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Abstract

Denoising has numerous applications in communications, control, machine learning, and many other fields of engineering and science. A
common way to solve the problem utilizes the total variation (TV) regularization. Many efficient numerical algorithms have been developed
for solving the TV regularization problem. Condat described a fast direct algorithm to compute the processed 1D signal. In this paper, we
propose a variant of the Condat’s algorithm based on the direct 1D TV regularization problem. The usage of the Condat algorithm with the taut
string approach leads to a clear geometric description of the extremal function.
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1. Introduction

One of the most known techniques for denosing of noisy signals and images was proposed by Rudin, Osher, and Fatemi [1].
This is a total variation (TV) regularization problem. Let J(u) be the following functional in the functional space L,:
Jw) =llu—wu If,+ ATV (w), 1

where || u —u, ||§2 is called a fidelity term and ATV (u) is called a regularization term. Here u, is an observed signal that is
distorted by additive noise n,
Uy =v+n. 2

Consider the following variational problem:
u, = argminyepy (o) J (). 3)

where u, is an extremal function for J(u). Numerical results have shown that TV regularization is quite useful in image
restoration [2-4]. Here we consider a one dimensional TV (1D TV) regularization problem. In [5,6] Strong and Chan considered
the behavior of explicit solutions of the 1D TV problem when the parameter A in Eq. (1) is sufficiently small. The exact
solutions of one dimensional TV regularization problem and of two dimensional radial symmetric TV regularization problem
were considered in [7-10]. Recently, Condat [11,12] proposed explicit solutions of the 1D TV problem as well as a direct fast
algorithm for the case of discrete functions. The algorithm is very fast and has complexity of O (n) for typical discrete functions.
In contrast, the proposed approach to finding exact solutions has a clear geometrical meaning.

In this paper, we propose a variant of the Condat’s approach based on the direct 1D TV regularization problem. The usage of
the Condat approach with the taut string method [12] leads to a clear geometric description of the extremal function.

2. Formulation of 1D TV regularization as a discrete problem

Let u, be a discrete function u, = {u}, ..., ub}. For the function u, the problem (1) takes following form:

J@) =Tk, @ -up)? +ATE utt -l (4)
The functional J(u) is convex. Thus for the extremal (minimum) function w, the subgradient VJ(u) satisfies the condition:
0€ V(). (%)

Remark. The subgradient V£ (x) of the function f(x) = |x|:

1,if x>0
Vix)=1 -1,x<0 . (6)
[-1;1],x=0
2.1. Computation of the subgradient

Consider subgradient V] (u): '
Vi) = ?:1 \ (ui —up) 2+ }\Z?:_f V| uttt — . (7
LoV —ud)? = (ut —ud, u?—ud uttt =yt —ud. (8)

By analogy with (6) the subgradients V|u** —uf|,i =1,..,n — 1, can be written as:
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(=1,1,0,0,0, ...,0,0), if u? > u*
Viuz —ul| = (1,-1,0,0,0, ...,0,0), if u? < u? , 9)
((81,-8%,0,0,0, ...,0,0)[6" € [~1; 1]}, if u? = u*

(0,-1,1,0,0, ...,0,0), if u® > u?
Vjud —u?| = 0,1,-1,0,0, ...,0,0), if u? < u? ) (10)
{(0,62,-82,0,0,...,0,0)|6% € [-1; 1]}, if u® = u?

(0,0,0,0,0, ..., —1,1,0), if u™! > yn2
Vjunrt —yn 2| = (0,0,0,0,0, ...,1,—1,0), if u™ ! < y"2 ) (11)
{(0,0,0,0,0, ...,6™2,—8™"2,0)|6"2 € [—1; 1]}, if u™ ! = u"2

(0,0,0,0,0, ...0,—1,1), if u™ > u™
Viu —u™ 1| = (0,0,0,0,0,..0,1, —1),if u* < u™?! , (12)
((0,0,0,0,0, ...,0, 8™, ="~ |67 1 € [=1; 1]}, if u" = u?

ZL(L=—11 Vl ui+1 _ uil — {(61,62 _ 51,53 _ 52,54 _ 53, ...,5"71 _ 67172'_67171 ) | 51’ — _1’ lf ui+1 > ui' 51’ — 1, lf ui+1 < ui’
ste[-1;1)ifutt =uhi=1,..,n—1}. (13)

From expressions (8) and (13) we get the following parameterization of the subradient:

( (V) = (' —ud) +As?

| (V(w)? = (u? —ud) + A2 — A8t

4 (V)3 = (u —ud) + 153 — 52 _ 14)
|

\

(V)1 = @h=1 — ui=1) 4 A§"-1 — A§"2
(V@)™ = (u™ —ug) + As"™ 1

where

—1,if uttt > u
5t = 1Lif utt <ut . (15)
€ [-1L1],if u*t =

Since (VJ(u,))! = 0,i = 1,...,n — 1 for some values of the parameters §° satisfying (15) we get:
ul = ul —As?
u2 =u2 — 162+ A6
ud =ud — 163 + 167 ‘ (16)

lun=t = up1 — 2671 4 am2
ul = ul + A6™71
Consider the sequence of the cumulative sums:
ul = ul — A8t
u? +ul = ug +uf — 162
3 2 1_,,3 2 1 _ 3
u; +ul tu, =ugt+ujtu;— A0 _ (17)

ul e ul =uf T e ug — A6
ul + -4 ul =ul + -+ ug

Consider such variables U?, ..., U™ and U}, ..., U, that:

Ut =ul, U0 =u}
U? =u2+ul, U2 =ud+u}
. (18)
U=yl b, Ud t =ul e ud
Ur=ul +-+u;, U =ug + - +uj

So the solution of the problem (3) is reduced to the solution of the problem:
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( U=UE-2s8?
| U?=U}— 28?

3 — 73 3
|yt = ypt - 2671
\ ur = up

with given discrete function U, and unknown discrete functions U and § satisfying to the conditions (15).

Consider additional variables U° = UQ = 0. Note that then for anyi =1,..,n— 1 the condition u*** > u! is equivalent to
the condition U*t —2U% 4+ U=1 > 0, the condition u** < u! is equivalent to the condition U+ —2U! + U=t < 0, the
condition u**! = u! is equivalent to the condition U** — 2U% + U~1 = 0.

Then the set of equations (19) can be rewritten taking into account additional variables:

[ U=U8=0

Ul = U} — A8t
U? = Ug — 162
1 U3=U3-28% (20)

Un—l — Ua‘t—l _ /1571_1
U =Ug

where
—1,if U =20+ U1 >0
5t = Lif Ut —2ui+Uut-1<0 . (21)
e[-L1)if Ut 20"+ U1 =0

2.2. Construction the ,,tube”’
The values U§, U3, ..., Uy of the discrete function U, defines a piecewise linear curve, which is an axial line of the tube. The

values UJ, Ut + A, ..., Ul + A, UR form the upper piecewise linear border of the tube, the values U, U3 — A, ..., U3t — A, UY
form the bottom piecewise linear border of the tube. Figure 1 shows an example of a tube.
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Y Ud ° Uo
0
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I 1 2 3 4 5 n-2 n-1 n

Fig. 1. Example of a tube.
2.3. Description of the extremal function U

Since §',i =1,..,n — 1, take values in the segment [—1; 1], a piecewise linear curve defined by the values U%, ..., U™ of a
discrete function U (i.e. solution of the problem (20)) entirely belongs to the tube.

If the second discrete derivative equals zero, U'*' — 2U! + U~ = 0 then the piecewise linear curve defined by the values
U3, ..., U of a discrete function U in the neighborhood of the point i is a straight line.

If the second discrete derivative is positive, U*! —2U% + U=1 > 0 then from (21) we see that §° = —1 and (20) shows us
that U = U} + A, i.e. U' belongs to the upper border of the tube.

If the second discrete derivative is negative, U™*' —2U% + U'~! < 0 then from (21) we see that 6° = 1 and (20) shows us
that U* = U} — A, i.e. U belongs to the lower border of the tube.

It means that a piecewise linear curve defined by the values U?, ..., U™ of a discrete function U exactly coincides with so
called ,,taut string” connecting the endpoints of the tube.

Information Technology and Nanotechnology — 2017
Image Processing and Geoinformation Technology 691



Fig.2.  Taut string in the tube.

Conclusion

In this paper, we propose a variant of the Condat’s approach based on the direct 1D TV regularization problem. The usage of

the Condat approach with the taut string method leads to a clear geometric description of the extremal function.
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