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Abstract 

In this paper, we propose an algorithm example for the transformation of so-called complete automaton given by a table of binary relation #. 

At the same time, we know that for this table for the binary relation #, there exists some corresponding nondeterministic automaton having 

Waterloo-like badness. The proposed transformation, which is not equivalent, is the serial removal of a state and combining a pair of states. It 

gives the opportunity to build on the basis of the given relation # some automaton which also has the walibad-property. And, generally 

speaking, the obtained automaton is different from the known in advance. 
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1. Introduction 

There are some different invariants for a given regular language; for example, these are some different formalisms for 

nondeterministic finite automata. Apart the automaton of canonical form, we considered in some papers: 

 the basis automaton ([1, 2, 3] etc.); 

 the extended basis automaton ([4]); 

 and the universal automaton ([3]). 

It is important to note, that each of this finite automata is different from the canonical automaton, which is also an invariant for a 

given regular language. And under certain assumptions, we can consider the complete automaton (automaton 𝐿#, see again [3]) 

also as an invariant for a given regular language. 

The universal automaton was considered detailed in [5]. And in [6], we considered algorithms of constructing so-called 

automaton 𝒞𝒪ℳ(𝐿) and obtain a simple proof, that this automaton is equal to the universal automaton (up to renaming states). 

In fact, we obtained in [6] some algorithms for constructing universal automaton, which are used in this paper. 

In some problems of minimization for nondeterministic finite automata ([7, 8, 9, 10, 11] etc.), there is possible a situation, 

when the covering set of grids ([6, 7, 10]) defines the automaton (so-called covering automaton), which is not equal to the given 

one. Firstly, such an example was obtained in 1970 by Kameda and Weiner, and, following [12], was called Waterloo. The 

description of this example was given in our terms in [13]; below in this paper, we shall consider some more detailed 

description. We shall call such constructions walibads from (“Waterloo-like badness”), and each covering set of grids, which do 

not contain some possible grids, will be called proto-walibad. Just note, that such constructions are the property of a language, 

not of an automaton. Evidently, the existing of such walibads complicates the description of algorithms for minimization of 

nondeterministic finite automata; at first, it applies to the practical (heuristic) algorithms, see also [13]. Therefore, the problems 

of finding and description of such constructions are actual; moreover, in the practical algorithms, there is desirable to finding 

them before starting cardinal part of the algorithm. 

In this paper, we consider a way to make automatically a walibad-construction using the following objects: 

 some concrete (known in advance) example of walibad, and, therefore, the known table of binary relation # (see [10] 

etc.); 

 automaton 𝐿# defined by this table # (see [3], and also Subsection 2.3 below). 

We emphasize, that in the process of building we used only relation #, and did not use automaton known in advance. This fact 

makes a possibility to obtain the following objects only on the basis of the given table of relationships # having the property 

proto-walibad: 

 firstly, the searching algorithm for obtaining walibad-construction; 

 secondly, the searching algorithm for proving the necessary condition for such construction for an arbitrary 

nondeterministic automaton; 

 and thirdly, the classification of all possible tables of relationships # (having such property) based on the condition 

of existence of construction walibad corresponding to this table. 

This article gives an example of such process. Author hopes that this example is based on clear and common algorithm. He is 

going to describe the general algorithm in the following publications, together with a proof of the fact that we can automatically 

receive such construction for any table having walibad-property. Anyway, this process gives the opportunity to realize practical 

algorithms for constructing all automata having the property. In conclusion, we include information about executed 

computational experiments and also about obtained to date and expected results. 
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2. Preliminaries  

In this section we consider definitions and notation of [10] and some previous our papers. We also state some facts obtained 

in these papers. 

2.1. The main definitions 

We shall consider nondeterministic finite automaton 

𝐾 = (𝑄, Σ, 𝛿, 𝑆, 𝐹) (1) 

without 𝜀-transitions, i.e., we shall consider transition function 𝛿 of automaton (1) by 

𝛿: 𝑄 × Σ → 𝒫(𝑄).  

We shall assume, that regular language 𝐿 is given, and use for it notation defined in our cited paper [10]; for example, 

automata of canonical form for languages 𝐿 and 𝐿𝑅 (i.e., 𝐿̃ and 𝐿𝑅̃) will be denoted in the following way: 

𝐿̃ = (𝑄𝜋, Σ, 𝛿𝜋, {𝑠𝜋}, 𝐹𝜋) and 𝐿𝑅̃ = (𝑄𝜌, Σ, 𝛿𝜌, {𝑠𝜌}, 𝐹𝜌). 

 
 

(We shall not consider language𝐿 = ∅, then both these automata does have input states.) 

Binary relation # and state-marking functions 𝜑𝑖𝑛 and 𝜑𝑜𝑢𝑡 are defined as follows. For a pair (𝐴, 𝑋) of states of automaton 𝐿̃ 

and 𝐿𝑅̃, we have 

𝐴#𝑋 if and only if (∃𝑢𝑣 ∈ 𝐿) (𝑢 ∈ ℒ𝐿̃
𝑖𝑛(𝐴), 𝑣𝑅 ∈ ℒ𝐿 ̃

𝑖𝑛(𝑋)).  

A function 𝜑𝐾
𝑖𝑛: 𝑄 → 𝒫(𝑄𝜋) is defined in the following way: 

𝜑𝐾
𝑖𝑛(𝑞) ∋ 𝑞̃ if and only if ℒ𝐾

𝑖𝑛(𝑞) ∩ ℒ𝐿̃
𝑖𝑛(𝑞̃) ≠ ∅.  

And a function  

𝜑𝐾
𝑜𝑢𝑡: 𝑄 → 𝒫(𝑄𝜌)  

is defined in the same way for automata 𝐾𝑅 and 𝐿𝑅̃. See some examples in [10]. 

The definition of the basis automaton for the given language 𝐿 was also given in our previous paper; see, for instance, 

[1, 2, 3, 10] for its transition function. In this paper, we shall use for it the following notation: 

ℬ𝒜(𝐿) = (𝑄̂, Σ, 𝛿̂, 𝑆̂, 𝐹̂).  

For a state 𝑋
𝐴 ∈ 𝑄̂ of this automaton, we shall write 𝛼( 𝑋

𝐴) = 𝐴 and 𝛽( 𝑋
𝐴) = 𝑋. 

2.2. The grids, the universal automaton, etc. 

Grids and pseudo-grids were defined by [6]. If for some pair 𝑃 ⊆ 𝑄𝜋 and 𝑅 ⊆ 𝑄𝜌 we have 

(∀𝐴 ∈ 𝑃)(∀𝑋 ∈ 𝑅)(𝐴#𝑋),  

then ℬ = (𝑃, 𝑅) is pseudo-grid. For it, we shall write 𝛼(ℬ) = 𝑃 and 𝛽(ℬ) = 𝑅. For some 𝐴 ∈ 𝑃 and 𝑋 ∈ 𝑅, we also shall write 

[ 𝑋
𝐴 ∈ ℬ]. 

If for some pseudo-grid ℬ = (𝑃, 𝑅) there exists: 

 neither 𝐴 ∈ 𝑄𝜋\𝑃 such that ((𝑃 ∪ {𝐴}), 𝑅) is also a pseudo-grid; 

 nor 𝑋 ∈ 𝑄𝜌\𝑅 such that (𝑃, (𝑅 ∪ {𝑋})) is also a pseudo-grid, 

then ℬ is a grid. 

The definition of the automaton 𝒞𝒪ℳ(𝐿) for the given language 𝐿 was also given in [6]. Thus, considering automata 𝐿̃ and 

𝐿𝑅̃, we define automaton 

𝒞𝒪ℳ(𝐿) = (𝒬𝒞𝒪ℳ , Σ, 𝛿𝒞𝒪ℳ , 𝑆𝒞𝒪ℳ , ℱ𝒞𝒪ℳ). (2) 

Here, 𝒬𝒞𝒪ℳ  is the whole set of grids. Other elements of (2) are defined in the following way: 

 𝑆𝒞𝒪ℳ = {ℬ ∈ 𝒬𝒞𝒪ℳ|𝛼(ℬ) ∋ 𝑠𝜋}; 
 ℱ𝒞𝒪ℳ = {ℬ ∈ 𝒬𝒞𝒪ℳ|𝛽(ℬ) ∋ 𝑠𝜌}; 
 for some pair ℬ1, ℬ2 ∈ 𝒬𝒞𝒪ℳ(condition ℬ1 = ℬ2 is possible) and some 𝑎 ∈ Σ, we set  

𝛿𝒞𝒪ℳ(ℬ1, 𝑎) ∋ ℬ2  

if and only if both the following conditions hold: 

(∀𝑝 ∈ 𝛼(ℬ1))(𝛿𝜋(𝑝, 𝑎) ∈ 𝛼(ℬ2)) (3) 

(∀𝑟 ∈ 𝛽(ℬ2)) (𝛿𝜌(𝑟, 𝑎) ∈ 𝛽(ℬ1)) (4) 

We also have shown in [6], that 𝒞𝒪ℳ(𝐿) coincides with the universal automaton for language 𝐿 (up to renaming states). 

Like [10], we define the covering set of grids: some set 𝒬 ⊆ 𝒬𝒞𝒪ℳ  is such one, if  

(∀𝑋
𝐴∈ #)(∃ℬ ∈ 𝒬)([ 𝐵

𝐴 ∈ ℬ]). (5) 

For the given covering set of grids 𝒬, we define the 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 automaton: 

𝒞𝒪ℳ𝒬(𝐿) = (𝒬, Σ, 𝛿𝒞𝒪ℳ , 𝑆𝒞𝒪ℳ ∩ 𝒬, ℱ𝒞𝒪ℳ ∩ 𝒬). (6) 

Certainly, the transition function is defined in (6) for states of 𝒬 only. 

We shall consider some examples in Section 3. 
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2.3. The complete automaton 

The complete automaton, defined in [3] by the given table of relation # and two input states (i.e., 𝑠𝜋 and 𝑠𝜌 in the notation 

above), is designed as 𝐿#𝑠𝜋𝑠𝜌 (or, simply, as 𝐿#). It is defined in the following way. 

𝐿#𝑠𝜋𝑠𝜌 = 𝐿# = (𝑄𝜋, Σ#, 𝛿#, {𝑠𝜋}, 𝐹𝜋),  

where: 

 Σ#{𝑎
 𝑋
𝐴 |𝐴 ∈ 𝑄𝜋 , 𝑋 ∈ 𝑄𝜌} is the new alphabet; 

 
 

 𝐹𝜋 = {𝑓𝜋 ∈ 𝑄𝜋|𝑓𝜋#𝑠𝜌} is the set of final states;. 

 
 

 𝛿# (𝐴, 𝑎 𝑋
𝐴 ) = {

{𝐵},   if 𝐴#𝑋
∅, otherwice

 is the transaction function. 

 
 

In fact, using only the given relation #, we obtain an automaton corresponding to this relation. 

Thus, for the given regular language 𝐿, we have defined the following corresponding objects: two canonical automata, 𝐿̃ and 

𝐿𝑅̃ , including their states, transition functions etc.; binary relation #; state-marking functions 𝜑𝑖𝑛  and 𝜑𝑜𝑢𝑡 ; basis automaton 

ℬ𝒜(𝐿); automaton 𝒞𝒪ℳ(𝐿); automaton 𝐿#. For details, see [3, 6, 10]. 

3. Automaton Waterloo and an nonequivalent covering automaton 

Consideration of automaton Waterloo according to our terminology carried at [13]. Let us now show the existence of automaton, 

for which: 

 its states have marking functions 𝜑𝑖𝑛 and 𝜑𝑜𝑢𝑡 covering all the elements of considered relation #; 

 there exists all the possible transitions; in other words, we choose all the transitions of automaton 𝒞𝒪ℳ(𝐿) (i.e., the 

transition satisfying both the conditions (3) and (4)); 

  however, its language is not L (i.e., language of the given automaton). 

For this thing, consider grids corresponding the following states of automaton 𝒞𝒪ℳ(𝐿): 

1, 3, 5, 6, 8, 10, 12 (7) 

evidently, that all the 20 elements of relation # (Tab 5) are covered by these states. 

Constructing all the possible transitions (i.e., transitions, satisfying (3) and (4)), we obtain automaton of Table 1. The 

determinization of this automaton gives Table 2. After renaming states in the following “natural” way 

{1} = 𝐴, {3} = 𝐵, {5} = 𝐶, {6} = 𝐷, {6, 8} = 𝐸, {8,10} = 𝐹, {10, 12} = 𝐺, {12} = 𝐻  

we obtain automaton of Tab. 3. Evidently, it is nonequivalent to the given one, because it state 𝐹 do not contain 𝑎-transition, and 

all other transitions, inputs and outputs coincide with the same objects of the given automaton. 

 

Table 1. An automaton obtained by  

constructing all possible transitions 

 𝑎 𝑏 

→ 1 6, 8 - 

3 8, 10 - 

5 10, 12 3 

6 5 12 

← 8 - - 

10 - 6 

12 1 - 

 Table 2. The determinization of automaton 

 𝑎 𝑏 

→ 1 6, 8 - 

← 6, 8 5 12 

5 10, 12 3 

12 1 - 

10, 12 1 6 

3 8, 10 - 

6 5 12 

← 8, 10 - 6 
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Table 3. Automaton with renamed states 

 𝑎 𝑏 

→ 𝐴 𝐸 - 

𝐵 𝐹 - 

𝐶 𝐺 𝐵 

𝐷 𝐶 𝐻 

← 𝐸 𝐶 𝐻 

← 𝐹 - 𝐷 

𝐺 𝐴 𝐷 

𝐻 𝐴 - 

4. Walibads and proto-walibads 

In this section, we consider strict definitions of walibads and proto-walibads. 

Definition 1. If for a covering set of grids (defined by (5)) we have 𝒬 ≠ 𝒬𝒞𝒪ℳ , then we shall call this set by proto-walibad. 

Example 1 Consider the following table of relation #: 

Table 4. Table of relation # 

 𝑋 𝑌 𝑍 

𝐴 # #  

𝐵 # # # 

𝐶  # # 

 

For this relation, we have the following grids: 

(1) {𝐴, 𝐵} × {𝑋, 𝑌} (2) {𝐵, 𝐶} × {𝑌, 𝑍} 

(3) {𝐵} × {𝑋, 𝑌, 𝑍} (4) {𝐴, 𝐵, 𝐶} × {𝑌} 
 

A proto-walibad is the set consisting of grids (1) and (2). Remark once again, that, by Subsection 2.3, we can construct finite 

automaton corresponding the given table of relation #. 

Definition 2. If for the given regular language (or for the given finite automaton) there exists a proto-walibad, for which the 

covering automaton is not equal to the given one, then the given language (the given automaton) is called walibad. 

Remark that automaton Waterloo satisfies this definition (see Sections 3. However, we can show that there exists no walibads 

having the table of relation # of Example 1. (I.e., there exist proto-walibads, which are not walibads.) For instance, this fact can 

be shown by brute force algorithm, which may be implemented using the remainder of this paper. However, we will not consider 

this example in more details. 

5. Constructing walibad using its table of # 

In this section, we consider an example of inequivalent transformation of automaton 𝐿#. This transformation preserves the 

given table of binary relations #.We give a specific example of work of such an algorithm. In the next paper, we shall show how 

to obtain any walibad based on this example. Such sequence of actions can be obtained using some brute force algorithm 

modifying the complete automaton 𝐿# for the given language 𝐿; in fact, it uses the given binary relation # only. 

Thus, algorithm of this section use some previously known walibad. Consider once again automaton Waterloo. Remark that 

the language of its automaton 𝐿# includes 80 letters (i.e., the table of transition of automaton 𝐿# for language Waterloo includes 

80 columns). Therefore, we do not give the entire table in this paper, we shall consider the used letters only. 

We mark corresponding cell by gray (see left top shaded cell of Tab. 5 below). From the table of automaton 𝐿#, we similarly 

choose all the columns (letters) marked by 𝑎 (on Tab. 5, they are also marked by gray): 

Table 5. Constructing walibad using its table of # 

   𝑌  𝐸   𝑌  𝐹   𝑍  𝐴   𝑍  𝐵   𝑈  𝐺   𝑉  𝐹   𝑉  𝐺   𝑊  𝐶   𝑃  𝐵   𝑃  𝐶   𝑄  𝐸   𝑆  𝐴 

→ 𝐴 𝐸 𝐹         𝐸  

𝐵 𝐸 𝐹    𝐹 𝐺      

𝐶     𝐺 𝐹 𝐺      

𝐷        𝐶 𝐵 𝐶   

← 𝐸        𝐶 𝐵 𝐶   

← 𝐹   𝐴 𝐵     𝐵 𝐶   

𝐺   𝐴 𝐵        𝐴 

𝐻   𝐴 𝐵        𝐴 
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Let us remark, that for each row of the obtained table, all the painted cells have the same value; besides, their value is the 

value of transition function of canonical automaton (see before). Then we can combine all corresponding columns of the 

obtained table by the brute force algorithm while the process of obtaining a walibad, “absorbing” unmarked cells by marked 

ones (see Tab. 6 for letter 𝑎): 

Table 6. Process of obtaining a walibad 

𝐿# 𝑎 

→ 𝐴 𝐸 

𝐵 𝐹 

𝐶 𝐺 

𝐷 𝐶 

← 𝐸 𝐶 

← 𝐹 𝐵 

𝐺 𝐴 

𝐻 𝐴 

Similarly, we use the given letter 𝑏 (see Tab. 7 and Tab. 8). Thus, combining tables for letters 𝑎 and 𝑏, we obtain transition 

function for (canonical) automaton Waterloo. 

Table 7. Process of obtaining a walibad 

 

   𝑈  𝐵   𝑊  𝐻   𝑅  𝐷 

→ 𝐴    

𝐵    

𝐶 B   

𝐷  𝐻  

← 𝐸  𝐻  

← 𝐹   𝐷 

𝐺   𝐷 

𝐻    

Table 8. Process of obtaining a walibad 
 

𝐿# 𝑏 

→ 𝐴 - 

𝐵 - 

𝐶 𝐵 

𝐷 𝐻 

← 𝐸 𝐻 

← 𝐹 𝐷 

𝐺 𝐷 

𝐻 - 

 

Theorem 1. Let some table of binary relation # be given. Let there exist corresponding automaton 𝐾 and for it, there exists 

covered automaton which is not equivalent to 𝐾, Then we can obtain 𝐾 by brute force algorithm from the automaton 𝐿#, deleting 

some letters of 𝐿# and combining some other pairs of letters of 𝐿#. 

6. Example of incomplete combining of transitions of automaton 𝑳# 

Consider Tab. 5 once again. There was already mentioned, that we show in the table only a subset of letters for automaton 𝐿#. 

(The full table contains 80 letters.) It is very important to remark the following thing: although the considered table of # is also 

such table for the language Waterloo, but it is possible to show, that automaton 𝐿#  has 𝑛𝑜 walibad property. (However, it 

certainly has proto-walibad property.) 

Thus, let us consider the following Tab. 9, which can be obtained combining Tab. 5 and 7. 

Let us consider some comments. We continue to consider automaton 𝐿# for the binary relation # of automaton Waterloo. As 

we already said, 30 edges of its basis automaton (Tab. 10) corresponds to 15 edges of automaton of Tab. 9, i.e., 15 its letters. In 

the first line, we show the letter of corresponding edge of automaton Waterloo (by its transition function of Tab. 1). In the 

second line, we show double subscript of corresponding letter of automaton 𝐿#, see some details of such construction in [3]. 

Initial (𝐴) and final states (𝐸 and 𝐹) of automaton of this table also corresponds to Initial and final states of the canonical 

automaton for language Waterloo. In 15  chosen of automaton 𝐿#  columns, we painted cells (transitions) corresponding to 
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transitions of the basis automaton. The number of painted cells is less than 30: for example, the left top cell of this table 

corresponds 2 transitions of the basis automaton, namely 

𝐴#𝑌
𝑎
→ 𝐸#𝑋 and 𝐴#𝑌

𝑎
→ 𝐸#𝑃.  

Table 9. New combined table 

 𝑎 𝑎 𝑎 𝑎 𝑏 𝑎 𝑎 𝑎 𝑎 𝑏 𝑎 𝑎 𝑎 𝑏 𝑎 

   𝑌  𝐸   𝑌  𝐹   𝑍  𝐴   𝑍  𝐵   𝑈  𝐵   𝑈  𝐺   𝑉  𝐹   𝑉  𝐺   𝑊  𝐶   𝑊  𝐻   𝑃  𝐵   𝑃  𝐶   𝑄  𝐸   𝑅  𝐷   𝑆  𝐴 

→ 𝐴 𝐸 𝐹         𝐸     

𝐵 𝐸 𝐹    𝐹 𝐺         

𝐶     𝐺 𝐹 𝐺         

𝐷        𝐶 𝐵 𝐶      

← 𝐸        𝐶 𝐵 𝐶      

← 𝐹   𝐴 𝐵     𝐵 𝐶    𝐷  

𝐺   𝐴 𝐵        𝐴  𝐷 𝐴 

𝐻   𝐴 𝐵        𝐴   𝐴 

Then we make one of possible variant of combining some columns (as we said before, we “absorb” unmarked cells by 

marked ones). Namely, our algorithm gives the positive result by the following variant of combining columns (i.e., letters of 

alphabet of automaton 𝐿#): 

 columns marked  𝑍
  𝐵,  𝑊

  𝐶,  𝑃
  𝐵,  𝑃

  𝐶 and  𝐴
  𝑆 are combining together (remark that we have no other painted cells in these 

columns); 

 and each other column is not used for combining. 

We obtain automaton 

Table 10. One of possible variant of combining some columns 
 

 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖 𝑗 𝑘 

→ 𝐴 𝐸 𝐹        𝐸  

𝐵 𝐸 𝐹     𝐹 𝐺    

𝐶     𝐵 𝐺 𝐹 𝐺    

𝐷    𝐶     𝐻   

← 𝐸    𝐶     𝐻   

← 𝐹   𝐴 𝐵       𝐷 

𝐺   𝐴 𝐴       𝐷 

𝐻   𝐴 𝐴        

 

(We re-denote 11 letters of used alphabet by 𝑎, 𝑏, … , 𝑘.) Thus, we consider the last automaton as the given one. 

We omit the process of its determinization; its obtaining table of relation # (denoting obtained states of canonical automaton 

for mirror language 𝐿𝑅 in the same way, as for on Tab. 4) coincides with the original relation # considered before. 

After constructing next objects (which are similar to objects constructed in [5, 6]) we obtain following universal automaton: 

Table 11. Universal automaton 
 

𝒞𝒪ℳ(𝐿) 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖 𝑗 𝑘 

→ (1) 𝐴 × 𝑌𝑄 6 7 8 14 8 9 10 13 14        6 7 8 14  

→ (2) 𝐴𝐵 × 𝑌 6 7 8 14 8 9 10 13 14          

(3) 𝐵 × 𝑌𝑉 6 7 8 14 8 9 10 13 14     8 9 10 13 14 10 13    

(4) 𝐵𝐶 × 𝑉       8 9 10 13 14 10 13    

(5) 𝐶 × 𝑈𝑉     2 3 4 10 11 12 13 8 9 10 13 14 10 11 12 13    

(6) 𝐷𝐸 × 𝑉𝑃    4 5     12 13   

← (7) 𝐸 × 𝑋𝑊𝑃    4 5     12 13   

← (8) 𝐸𝐹 × 𝑋𝑃    4        

← (9) 𝐹

× 𝑋𝑍𝑃𝑅 

  12 2 3 4        

(10) 𝐹𝐺 × 𝑍𝑅   12 2       6 14 

(11) 𝐺 × 𝑍𝑅𝑆   12 12       6 

(12) 𝐺𝐻 × 𝑍𝑆   12 12        

(13) 𝐹𝐺𝐻 × 𝑍   12 2        

(14) 𝐷𝐸𝐹 × 𝑃    4        
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Let us remark, that the values of its state-marking functions 𝜑𝑖𝑛 and 𝜑𝑜𝑢𝑡 (which are given in the first column together with 

numbers used for names of states). As before, we omit the symbols of sets {𝑎𝑛𝑑}: for instance, we write 𝑌 𝑄 and 6 7 8 14 

instead of {𝑌, 𝑄} and {6, 7, 8, 14} respectively. The equivalence of the last and the given automata could be proved in the usual 

way. 

Using obtained universal automaton, we construct the following covered one, choosing the subset of the set of grids of 

universal automaton {1, 3, 5, 6, 8, 10, 12} (similarly Section 3): 

The last automaton is not equivalent to the given one; this fact can be shown, for example, also similarly to Section 3: the last 

automaton has no loop corresponding to the loop of basis automaton 

𝐵#𝑌
𝑎
→ 𝐹#𝑃

𝑑
→ 𝐵#𝑉

𝑔
→ 𝐹#𝑍

𝑐
→ 𝐵#𝑌 (8) 

Table 12. Covered automaton 
 

 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖 𝑗 𝑘 

→ (1) 𝐴 × 𝑌𝑄 6 8 8 10        6 8  

(3) 𝐵 × 𝑌𝑉 6 8 8 10     8 10 10    

(5) 𝐶 × 𝑈𝑉     3 10 12 8 10 10 12    

(6) 𝐷𝐸 × 𝑊𝑃    5     12   

← (8) 𝐸𝐹 × 𝑋𝑃            

(10) 𝐹𝐺 × 𝑍𝑅   1        6 

(12) 𝐺𝐻 × 𝑍𝑆   1 1        

 

Remark that edges of this “missing” loop correspond to edges of the “missing” loop of the covered automaton considered in 

Section 3. It is also important to remark, that the last automaton does contain loop marked 𝑎𝑑𝑗𝑐; however, this loop does not 

correspond the above loop (8). Anyway, the nonequivalence of the two automata (on Tab. 12 and Tab. 10) can be simple shown 

by constructing two equivalent canonical automata. 

7. Conclusion 

As we said before, author is planning to give in the next paper strict formulations of the brute force algorithm of 

transformation of automaton 𝐿# deleting some letters of its alphabet and combining some other pairs of its letters. 

We have realized corresponding computer programs. Using the table of language Waterloo as its only input, we obtain result 

(i.e., automaton on Tab. 10, which is walibad) in about 1 hour (CPU clock speed was about 3 GHz). Therefore, as we said 

before, we consider as the main result the possibility of obtaining in near future answer the question, whether or not Waterloo is 

the “minimal” automaton having walibad property over the alphabet of 2 letters. (The minimality is defined in some natural way, 

for example, by the number of states of corresponding basis automaton.) 
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