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Abstract. The energy spectrum of bound states and hyperfine structure of muonic helium is
calculated on the basis of stochastic variational method. The basis wave functions of the
muonic molecule are taken in the Gaussian form. The matrix elements of the Hamiltonian are
calculated analytically. For numerical calculation, a computer code is written in the MATLAB
system. As a result, the numerical values of bound state energies and hyperfine structure for
muonic helium are obtained.

1. Introduction

The problems of bound states of three-particle systems occupy a special position in quantum
mechanics [1-2]. This problem can be solved using different methods such as the perturbation theory
[3] or the variational approach [1-2]. Even in the non-relativistic spinless approximation, they are
difficult to study and, as a rule, do not allow an analytical solution characteristic of the two-body
problem. The study of the energy spectra of mesomolecules is of interest in connection with the
phenomenon of muon catalysis of nuclear fusion reactions. The calculation of various energy levels of
mesomolecules allows to predict the rate of reactions of their formation [4]. In our work, we use a
stochastic variational method to calculate the energy of a three-particle bound state with high accuracy
[1-2]. The wave function of the muon molecule in this approach is Gaussian. This choice of basis
allows analytically calculating the matrix elements of the Hamiltonian. For the direct numerical
calculation of energy levels based on the Schrodinger equation, a computer code was written in the
MATLAB system. The program allows not only to find the values of the energy of the bound state, but
also to perform the refinement cycles, which increase the accuracy of the previously calculated
energies. As a result, the numerical values of the hyperfine structure of mesomolecules were obtained.

2. Calculation of matrix element operators in the case of the ground state
In the framework of the variational method, the trial function for a system of particles can be written
in the following form:

K
W= it (6, 4. &
i=1

An upper bound for the ground state energy_of the system is given by the lowest eigenvalue of the
generalized eigenvalue problem:

HC = EgBC, Hij =< Psus (X, ADH Wsms (x5, A7) >, Bij =< Wsus (X1, A [Wsms (x5, 45) >. (2)
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The trial function ygy (x;, 4;) of the muonic molecule in this approach has the Gaussian form. The
Gaussian-type basis function with non-zero angular momentum for nonidentical particles can be
written as follows:

1
(pLS(x' A) = e_ExAxeL (X), (3)
where x = (x4, ..., Xy—1) — are Jacobi coordinates, A is a (N — 1) x (N — 1) positive-defined matrix of

variational parameters ¥4Ax = Y)1" YAy x; - x;

0, (x) = [[Yl1 (xl)le (352)]1412\{13 (x3)]L ] ) 4)
123 LM

where Y _(x) = 'Y, (%). In the case of three nonidentical particles the wave function for ground
state has a form:

Poo(p, A, A) = e_%[A“pz+A2212+2A12(p'1)]. 5)
where p and A are the Jacobi coordinates of three particles which are related with the particle radius
vectors:

rmy+rom,

=r,—-r1, A=——""="—17, 6
p=T,—T, m, + my r;3 (6)

The matrix element for the normalization condition has the form:

‘1[31192+Bzz/12+2e‘%[A“”2+A“’12”A“(" "D]u(p'l)] 8’
! 2
(@'lo) = || dpaze = augyr @
where the matrix B = A + A’.
Similarly calculation can be made for the matrix elements of the kinetic energy:
N 2473 h?2 h?2
(@/|Tlo) = | | ®

———— L, +=—1
(detB)S/2 2, P " 2u,

I, = A%3B1y — 2411 A1,B15 + A1y (BE, + (A1 — B11)Bao),
Iy = A%,By — 2452A12B1; + Az (BY, + (A2; — B2z)Byy),
iy = mim; 1, = (my + my)ms
L mi4m, 27 mytmytmg
In the case of potential energy the matrix elements have the following form:
(0'|V]@) = erexli; + ereslis + ezeslys, 9
8\/?7'[5/2 8\/?7'[5/2 8\/?7'[5/2

= Tode 2T ;b= ,
22 FI3(BoF S - (F{%)?) F23 (B 7 — (FE)?)

12

m, \2 m mq \2 m
F3 =By, + By, (—2 ) — 2By, —= ,F?3 =By, + By, (—1 ) + 2B, —,
Myo Mys my, my,

F23 = Byy — Byy—2  F}3 = By, + Byy—L =
2~ = D1y — Dy yF37 = By + By , Mypy =My +m,.
mi; mi;

3. The hyperfine structure of three-particle bound state

Consider a system of three charged particles of different masses with spins S;, S, u S;. The various
possible values of the total spin § = §; + S, + S5 system set the levels of the hyperfine structure
of the ground state. For definiteness, we choose all spins equal to 1/2. The arguments and formulas
below are also valid for any other values of the particle spins.

In the leading order, the contribution to the hyperfine structure of the spectrum has the following
general form:

AVRSS = 0(5152) + b(51$3) + C(SzS?,), (10)
_ 2ma 1+K11+K2<5( ) > 11
= 3m1m2 Sl SZ 12 ) ( )
_ 2ma 1+K11+K3<5( ) > 12
= 3m1m3 Sl 53 13 ) ( )

V MexnaynapoaHas KoH(pepeHims u MonoaékHas mkona «HopManHoHHbIe TEXHOIOTHN U HaHOTexHOTorum» (MTHT-2019) 74



Marematiueckoe MOIEIHPOBaHNE (PU3MKO-TEXHUYECKUX MPOLIECCOB U CUCTEM A.V. Eskin, V.I. Korobov et al.

_2ma 1+Ky14 K3
" 3myms; S, S;
where < 6(ri]-) > denotes averaging over basic functions. Let us show how this averaging is
performed using the matrix element < §(r1,) > as an example.

c < 8(re3) >, (13)

T =71 —Tz=p, (14)
m;
ri3=r1r1—-"3 =/1+m—P' (15)
s
T3 =Ty —T3 =A——p (16)
] ] mio
Then for the first matrix element we have:
3
1 21)2
<68(ryz) >=<6(p) >= Jf dpdA 6(p)e_E(B11PZ+B22/12+2312(’)}“)) - (LL 17)
(B22)?

where B,, = A}, +A£2. When calculating the specific contribution of the matrix element, it is
necessary to divide it by the normalization factor. Similar expressions can be obtained for other matrix
elements:

(27‘[)3/2
< 6(7‘13) > = o\3/2" (18)
m m
By1y — 2By, m_122 + By, (m_lzz) )
(27.[)3/2
< 6(7’23) > = 5 3/2 (19)
(Bn + 2By, T 4 By, (22 )

Next, it is necessary to perform averaging of the potential (10) over the spin functions. This can be
done using the formalism of irreducible tensor operators and the Eckart-Wigner theorem [5]. The
general formulas of matrix elements are as follows:

< 512, 51($152)1512,S > = 51855 85,1, (20)
< 812,5(5183)[512,8 > = /(2S], + 1)(25;, + 1)§252 *; 1)(% +1)S, X /(253 + 1)(S3 + 1)S;
1)\ STEF L STHR L 645, +5,+S3+1 12 93 51 Siz SZ}
x( 1) 12 12 1To27To3 X{S3 S{z 1}{512 51 1 (21)
< 512,5(5283)1512,5S > = \/(2512 + 1)(2512;‘ 1)(?952 +51)(52 +1)S; X \/(253 + 1)(S5 + 1)S3
1253 +S+51+5,+S3+1 12 3 S; Stz 51}
X (ST TR X {53 St, 1}{512 s, 1§ (22)

In the case of particles with spin 1/2, we obtain the energy matrix. After its diagonalization we obtain
the following eigenvalues:

1 1
Al=—Z(a+b+6)+§\/az+b2+cz—ab_bc_ac' (23)
1 1
Az=—Z(a+b+6)—§\/az+b2+cz—ab_bc_ac' 24
1
A3=Z(a+b+c). (25)

4. Stochastic variational method
There are two options in solving the problem using the stochastic variational method. Create a new
basis or increase an existing one:

1) Increase dimension of basis.

Assuming that the basis already contains N-1 elements, we will create K new elements and find the
energy values for the new basis, which contains the i-th new element and N-1 previously
specified elements. The basic element for which the lowest energy is obtained is selected as a
new element of the N basis and is stored in it. The dimension of the basis becomes equal to N.

2) “Stripping” of this basis, to improve energy.
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In this case, the dimension of the basis remains unchanged, and some k-th elements are replaced with
new ones. Further, the problem is solved by analogy with method 1. At the same time, it is
checked whether the new elements provide better energy in comparison with the initial state.
Such a replacement can be performed for all elements of the basis.

In both cases 1 and 2, one can observe the convergence of the energy value. Thus, at each step N (N =
1 ... Nmax), based on randomly defined nonlinear parameters, several future basis functions are
compiled, and their “practicality” is determined by the amount of energy obtained by adding each to
the common basis, as a result the most suitable. N« will be the finite dimension of the basis.

This method has several unique features: it is completely based on the analytical calculation of most
types of particle interaction, which implies high accuracy and speed of calculations. The calculation
method is quite universal and does not require changes depending on whether the system contains a
strong, electromagnetic or other type of interaction between particles. And most importantly, the wave
function is obtained in a compact analytical form, and can immediately be used to find any physical
properties.

Using the MATLAB system we obtained the wave functions of muonic helium atom for the ground
and excited states and calculated the matrix elements determining the hyperfine structure of the energy
spectrum.
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