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Abstract. Precise calculation of hyperfine structure of P -states in muonic ions of
lithium, beryllium and boron in quantum electrodynamics is performed. We calculate
different corrections of orders α5 and α6 due to the vacuum polarization, nuclear
structure and recoil in first and second orders of perturbation theory. The tensor
method of projection operators for the calculation of the hyperfine structure of P-states
with definite quantum numbers of total atomic momentum F and total muon
momentum j in muonic ions is used. The obtained values of hyperfine splittings can be
used for a comparison with future experimental data.

1. Introduction

In our previous works [1, 2], we calculated the Lamb shift and hyperfine structure of S-states
in muonic ions of lithium, beryllium, and boron. The purpose of this paper is to investigate
the HFS of the P-states in these ions, that is, in the precise calculation of various corrections
and obtaining reliable estimates for the HFS intervals, which could be used for comparison with
experimental data. The initial parameters that determine the values of the corrections in the
HFS of muonic ions, are the masses of the nuclei, their spins, magnetic moments and charge
radii.

2. General formalism

Our approach to the calculation of hyperfine splittings is based on quasipotential method in
quantum electrodynamics in which the two-particle bound state is described by the Schrödinger
equation [3]. In this work we use the approach to the calculation of hyperfine structure of
muonic ions based on tensor representation of P-wave projection operators describing bound
states. First we show on an example of calculating the leading order contributions how a tensor
formalism helps investigate the hyperfine structure of the spectrum. It is useful to work in
momentum representation where we can write the wave function of muonic ions 2P-state in the
tensor form:

ψ2P (p) = (ε · np)R21(p), (1)

where εδ is the polarization vector of orbital motion, np = (0,p/p), R21(p) is the radial wave
function in momentum space. Then the energy shifts are presented in integral form:

∆Ehfs =

∫

(ε∗ · nq)R21(q)
dq

(2π)3/2

∫

(ε · np)R21(p)
dp

(2π)3/2
∆V hfs(p,q). (2)

In the leading order the hyperfine potential ∆V hfs is constructed by means of one-photon
interaction amplitude T1γ .
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Writing the amplitude T1γ we refer to it a part of the bound state wave function related to orbital 
motion:

T1γ(p,q) = 4πZα (ε∗ · nq)

[

ū(q1)

(

p1,µ + q1,µ
2m1

+ (1 + aµ)σµǫ
kǫ
2m1

)

u(p1)

]

(ε · np)Dµν(k)× (3)

ε∗d,ρ(q2)
{

gρσ
(p2 + q2)ν

2m2
F1(k

2)−
(p2 + q2)ν

2m2

kρkσ
2m2

2

F2(k
2) + (gρλgσµ − gρµgσλ)

kλ
2m2

F3(k
2)
}

εd,σ(p2),

where p1,2 =
m1,2

(m1+m2)
P ± p are four-momenta of initial muon and nucleus, q1,2 =

m1,2

(m1+m2)
Q± q

are four-momenta of final muon and nucleus. They are expressed in terms of total two-particle
momenta P,Q and relative momenta p, q. Dµν(k) is the photon propagator which is taken to
be in the Coulomb gauge. We consider (3) as a starting point for a composition of orbital L
momentum, the nucleus spin s2 (note that the spin of the nucleus is usually denoted by I) and
muon spin s1. In the first scheme of momentum composition we add firstly momenta L and s1
obtaining two muon states with angular momenta j = 1/2 and j = 3/2. In the Rarita-Schwinger
formalism the wave function of the state with half-integer spin 3/2 is described by

ψµ,α(p, σ) =
∑

λ,ω

<
1

2
ω; 1λ|

3

2
σ > εµ(p, λ)uα(p, ω), (4)

where < 1
2ω; 1λ|

3
2σ > are the Clebsch-Gordon coefficients.

Basic contribution to hyperfine structure is determined by hyperfine part of the Breit
Hamiltonian:

∆V hfs
B (r) =

Zα(1 + κd)

2m1m2r3
[

1 +
m1κd

m2(1 + κd)

]

(Ls2)−
Zα(1 + κd)(1 + aµ)

2m1m2r3
[(s1s2)− 3(s1n)(s2n)] ,

(5)
where m1, m2 are the muon and nucleus masses, κN , aµ are the nucleus and muon anomalous 
magnetic moments, s1 and s2 are the spin operators of muon and nucleus, n = r/r. The operator 
(5) does not commute with the muon total angular momentum J = L + s1. As a result there is
the mixing between energy levels 2P1/2 and 2P3/2.

The corrections to the vacuum polarization (VP) of order α5 are important to obtain reliable
results. In the formulated framework these effects can be easily studied. In the first order
perturbation theory one-loop vacuum polarization contribution to HFS is determined by the
amplitude in Fig. 1. For its calculation in momentum representation which we use, the following
replacement in the photon propagator should be done:

1

k2
→

α

3π

∫

∞

1

ρ(ξ)dξ

k2 + 4m2
eξ

2
, ρ(ξ) =

√

ξ2 − 1(2ξ2 + 1)/ξ4. (6)

For a completeness, we analyze vacuum polarization corrections of order α5 in second order 
perturbation theory, which are determined by the reduced Coulomb Green’s function (see the
amplitude in Fig. 2(a)):

G2P (r, r
′) = −

µ2(Zα)

36z2z′2

(

3

4π
nn

′

)

e−(z+z′)/2g(z, z′), (7)

g(z, z′) = 24z3< + 36z3<z> + 36z3<z
2
> + 24z3> + 36z<z

3
> + 36z2<z

3
> + 49z3<z

3
> − 3z4<z

3
>−

−12ez<(2 + z< + z2<)z
3
> − 3z3<z

4
> + 12z3<z

3
>[−2C + Ei(z<)− lnz< − lnz>],

where C = 0.5772... is the Euler constant, z =Wr, z< = min(z, z′), z> = max(z, z′).
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Figure 1. Vacuum polarization effects in one-photon interaction. The wavy line represents 
hyperfine part of the interaction.
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Figure 2. Vacuum polarization effects in the second order perturbation theory. Dashed and wavy 
lines represent correspondingly the Coulomb and hyperfine interactions.

3. Conclusion

In this work we investigate the hyperfine structure of energy levels related to the P-wave states
of muonic ions of lithium, beryllium and boron on the basis of three dimensional quasipotential
approach in quantum electrodynamics. To increase the accuracy of the calculation we take
into account the leading order contribution and several basic corrections of order α5 and α6.
These corrections are connected with the vacuum polarization effect, quadruple interaction,
nuclear structure and relativistic effects. Some corrections are obtained in analytical form, but
most part of contributions to the energy spectrum is presented first in integral form, and then
calculated numerically. Obtained results improve the values of transition frequencies between
energy levels 2P and 2S.
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