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Abstract. The problem of furnishing orthogonal systems of eigenvectors for the
discrete Fourier transform (DFT) is fundamental to image processing with
applications in image compression and digital watermarking. This paper studies
some properties of such systems for DFT over finite fields that may be
considered as ”finite complex planes”. Some applications for multiuser
communication schemes are also considered.
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1. Introduction
The problem of investigating the discrete Fourier transform (DFT) and, especially its
eigenstructure, is one of the classical problems of mathematics [1]. Currently such generalizations
of DFT as the Hartley transform, the wavelet transform and trigonometric transforms are under
intensive study and have numerous applications in digital multiplexing systems design, multiple
access systems, error-correcting coding, cryptography, ets [2, 3, 4].

Also transforms in finite fields have been intensively studied and applied after Pollard defined
the fast Fourier transform in a finite field [5]. In digital signal and image processing these
transforms are attractive because they avoid floating point operations and rounding errors. As
a result, in comparison with real-valued mathematical tools, faster hardware implementations
could be designed [6, 7, 8, 9].

In spite of the fact that eigenstructure of a number of such transforms is in general known [10],
a lot of questions are still open. Partly it is related with large dimensions of eigenspaces and
with the lack of any canonical bases in it. So the problem of finding systems of eigenvectors
with any nice special properties is currently actual [11, 12, 13].

Encouraged by the above presented aspects, this paper has the main purpose of introducing
a new system of eigenvectors for the discrete Fourier transform over “finite complex fields”,
called Gaussian fields. Such eigenvectors have a very simple structure related with subgroups
of the multiplicative group of the field and are potentially useful in multiuser communication
schemes [2, 4]. and image compression.

The paper is organized as follows. After the introducing finite Gaussian fields in the next
section and the discrete Fourier transform in Section 3, eigenvalues of such cyclic FT are studied
in Section 4, where the general form of eigenvectors is shown. Then in Section 5 we introduce
subgroup eigenspaces and construct its bases. The paper closes with some concluding remarks
in Section 6.
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2. Finite Fields of Gaussian Integers
Let Z and C be the ring of integers and the complex field respectively, let Zn = Z/nZ be a
residue class ring modulo an integer n ≥ 2, and let GF(pm) be a Galois field with pm elements,
where p is a prime and m > 0 is an integer.

In number theory [14, Ch. 1.4] a Gaussian integer is a complex number z = a+ bi ∈ C whose
real and imaginary parts are both integers. Note that within the complex plane the Gaussian
integers may be seen to constitute a square lattice.

Gaussian integers, with ordinary addition and multiplication of complex numbers, form the
subring Z[i] in the field C. Unfortunately, lack of division in such rings significantly restricts its
applicability to image processing problems [15, 16, 17, 18]. So it is natural to look for finite fields,
whose properties would be in some respect similar to properties of C. Note, that if p = 4k +3 is
a prime, then the polynomial x2 + 1 is irreducible over Zp. As an immediate corollary, the next
definition follows.
Definition 1. Let p ≥ 3 be a prime number such that p ≡ 3 (mod 4). Then the finite field

C(p) def== Zp[x]/(x2 + 1) ' GF(p2)

will be called Gaussian field. Elements of C(p) will be called discrete Gaussian numbers.
Thus, Gaussian fields have p2 elements, where

p = 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, . . . .

In particular, there are 87 fields C(p) for 3 ≤ p < 1000. Elements of Gaussian fields are of the
form z = a + bi, where a, b ∈ Zp and i denotes the class of residues of x, so that i2 + 1 = 0.
The multiplication and addition in C(p) is straightforward, just as notions of the conjugate to
z number z∗ = a− bi ∈ C(p) and the norm N(z) = zz∗ = a2 + b2 ∈ Zp. (Note that in C(p) the
concept of modulus |z| =

√
N(z) is not defined.) It is easy to show that N(z1z2) = N(z1)N(z2)

and N(z) = 0 ⇔ z = 0.

3. Fourier transform over Gaussian fields
Let C(p) be any Gaussian field of a characteristic p = 4k + 3 Note that since C(p) is finite, its
multiplicative group C∗(p) = C(p) r {0} is cyclic and generated by a primitive element g. For
example, g = 2 + 7i and p = 1 + 19i are primitive in C∗(71) and g = 1 + 5i is primitive for
p = 251.

Let K = |G| = p2−1 and let
(
f0, f1, . . . , fK−1

)
be a vector of length K with fs ∈ C(p). Note

that such vectors are in natural correspondence with functions f(z) : C(p) → C(p) such that
f(gs) = fs, and from now on we will identify functions with vectors (fs).

There is another way to consider functions on C(p). Let C(p)[G] ' C(p)[X]/(XK − 1) be
the group algebra of the cyclic group G over the field C(p). Its elements may be considered as
”polynomials” in the indeterminate X,

qf (X) = f0 + f1X + f2X
2 + · · ·+ fK−1X

K−1 ∈ C(p)[X]/(XK − 1) ,

where the vector of coefficients fs ∈ C(p) defines a function f . Thus, we have the bijection

f ←→ qf (X)

and we will call qf (X) the polinomial representation of f .
Definition 2. Let C(p) be a Gaussian field and let g be any generator of its multiplicative
group. Let f(z) : C(p) → C(p) be a function and let (fk) be the vector of its values, fk = f(gk).
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The pair of mutually inverse transforms Fg[f ] = F and F−1
g [F ] = f , given by

Fw = −
K−1∑

k=0

fkg
kw, fk =

K−1∑

w=0

Fwg−kw .

will be called cylic Fourier transform (CFT briefly) and its inverse respectively. It can be also
defined in symmetrized form by

Fw = i
K−1∑

k=0

fkg
kw, fk = i

K−1∑

w=0

Fwg−kw .

Thus, the vector (Fw) is the left product of (fk) by the Vandermonde matrix

Ug =




1 1 1 1 . . . 1
1 g g2 g3 . . . gK−1

1 g2 g4 g6 . . . g2(K−1)

1 g3 g6 g9 . . . g3(K−1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 gK−1 g2(K−1) g3(K−1) . . . g(K−1)(K−1)




.

In particular, for p = 3 and K = 8 we have g2 = i, g4 = −1 and g7 = −ig = g−1, so that

Ug =




1 1 1 1 1 1 1 1
1 g i ig −1 −g −i −ig
1 i −1 −i 1 i −1 −i
1 ig −i g −1 −ig i −g
1 −1 1 −1 1 −1 1 −1
1 −g i −ig −1 g −i ig
1 −i −1 i 1 −i −1 i
1 −ig −i −g −1 ig i g




Note that if h is another generator for G, then h = gs, then gcd(s,K) = 1. Thus, in the
matrices Ug and Uh the first rows and columns coincide, while other rows and columns are the
same up to the permutation

π =
(

1 2 3 . . . K − 1
s 2s mod K 3s mod K . . . K − s

)
.

So in fact CFT does not depend on g, and we will write F [f ] = F briefly.

4. Eigenvectors of the cyclic Fourier transform

Note that K ≡ −1 (mod p). The next results are trivial:

Lemma 1. U2 = −




1 0 0 · · · 0 0
0 0 0 · · · 0 1
0 0 0 · · · 1 0
· · · · · · · · · · · · · · · · · ·
0 0 1 · · · 0 0
0 1 0 · · · 0 0




and so F4 = I.

Thus, eigenvalues of F are 1,i, −1, −i.

Lemma 2. Eigenvalues of the transform F4 are 1 and −1 of multiplicities K/2−1 and K/2+1
respectively. The corresponding eigenspaces have the following systems of vectors as bases

φ(1)
s = Xs −X−s and φ

(−1)
h = Xh + X−h, where 0 < s < K/2, 0 ≤ h ≤ K/2.
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Lemma 3. Let F be an arbitrary linear transform with an eigenvalue λ. Let v be an
eigenvector of F2 corresponding to the eigenvalue λ2. Then w = λv + F [v] is an eigenvector of
F corresponding to λ.
Proof. Indeed,

F [w] = F[
λv + F [v]

]
= λF [v] + F2[v] = λF [v] + λ2v = λ

(
λv + F [v]

)
= λw .

The next result follows from the previous lemmata immediately.
Proposition 1. The nonzero vectors

ψ
(λ)
h = λφ

(λ2)
h + F

[
φ

(λ2)
h

]
, where λ = 1, i,−1,−i and 0 ≤ h ≤ K/2,

are eigenvectors of the Fourier transform with λ as the corresponding eigenvalue. In other words,
these vectors are

ψ
(1)
h = φ

(1)
h + F

[
φ

(1)
h

]
= Xh −X−h + F [Xh]−F [X−h],

ψ
(−1)
h = − φ

(1)
h + F

[
φ

(1)
h

]
= − Xh + X−h + F [Xh]−F [X−h],

ψ
(i)
h = iφ

(−1)
h + F

[
φ

(−1)
h

]
= iXh + iX−h + F [Xh] + F [X−h],

ψ
(−i)
h = −iφ

(−1)
h + F

[
φ

(−1)
h

]
= −iXh − iX−h + F [Xh] + F [X−h].

Evidently, not all of the vectors ψ
(λ)
h are linearly independent.

5. Subgroup eigenspaces
Note that all subgroups of the cyclic group G are known: for every integer L ≤ 1 that divides
K = |G| = p2 − 1, there is the unique subgroup H ≤ G of order L. Moreover, H is generated
by any element gk ∈ G such that gcd(k, K) = K/L, and there are precisely ϕ such generators,
where ϕ is the totient function. If

K = pα1
1 pα2

2 pα3
3 . . . pαs

s ,

then G has precisely S(p) = (1 + α1)(1 + α2) . . . (1 + αs) subgroups. Note that 4|S(p) and
S(p) ≤ 2(p − 1), where the equality holds for p = 3 when S(3) = 4 = 2(p − 1). The function
S(p) is slowly growing; in particular, S(p) ≤ S(911) = 192 for p < 1000.

Note that with a subgroup H = 〈gs〉 ≤ G we may associate a function χH : Cp → Cp,

χH(z) =

{
1, z ∈ H,

0, z 6∈ H.

Since a subgroup of G is completely determined by its order, sometimes we will refer to χH as
χ|H|. As a vector, it is (

1, 0, 0, . . . , 0, 0︸ ︷︷ ︸
s− 1 zeros

, 1, 0, 0, . . . , 0, 0︸ ︷︷ ︸
s− 1 zeros

, . . . . . .
)

and the corresponding polynomial is

1 + Xs + X2s + . . . + XK−s.
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Definition 3. The subspace Sp ⊂ CK
p spanned by all the vectors νH will be called the

subgroup space of G. Its dimension is S(p).
It occurs that the subgroup space is closed under products, convolutions and the Fourier

transform. To show it, note first that the subgroup lattice of G is distributive with the following
join and meet operations: for H, L ≤ G,

H ∧ L = H ∩ L, where |H ∩ L| = gcd(|H|, |L|),
H ∨ L = 〈H,L〉, where |H ∨ L| = K

gcd(K/|H| , K/|L|) .

Theorem 1. The subgroup space is closed under products of functions, convolutions and the
cyclic Fourier transform: for every H, L ≤ G,

χH ·χL = χH∧L, χH ∗χL = |H ∧ L|χH∨L, F[χH

]
= |H|χG/H .

Corollary 1. Let H < G be a subgroup of G. Then

ψ
(i)
H = χH − i|H|χG/H and ψ

(−i)
H = χH + i|H|χG/H (1)

are eigenvetors of the cyclic Fourier transform corresponding to eigenvalues λ = i and λ = −i
respectively.
Proof. We consider the case λ = −i first. Note that |G| = K = p2 − 1 ≡ −1mod p. Hence,

F
[
ψ

(−i)
H

]
= F [χH ] + i|H|F [χG/H ] = |H|χG/H + iKχH

= |H|χG/H − iχH = −i(χH + i|H|χG/H) = −iψ
(−i)
H .

The proof for ψ
(i)
H is similar. ¥

Note that eigenvectors corresponding to H and G/H will be the same, up to a factor. Since
|H| · |G/H| = |G| = K, we may assume in (1) that |H| <

√
K =

√
p2 − 1 < p. It also follows

from (1) that

χH =
ψ

(i)
H + ψ

(−i)
H

2
, and χ

G/H = i
ψ

(i)
H − ψ

(−i)
H

2|H| .

Now the main result of the paper can be formulated.
Theorem 2. When restricted to the subgroup space, the cyclic Fourier transform has only two
eigenvalues i and −i. The corresponding eigenspaces are of dimensions S(p)/2 each and their
bases are formed by the vectors ψ

(i)
H and ψ

(−i)
H , where H < G and |H| < p.

6. Conclusion
This paper proposes a new system of eigenvectors for the discrete Fourier transform over finite
Gaussian fields. Such eigenvectors have a very simple structure related with subgroups of the
multiplicative group of the underlying finite field. Subspace spanned by the eigenvectors are
closed under products, convolutions and the DFT.

However, apart from of this work, there remain issues such as the detailed study of properties
of the introduced transformations, the study of possibilities of its generalizations, as well as the
details of its practical applications in multiuser communication schemes and image compression.
Authors hope to return to the study of these issues in the further papers.
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