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Abstract. Prediction algorithm of Epilepsy Seizures and Sleep Spindles in 
electroencephalography (EEG) data is studied in this article. EEG data was measured 
in rats with Post-Traumatic Epilepsy (PTE) before and after Traumatic Brain Injury 
(TBI). Experts manually partitioned records into two classes: one, which refers to 
epileptic activity - Epilepsy Seizures, and second class, which refers to normal 
behavior of rats - Sleep Spindles (SS). Proposed algorithm was trained and tested 
on the collected data, which contained EEG features, previously extracted by 
detection algorithm. Feature importance was evaluated, and logistic regression 
model was built. Cross validation results were 79% Area Under Curve (AUC) for the 
best model.
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1. Introduction
The wide known fact is the connection of epilepsy and head injury. According to statistics,
significant number of epilepsy cases happen after Traumatic Brain Injury (TBI). This kind of
epilepsy is called Post-Traumatic Epilepsy (PTE). As the Epilepsy Seizures (ES) are one of
the strongest features of PTE risk, it is suggested that these seizures are ideal target for early
disease diagnostics. Among other phenomena in EEG, for instance, Sleep Spindles (SS) refer to
normal behavior in brain activity. Thus the recognition of events in EEG, like ES and SS poses
significant problem to biomedical scientific community.

2. Experiment and Data Collection
In order to create a recognition algorithm, one should collect the training data of EEG activity.
Thus, the experiment was set up on rats with PTE. EEG records were measured before and after
TBI in order to receive unbiased data. After the EEG data was collected, Experts performed a
manual mark up of signals into two classes of ES and SS.

Raw EEG data was processed by continuous wavelet transform in order to receive wavelet
spectrogram of Power Spectrum Density (PSD), Frequency and Time. EEG records were
measured in 4 Channels. List of extracted features in EEG is provided in a Table 1.

As a result, the dataset of 365 observations was made, 198 of observations were labeled as
ES and 167 as SS. Along with 10 features, a target variable was added. This variable indicated
class of a record according to mark up: 1 in case of epilepsy (ES) and 0 in case of normal (SS)
observation.
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Table 1. List of EEG Features and their AUC values

Feature Description AUC
fmin Minimal Frequency of a record 0.52
fmax Maximal Frequency of a record 0.51
∆f fmax - fmin 0.51
Pmin Minimal PSD of a record 0.72
Pmax Maximal PSD of a record 0.53
∆P Pmax - Pmin 0.5

mean(f) Average Frequency of a record 0.61
std(f) Frequency Standard Deviation of a record 0.64

std(f)/mean(f) Standard Deviation to Mean ratio of Frequency 0.67
t(Pmax ) Relative Time when maximal PSD was observed 0.65

3. Model Creation and Validation
3.1. Feature Importance
Logistic Regression model was trained on a dataset. However, only important features were
used as predictors. In order to estimate feature importance, Receiver Operating Characteristics
(ROC) were built and Area Under Curve (AUC) was measured. Table 1 also provides AUC
results for the features. AUC 0.5 indicates that there is no dependency between feature and
target variable. As a result, only important features with AUC>0.6 were used in a model.

3.2. Model Training and Testing
Dataset was randomly divided into train and test parts in 70/30 proportion. Coefficients
evaluation was performed on a train subset, and prediction was made on test subset. As a
result, AUC was measured on a validated data. This training and testing procedure was made
1000 times in order to reach statistically stable results.

4. Results
After 1000 models were created, AUC for each model was estimated on a test subset. As a
result, distribution of AUC was analyzed. Table 2 shows AUC statistics, and it can be seen that
median AUC is nearly 80%. Average coefficients of predictors are provided in a Table 3.

Table 2. Summary of model’s Area Under Curve values

Min. 1st Quartile Median Mean 3rd Quartile Max
AUC 0.6425 0.7692 0.796 0.795 0.8217 0.8959

Table 3. Average features coeffiecients in Logistic Regression models

Intercept Pmin mean(f) std(f) std(f)/mean(f) t(Pmax )
-1.8203 -3.682e-05 0.5165 -1.5043 1.9391 0.6578

Based on these coefficients, probability of ES for a particular record can be estimated using
formula:

P =
1

1 + e−z
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z = k0 +

5∑
n=1

knFn

In a formula above Fn indicates feature values and kn refers to their coefficients from Table
3 (k0 refers to Intercept).

5. Conclusion
This article describes methods of recognition of epileptic signals in brain activity. EEG records
of laboratory rats with PTE were measured before and after TBI. Experts in neurobiology
performed a mark up of signals into ES and SS in order to make a dataset for training the
model. Features were extracted from EEG via wavelet transform and time-frequency analysis.
On a resulting dataset, logistic regression model was built with binary target variable of epilepsy.
Although, only important factors were considered in a model. Models were cross-validated on a
subset of data and performance was measured in AUC.

Proposed algorithm of ES and SS recognition shows good performance results with average of
80% accuracy of prediction. Further, this approach can be applied to identification of epileptic
activities in a long term EEG records. For instance, long EEG records can be automatically
processed, and parts with high risk of epilepsy could be identified with proposed model. Thus,
dynamics of the disease after brain injury can be estimated and analyzed.
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