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Abstract. The paper outlines the mathematical motion model of the solar sail spacecraft. The 
work considers the mathematical three-dimensional motion model of the perfect-reflection 
solar sail and the operational orbit maintenance and correction algorithms in heliocentric 
coordinate system. On the basis of the formulated mathematical model the special software 
complex for interplanetary transfer simulation is developed. Especially, the mission of the 
transfer of the spacecraft from the Earth’s orbit to the potentially hazardous asteroid is 
simulated. The obtained results during simulation demonstrate correctness and feasibility of the 
considered mathematical motion model. 
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1. Introduction 
Nowadays, there has been growing interest in missions to various planets of the Solar system. A 
promising way of cost reduction for such missions is the use of advanced physical principles of space 
travel such as movement by means of a solar sail. Solar sails are a form of spacecraft propulsion, 
which accelerate by means of pressure of stellar radiation on large ultra-thin mirrors. The possibility of 
saving a plenty of money has generated wide interest in the solar sailing technology. In recent years a 
considerable amount of work has been done in solar sailing. In the past five years great experience of 
the use of advanced physical principles of space travel such as movement by means of a solar sail has 
been obtained and described in [1]. The motion of a spacecraft on the Low Earth Orbit (LEO) is 
observed in [2]. Much less information is available about a flight of solar sail spacecraft to potentially 
hazardous asteroids. This paper considers a mathematical description of a research mission to near 
Earth asteroids. The aim of the present work is creation of a mathematical motion model of the solar 
sail spacecraft. 

2. Mathematical motion model of the solar sail spacecraft 
Solar sails are a form of spacecraft propulsion, which accelerate by means of pressure of stellar 
radiation on large ultra-thin mirrors. During interplanetary flight solar sail spacecraft moves under 
sunlight influence. 
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2.1. Mathematical motion model of the perfect-reflection solar sail 
The two-dimensional motion model of the perfect-reflection solar sail is shown on Figure 1. 

 
Figure 1. Solar sail spacecraft motion model. 

Here Fincident – propulsive power of incident photons, Freflective – propulsive power of incident photons, 
F – propulsive power of the solar pressure, n̅ – solar sail surface normal,λ1– control angle of solar sail 
spacecraft in the ecliptic. The control angle λ2 appears in case of three-dimensional motion model of the 
perfect-reflection solar sail. The control angle λ2 performs correction of a three-dimensional orbit 
elements such as inclination i and longitude of the ascending node Ω. 

The three-dimensional motion equations in the heliocentric coordinate system is described by state 
variable vector 

( , , , , , )T
rX r V V iφφ= Ω ,        (1) 

or by the system of differential equations [4] 
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where r is distance of spacecraft and Sun centers of mass, φ is argument of latitude, Vr  is radial 
velocity of a spacecraft, Vφ is transversal velocity of a spacecraft,Ωis longitude of the ascending node, i 
is inclination of orbit, a0 is complex acceleration, λ1is control angle of solar sail spacecraft in the 
ecliptic plane (angle between solar sail surface normal and radius vector), λ2 is control angle performs 
maintenance and correctionof inclination i and longitude of ascending node Ω (angle between solar 
sail surface normal and radius vector). 

The complex acceleration is determined as: 

1 2
0

2 cos( ) cos( )rS SFa
m c m

λ λ⋅ ⋅ ⋅ ⋅
= =

⋅ ,       (3) 
where F is propulsive power of the solar pressure, m is mass of a spacecraft, Sr isenergy of solar 
electromagnetic wave which strike upon surface unit, S is current sail spread, c is velocity of light. 

The propulsive power of the solar pressure is determined as: 

1 1 1 1( ) cos( ) ( ) cos( )r r
incedent reflective

S SF F F S S
c c

λ λ ε λ λ= + = ⋅ ⋅ + ⋅ ⋅ ⋅
,    (4) 

where 
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1 1( ) cos( )S Sλ λ= ⋅         (5) 

2.2. Operational orbit maintenance and correctionalgorithms 
The orbital elements of a three-dimensional motion are shown on Fig. 4. Here i is inclination, r is 
distance of spacecraft and Sun centres of mass, ϑ is true anomaly, ω is perihelion argument, Ω is 
longitude of the ascending node, u is argument of latitude. 

 
Figure 2.Orbital elements of a three-dimensional motion. 

 
 The algorithms of the operational orbit maintenance and correction are designed to control of a 
solar sail spacecraft on an operational orbit. The algorithms are based on the law of the Keplerian 
element changes. In [3] the law of the Keplerian element changes is following: 
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      (6) 

The equation of motion (6) allows us to estimate locally optimal control laws for a solar sail 
spacecraft. The locally optimal control laws provide maintenance and correction of the orbital 
elements.  

According to Figure 2 and (6) the locally optimal control law components f1 and f2 of the equation 
of motion were found. Table 1 shows the components of orbit parameter increment. The components 
of orbit parameter decrement and components of orbit parameter maintenance are demonstrated in 
table 2 and table 3 respectively. 
 

Table 1.Locally optimal control lawcomponents of orbit parameter increment. 
№ Name Components f1 and f2 

1 parameter increment, p 0  
1

1 cos( )e ϑ
−

+ ⋅  
2 semi-major axis increment, a cos( )e ϑ⋅  1 cos( )e ϑ− + ⋅  

3 eccentricity increment, e sin( )ϑ  
2cos ( ) 2 cos( )
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e e
e

ϑ ϑ
ϑ
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−
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4 perihelion radius increment, rπ sin( )ϑ−  
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e

e
ϑ ϑ

ϑ
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−
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5 aphelion radius increment, rα sin( )ϑ  
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ϑ
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6 perihelion argument increment, ω cos( )ϑ−  
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7 inclination increment, i 
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8 longitude of the ascending node 
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Table 2. Locally optimal control lawcomponents of orbit parameter decrement. 
№ Name Components f1 and f2 

1 parameter decrement, p 0  
1

1 cos( )e ϑ+ ⋅  
2 semi-major axis decrement, a cos( )e ϑ⋅  1 cos( )e ϑ+ ⋅  

3 eccentricity decrement, e sin( )ϑ  
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Table 3.Locally optimal control lawcomponents of orbit parameter maintenance. 

№ Name Components f1 and f2 

1 parameter maintenance, p 
1

1 cos( )e ϑ+ ⋅  
0  

2 semi-major axis maintenance, a 1 cos( )e ϑ+ ⋅  cos( )e ϑ⋅  

3 eccentricity maintenance, e 
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5 aphelion radius maintenance, rα 
( ) 22 1 cos( ) sin ( )

1 cos( )
e

e
ϑ ϑ

ϑ
⋅ + − ⋅

+ ⋅  
sin( )ϑ  

6 perihelion argument maintenance, ω 
( )sin( ) 2 cos( )
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e
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ϑ ϑ
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7 inclination maintenance, i 2 0λ =   

8 longitude of the ascending node 
maintenance, Ω 2 0λ =   

3. Simulation findings 
On the basis of the formulated mathematical model the special software for interplanetary transfer 
simulation is developed.The paper describes findings of the solar sail spacecraft motion simulation to 
demonstrate efficiency of the algorithms of the operational orbit maintenance and correction. In this 
part of paper the flight to the potentially hazardous asteroid 433 Eros from Earth orbit is considered.  
 The solar sail spacecraft starts from the Earth’s orbit. The suppositions, which are used during 
simulation session, include following points: 

• Earth escape is executed by means of booster; 
• initial orbit state variables of spacecraft align with Earth state variables on the date of start; 
• control angle λ1 is constant; 
• the aim of the simulated mission is ascent to the asteroid orbit. 
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 The findings of the simulation demonstrate that solar sail spacecraft is capable toascent to 433 Eros 
orbit during 2291 days. 

4. Conclusion 
The main purpose of this paper has been to investigate an advanced physical principle of space travel 
such as solar sailing. Ourmathematical motion model and findings demonstrate a capability of the use 
of a solar sail for ascent to the orbit of the asteroid 433 Eros. The results of flight simulation indicate  
thatthe algorithms of the operational orbit maintenance and correction can help solar sail spacecraft be 
transferred to a potentially hazardous asteroid orbit. 
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