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Abstract

In this paper, we demonstrate that combining a lasating (LH) system with a tandem acous-
to-optical tunable filter (TAOTF) allows us to meas the temperature distribution (TD) across a

laser-heated microscopic specimen. Spectral

imageepsing is based on one-dimensional (1D)

non-linear least squares fitting of the Planck atidh function. It is applied for determining the
temperaturel at each pointx y) of the specimen surface. It is shown that spkatmage pro-
cessing using the 1D non-linear least squaresditéillows measurement of the TD of the laser-
heated microscopic specimen with higher precisiod stability than those of the conventional
linear least-squares fitting of the Wien approxioaif Planck’s law.
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Introduction

In laser-machining applications, a laser beam &du
as a heat source. This allows a rapid increasennpéra-
ture, which causes melting and evaporation of te S
strate material [1]. LH is one of the main toolsthe
study of minerals and synthesis of new materialdeun
high pressure and high temperature in a diamond 3
cell (DAC) [2].

If a regular spectrometer is used to measure iadia
emitted from a heated material, it is only possiolees-
timate the temperature of the heated spot averaged
its area. This works perfectly only for a unifornD,T
however, the temperature under a laser has signifi¢
non-uniformity. For many applications, such as eixp¢
ments on measuring acoustical wave velocities un
high temperatures [3, 4] and studying phase triansit
under high pressure and high temperatures of carsn
terials [5, 6], it is important to know the TD ohet sur-
face of a solid heated by a laser. Recently the-t
dimensional (2D) distribution of the surface tengtere
of a millimeter-sized object was measured using TRO|
[7]. A set of spectral images (up to a few hundred}p
taken by the TAOTF imaging system in order to Hié t
measured spectral curves in each pixel to the Rleat-
ation function and to determine the temperaturghése
experiments, the TD of a tungsten filament heatgd b
constant current from a stabilized current sources \
measured. In [7], TD was measured from a relativ
large area of 2.5x2.5 nfmHowever, it is a challenge tq
measure the 2D TD inside a spot with a size of rsgv
microns heated by a laser beam. Collected theratih+
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dation (project #17-138) Bnancially supported

tion of the lamp is much higher compared to thathef
LH, where the area is around 15x15%uim this paper,
we developed (a) a microscopic setup that combites
and a TAOTF imaging system, and (b) an algorithm fo
fast multispectral image processing to demonsttiadé
the TAOTF imaging technique is an effective toof fo

nyneasuring the 2D TD on the surface of solids helyed

powerful laser.

Method

An experimental LH-TAOTF setup operating in the
reflection mode is shown in Fig. 1.
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Fig. 1. The sketch of the LH-TAOTF system
The sample (tungsten plate) is fixed on a rematefy

trolled motorized xyzstage (Standa 8MVT40-13). The
wide-band image of the specimen is obtained bypdicad
system based on a long working distance infinity-axted

V objective x10 OB, beam splitter BS, mirror M2 and a
PIY ED-based light source LS. A 100 W fiber laser (40@n,

IPG Photonics) is coupled withnashaper to allow precise

P control of the LH spot shape (e.g., gauss, flat-tignut
[8]). To align the laser beam, mirrors M1 and ki@ uti-
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lized. A 1064 nm notch filter (NF) is used to cdt lght
from the reflected laser beam from the camera sefibe
beam of the heating laser is focused on the sabple
long working distance objective OB. Irradiationrfrache

A tungsten ribbon-filament lamp is used as a known

source of spectral radiand@andarg)). Radiometric cali-
bration is based on the registration of the illuation of
the certified lamp operating at a temperature GfOLK.

specimen passes through the TAOTF and is thenddclisThe lamp is placed at the position normally occdpy

by a long focal distancé=£400 mm) lens L1 on the cam|
era sensor C (Allied Vision Mako G-030B).

A detailed description of the TAOTF operation can
found elsewhere [B,10]. Briefly, the main componen
of the system is an imaging TAOTF synchronized it}
video camera. A set of TAOTF spectroscopic images
to a few hundred) is taken by the TAOTF imagingeiys
in order to fit the measured spectral curves irhgzxzel
to the Planck radiation function and to determihe f{
temperature and emissivity of the sample usinggttas
body approximation. A single AOTF has already be
used for one-point temperature measurements |
Strong chromatic drift and spatial aberrationshef $pec-
tral images caused by a conventional single-AOT&gm
ing system complicate accurate spectral measursnien
each pixel [12]. To overcome this problem, we utes
TAOTF. [13] shows that the TAOTF system combin
reliable spectral imaging with several importardtéees:
absence of spatial distortions and chromatic dhfgh
spectral contrast; and increased signal-to-noifie. rin
the TAOTF imaging system, the image captured by
camera represents a distribution of the intensifdiated
by a specimen at a given wavelengtbontrolled by the
TAOTF [7].

The temperature of a heated specimen can be d
mined by measuring the radiation emitted by a nelte]
as a function of wavelength and fitting the expenital
data to the Planck’s blackbody equation (see [B4fdr

G

details):
c » (1)
o)

wherel is the spectral intensitg,is the sample emissiv
ity, ca and c; are physical constantsciE 2nc?,
c2=hck=0.01432 nK), c is the velocity of lighth is the
Planck's constant, anll is the Boltzman constanEor
temperatures lower than 40QCeq. (1) can be simplified
without a loss of accuracy [16]. It was shown thd¢ast-
squares fit of the spectrum at four wavelength® (@@,
650 nm, 700 nm, and 750 nm) yielded a temperatsiie
mate that is accurate to within¥s for temperature lesg
than 7000 K.

I(AeT)=eg(A,T),g(A, T)=

€G

A° exp(czj
AT

Eq. (2) is called the Wien’s law. Defining a normg
ized intensityd=In (1 A%c,), Wien's law can be expresse
as a linear equation inTL/

IMeT)=Ine-—2.
AT

I(A\eT)= (2

®3)

- the sample so that the spectral intensity.{}) of the
lamp and the specimdReasuref) is acquired through the
b same optical pathways. To determine the spectdit ra
ance of the heated specimépneced)), the following
equation is used:

|correcte£}¥) = |measure6>\) X |standar67b) / |optic47b)-

Image processing
Images at different wavelengths (from 610 nm to

(4)

760 nm with constant spectral step 2 nm) are delteby
enthe camera C to determine temperature intensitthef
L1lihermal radiation at the each pixel,{i) of the camera.
An image taken at 635 nm is shown in Fig. 2.

Fig. 2. TAOTF spectral image (635 nm) of the tueggtlate
in vacuum under LH. Laser power is 8 W

The number of  the TAOTF images

I measureli, Vi, Aj, j=1..N) is N=75. Exposure time for a
single image is 83 ps. The collected arta(x, i, ) is
used to determine a segment of the Planck’s ll@wct
edM) in the range 610-760 nm at each pixely(). Fig. 3
shows a collected spectrutmeasurefXm, ym, A), at the point
(Xm, Ym) taken at a point near the maximal temperature and
|correcte£Xm, Ym, 7»)-
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Fig. 3. The spectral intensitiegtected4) and easurefl)
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Fitting experimental results using Wien'’s law (3xym
give a systematic error of temperature determinalbie-
cause of the fact that the least-square methopipisea to
the logarithm of the experimental data. To get ahiu
ased estimation of the temperature, it should kerde
mined by fitting corrected spectral experimentabadd@).
The proper method of determinifigirom the experimen-
tally determined correctedA) data is to find such values g
T ande at which the function

s D=2 1) -eoln T

has a minimum (2D non-linear least square fittirfe)r
temperatures lower than 4000 K, the Wien approxomat
is widely used to derive TW{(y;) at a single pixelX, ;)
where TW is the temperature determined using W
approximation. The linear least-square fittingheg point
(xm, ym) is demonstrated in Fig. 4. Position of the po
(Xm, Ym) is shown in Fig. 2.

J sa.u.)

-11,87

(5)
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12,81
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Tw=1912 (51) K

2VALS)
20000 21000 22000 23000
Fig. 4. Fitting of the experimental data using Wselaw
at the point (%, ym). Laser power is 8V.
Number in brackets is standard deviation
Processing ofcorecteXm Ym A) data revealed that th¢
Wien’s approximation gives reasonable results ia
center of the heated spot where temperature is. high
the area outside of the heated spot, the low signra
noise ratio leads to significant error in tempemtde-
termination (see Fig. 4). To decrease the effestatisti-
cal error on the temperature determination, wendhice
a more stable least-squares fitting procedures biased
on the fact that emissivity in (1) is a linear parameter
We know that if the functioi®(T,e) has a minimum afy
and go, then the following conditions should be satisfig]
1) 0S¢l e, T=To=0; 2) 0SIOTle_e, T=To=0. The first equa-
tion gives the value ofy:

S1g(n.T)]

— =1

) i[gz()\i,T)J

i=1

80

(6)

The second equation can be written as

Y

d

Equation (5) has a root when the functi®nhas a

gy

Therefore, the procedure described above reduees th
f problem of 2D non-linear least square fitting, &), to
1D non-linear least square fitting, eq. (8). Figsttows
the behavior of the sui®r at the point Xm, ym) as a func-
tion of temperaturd.
St (a.u.)

N

2

i=1

1
A

I(A)g (A T)
€

(o]

(8)
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Fig. 5. S§ as a function of temperature:6i= 2033#49K)

The Sr has a sharp minimum &ip=2033 K where
Tip denotes the temperature determined using the D no
linear least square fitting. To determine a confaein-
terval of the temperaturgp we use a standard technique
for non-linear regression described in [17]. Fds,thve
plot S as a function of temperature around pdifg. A
confidence interval is defined by takirgfT) = constant,
where the constant is determined ¥¥) = (To)[1+p/(n—
p)xF(n,p,a)], wherep is the number of parametersjs
the number of experiments(n, p,a) is the Fisher param-
eter, anda is the confidential probability. This gives
+105K for the confidence interval for the temperatune i
Fig. 5 with a 0.95 level of confidence. The confide
interval for the Wien’s fitting can be determineding
standard deviation (51 K) and Student’s coeffici&r&9

for 75 measurements 51*1.9875 =14 K. It is ten times

smaller than that obtained by 1D minimization. Néwve-
 less, we consider the latter to be the correctedfettive
method to determine the TD under LH of a microscopi
.specimen for two reasons. First, finding a minimam
‘eq. (8) is the correct way to determine temperatising
Planck’s law, whereas the use of Wien's law fotirfg
experimental data assumes logarithm transformation
the original data. Secondly, the 1D fitting gaveniar
results to those obtained using Wien'’s fitting omgide
the area with a high temperature (hot spot). Neaetige
of the heated area and away from the heated dmpot, t
Wien'’s fitting often gives a temperature higherrthihat
in the center. In contrast, the 1D fitting giveagenable
values for the temperature. Fig. 6 shows the refuliD

0

h

N
9S =—2C2::° Zi[l()\i)g()\i,T)—so]=O. (7) | fitting applied to the whole set of spectral images
oT L= tained during LH of the tungsten plate. Calculafedl
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over the heated surface is significantly non-umfont

precision and stability than conventional leastasqu

has a maximum at 2100 K and minimum at aroundnethod (5) applied to the logarithm function (3).addi-

1650 K.
Y (um)
60 2100
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1800
20
10 1700
1600

0 20 40 60 80 x (um)

Fig. 6. The 2D TD on the surface of the tungsteepheated
by a laser. Power of the laser is 8 W

It is possible to compare results of the tempegatur

measurements based on the thermal radiation witbeth
determined on resistivity measurements. For thescan-

tion, the 1D fitting gave similar results to thasietained
using Wien'’s fitting only inside the area with ahitem-
perature (hot spot). Near the edge of the heatea and
away from the heated spot, the Wien's fitting oftgves
a temperature higher than that in the center. htrast,
the 1D fitting gives reasonable values for the terap
ture. Experiments with a homogenous tungsten plate
heating demonstrate that T¥x,y) over the heated sur-
face is significantly non-uniform and reaches a imanm
at 2100 K and a minimum around 1650 K. In this gtud
we assume that the variation of the specimen’s switig
is small over the spectral tuning range 610—760amah
measured temperature range.

In this study, we did not address emissivity measur
ments which require additionahlibrationsand verifica-
tions that are currently under development.
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