
form meshing that is needed in most cases for Maxwell 
equations simulations. If dense meshing is needed in 
some area springs length should become a field variable 
over space. Since we want a static solution we need to in-
troduce quite big dumping to nodes motion. By neglect-
ing second order derivatives over time we also can sim-
plify the problem of relaxation. This will lead us to jello 
model which can be easily solved either with Euler meth-
od. After some iterations of the above jello model we 
need to remesh the node cloud because some triangles 
may become significantly deformed and cancel further re-
laxation in their neighboring area. Plus we need to anchor 
seeding nodes of input geometry. 

(a)  (b)  
Fig. 5. Meshing algorithms: flip operation (a), jello model  

for area seeding (b) 

Later on some triangles of convex hull can be re-
moved to cover just needed area. We typically add 
bounding box around input geometry and then remove all 
elements that are out of input geometry. The above algo-
rithm was implemented and can be found in GitHub (see 
the link in the end of article). 

Divide and conqueror 

It is well known that classic leap-frog plus Yee mesh 
approach is highly local so it can be easily divided among 

calculating units and processed in parallel. The same is 
also true for an approach with unstructured meshes. The 
simplest idea of partitioning is to use KD tree idea. So 
having the depth of partitioning at each step one divide 
each part along x or y direction by two parts with same 
amount of elements. This works well for areas with rec-
tangular boundary and produce partitioning with optimal 
shared boundary length. At the same time by the algo-
rithm each part has nearly identical number of elements 
i.e. number of elements deviation is small. 

We have to fulfill both deviation and shared boundary 
criteria. Since we cannot use queue due to data transfer 
overhead we need to balance the load for each compute 
unit. To reduce the amount of data shared between com-
pute units at each step we need to minimize the size of 
shared boundary. In order to do that the bigger partitions 
should be created. 

For tricky geometries ‘KD’ partitioning may cross 
boundary contour some bad way and produce uncontrolla-
bly small partitions. This can be solved with ‘greedy’ parti-
tioning method. This method takes any element in the 
mesh and grows the area by adding neighboring elements 
at each step. When number of elements reaches desired 
number the algorithm switches to another partition by 
choosing another root node that was not ‘eaten’ before. It 
was found that such an algorithm performs best if each par-
tition is started from the ‘sharpest’ node i.e. the node on 
existing boundary that has smallest number of neighbors. 

After the partitioning is done with either KD or 
‘greedy’ the result can be refined. We used two types of 
refinement: 
 Join very small(smaller than threshold) parts with 

neighboring parts. We join to smallest part above 
with size the threshold. 

 Join ‘hanging’ triangles to neighboring part. ‘Hang-
ing’ are the triangles that contact own part by only 
one edge and with other two edges contact single 
neighboring part. Triangles contacting three parts are 
not refined. 

In Fig. 6 we present partitioning result with all re-
finements are done. From the Fig. 6 it is seen that ‘KD’ 
produces more stable parts in terms of size <nt>p devia-
tions. The shared boundary size l∑ is nearly the same for 
both methods. We can conclude that ‘greedy’ is not so 
bad compared to KD, having certain important ad-
vantages over KD: 
 ‘greedy’ not sensitive to non-trivial geometries 
 KD produces 2n parts, ‘greedy’ can produce any 

number of parts. 
We hope that partitioning will allow using all the 

above methodology with any distributed system from 
classical clusters to GPU or Intel Phi clusters. 

Conclusion 

Using unstructured meshes seems to be quite interest-
ing for modern physics applications dealing with sophis-
ticated geometries like nano-structured surfaces and par-
ticle arrays. Numerical methods for unstructured meshes 
appear to be a natural generalization of methods used for 
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structured meshes, preserving their important features. 
Simulations with unstructured meshes seems to be easy 
adoptable for modern computational systems. In this arti-
cle we studied 2d case for easiest linear system of Max-
well equations. Methods used in this work can be gener-
alized to 3d tetrahedral meshes, while components of 
electromagnetic fields, currents and plasma density can 
be still bind to edges, faces and nodes correspondingly. 

 
Fig. 6. Comparison of partitioning algorithms. Partitioning 
examples with nearly the same number of parts with KD (a)  

and ‘greedy’ (b); input geometry (d) and overall shared 
boundary length l∑ i.e. number of shared edges and average 

number of triangles per part <nt>p for KD and ‘greedy’ 
methods (error bars show root mean square deviation) with 

respect to number of partitions np (c)  

In many practical applications on the boundary of 
mesh PML layers are adopted to simulate open boundary. 
The proposed method can work with mixed type of mesh 
e.g. triangular plus quad. So the meshes having rectangu-
lar boundaries can be tied with structured rectangular 
frame shaped mesh with PML layers. 

All numerical codes used in this article are open 
source and located at GitHub [20]. 
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