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Abstract. In this paper, we describe the experimental results of aircraft recognition on optical 
remote sensing imagery using the theory of contour analysis. We propose the new technique to 
calculate optimal values of the contour’s items quantity and the classification threshold through 
measuring within- and between-class distances for all possible training set instances 
combinations with the following detecting and minimizing the type I and II errors. We discuss 
the construction of contours’ similarity measures combining the principles of finding the most 
appropriate reference instance and calculating the average value for the whole class. It is 
shown that the proposed parameters' calculation technique and the similarity function provides 
training on compact non-uniform datasets and the further of an aircrafts' recognition on images 
of lower spatial resolution. 

 

1. Introduction 
The mathematical apparatus of contour analysis is an effective approach to solve the problem of 
objects recognition using their shapes as the distinctive features [1,2].  
To reach affine transformation invariance researchers in the field of aircraft recognition used a 
combination of few features and methods such as contours, Zernike moments and wavelet coefficients 
in [3], Radon transform, PCA and kNN classification in [4], HOG, graph theory and an object 
reconstruction in [5]. 
In contrast, contour analysis uses the single similarity measure of two vector-contours, the module of 
the normalized dot product (NDP) that is invariant (insensitive) to transfer, rotation, and proportional 
scaling of the recognized object towards the reference one. Comparing to the similar recognition 
methods producing a unique value per each classes pair [6,7] NDP module provides a uniform 
similarity measure of two contours within the range [0..1] where 1 – denotes the identical instances. 
Moreover, the NDP itself is a complex-valued number describing contour’s scale and rotation angle 
relatively the reference instance. 
Despite the listed above advantages, the NDP has its own limitations, which include the need to select 
the values of the vector-contour’s items quantity and the classification threshold used to decide 
whether the corresponding object belongs to a certain class. 
The first limitation is a consequence of the fact that in order to calculate the NDP value, the compared 
contours should have the same items quantity (however, the length of the vector-contours - the sum of 
its vectors lengths - does not have to be equal). The problem of optimal vector-contour’s items 
quantity selection is to find a balance between the lower values, smoothing together little-informative 
details and distinctive features of the recognized object, and higher values, providing more distinctive 
features but making the instances the single class more unlike [6].  
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The second limitation raises from the of the classification rule used to decide whether a given vector-
contour belongs to one of the classes and consists in the need to select a threshold value corresponding 
to the minimal similarity value between the reference objects. This value for each class is determined 
by the differences between the instances in the training dataset. 
Comparing to the state-of-the-art convolutional neural networks (CNN) [8, 9], requiring hundreds of 
images to train, contour analysis’s based recognition methods are capable of dealing with compact and 
nonuniform datasets containing less than 10 instances per class. Moreover, CNNs require transfer 
learning techniques [10] to operate on images with spectral parameters different from the training ones 
(for example, created by the sensor of another type). To the contour analysis list of disadvantages, we 
should write a much shorter range of applications, as the recognition process is driven by the only 
feature – the object’s shape, together with the strong addiction to the segmentation method’s quality 
used to extract the object from an underlying surface [11-13]. 
This article considers the application of the mathematical apparatus of contour analysis to recognize 
the aircraft’s class on remote sensing imagery. The shape of the aircraft on view from above is the 
primary distinctive feature determining its class. However, aircraft instances of the same class can 
have differences in shape due to the following reasons: the presence or absence of the external wing-
mounted armament or equipment, the disassembly of aerodynamic surfaces (slats, flaps, rudders), 
engines and rotary blades, wings with variable geometry, folded wings for naval aircrafts. Shape 
variations can also be caused by the segmentation algorithms that incorrectly reacts to the boundaries 
of its illuminated and shaded areas, as well as closely located airfield equipment. 
The article has the following structure. Section 1 contains a formal statement of the recognition 
problem used to determine the list of optimized parameters. Section 2 is devoted to the description of 
the features of the training dataset, serving as a data source to calculate optimal values of the 
parameters. Section 3 shows the process and the results of the experiment to obtain the value of the 
classification threshold for each class in training dataset. Section 4 is devoted to the results of the 
experiment to determine the values of the vector-contour’s items quantity required to calculate the 
NDP value for each class. Section 5 contains information about the test dataset recognition that does 
not intersect with the training one, and is used to select similarity value calculation criterion. 

2. Formalization of the recognition problem 
We introduce the following notation: 

1{ } CN
iC=C  – is a set of aircraft classes, where iC  – is an aircraft class with index i , CN  – is the 

number of aircraft classes. 
{ 1}Ni

i ik k== ΓΓ  – is a set of reference vector-contours (hereinafter referred to as “references”) of i-th 

class, k – is an reference instance index, iN  – is the number of instances in the i-th class, ikΓ  – 
instance contour of i-th aircraft class with index k. 
Each instance described by a vector-contour ikΓ , consisting of l complex-valued elements called 
elementary vectors ( )ikγ ⋅ , designated as: 

( (1), (2),..., ( ))ik ik ik ik lγ γ γΓ = . 
The mathematical apparatus of contour analysis is applicable only to contours with the equal items 
quantity. In practice, images contain objects that have contours with an arbitrary number of elements. 
The process to transform the vector-contour to have strictly l elements is called “equalizing” [2]: 

 1( ), ( ) { ( )}ef l
ik ik ik ikГ Г l Г l nγ→ = . (1) 

NDP ( )η ⋅  is calculated by the formula: 
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where ( )ik lΓ  and ( )jm lΓ  – are equalized vector-contours, ( )( ), ( )ik jml lΓ Γ  – is a vector-contours dot 

product, | ( ) |ik lΓ  and | ( ) |jm lΓ - the norms (lengths) of the corresponding vector-contours. 
The operations (2) and (3) with vector-contours are both performed on vectors of complex-valued 
numbers, which allows to achieve the following features [1,3]: 

1. The sum of the elementary vectors of a closed contour is zero. 
2. Invariance to the transfer (Figure 1): the vector contour does not depend on the parallel transfer 

within the original image. 
3. Invariance to the rotation (Figure 1): rotating an image by a certain angle is equivalent to rotating 

each elementary vector by multiplying it by a complex factor. 
4. Invariance to scaling (Figure 1): changing the image size is equivalent to multiplying each 

elementary vector by the real scale factor. 
5. Changing the starting point leads to a cyclic shift of the vector contour. NDP is not invariant to 

the change of the initial point. 
The later feature requires to transform NDP to the cross-correlation function (CCF) of vector-contours, 
which in addition to the invariance properties of (2) is insensitive to the initial point’s shift: 

 
( )( )( ), ( )

( , , , , ) max
| ( ) || ( ) |

s
ik jm

s
ik jm

l l
i j k m l

l l
τ

Γ Γ
=

Γ Γ
, (4) 

where 0,..., 1s l= −  is a shift from to the initial point, ( ) ( )s
jm lΓ   – is a contour obtained from ( )jm lΓ

 
by 

the cycle shift of its elementary vectors to s-elements. 

 
Figure 1. NDP invariance to the transfer, rotation, proportional scaling. 

The classification rule to determine the affiliation of a certain contour Г to iC  class is: 

 
: arg max( ( , ) ) ,

( )
: max ( , ) ,

i i iii

i ii

C i f T
C

i f T

  = Γ ≥  Γ = 
∅ ∀ Γ <

Γ

Γ
, (5) 

where iT  – is the classification threshold value for the aircraft of the i-th class, ( , ) [0,1]if Γ Γ ∈  – is the 
function for calculation the similarity value of the given vector-contour Γ  to the set iΓ  of reference 
objects. 
The function for similarity value calculation can apply one of the two following criteria: 

1. Maximum CCF for a vector-contour Г and one of the reference instances ikΓ : 

 
( )( )

1 ,
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( , ) max

| ( ) || ( ) |

s
i ik i

i k s
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l l
f

l l
Γ Γ

Γ =
Γ Γ

Γ , (6) 

where il  - is the optimal value of the vector-contour's items quantity for i-th aircraft class. 
2. The mean CCF value for a references set:  
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The aim of the article is to determine the optimal values of the vector-contour's items quantity 
1{ } CN

i il ==L  and the classification threshold 1{ } CN
i iT ==T  in terms of the minimum total number of I and II 

type errors as well as to select a criterion to calculate the similarity value of the recognized vector-
contour to a reference instances set iΓ . 

3. Training dataset 
The training dataset contains aerial images of optical range with a resolution of 0.15 m / pixel 
displaying the parking of decommissioned and reserved aircrafts at the Davis-Monthan airfield [14]. 
The training dataset is compact and includes 430 images of the aircrafts of eight classes: B-1, B-52, C-
5, C-37, C-130, C-135, P -3 and S-3. 
Figure 2 shows the examples of images of different classes of aircraft included in the training dataset. 
Table 1 lists the characteristics of the classes and the instances’ contours. 
The classes of the training dataset differ significantly from each other both in the number of instances 
and in the degree of within-class similarity of their contours. An example of a significant difference in 
the instances is shown in Figure 3 for B-1 class: the nose cone (Figure 3a), the engines (Figure 3b), the 
slats, flaps, landing shields, rudders, stabilizers (Figure 3c, d) were removed. An example of the 
minimal differences in instances is shown in Figure 4 for B-52 class. 
The described differences in the training dataset require to calculate the optimal values of vector-
contours' items quantity and the classification threshold individually for each class. 
 
4. Optimal classification thresholds calculation 
To calculate the optimal classification thresholds 1{ } CN

i iT ==T , the measurements of within-class and 
between-class distances were made for all possible combinations of training dataset instances. 
The measurement of the within-class distance is a calculation of the CCF (4) for a particular non-
coincident pair of vector-contours of the same class. The measurement of a between-class distance is a 
calculation of CCF for a particular pair of vector-contours of different classes. 
An error of a within-class distance measuring (type II error or a false negative measure) [15] is the 
value of within-class distance that is less than the specified value of the classification threshold T: 

1, ( , , , , )
( , , , )

0, ( , , , , )i

i i k m l T
e k m l T

i i k m l T
τ
τ

<
=  ≥

.                                     (8) 

The error in between-class distance measuring (type I error or a false positive measure) [15] is the 
value of the between-class distance which is greater than the specified value T: 

 
1, ( , , , , )

( , , , )
0, ( , , , , )ij

i j k m l T
e k m l T

i j k m l T
τ
τ

>
=  ≤

. (9) 

 
B-1 

 
B-52 

 
C-5 

 
C-37 

 
C-130 

 
C-135 

 
S-3 

 
P-3 

Figure 2. Images examples aircraft classes represented in the training dataset. 
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Table 1. Characteristics of the training dataset contours. 
№ Aircraft 

class 
Instances 

count 
Number of elements per vector-

contour 
Histogram of the contour's items quantity 

Min Average Max 
1.  B-1 17 1070 1132 1249 

 
2.  B-52 10 1902 1945 1988 

 
3.  C-5 20 2289 2404 2514 

 
4.  C-37 11 1209 1227 1243 

 
5.  C-130 135 1328 1570 1654 

 
6.  C-135 81 1375 1420 1477 

 
7.  P-3 92 1312 1458 1542 

 
8.  S-3 64 1095 1132 1180 

 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 3. Instances of B-1 aircraft having various dismantled elements. 

   
Figure 4. Instances of the B-52 with practically no visual differences. 

 
It is clear from formulas (8) and (9) that an increase in the threshold value T reduces in the number of 
type I errors but concurrently increases in the number of type II errors and vice versa. 
The optimal value for each aircraft class is corresponds to the minimum number of type I and II errors 
for the given range of the vector-contour elements quantity l. 
The relative type II measurement error (the ratio of the within-class distance measurement errors to 
their total number) for the i-th class with the given l and T is defined as: 

 ( , , )( , , )
( 1)

IC
IC

i i

N i l TE i l T
N N

=
⋅ −

, (10) 
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1 1,

( , , ) ( , , , )
i iN N

IC i
k m m k

i l T e k m l T
= = ≠

Ν =∑ ∑ , (11) 

where ( )ICΝ ⋅  – is the number of type II measurement errors. 
The relative type I measurement error (the ratio of the between-class distance measurement errors to 
their total number) is calculated with the formula: 

 

1,

( , , )( , , )
C

BC
BC N

i j
j j i

N i l TE i l T
N N

= ≠

=
⋅ ∑

, (12) 

 
1, 1 1

( , , ) ( , , , )
jC i NN N

BC ij
j j i k m

N i l T e k m l T
= ≠ = =

= ∑ ∑∑ , (13) 

where ( )BCN ⋅  – is the number of type I measurement errors. 
At each classification threshold value, the total relative measurement error min ( )E ⋅  is calculated as a 
minimal sum of relative type I and II measurement errors and represents an objective function [16] to 
compute an optimal threshold value T for iС  class: 

 ( )min ( , ) min ( , , ) ( , , )IC BCl
E i T E i l T E i l T= + . (14) 

The vector-contour elements quantity l varies within the interval [ ]100,...1000l =  with a step of 10. 
The interval boundaries are explained by the fact that the distinguishing features of the most aircrafts 
in the training dataset are lost at 100l < , and 1000l >  reaches the minimum quantity of items for 
some reference instances. 
The classification threshold changes within the interval [ ]60,...,80T =  with a step of 1. The interval is 
chosen according to the following arguments: at 60%T <  many instances of different classes are 
similar to each other, whereas at 80%T >  a within-class similarity becomes insufficient due to the 
variety of contour shapes within a single class. 
The experimental data was used to create graphs of the total relative measurement error (14) 
dependence from the classification threshold for each aircraft class. The graphs shown in Figures 5 
and 6 provide the characteristic features of the most interesting classes of the training dataset. The B-1 
class is described by significant differences in instances, which is confirmed by high values of (14) in 
the range of 6-12% for the entire graph in Figure 5 with a slight predominance of type II measurement 
error. The B-52 class graph, on the contrary, demonstrates a rapid decline in type I error at a threshold 
of 60-70% with the following near-zero type II error on the right side of the graph. 
As for the C-130 and P-3 classes of propeller aircrafts (Figure 6), the outwardly similar contours are 
characterized by a close graphs of (14) with the predominance of type I error for C-130 and type II 
error for P-3. 
Formula (14) was used to calculate the optimal classification thresholds 1{ } CN

i iT ==T  for each class in 
the training dataset (the results of the calculation are shown in Table 2): 

 minarg min( ( , ))i T
T E i T =   . (15) 

 
Table 2. Optimal classification thresholds. 

Class index 1 2 3 4 5 6 7 8 
Class name B-1 B-52 C-5 C-37 C-130 C-135 P-3 S-3 

Optimal value iT , % 63 71 66 69 69 69 66 74 
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Figure 5. Total relative measurement error (14) dependence from the classification threshold for 

classes B-1 and B-52. 

 
Figure 6. Total relative measurement error (14) dependence from the classification threshold for C-

130 and P-3 classes. 

5. Optimal vector-contour's items quantity calculation 
The optimal values of vector-contour's items 1{ } CN

i il ==L  for each aircraft class are calculated on the 
basis of the total relative measurement error using previously determined threshold 1{ } CN

i iT ==T . 
The sum of the relative measurement errors of type I (10) and II (13) errors represents an objective 
function to compute an optimal value of the items quantity il  for iС class: 

 ( , ) ( , , ) ( , , )IC i BC iE i l E i l T E i l T= + . (16) 
Graphs (Figures 6-9) show the vector-contour's items optimal quantity corresponding to the minimum 
of (16) marked with a vertical line. The optimal items quantity for B-1 class (Figure 7) lies near the 
intersection of the types I and II error graphs. The errors for a given class vary widely due to the 
significant differences in its instances. 

 
Figure 7. Total relative measurement error (16) dependence from the B-1 vector-contour's items 

quantity. 
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The B-52 class items optimal quantity (Figure 8) is determined only by the minimum of type I errors. 

 
Figure 8. Total relative measurement error (16) dependence from the B-52 vector-contour's items 

quantity. 
 
The optimal value of C-130 (Figure 9) and P-3 (Figure 10) classes biased towards type II error and is 
to the right of the intersection of both error graphs. Class C-130 is characterized by a higher total error 
value compared to P-3 due to more significant differences between the references instances of this 
class. 

 
Figure 9. Total relative measurement error (16) dependence from the C-130 vector-contour's items 

quantity. 

 
Figure 10. Total relative measurement error (16) dependence from the P-3 vector-contour's items 

quantity. 
 

Formula (16) was used to determine the optimal values of vector-contour's items quantity 1{ } CN
i il ==L  

for each class in the training dataset (the results are presented in Table 3): 
 arg min( ( , ))i l

l E i l =   . (17) 
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Table 3. Optimal values of the vector-contour’s items quantity. 
Class index 1 2 3 4 5 6 7 8 
Class name B-1 B-52 C-5 C-37 C-130 C-135 P-3 S-3 

Optimal value il  640 910 900 910 810 680 650 580 

6. Criterion for similarity value calculation 
To estimate a created recognition model and to select a criterion for the similarity value calculation of 
a recognized vector-contour Г to a set of reference instances iΓ , a test dataset of the aircraft images 
that are not part of the training dataset is used.  
The test dataset comparing the training one contains aerial images of lower resolution (0.3 and 0.5 
meters per pixel) shot in the operating airfields with aircrafts of two classes: B-1 – 6 images, C-130 – 
14 images. Test images (Figure 11b) have significant visual differences from the training set 
(Figure 11a) in contrast and brightness as well as in lighting/shading scheme so the remaining major 
feature is the shape. 

Training dataset samples Test dataset samples 

    

    
a) b) 

Figure 11. Images examples aircraft classes represented in the training dataset. 
 

The recognition results for the training and test datasets obtained by the classification rule (5) in 
combination with the functions for similarity value calculation 1f (6) and 2f  (7) are presented in Table 
4. 
Table 4. The results of the training and test datasets recognition obtained by classification rule (5) in 

combination with functions and 2f . 
Similarity 
function 

Training dataset errors Test dataset errors Both datasets errors Errors total 
Type I Type II Type I Type II Type I Type II 

1f  2 1 2 1 4 2 6 

2f  0 0 0 7 0 7 7 

Both functions are described by an equivalent number of errors, equal to 6 and 7 respectively. The 
function (6) provides less unrecognized aircrafts number due to it chooses the most appropriate 
reference instance, whereas the function (7) using the average CCF value the whole class, does not 
allow incorrect classification. 
The reduction of errors number can be achieved by modifying the classification rule (5) to combine 
the functions (6) and (7), integrate their merits and mutually compensate shortcomings. The modified 
classification rule then becomes the following: 
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2

1 2

1

: arg max( ( , ) ) ,

( ) : arg max( ( , ) ) , max ( , )

: max ( , ) ,

i i iii

i i i i ii ii

i ii

C i f T

C C i f T i f T

i f T

  = Γ ≥ 
  Γ = = Γ ≥ ∀ Γ <  
∅ ∀ Γ <


Γ

Γ Γ

Γ

, (18) 

To compare the results we used the network ensemble that contains CNNs trained detect individual 
aircraft classes (i.e. one per class). The architecture of each CNN (Figure 12) [17] is one the leaders of 
the Ships in Satellite Imagery Challenge [18]. The input is a source aircraft image scaled to have 100 
pixels per dimension and an output is a flag indicating wherever the image belongs to certain class. 
We used the same training dataset augmented with D8 group transformations [19], the details of its 
recognition by the network ensemble are given in Table 5. Images of compact classes (B-1, B-52, C-
37, C-5) after the augmentation were copied several times to produce about 500 training samples per 
class (otherwise the CNN is unable to train at all and produces the zero output for any input). 

 
Figure 12. The architecture of the CNN trained to detect aircrafts of the single class. 

 
Table 5. The details of the training dataset recognition by the CNN ensemble. 

Class index 1 2 3 4 5 6 7 8 
Class name B-1 B-52 C-5 C-37 C-130 C-135 P-3 S-3 
Instances 

count 
17 10 20 11 135 81 92 64 

Type I errors 3 0 0 0 0 0 0 9 
Type II errors 0 10 11 0 0 0 7 0 

High quantity of type II errors of the CNNs corresponding to B-52 and C-5 classes is explained by 
their compactness. The standard dark grey camouflage of the aircrafts complicates the feature 
extraction process for the CNN in contrast with successfully recognized C-37 class with the similar 
images count but white color making them easy to extract from the underlying surface. 

The results of the training and test datasets recognition with the modified classification rule (18) 
are presented in Table 6. 

 



Обработка изображений и дистанционное зондирование Земли                      E.N. Dremov, S.Yu. Miroshnichenko, V.S. Titov 

V Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2019) 468 

Table 6. Datasets recognition results with modified classification rule (18) comparing to the CNN 
ensemble solution. 

Recognition method Training dataset errors Test dataset errors Both datasets errors 
Type I Type II Type I Type II Type I Type II 

Contour analysis with 
classification rule (18) 

0 0 0 1 0 1 

CNN ensemble 12 28 0 20 12 48 

It is clear that the CNN ensemble is unable to recognize aircraft on the images that differ from the 
training set without using the transfer learning techniques. The data augmentation makes the CNN 
able to train on the compact datasets however the precision is still not enough. 
The only remaining type II error for contour analysis method belongs to class B-1 and indicates the 
need to expand its training dataset with instances of the operating (non disassembled) aircraft. 

7. Conclusion and discussion 
In this paper, we presented the results of the experiment aimed to calculate optimal values of the 
vector-contour’s items quantity and the classification threshold through measuring within- and 
between-class distances for all possible training set instances combinations with the following 
detecting and minimization of type I and II errors. It is shown that each class has its own optimal 
values of these parameters due to the features of the reference instances of the training dataset. We 
proposed a classification rule that combines the merits of functions based on the best instance match 
and the mean CCF for class respectively. 
The vectors of further research are the development of new segmentation methods that allow to solve 
the aircraft edges detection problem upon the conditions of camouflage, poor contrast with the 
underlying surface, illuminated and shaded areas, as well as close-lying airfield equipment. 
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