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Abstract  
Modern videoendoscopes are capable of performing precise three-dimensional (3D) measure-

ments of hard-to-reach elements. An attachable prism-based stereo adapter allows one to register im-
ages from two different viewpoints using a single sensor and apply stereoscopic methods. The key 
condition for achieving high measurement accuracy is the optimal choice of a mathematical model 
for calibration and 3D reconstruction procedures. In this paper, the conventional pinhole camera 
models with polynomial distortion approximation were analyzed and compared to the ray tracing 
model based on the vector form of Snell’s law. We, first, conducted a series of experiments using an 
industrial videoendoscope and utilized the criteria based on the measurement error of a segment 
length to evaluate the mathematical models considered. The experimental results confirmed a theo-
retical conclusion that the ray tracing model outperforms the pinhole models in a wide range of 
working distances. The results may be useful for the development of new stereoscopic measurement 
tools and algorithms for remote visual inspection in industrial and medical applications. 
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Introduction 
Measurement technologies are now transforming video-

endoscopes from pure visual inspection tools to precise 
equipment for characterization of hard-to-reach elements. 
With the measurement technologies available today, remote 
visual inspection is complementing or even replacing other 
non-destructive testing methods in the rocket and aircraft 
engineering, oil and gas industry and other fields [1, 2]. The 
mostly used approach to videoendoscope-based 3D meas-
urements is the utilization of a miniature prism-based optics 
and matching two images of a surface from two different 
points [3]. This stereoscopic technique employs a calibration 
procedure and processing algorithms to compute a 3D coor-
dinate for every matched pixel prior to the start of the meas-
urement process resulting in a full 3D surface map of the 
inspected object [4 – 6]. The data processing pipeline of a 3D 
measurement endoscopic system with a prism-based stereo 
adapter is shown in Fig. 1. 

Many researchers have proposed their understandings 
and implementation methods for prism-based single-lens 
stereovision systems in the last two decades. Lee and Kweon 
[7] considered an arbitrary point in 3D space as two virtual 
points after the refraction of a prism and derived 3D recon-
struction technique for this kind of systems. Lim and Xiao 
[8] described that one image acquired by the system could 
be divided into two halves considered as captured by two 
virtual cameras. This concept converted the prism-based 
stereovision system to the conventional stereoscopic system 
using two cameras, which made possible to use conventional 
camera calibration, image processing and 3D reconstruction 

methods. Furthermore, this concept was extended from two-
ocular to multiocular system [9]. This approach was also 
used to implement epipolar lines calculation method [10], to 
analyze the influence of prism’s angle and position on a 
common field of view for the virtual cameras [11] and to 
estimate depth measurement error caused by errors of the 
prism and camera parameters estimation [12]. However, 
they made significant assumptions about the relative camera 
to prism position and analyzed refraction in 2D space only. 

 
Fig. 1. The data processing pipeline of a 3D measurement 

endoscopy system 
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Cui et al. [13] pointed out the limitations of the 2D ap-
proach and proposed an accurate geometrical optics model 
of the prism-based stereovision system using the 3D vector 
form of Snell’s law. It made possible to derive a transfor-
mation matrix which could express the relationship between 
an object point and its image as 3D affine transformation. 
This matrix could be composed with other transformation 
matrices describing rotation, translation and projection in 
traditional projective geometry to build epipolar lines and 
3D reconstruction. They noted that this matrix is different 
for each image point and the prism-based stereovision sys-
tem can not be represented with pure projective camera 
models with high precision. Wu et al. [14] used similar ap-
proach for the digital image correlation system. They im-
plemented a modified virtual point model based on back-
ward ray tracing from the image plane to the object space 
considering the refraction on prism faces and adapted it for 
bilateral telecentric lens later [15]. 

In all reviewed papers it was supposed that the camera 
parameters could be either estimated through a standard 
calibration procedure [16] or known from a technical docu-
mentation and that the position and the parameters of the 
prism were known exactly. In contrast, Cui et al. [17] pro-
posed a calibration technique to estimate multiocular prism 
position after a separate camera calibration. They used trans-
formation matrices from [13] and made several assumptions 
about prism to reduce the number of parameters. 

In this paper, we introduce a classification and analysis 
of mathematical models for a prism-based single-lens ste-
reovision system based on a considered model of an optical 
distortion induced by a prism. The first group [8 – 12] in-
cludes pure projective pinhole models ignoring prism dis-
tortion. Nevertheless, the concept of virtual camera allows 
to use any camera model with distortion to calibrate virtual 
cameras as independent ones. Following this way, Cui et 
al. [18] approximated scaling factor for every image point 
in [13] by radial distortion. Lim and Qian [19] made Tay-
lor series analysis of the equations for ray refraction and 
offered the extended polynomial model to undistort ac-
quired images. These models can be unified as the second 
group containing pinhole camera models with polynomial 
distortion. The third group [13 – 15, 17] consists of the 
accurate geometrical optics models derived from the 3D 
vector form of Snell’s law. Finally, we may refuse global 
distortion model and use model-free local distortion cor-
rection as shown in [20]. Furthermore, the same approach 
can be used in 3D object space to correct the result of 3D 
measurements directly or to undistort images. Genovese et 
al. [21] used an additional complicated equipment and the 
second camera without a prism to measure deviations of 
3D coordinates for thousands of control points in the work-
ing volume to obtain correction tables. 

However, an endoscopic system with a prism-based ste-
reo adapter has some peculiarities. First of all, the main lens 
has a very short focal distance and a wider field of view, the 
prism angles are steeper and the prism is placed close to the 
lens. These factors lead to significantly bigger image distor-
tions than shown in the most of reviewed papers. The lack of 
techniques allowing to assess 3D measurement error and the 

applicability of the proposed mathematical models for dif-
ferent camera and prism parameters makes it problematic to 
apply the results for large-scale prism-based systems to en-
doscopes. Moreover, the stereo adapter contains an addition-
al lens. We consider the prism parameters and position to be 
unknown and to be estimated during a calibration procedure. 
Hence, we can not apply techniques based on known prism 
parameters as well as independent calibration of camera 
without a prism and estimation of prism parameters after-
wards. 

The patent [22] describing the stereo-measurement 
borescope included the description of calibration proce-
dure using a single image of the calibration tool manufac-
tured as a flat gridded base with a high step. It contains 
the distortion correction equations generated from the 
distorted positions of the grid points on the image, but 
didn’t provide further details. Another patent [23] offered 
to apply polynomial distortion model to the main lens and 
to the prism with additional lens separately. Hence, we 
can refer it to the second group of our classification. Ta-
kata et al. [24] developed distortion correction method for 
images captured by endoscope with two wedge prisms 
using backward ray tracing similar to [14]. Unfortunately, 
none of these papers presented any results to estimate the 
uncertainty of 3D measurements which can be achieved 
for the endoscope with stereo adapter. 

The results of computer simulation in our previous work 
[25] have shown that the pinhole camera model with poly-
nomial distortion could not be equal to the ray tracing model 
based on the 3D vector form of Snell’s law for the typical 
industrial endoscope with a prism-based stereoscopic adapt-
er. The reason is that pinhole model doesn’t consider a ray 
shift and non-homocentric beams after refraction. Addition-
ally, the best criteria for industrial endoscope evaluation is 
based on the measurement uncertainties of length or area. 
These uncertainties vary significantly depending on position 
and direction inside the working space [25, 26] which makes 
a problem to choose an optimal mathematical model for 
these systems challenging. 

This paper presents theoretical analysis and experimental 
evaluation of the mathematical models for the industrial 
endoscopes with the prism-based adapter considering the 
peculiarities of their optical systems and the specificity of 
the application. We introduce the basic description of three 
models and the calibration procedure; present the experi-
mental verification of each model effectiveness and the 
comparison of the models. 

Mathematical models 

The general geometric model of the image formation 
may be written in the form pi = Pi  Ei(lw), where lw is the 
vector of 3D line coordinates in the world coordinate 
system (WCS) and pi is the vector of 2D coordinates for 
the corresponding point on the image plane of the i-th 
camera, i = 1...N, N – number of cameras [4, 5, 26]. The 
vector of line coordinates lw includes 3D coordinates of 
the origin point cw and the direction vector vw: 

( )w w w,
TT T=l c v . We use Ei to denote Euclidean mapping 
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xi = Ei(xw) = Rixw+ti translating 3D point xw from the 
WCS to the coordinate system (CS) of i-th camera (Ri is 
the rotation matrix and ti is the translation vector). Hence, 

( ) ( )w ,
TT T

i i i iE= =l l c v  with ci = Ricw+ti, vi = Rivw. The 
mapping Pi determines the unique correspondence 
pi = Pi (li) between the ray li in the i-th camera object 
space and the point pi in the image plane. We use «◦» 
notation here to define a composition of transformations, 
i.e. PiEi(lw) ≡ Pi(Ei(lw)). The set of transformations Ei and 
Pi is parametrized by the vector k of intrinsic and extrin-
sic camera parameters, which components are to be de-
termined during the system calibration. According to [8–
12, 19], the prism-based stereoscopic imager can be con-
sidered as two virtual cameras and the same notation can 
be used. 

Pinhole camera models. The pinhole camera model 
is widely used in computer vision and is well described 
[4, 5, 8, 16]. It assumes that all rays Ii for the i-th camera 

pass through the central point, i.e. ( )( )0,0,0 ,
TT T

i i=l v . 

Hence, it is possible to use one point xi for each ray and 
write xi instead of Ii in the equations for the pinhole mod-
els (see Fig. 2). Using the same approach as [5, 27], we 
consider the mapping Pi as the combination of simple 
transformations 

( ) ( )w w ,i i i i i iP E A D F E= =p x x     (1) 

where F is the central projection onto the unit plane 
( )i iF′ =x x ; Di is the 2D distortion transformation 

( )i i iD′′ ′=x x  and Ai is the 2D affine transformation to the 

image coordinates in pixels ( )i i iA ′′=p x  [4, 5].  

 
Fig. 2. A prism-based stereoscopic imager considered as two 

virtual pinhole cameras 
One can find many possible approximations for the 

lens distortion, based on polynomial [16, 19, 23, 27, 
28] or more complex [5] mathematical models. The 
widely used model (introduced by Brown [28]) repre-
sents distortion as the combination of radial (3rd, 5th 
and 7th orders) and tangential part to consider lens 
decentering as follows 
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where 2 22
c cr x y′ ′= + , c 0x x x′ ′ ′= − , c 0y y y′ ′ ′= −  and 

( )0 0,x y′ ′  is the distortion center of the image, which is 
usually assumed to coincide with the center of projection; 

1 2 3 1 2, , , ,k k k ρ ρ  are the distortion parameters. We further 
refer to this model as "model 1". This model requires 10 
parameters to describe each camera (5 parameters for Ai 
and 5 parameters for Di) and 6 parameters for relative 
orientation of two cameras [4, 16]. As a result, vector k 
includes 26 parameters. We can extend the polynomial 
distortion model using the generic equation 

1 1
, 0
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where coefficients kxm,n and kym,n are the distortion pa-
rameters (2B2 totally). We further refer to the extended 
polynomial model as "model 2". Generally, this model 
requires 2(5+2B2)+6 = 16+4B2 parameters, but the number 
of the distortion coefficients can be reduced significantly 
based on theoretical analysis or computer simulation of 
the system typical parameters [19, 25] to simplify optimi-
zation procedures on the calibration stage. 

In order to allow reconstruction of a ray in 3D object 
space for each image point, camera model should be invertible 
and should provide the back-projection transformation 

( )1 1
w i i iE P− −=l p . Hence, each of the transformations in Eq. 

(1) should have a corresponding inverse one: F–1, D–1 and A–1. 
It is essential that polynomial models described by Eqs. (2) 
and (3) do not allow finding a closed-form solution for the 
inverse transformation D–1, an iterative solver should be used 
in this case [5]. Thus, D–1 notation actually stands for this it-
erative procedure. 

Ray tracing models. The alternative model using a ray 
tracing from the image plane to the object space is formulated 
similar to [14, 24]. We use Ik,i = Sk,i(Ik–1,i) notation to describe 
the refraction of each ray Ik,i on the k-th surface for the i-th 
image part. According to the vector form of Snell’s law, we 
can derive transformation Sk,i as 
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where nk,i is the refractive index between the k-th and the 
(k + 1)-th surfaces, sk,i is the normal to the k-th surface 
and dk,i is the 3D coordinates of any point on the k-th 
surface (see Fig. 3). In order to find the ray coordinates 
I2,i in the object space for each image pixel pi, we should 
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define ray coordinates I0,i. We consider the pinhole model 
with distortion for the main lens and use Eqs. (1) and (2) 
to find ( )1

0,i i iP−=l p . The inverse transformation 1
iP−  

depends only on the parameters of the image sensor and 
the main lens, it is the same for both image parts. Similar 
to Eq. (1), the complex inverse transformation for the ray 
tracing model can be represented in the form 

( ) ( )1 1 1 1
w 2, 2, 1, ,i i i iE E S S F D A− − − −= =l l p      (5) 

where Euclidean mapping E is the same for both channels 
due to our choice of the same CS for the left and the right 
parts of the prism, vectors sk,i and dk,i are determined in 
this CS.  

 
Fig. 3. Ray tracing through a prism 

We assume that sk,i is the unit vector and the point dk,i is 
on the z-axis, so we can use 3 parameters for each prism 
surface. Accordingly, we have 9 parameters for 3 surfaces 
and one more parameter for the refractive index. Again, if 
we let E to be the unitary transformation, we need the vec-
tor k of 20 parameters to describe this model. In contrast to 
the pinhole model, the ray-tracing model cannot provide 
closed-form solution for the forward transformation 
pi = Pi  E(Iw) because it requires initially unknown direc-
tion vector of the line Iw from 3D point xw (shown in 
Fig. 3). This problem is usually solved by the iterative 
technique called ray aiming or by look-up-table interpola-
tion. We can formally write the forward transformation as 
pi = Pi  E(xw) and extend it the same way as Eq. (5), if we 
consider that this notation stands for the iterative solver. 
We further refer to the ray tracing model as "model 3". 

3D reconstruction problem. The reconstruction of 3D 
point coordinates xw from N projections pi may be considered 
as the ray intersection problem. Because of the uncertainties in 
coordinates pi, these rays are skew, and the triangulation algo-
rithm T is used for the estimation of wx̂  by minimizing a 
functional C, i.e. 

( ) ( )( )
w

w w
ˆ

ˆ ˆ= , = , , ,argminT C
x

x p k x p k  (6) 

where ( )1 2, ,...,
TT T T

N=p p p p . The selection of the appro-
priate cost functions is not trivial in the general case, be-
cause it depends on a priori data about the position of 
target point xw, its projections pi, the statistics of coordi-
nate measurement errors and the properties of camera 
transformations Pi. If we assume that the deviation of the 
measured image coordinates pi from their true values ip  

follows the Gaussian distribution with zero mean and 
covariation matrix Σpi, then we can use the Maximum 
Likelihood Estimator, which minimizes the Mahalanobis 
distance in the image plane [4, 29] 

( ) ( )

( ) ( )

2

w w
=1

1
p 

=1

ˆ ˆ, , = =

ˆ ˆ ,

N

i i i
i

N
T

i i i i i
i

C P E
Σ

−

−

= − Σ −

∑

∑

x p k p x

p p p p



 (7) 

where ( )wˆ ˆ=i i iP Ep x  is the estimated position of the 3D 
point wx̂  projection on the image plane of the i-th camera, and 

1
p i
−Σ  is the inverse (rank-constrained generalized inverse) co-

variation matrix of the coordinate measurement error for pi. 
We assume that the measurements errors are independent for 
each image. The cost function (7) and its derivatives are calcu-
lated at each iteration, so it is sufficient to have a closed-form 
solution for the forward transformation. Hence, we can use 
this cost function for models 1 and 2. Alternatively, we can 
formulate the cost function based on the sum of distances 
from the 3D point wx̂  to the rays l, for example, we can use 
the mid-point of the common perpendicular for two skew rays 
[4]. This alternative cost function does not allow to achieve 
the theoretical bound for minimal variance (the Cramer-Rao 
lower bound) [29], but it is more suitable for the models that 
can faster calculate the inverse transformation than the for-
ward one, such as model 3, though we can also use it for 
models 1 and 2. 

Calibration problem. The aim of the calibration proce-
dure is to determine the value of parameter vector k using 
different types of calibration targets (such as boards and cor-
ners [16] or steps [22]). We consider that we register images 
of the calibration target with M points in R positions; 3D co-
ordinates of the points xtj are known with a certain accuracy in 
the CS of the calibration target. Next, the image coordinates 
pi,j,k are calculated for each point j = 1...M and each position 
k = 1...R. The complete transformation for these points is 

( ), , t =i j k i i k jP E E′p x  , where kE′  stands for the Euclidean 
mapping from the CS of the calibration target to the WCS. In 
addition to the parameter vector k for transformations Pi and 
Ei, we also need to find the vector kt describing transfor-
mations kE′  for each k. If we introduce the composite vector 
xt of all 3D points and the composite vector p of all projec-
tions, the calibration algorithm K may be written as 

( ) ( )( )
t

t t t
ˆ ˆ,

ˆ ˆ ˆ= , = , , , .argminK C
k k

k x p x p k k  (8) 

It is not necessary for each point at each position to be pro-
jected for each camera, some points or positions may be 
skipped. Following the same reasons as for the triangulation 
algorithm above, the most appropriate choice of the cost func-
tion C is the Mahalanobis distance in the image plane. The 
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equation for this cost function is similar to Eq. (7), but we 
should write the sum for all values i, j and k, i.e. 

( ) ( )

( ) ( )

2

t t , , t 
=1 =1 =1

1
, , , , p , , , , , ,

, ,

ˆ ˆ ˆ ˆ ˆ, , , = =

ˆ ˆ .

N M R

i j k i i k j
i j k

T

i j k i j k i j k i j k i j k
i j k

C P E E
Σ

−

′−

= − Σ −

∑∑∑

∑

x p k k p x

p p p p

 

(9) 

Again, we can use this cost function for models 1 and 2 
because they provide the closed-form solution for the forward 
transformation. For the model 3 we should derive the alterna-
tive cost function based on the sum of distances from 3D point 
xt to rays tl̂ . If we use a flat calibration target, we can replace 
rays t , ,

ˆ
i j kl  by points t , ,ˆ i j kx  of ray intersections with XOY 

plane in the CS of the target. In that case, the cost function can 
be represented as follows 

( ) ( )

( ) ( )

21 1 1
t t t , ,

, ,

1
t t , , x , , t t , ,

, ,

ˆ ˆ ˆ ˆ ˆ, , , = =

ˆ ˆ .

j k i i i j k
i j k

T

j i j k i j k j i j k
i j k

C E E P− − −

Σ

−

′−

= − Σ −

∑

∑

x p k k x p

x x x x

 

 (10) 

where 1
x , ,i j k
−Σ  is the inverse covariation matrix of calibra-

tion target coordinate measurement error for xt,i,j,k (see 
[29] for details about the estimation of this matrix). We 
can also perform calibration for models 1 and 2 with the 
cost function (10) which leads to slightly different results 
than calibration with (9). 

Experimental results 
Equipment. In order to evaluate and compare the con-

sidered mathematical models, we have conducted a series of 
experiments using industrial videoendoscope Mentor Visual 
iQ Videoprobe (GE Inspection Technologies) with forward-
view stereo adapter. The probe has a diameter 6.1 mm and a 
1/6" CCD image sensor with 440000 pixels. A prism-based 
stereo adapter provides two registration channels with the 
fields of view 55°/55°. 

To acquire images for calibration and tests, we utilized 
two types of plane calibration targets: (1) with black circular 
dots on a white background and (2) with black and white 
chessboard pattern. Due to sufficient range of distances and 
magnifications, three samples of each calibration target type 
with 0.5 mm (small-sized), 1 mm (middle-sized) and 2 mm 
(large-sized) distance between markers have been manufac-
tured. This distance corresponded to the distance between 
the centers of the dots and to the chessboard square size for 
two types of target respectively. Each target had a grid of 
25×25 markers. 

The distal end of the endoscope was fixed on a mechani-
cal stand that allows adjustable movement along z-axis and 
rotation around y and z-axis. The axis of the probe was ap-
proximately coincident with the z-axis of the stand. Another 
mechanical stand was placed in front of the endoscope to 
mount calibration targets. The plane of calibration target was 
set approximately perpendicular to the z-axis of the stand. 

Image acquisition and processing. We have conduct-
ed a few experiments using different types of calibration 
targets described above. At first, dot and chessboard targets 
have been used for independent experiments. Next, we 
have carried out an experiment replacing calibration target 

in each position to obtain equal conditions for two types of 
targets. For each experiment we have captured two series 
of images: calibration sequence and test sequence. 

The calibration sequence included 18 images captured 
at different positions of three calibration targets: small-
sized, medium-sized and large-sized. Each of these tar-
gets has been placed approximately perpendicular to z-
axis of the stand at the distance which allows to see at 
least eight markers in a horizontal row on both image 
halves. Then, the distal end was consequently rotated 30° 
around x and y axes to capture images at oblique angles. 
Finally, we have positioned the target perpendicular to z-
axis at approximately 1.5× larger working distance than 
initial position. As a result, we have acquired 6 images 
for each size of the calibration target covering the total 
range of distances from 8 to 40 mm. 

Test sequences were registered for medium-sized and 
large-sized calibration targets in the following way. Again, 
the calibration target has been placed approximately per-
pendicular to z-axis of the stand at reasonably close dis-
tance and oriented so that horizontal rows of markers were 
approximately horizontal on the image. We used transla-
tion stage to shift the distal end of the endoscope along z-
axis and captured images with 1 mm step. Thus, we have 
obtained series of images for each calibration target. These 
series contained 16 images in the range from 12 to 27 mm 
for medium-size targets and 19 images in the range from 
22 to 40 mm for large-sized ones. The range of distances 
was limited by the condition that the number of visible 
markers should not be too small and the condition of min-
imal marker scale suitable for robust image processing. 

In order to calculate image coordinates pi,j,k for each 
marker, we have implemented in MATLAB the image 
processing algorithms for detection of dot and chessboard 
pattern from [30]. All automatically processed images of 
calibration and test sequences have been checked manual-
ly afterwards to delete points in low-illuminated areas, 
around glare, etc. Captured images of two calibration 
targets with estimated marker positions are shown in 
Fig. 4. These images correspond to the calibration series. 

Calibration. We have implemented the calibration 
algorithms for each earlier considered mathematical 
model using non-linear iterative solver from MATLAB 
for the constrained minimization problem formulated in 
Eq. (8). The constraints for the values of calibration pa-
rameters k are determined by the physical limitations of 
prism parameters: size (less than 5 mm), refraction index 
(from 1.4 to 1.8), etc. We used the cost function C based 
on distance in the image plane for models 1 (usual pin-
hole model) and 2 (pinhole model with extended poly-
nomial distortion) according to Eq. (9).  

The covariation matrix Σp i,j,k was assumed to be the iden-
tity matrix due to the lack of a priory information about the 
error distribution of the image coordinates pi,j,k. As men-
tioned above, model 3 (ray tracing model) does not provide 
closed-form solution for the forward transformation which 
makes this cost function inappropriate. Hence, we used an-
other cost function based on the distance in the XOY plane 
of the CS of the calibration target as shown in Eq. (10).  
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Fig. 4. Captured images with estimated marker positions  

for two types of calibration target 

For simplicity, the covariation matrix Σx i,j,k was also 
considered as the identity matrix, but this is sufficiently 
less reasonable assumption than the same one for Σp i,j,k 
according to [4, 29]. In order to assess the impact of the 
calibration algorithm on the measurement accuracy we 

have calibrated model 1 using the cost function (10). We 
further refer to this hybrid model as model 1’ (usual pin-
hole model calibrated in 3D space).  

We have processed four calibration sequences and have 
calculated four vectors of parameters for each of the consid-
ered mathematical models. Two of these sequences have 
been captured during the first experiment. The first sequence 
included images of the dot calibration target and the second 
one included images of the chessboard target. These se-
quences were acquired independently and the positions of 
calibration target were different. The next two sequences 
have been captured replacing the calibration target in each 
position during the second experiment. Thus, the planes of 
the targets were approximately the same for each position. 
We have compared the calibration results for each model 
calculated with different targets to assess the impact of this 
factor. Our analysis has shown that the difference of parame-
ters calculated for two sequences of the second experiment is 
close to the difference of parameters calculated for two se-
ries of the same calibration target. 

The calibration results for the chessboard target from 
the first experiment are listed in Table 1. The affine trans-
formation Ai is described by the focal length fx, fy and the 
image center cx, cy [4, 16], the skew parameter is consid-
ered to be zero. The parameters of distortion transfor-
mation Di for model 1, 1’ and 3 correspond to Eq. (2). 
Model 2 uses 17 parameters for the distortion transfor-
mation: kx1,4, kx0,4, kx3,2, kx1,2, kx0,2, kx1,1, kx5,0, kx3,0, kx2,0, 
ky0,5, ky2,3, ky0,3, ky0,2, ky4,1, ky2,1, ky1,1 and ky2,0 according 
to Eq. (3). The prism parameters estimated for model 3 
are as follows: Back face: s1,1 x = 0.014, s1,1 y = – 0.004, 
d1,1 z = 0.014; Front face 1: s2,1 x = –0.436, s2,1 y = –0.013, 
d2,1 z = 3.401; Front face 2: s2,2 x = 0.463, s2,2 y = –0.012, 
d2,2 y = 3.429 (all measured in mm) and the index of re-
fraction n1 = 1.663 (see Fig. 3 for notation). 

Table 1. Calibration parameters 
 Parameters Units Model 1 Model 1’ Model 2 Model 3 

C
am

era 1 

focal length fx, fy  pixel 594.73; 707.01 590.41; 703.16 616.81; 715.02 732.93; 749.92 
image center cx, cy  pixel 40.28; 314.74 47.66; 315.07 64.91; 317.15 392.2; 301.89 
distortion k1, k2 – –0.55; 0.124 –0.566; 0.152 17 parameters  

for distortion 
–0.567; 0.242 

distortion ρ1, ρ2 – –0.005; 0.076 –0.007; 0.073 – 
C

am
era 2 

focal length fx, fy  pixel 582.28; 702.36 577.44; 699.29 598.13; 709.27 
equal to 

the parameters of 
camera 1 

image center cx, cy  pixel 748.7; 307.26 744.02; 305.03 738.09; 311.71 
distortion k1, k2 – –0.51; 0.114 –0.533; 0.143 17 parameters  

for distortion distortion ρ1, ρ2 – –0.004; –0.069 –0.004; -0.067 
 Rotation ω1, ω2, ω3 radians –0.012; –0.398; –0.003 0.018; -0.383; -0.003 –0.009; –0.331; –0.008 – 

Translation t1, t2, t3 mm –1.264; –0.025; 0.298 –1.276; –0.058; –0.307 –1.276; –0.021; –0.257 – 
 
Error analysis. The images of the test sequences have 

been used to calculate the 3D coordinates for each marker 
according to Eq. (6). The algorithm have been implemented 
in MATLAB similar to the calibration algorithm. The same 
way, we used the cost function (7) based on the distance in 
the image plane for models 1 and 2 with the identity covaria-
tion matrix. The cost function based on the sum of the dis-
tances from the 3D point to the back-projected rays was used 
for models 1’ and 3. We have considered all covariation 

matrices equal to the identity ones so that all coordinates, 
points and rays had equal weights in the cost functions.  

In most applications of 3D measurement endoscopic sys-
tems, the calculated 3D point coordinates are used to measure 
the geometric parameters such as distances or areas. Hence, 
we should utilize the criteria based on the deviations of the 
length or the area to evaluate the mathematical models for 
these systems. We have processed 3D points calculated for 
each image of the test sequences to estimate the distance be-
tween neighbouring markers. Due to the chosen orientation of 
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the calibration targets these segments are approximately paral-
lel to x- and y-axis of the stand. The orientation of the CS is 
the same as shown in Fig. 3. The true value of the distance is 
assumed to be 1 mm for the medium-sized target and 2 mm 
for the large-sized one. Next, we have processed 3D points for 
pairs of consequently captured images to estimate the distance 
between points corresponding to the same marker. The ob-
tained segment is approximately parallel to z-axis and its true 
length is assumed to be 1 mm (equal to the shift step for the 
distal end of the endoscope). Additionally, the position of the 

calibration target has been estimated for each image relying on 
the calculated 3D point coordinates. 

We have estimated the distance measurement errors 
for all captured test sequences and all considered mathe-
matical models using corresponding vectors of parame-
ters from the calibration stage. Since the results for dif-
ferent types of calibration targets are almost coincident, 
we present the results for the chessboard target from the 
first experiment only. The absolute errors ∆r are shown in 
Fig. 5 for the medium-sized target.  

 
Fig. 5. Absolute error of distance measurements for medium-sized chessboard calibration target. The true value of each segment  

is 1 mm, all values are in mm. The value of error is indicated by dots’ color according to the grayscale bar in the right side  
of the figure. Each row of plots represents one of four considered mathematical models, each column corresponds  

to segments parallel to x-, y and z-axis shown in the bottom part respectively 
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The error value is indicated by dots’ color according 
to the grayscale bar in the right side of the figure. The 
dots indicating segments with error value larger than 
0.2 mm are filled with the black color intended for 
0.2 mm values. The coordinates of the dots correspond to 
the estimated positions of the calibration target for a visu-
al clarity, the coordinates of the first point of segment are 
shown. Each row of the plots represents one of four con-
sidered mathematical models, each column corresponds 
to the segments parallel to x-, y- and z-axis respectively. 
The CSs for the plots are slightly different. The origin for 
model 3 is determined by the center of the internal pin-
hole camera as shown in Fig. 3. The middle point be-
tween two camera centers is chosen as the origin for 
models 1, 1’ and 2 (see Fig. 2). 

One can see that the error value varies significantly 
for different parts of the observed volume and the differ-
ent orientation of the segment. Thus, the choice of the 
integral criterion for the quantitative evaluation represent-
ing the values distribution is not clear. According to 
common applications of 3D measurement endoscopic 
systems, we have divided the obtained data set into zones 
by z-coordinate and calculated mean and standard devia-
tion of the segment length for every zone. The number of 
zones is equal to the number of images in the test se-
quence, hence, each captured image belongs to single 
zone. The results are shown in Fig. 6. The top row of the 

plots represents test sequence for large-sized calibration 
target, the true value of x- and y-segments is 2 mm and 
the true value of z-segments is 1 mm. The bottom row of 
plots represents test sequence for medium-sized target, 
the true value of all segments is 1 mm. 

The results presented in Figs. 5 and 6 indicate that the 
error for x-segments grows significantly on the edges of 
the field of view for models 1, 1’ and 2. In contrast, all 
models demonstrate relatively similar performance for y-
segments. Furthermore, the error for x- and y-segments 
varies for each zone which leads to a large standard devi-
ation due to a chosen evaluation method. In contrast, the 
standard deviation for z-segments is comparable for all 
models, but the usage of models 1, 1’ and 2 leads to un-
acceptable bias which increases with distance. The corre-
lation of spikes on the plots for the mean error of the 
length for z-segments reveals uncertainties in shifting of 
the distal end during the experiment. Model 1’ demon-
strates slightly better results than model 1 for x-segments, 
but the overall performance is relatively similar. Hence, 
the choice of the cost function has no great impact on the 
accepted evaluation of models. The main conclusion 
based on the experimental results is that model 3 has a 
superb performance in comparison to other models. Mod-
el 2 may be used for the working distances less than 
20 mm but its usage is limited due to bias in measure-
ments of length along z-axis at larger distances. 

 
Fig. 6. Mean and standard deviation of distance: large-sized calibration target (top row) and medium-sized target (bottom row). 

Each column corresponds to segments parallel to x-, y- and z-axis respectively. The true value of x- and y-segments is 2 mm for the 
large-sized target and 1 mm for the medium-sized one. The true value of z-segments is 1 mm 
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Conclusion 
In this paper, we first theoretically and experimentally 

analyzed and compared three different mathematical 
models of prism-based stereoscopic imagers. The exper-
imental data confirmed the results previously obtained by 
computer simulation: any of considered pinhole models 
can not provide the required accuracy of the measurement 
over a wide range of working distances. The model based 
on ray tracing through the prism shows much better re-
sults. An increase in the number of degrees for distortion 
polynomial model does not help to improve the accuracy, 
apparently, because of the assumption that all rays pass 
through the single point. The error of the length segment 
measurement has a complex spatial distribution and de-
pends strongly on the orientation of the segment. This 
fact should be taken into account for evaluation of the 
videoendoscopes and formulating the criteria for their 
measurement accuracy testing. The distribution can be 
used for the interactive user assistance by indicating the 
estimated measurement errors or giving recommendations 
on the location of the probe relative to the object. We 
have shown that the simple calibration method using a 
flat target allows to conduct the calibration of the endo-
scope with attached prism-based stereo adapter and reach 
the desired accuracy. The method does not require the 
results of other specific calibrations or the prism parame-
ters. Type of the calibration target pattern selected for the 
calibration and test measurements has an insufficient ef-
fect on the result.  

The obtained theoretical and experimental results may 
be useful for the improvement of the existing prism-based 
videoendoscopic imagers in terms of the measurement 
range and accuracy as well as for the development of the 
new small-size tools for remote visual inspection, espe-
cially for the important industrial tasks where high preci-
sion of defect characterization is crucial. 
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