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As we have shown elsewhere [10], detecting word boundaries using transi-

tional probabilities between speech units can be substantially improved by de-

ploying additional statistical information in the text, such as the most frequent 

phoneme chains. This idea also simulates a possible interplay between bottom-

up and top-down processes whereas the top-down information was extracted in 

the previous bottom-up calculations. We have further improved the algorithm 

and now like to present the results of two issues. First, how do recursive struc-

tures influence the outcome of the segmentation process depended on the size of 

the sample and, second, how can we use this information in building a lexicon. 

In a wider sense, both questions are related to language acquisition, which is 

seen as a meta-model for copying efficient processes of automatic language 

learning. 

The algorithm used in [10] calculated all transitional probabilities occurring 

between one to five phonemes of a corpus sample and inserted whitespaces at a 

predefined limit running from 0 to 1. This value was defined as a frequency ratio 

of the total occurrences of the entire phoneme chain and the occurrences of its 

subparts. Moreover, the five most frequent n-grams were taken from the text and 

we gave evidence that these n-grams carry additional cues for word segmenta-

tion since most of the time they happen to be words if merged into larger sets, 

thus, each defining two more word boundaries if thrown back into the corpus. 

The most recent version of the algorithm has three alterations. First, it does not 

take the most frequent n-grams of the corpus sample, but calculates a predefined 

number of the words that are separated from the transitional probabilities calcu-
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lations. These words are saved in a list, which represents some preliminary lexi-

con. Second, the recursive structure can be defined by the number of repetitions. 

This allows, in a figurative sense, to simulate stages in the development of the 

lexicon acquisition and therefore also for the sequence of events throughout 

time. Third, for each cycle one may chose to input different corpora. From the 

perspective of language acquisition research, this architecture is somewhat clos-

er to reality because one could set fourth that the young language learner will 

have different speech input throughout the first months of life as well.  

 

 
Figure 1. General Design of updated Algorithm 

 

The letters a through e indicate the psychological processes and experi-

mental findings as follows: a – Phonemes are perceived categorically and are the 

perceptual units in English (e.g.: [9], [2], [3], [12]), b – 8 month olds can use 

transitional probabilities to segment an unknown speech stream [11], c – infants 

recognize most frequent sound chains [4], d – sound sequences can be memo-

rized for some time (e.g. [5], [6]), e – phonemic representations can be aligned 

in a top-down mechanism [1]. 

 

Having input child directed speech from the CHILDES database [7], con-

verted it to a machine readable phonetic transcription and removed whitespaces, 

the algorithm starts to compute all transitional probabilities between the given 

segments varying in length from one to five. An outer loop running from zero to 

one inserts whitespaces whenever the transitional probability amounts to less 
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than the respective value in the outer loop. Depending on a value ζ defining the 

number of entries in the paralexicon
1
, the ζ most frequent chains segmented by 

the procedure just outlined are stored in a list. A last loop that is put over on the 

very top of the algorithm so far specifies the number of recursions. At the be-

ginning of each cycle, the stored lexicon entries are matched with its counter-

parts in the same or a different corpus adding for each entry two more 

whitespaces to the input text. The matching process follows the same assump-

tions made in the cohort model [8]. Then, the first and second loop starts to 

work enriching the lexicon list with new entries for every run through the loop.  

The performance of the segmentation is output as F1-measure.
2
 The F1-

maxima at constant phoneme length, frequency ratio and corpus size can be de-

scribed in dependence of the recursive cycles and the size of the lexicon (figure 

2). As we have expected, the size of the lexicon if greater then ten entries does 

not affect the performance of the segmentation substantially for corpora smaller 

than 10000 phonemes (about 2500 words). It will, however, have a tremendous 

effect for larger corpora and long phoneme chains. Here performance may dou-

ble as the example in our largest corpus shows. Thus, the larger the corpus and 

the phoneme chain becomes, the more important is the size of the lexicon for a 

successful segmentation performance. The number of iterations will also bear 

positive effects on segmentation results. Independent of the size of the input, 

every corpus will increase its F1-measure by a considerable amount for the first 

cycle. For smaller lexica it will then continue to rise slightly or stay constant. 

Longer phoneme chains will profit more with each additional run. For large cor-

pora, smaller phoneme chains may even decrease if ζ becomes bigger. 

 

                                                           
1
 We chose ζ to be 10, 20 or 30 entries respectively because preliminary tests had 

shown them to be critical lexicon sizes. 
2
 For reasons of comparability with all other major contributions in that area, we 

decided to use the F1-measure used in the field of Information Retrieval. It is a special 

form of the harmonic mean and as such defined as  

F = 

pr

1

1
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whereas r stands for recall and p for precision, which are defined as  
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We set  = 1 and hence weighted r and p equally. 



 

 

Figure 2. Segmentation performance (F1) dependent on the number of cycles, ζ 

and length of the phoneme chain for six different corpus sizes (the number next to 

“corpus size” indicates the number of signs in the corpus) 

 

Our simulations give evidence for noticeable improvements in the segmen-

tation outcome if using simple procedures recursively including additional sta-

tistically encoded information in the text. We run our simulations in two modes. 

First, we input only one corpus for all cycles and, second, we used different cor-

pora for each cycle. The results in both modes were very similar. Only minor 

improvements (an average of 3%) could be observed. So, at first glance, it seems 

that different corpora do not impact on correct segmentations. This is somewhat 

counterintuitive. One would assume that new corpora would at least generate 

some novel words to the lexicon and so add new information for the next itera-

tion. Looking at figure 2, it is apparent that after the first iteration, F1 doubles 

and thereafter increases, if at all, only little. Further investigation of the lexicon 

entries revealed the main source of the problem. It turned out to be, of course, 

the lexical embeddedness of bound morphemes and articles (some entries are 

subparts of other entries). This problem will be particularly interesting after the 

second iteration since entries that do not fit the pattern of transitional probabili-

ties are also present in the corpus by then.
3
  

                                                           
3
 The rationale behind it is clear cut and also stochastically plausible. After the first 

iteration, the probability of encountering an embedded word that is followed by a 

sequence of signs that is also enlisted in the lexicon is low. This is compelling because 

these very entries, by definition of transitional probabilities, are enlisted for their 

quality of exactly this sequence of signs. After the second iteration this is not 

necessarily true because now there are entries in the lexicon that were not segmented 

by transitional probabilities. 
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To minimize this shortcoming, we changed the algorithm but at one point. 

We would not allow the lexicon list to be matched with the input stream for a 

certain number of cycles. As a consequence, the lexicon list would now grow 

almost linearly by a certain number of words (ζ) until the specified number of 

cycles is reached. Then it will input them at once and from this moment on will 

continue the algorithm as usual, that is, matching the lexicon with each cycle to 

come. In our simulation we used 30 corpora containing 10000 signs and set ζ 

equal to ten. As we have hypothesized, independent of the number of corpora or 

cycles respectively, the improvement of F1 (Δ F1) will decrease substantially 

after the second iteration (figure 3). However, for each additional iteration, in 

which matching was delayed, the performance rose by some percentage. This 

showed that, indeed, every new corpus also adds some more information that is 

useful for segmentation. Furthermore, the higher the delay of the lexical match-

ing process (the more cycles run through without giving the information of the 

lexicon list), the more the slope of the lexical function (LexFunc) will smooth 

out. The maximum values of this family of functions define another function 

(argmax(LexFunc)) whose first derivative runs against zero. From this we may 

conclude that for an infinite number of cycles (i), the lexical function will con-

verge to argmax(LexFunc) and at some point be equal to it (i→∞, LexFunc = 

argmax(LexFunc)). In what follows, we will explain these interesting findings. 

 

 

Figure 3. Schematic depiction of family of parametric lexicon functions 

 

We will now take a closer look at the sudden but regular decrease after the 

second iteration that arise from the moment the lexicon matches are switched 
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on. The weakness of the transitional-probability-approach is that, depending on 

the specific sound environment, the same word is sometimes correctly separated 

and at other times not. Then it is part of a larger phrase or even torn apart. Still, 

the correct segmentations of that word will be more frequent. It is this observa-

tion that led us to design our algorithm to compensate the deficiency of transi-

tional probabilities. As an extreme case for example, the word /mɒmi/ (mommy) 

may appear ten times in the corpus in different sound environments. Even if it is 

only separated twice as /mɒmi/, it will still be written to the lexicon as long as 

the ζth entry is not greater than two. One of the advantages of using transitional 

probabilities, on the other hand, is that the algorithm also recognizes co-

occurrences and separates them into its distinct parts, of course only if the sam-

ple is large enough to contain different sound environments, in which the subparts 

of the co-occurrences also show up. Typically this is the case for article – noun 

sequences. Since the article does not only occur before the same noun but differ-

ent nouns and as well in other phrases (e.g. of the best; the beginning, etc.), the 

definite article will be correctly separated by transitional probabilities and be-

cause of its high frequency also be present in the lexicon list. With the exception 

of the Progressive /ɪŋ/ (ing), grammatical morphemes (Puralallomorphs [s], [z] 
and Pastallomorphs [t], [d]) and other bound morphemes do not occur in the lex-

icon list after the first iteration. They appear in such sound environments which 

add them to the next word or they are not separated from the word they belong 

to. Now the second iteration starts with the matching process and the lexicon en-

tries are aligned with the new corpus. The effect is positive because all frequent 

chains that were segmented at one time but not at another, will now be consist-

ently filled in. In the above example, all /mɒmi/-words would then be correctly 

separated or strung together respectively, which betters the result by a factor of 

at least five in this case.
4
 In addition to that, some more information is added be-

cause predecessor and successor words also receive at least one correct word 

boundary. Applied to the /mɒmi/ -example, we have a surrounding context that 

could look like /ðɪs ɪz mɒmi switi/ (this is mami, sweetie) and was segmented 

into /ðɪs ɪzmɒm is witi/. Filling in /mɒmi/ not only results in two more correct 

counts of whitespaces, but also for deleting a wrong whitespace within the cor-

responding word. In fact, it also leads to a change of the probability distribution 

within the successor word, which might now possibly be separated correctly de-

pending on the other environments of the sound chain /switi/ in the given mate-

rial. This is so because the /i/-/s/ and /s/-/w/ transitional probabilities will be set 

to the corresponding value of the second outer loop. Thus, for the specific envi-

                                                           
4
 Taking the wrong segmentation into account, the factor would increase further 

because in the worst case each word might contain three more whitespaces, which 

totals up to 24 wrong segmentations. 
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ronment /mɒmi switi/ the algorithm has “learned” that a whitespace between 

/mɒmi/ and /switi/ is more likely than stringing together the /i/ and /s/, which is 

still remembered as “valid” for most other environment since /ɪs/ is a very fre-

quent phoneme chain. These processes even lead to the positive result of seg-

menting the indefinite article /ʌ/ (a) correctly. As opposed to the definite article 

/ðʌ/, the indefinite article only consists of one phoneme and occurs in such a 

large variety of different sounds that it almost never stands by itself. 

However, the positive effect turns negative soon after the second iteration, 

especially for cycles comprising a short lexicon list. The problem is the bound 

morphemes; grammatical morphemes in particular. A lexicon list will contain 

the most frequent nouns and verbs of the corpus (e.g. ball, mommy, daddy, 

spoon, let, sit, get, do, are, go). They occurred in different sound environments 

and are therefore seen as units. Indeed, in some of the environments, they are 

used in the Plural, Progressive, 3
rd

 Person or Past. While it does not state a prob-

lem for irregular forms, plurals as well as past,
5
 it is a challenge for regular 

forms. Only a few Plurals and 3
rd

 Person forms
6
 suffice to separate the grammat-

ical morphemes from its root. To be more precise, the entry /bɔl/ will cut apart 

the /z/ from its plural form. By the same process, /sɪts/ and /gets/ lose their /s/ as 

well if only /sɪt/ and /get/ are enlisted in the lexicon. As a result, the /s/ and /z/ 

will stand alone as atomic and independent items. As such, they will be counted 

as all other potential candidates for the next lexicon list and they have very good 

chances to be in there. The same happens with the progressive and some other 

bound morphemes. Finally, the third iteration starts and the new list is matched. 

In line with the cohort model, each item from the lexicon list will now be 

aligned with the possible candidates in the new corpus activating the longest 

phoneme chains that fit the target chain. Whenever, some longer phoneme chain 

has no correspondent in the lexicon, smaller units such as plural and past indica-

tors will be inserted giving two wrong whitespaces. For example, /sʌspekt/ (sus-

pect) and /sɪzɜz/ (scissors) are very unlikely to be in the lexicon. In the first 

case, the entry starts with the /s/ and having no other entry /sʌ/ in the list, the 

candidate turns to /s ʌ s pekt/. Assuming that neither /pek/ nor its subparts are 

enlisted, the next entry is the grammatical morpheme /t/ that will be merged. At 

the end, the word is segmented into five potential entries for the lexicon. “Scis-

sors” would even be divided into /s ɪ z ɜ z/ provided that there are no entries for 

/sɪ/, /zɜ/ and /ɜz/ in the list. The latter is especially tricky because now there are 

                                                           
5
 Most of the time they are segmented as entire units. 

6
 Naturally, if they appear together more often, they are attached to the lexicon entry 

and the problem does not come up. 



 

a large number of single phonemes in the text that have easy access to the lexi-

con for their high frequency occurrences. (here /ɜ/ and /ɪ/). 

While the same processes have already taken place with the /ɪŋ/ forms in 
the first and second iteration, from the third iteration on, the effect of additional 

single phonemes in the lexicon will outweigh the positive effects of the recur-

sive structures if the lexicon list is too small. The negative effect is much less 

intense if the lexicon reached a certain size because then there will be fewer 

phoneme chains that cannot be matched with the lexicon. This explains the 

smoothing out of the slope in figure 3 as time (cycles) progresses. 

So, could one question the recursive structure at all? The argument goes 

that the lexicon list will build up infinitively as long as new input prevails until 

enough words are available that the text can be entirely segmented. This is, 

however, not the case as corpus statistics evidently suggest. With every cycle the 

number of entries will concavely decrease (figure 4). Evidently, the most fre-

quent phoneme chains will appear in every corpus. As a consequence, with each 

new corpus fewer new chains will be added, so that the total number in the lexi-

con will be less than 100 entries independent of ζ even after 30 cycles. 

 

Figure 4. Schematic depiction of lexicon growth for a 10000 sign corpus 

 

Our research on statistical word segmentation contributes to two burning 

issues in the linguistic community. First, the bootstrapping problem has an alter-

native and plausible solution that does not take the loss of contradictory theoret-

ical, experimental and logical findings. Neither semantics assuming syntactic 

structures that can only be build up knowing some semantics nor vice versa is 
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necessary to construct an initial list of words as a pattern from which all other 

principles and rules can be derived. All that is needed is the ability to use transi-

tional probabilities to segment a speech stream and recognize the most frequent 

candidates from there. Both abilities are experimentally proven. Second, our 

simulations suggest that the lexicon should be structured morphemically. Once 

we admit recursive structures, which compensates the weakness of transitional 

probabilities, a morphemic segmentation is inevitable. The simulation discloses 

morphemes as robust building blocks of language within a statistical framework 

of language learning. 
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