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Abstract. The energy spectrum of bound states and hyperfine structure of muonic helium is 
calculated on the basis of stochastic variational method. The basis wave functions of the 
muonic molecule are taken in the Gaussian form. The matrix elements of the Hamiltonian are 
calculated analytically. For numerical calculation, a computer code is written in the MATLAB 
system. As a result, the numerical values of bound state energies and hyperfine structure for 
muonic helium are obtained. 

1.  Introduction 
The problems of bound states of three-particle systems occupy a special position in quantum 
mechanics [1-2]. This problem can be solved using different methods such as the perturbation theory 
[3] or the variational approach [1-2]. Even in the non-relativistic spinless approximation, they are 
difficult to study and, as a rule, do not allow an analytical solution characteristic of the two-body 
problem. The study of the energy spectra of mesomolecules is of interest in connection with the 
phenomenon of muon catalysis of nuclear fusion reactions. The calculation of various energy levels of 
mesomolecules allows to predict the rate of reactions of their formation [4]. In our work, we use a 
stochastic variational method to calculate the energy of a three-particle bound state with high accuracy 
[1-2]. The wave function of the muon molecule in this approach is Gaussian. This choice of basis 
allows analytically calculating the matrix elements of the Hamiltonian. For the direct numerical 
calculation of energy levels based on the Schrödinger equation, a computer code was written in the 
MATLAB system. The program allows not only to find the values of the energy of the bound state, but 
also to perform the refinement cycles, which increase the accuracy of the previously calculated 
energies. As a result, the numerical values of the hyperfine structure of mesomolecules were obtained. 

2.  Calculation of matrix element operators in the case of the ground state 
In the framework of the variational method, the trial function for a system of particles can be written 
in the following form: 

𝛹 = �𝑐𝑖𝜓𝑆𝑀𝑆(𝑥,𝐴𝑖).                                                                  (1)
𝐾

𝑖=1

 

An upper bound for the ground state energy of the system is given by the lowest eigenvalue of the 
generalized eigenvalue problem: 
𝐻𝐶 = 𝐸𝐾𝐵𝐶,   𝐻𝑖𝑗 =< 𝜓𝑆𝑀𝑆(𝑥𝑖,𝐴𝑖)|𝐻|𝜓𝑆𝑀𝑆�𝑥𝑗,𝐴𝑗� > ,   𝐵𝑖𝑗 =< 𝜓𝑆𝑀𝑆(𝑥𝑖 ,𝐴𝑖)|𝜓𝑆𝑀𝑆�𝑥𝑗,𝐴𝑗� > .  (2) 
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The trial function 𝜓𝑆𝑀𝑆(𝑥𝑖 ,𝐴𝑖) of the muonic molecule in this approach has the Gaussian form. The 
Gaussian-type basis function with non-zero angular momentum for nonidentical particles can be 
written as follows: 

𝜑𝐿𝑆(𝒙,𝐴) = 𝑒−
1
2𝒙�𝐴𝒙𝜃𝐿(𝒙),                                                              (3) 

where 𝒙 = (𝑥1, … , 𝑥𝑁−1) − are Jacobi coordinates, A is a (N − 1) × (N − 1) positive-defined matrix of 
variational parameters,𝒙�𝐴𝒙 = ∑ ∑ 𝐴𝑖𝑗𝑥𝑖 ∙ 𝑥𝑗𝑁−1

𝑖=1
𝑁−1
𝑖=1  

𝜃𝐿(𝒙) = ���Yl1(𝑥1)Yl2(𝑥2)�
𝐿12

Yl3(𝑥3)�
𝐿123

… �
𝐿𝑀

,                                       (4) 

where Ylm(𝒙) = rlYlm(𝐱). In the case of three nonidentical particles the wave function for ground 
state has a form: 

𝜑00(𝝆,𝝀,𝐴) = 𝑒−
1
2�𝐴11𝝆

2+𝐴22𝝀2+2𝐴12(𝝆∙𝝀)�,                                               (5) 
where ρ and λ are the Jacobi coordinates of three particles which are related with the particle radius 
vectors: 

𝝆 = 𝒓1 − 𝒓2,       𝝀 =
𝒓1𝑚1 + 𝒓2𝑚2

𝑚1 + 𝑚2
− 𝒓3.                                               (6) 

The matrix element for the normalization condition has the form: 

〈𝜑′|𝜑〉 = �𝑑𝝆𝑑𝝀𝑒
−12�𝐵11𝝆

2+𝐵22𝝀2+2𝑒
−12�𝐴11𝝆

2+𝐴22𝝀2+2𝐴12(𝝆∙𝝀)�
12(𝝆∙𝝀)�

=
8𝜋3

(det𝐵)3/2 ,      (7) 

where the matrix 𝐵 = 𝐴 + 𝐴’. 
Similarly calculation can be made for the matrix elements of the kinetic energy: 

〈𝜑′�𝑇��𝜑〉 = −
24𝜋3

(det𝐵)5 2⁄ �
ћ2

2𝜇1
𝐼𝜌 +

ћ2

2𝜇2
𝐼𝜆� ,                                              (8) 

𝐼𝜌 = 𝐴122 𝐵11 − 2𝐴11𝐴12𝐵12 + 𝐴11(𝐵122 + (𝐴11 − 𝐵11)𝐵22), 
𝐼𝜆 = 𝐴122 𝐵22 − 2𝐴22𝐴12𝐵12 + 𝐴22(𝐵122 + (𝐴22 − 𝐵22)𝐵11), 

𝜇1 =
𝑚1𝑚2

𝑚1+𝑚2
,       𝜇2 =

(𝑚1 +𝑚2)𝑚3

𝑚1+𝑚2+𝑚3
. 

In the case of potential energy the matrix elements have the following form: 
〈𝜑′�𝑉��𝜑〉 = 𝑒1𝑒2𝐼12 + 𝑒1𝑒3𝐼13 + 𝑒2𝑒3𝐼23,                                                (9) 

𝐼12 =
8√2𝜋5 2⁄

�𝐵22 det𝐵
 , 𝐼13 =

8√2𝜋5 2⁄

�𝐹113(𝐵22𝐹113 − (𝐹113)2)
 ,     𝐼23 =

8√2𝜋5 2⁄

�𝐹123(𝐵22𝐹123 − (𝐹123)2)
 , 

𝐹113 = 𝐵11 + 𝐵22 �
𝑚2

𝑚12
�
2
− 2𝐵12

𝑚2

𝑚12
 ,𝐹123 = 𝐵11 + 𝐵22 �

𝑚1

𝑚12
�
2

+ 2𝐵12
𝑚1

𝑚12
, 

𝐹223 = 𝐵12 − 𝐵22
𝑚2

𝑚12
 ,𝐹213 = 𝐵12 + 𝐵22

𝑚1

𝑚12
 ,     𝑚12 = 𝑚1 + 𝑚2. 

3.  The hyperfine structure of three-particle bound state 
Consider a system of three charged particles of different masses with spins S1, S2 и S3. The various 
possible values of the total spin  𝑺 =  𝑺1  + 𝑺2 + 𝑺3 system set the levels of the hyperfine structure 
of the ground state. For definiteness, we choose all spins equal to 1/2. The arguments and formulas 
below are also valid for any other values of the particle spins.  
In the leading order, the contribution to the hyperfine structure of the spectrum has the following 
general form: 

∆𝑉ℎ𝑓𝑠 = 𝑎(𝑺𝟏𝑺𝟐) + 𝑏(𝑺𝟏𝑺𝟑) + 𝑐(𝑺𝟐𝑺𝟑),                                           (10) 

𝑎 =
2𝜋𝛼

3𝑚1𝑚2

1 + 𝜅1
𝑆1

1 + 𝜅2
𝑆2

< 𝛿(𝒓𝟏𝟐) > ,                                                 (11) 

𝑏 =
2𝜋𝛼

3𝑚1𝑚3

1 + 𝜅1
𝑆1

1 + 𝜅3
𝑆3

< 𝛿(𝒓𝟏𝟑) > ,                                                 (12) 
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𝑐 =
2𝜋𝛼

3𝑚2𝑚3

1 + 𝜅2
𝑆2

1 + 𝜅3
𝑆3

< 𝛿(𝒓𝟐𝟑) > ,                                                 (13) 

where < 𝛿�𝒓𝒊𝒋� > denotes averaging over basic functions. Let us show how this averaging is 
performed using the matrix element < 𝛿(𝒓𝟏𝟐) > as an example. 

𝒓𝟏𝟐 = 𝒓𝟏 − 𝒓𝟐 = 𝝆,                                                                    (14) 
𝒓𝟏𝟑 = 𝒓𝟏 − 𝒓𝟑 = 𝝀 +

𝑚2

𝑚12
𝝆,                                                          (15) 

𝒓𝟐𝟑 = 𝒓𝟐 − 𝒓𝟑 = 𝝀 −
𝑚1

𝑚12
𝝆.                                                          (16) 

Then for the first matrix element we have: 

< 𝛿(𝒓𝟏𝟐) > =< 𝛿(𝝆) > = �𝑑𝝆𝑑𝝀𝛿(𝝆)𝑒−
1
2�𝐵11𝜌

2+𝐵22𝜆2+2𝐵12(𝝆𝝀)� =
(2𝜋)

3
2

(𝐵22)
3
2

 ,             (17) 

where 𝐵22 = 𝐴22𝑖 + 𝐴22
𝑗 . When calculating the specific contribution of the matrix element, it is 

necessary to divide it by the normalization factor. Similar expressions can be obtained for other matrix 
elements: 

< 𝛿(𝒓𝟏𝟑) > =
(2𝜋)3/2

�𝐵11 − 2𝐵12
𝑚2
𝑚12

+ 𝐵22 �
𝑚2
𝑚12

�
2
�
3/2  ,                               (18) 

< 𝛿(𝒓𝟐𝟑) > =
(2𝜋)3/2

�𝐵11 + 2𝐵12
𝑚1
𝑚12

+ 𝐵22 �
𝑚1
𝑚12

�
2
�
3/2   .                           (19) 

Next, it is necessary to perform averaging of the potential (10) over the spin functions. This can be 
done using the formalism of irreducible tensor operators and the Eckart-Wigner theorem [5]. The 
general formulas of matrix elements are as follows: 

< 𝑆12′ ,𝑆|(𝑺𝟏𝑺𝟐)|𝑆12,𝑆 > = 𝑆1𝑆2������
𝑆12
𝛿𝑆12𝑆12′ ,                                  (20) 

< 𝑆12′ , 𝑆|(𝑺𝟏𝑺𝟑)|𝑆12,𝑆 > = �(2𝑆12′ + 1)(2𝑆12 + 1)(2𝑆2 + 1)(𝑆2 + 1)𝑆2 ×�(2𝑆3 + 1)(𝑆3 + 1)𝑆3 

                × (−1)𝑆12𝑚𝑎𝑥+𝑆12𝑚𝑖𝑛+𝑆+𝑆1+𝑆2+𝑆3+1 × �
𝑆12 𝑆3 𝑆
𝑆3 𝑆12′ 1� �

𝑆1 𝑆12′ 𝑆2
𝑆12 𝑆1 1 � ,                          (21) 

< 𝑆12′ , 𝑆|(𝑺𝟐𝑺𝟑)|𝑆12,𝑆 > = �(2𝑆12′ + 1)(2𝑆12 + 1)(2𝑆2 + 1)(𝑆2 + 1)𝑆2 ×�(2𝑆3 + 1)(𝑆3 + 1)𝑆3 

× (−1)2𝑆12𝑚𝑎𝑥+𝑆+𝑆1+𝑆2+𝑆3+1 × �
𝑆12 𝑆3 𝑆
𝑆3 𝑆12′ 1� �

𝑆2 𝑆12′ 𝑆1
𝑆12 𝑆2 1 �  .                                  (22) 

In the case of particles with spin 1/2, we obtain the energy matrix. After its diagonalization we obtain 
the following eigenvalues: 

𝜆1 = −
1
4

(𝑎 + 𝑏 + 𝑐) +
1
2
�𝑎2+𝑏2+𝑐2 − 𝑎𝑏 − 𝑏𝑐 − 𝑎𝑐 ,                              (23) 

𝜆2 = −
1
4

(𝑎 + 𝑏 + 𝑐) −
1
2
�𝑎2+𝑏2+𝑐2 − 𝑎𝑏 − 𝑏𝑐 − 𝑎𝑐 ,                              (24) 

𝜆3 =
1
4

(𝑎 + 𝑏 + 𝑐) .                                                                                (25) 

4.  Stochastic variational method 
There are two options in solving the problem using the stochastic variational method. Create a new 
basis or increase an existing one: 

1) Increase dimension of basis. 
Assuming that the basis already contains N-1 elements, we will create K new elements and find the 

energy values for the new basis, which contains the i-th new element and N-1 previously 
specified elements. The basic element for which the lowest energy is obtained is selected as a 
new element of the N basis and is stored in it. The dimension of the basis becomes equal to N. 

2) “Stripping” of this basis, to improve energy. 
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In this case, the dimension of the basis remains unchanged, and some k-th elements are replaced with 
new ones. Further, the problem is solved by analogy with method 1. At the same time, it is 
checked whether the new elements provide better energy in comparison with the initial state. 
Such a replacement can be performed for all elements of the basis. 

In both cases 1 and 2, one can observe the convergence of the energy value. Thus, at each step N (N = 
1 ... Nmax), based on randomly defined nonlinear parameters, several future basis functions are 
compiled, and their “practicality” is determined by the amount of energy obtained by adding each to 
the common basis, as a result the most suitable. Nmax will be the finite dimension of the basis. 
This method has several unique features: it is completely based on the analytical calculation of most 
types of particle interaction, which implies high accuracy and speed of calculations. The calculation 
method is quite universal and does not require changes depending on whether the system contains a 
strong, electromagnetic or other type of interaction between particles. And most importantly, the wave 
function is obtained in a compact analytical form, and can immediately be used to find any physical 
properties. 
Using the MATLAB system we obtained the wave functions of muonic helium atom for the ground 
and excited states and calculated the matrix elements determining the hyperfine structure of the energy 
spectrum. 
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