
Information Technology and Nanotechnology – 2017

Image Processing and Geoinformation Technology 649

Deep neural networks performance optimization in image recognition

A.G. Rassadin
a
, A.V. Savchenko

a

a National Research University Higher School Of Economics, 603155, 25/12 Bolshaya Pecherskaya Street, Nizhny Novgorod, Russia

Abstract

In this paper, we consider the problem of insufficient runtime and memory-space complexities of contemporary deep convolutional neural

networks in the problem of image recognition. A survey of recent compression methods and efficient neural networks architectures is

provided. The experimental study is focused on the visual emotion recognition problem. We compare the computational speed and memory

consumption during the training and the inference stages of such methods as the weights matrix decomposition, binarization and hashing in the

visual emotion recognition problem. It is experimentally shown that the most efficient recognition is achieved with the full network

binarization and matrices decomposition.

Keywords: deep neural networks; image recognition; visual emotion recognition; deep compression; binarized neural networks; tensor train;

tensor decomposition; XNOR-Net

1. Introduction

Deep neural networks have recently become everyday tool for such tasks as image recognition [1], [2], speech recognition [1],

signal processing and text analysis [3], [4]. The neural network study, started in the middle of the last century, made an

incredible leap in the beginning of the XXI century. The success of deep convolutional neural networks (CNN) has started from

the paper of Alex Krizhevsky et al. [5], which introduced a novel approach known as the AlexNet architecture, for solving

visual recognition tasks with the very-large ImageNET dataset. Contemporary CNN architectures [6], [7], [8] are much more

accurate when compared with original AlexNet. However, their runtime complexity becomes insufficient for application in

several practical tasks, especially with implementation on mobile platforms. Hence, the performance optimization of deep CNN

is now considered as one of the most important studies in deep learning. For instance, the work on deep compression [9]

received the Best Paper Award in very prestigious International Conference on Learning Representation (ICLR’16).

The CNN optimization starts even before the training or testing the model. The proper choice of hardware can drastically

improve the training performance. The leader in the deep learning hardware development, NVIDIA, nowadays release the wide

range of GPUs, different by the form-factor (from tiny development boards to server-side Tesla) and the purpose. However,

NVIDIA is not alone on this field. Recent year Google has lifted the veil about its Tensor Processing Unit (TPU) – a special

purpose chip, highly optimized for the tensor (matrix) operations, which is the core routine in neural networks. Such acquisitions

of Intel as Nervana and Movidius are also not accidental. Nervana introduced not only deeply optimized (and, probably, most

efficient) framework but also a special-purpose hardware platform, which includes not only optimized chip but also an optimized

memory and data channels. Movidius, in its turn, provides a small device capable for inferencing deep neural networks in real

time. Qualcomm announced its SnapDragon 820 – probably the most optimized mobile chip: more than 5 times faster in

comparison with nearest generations [10].

The next step in the performance optimization pipeline is the choice of an appropriate driver. The last trend in this field is the

lower-precision operations. Using lower precision, e.g., FP16 (2 bytes per float weight) or INT8 (one byte per integer) at the

training stage can significantly limit the generalization ability of the CNN model. However, using such precision at the inference

stage saves both memory space and processing time with permissible losses in accuracy. It is important that nowadays there are

several frameworks, which contain very efficient implementations of the neural network training procedures, e.g. convolutional

operation, back propagation or stochastic gradient descent. However, none of frameworks is absolutely optimal but every one

tends to be. Moreover, most of them are general-purpose: they cannot be used on usual mobile device, they inherits the

limitations of the high-level programming languages in which they are written etc. The progress both in mobile industry and in

deep learning area marked the emergence of special-purpose frameworks, usually written in C/C++ capable or even intended to

use on mobile platforms.

However, the most remarkable research direction in this field is the optimization of algorithms and neural network

architectures. To compare the various methods, we will use the following goals:

 Recognition accuracy;

 GPU total training time;

 GPU average inference time;

 Space (memory) complexity of the training and inference procedures.

In this paper we tried to select the most promising and effective optimization possibilities introduced in the papers from last

year. We compared author implementations in such acute task as the task of emotion recognition from facial expressions. The

rest of the paper is organized as follows. In Section 2, we provide a survey of recent literature devoted to the performance

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Samara University

https://core.ac.uk/display/346507106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Information Technology and Nanotechnology – 2017

Image Processing and Geoinformation Technology 650

improvements of deep neural networks. Section 3 contains an experimental study of performance optimization methods in visual

emotion recognition. Finally, concluding comments are given in Section 4.

2. CNN performance optimization methods overview

There are several types of classification of deep neural networks performance optimization techniques. The methods can

differ:

1) by the accuracy loss: lossless, optimization with accuracy loss, optimization-accuracy trade-off);

2) by the applicability level: architectural, operational (by model / framework modification), computational (exactly while

training or inference), hardware;

3) by the limitations: architecture-dependent, and architecture-independent;

4) by the implementation: runtime implementation, two-step (training -> optimization), sequential (training -> optimization -

> re-training);

5) by the optimization building block: all blocks, convolutional layers, fully connected layers.

Perhaps the most fundamental approach and in the same time one of the most efficient and universal is the pruning [9], [11]. It

is known that in huge amount of weights (connections) in the trained network even with the superior generalization ability the

contribution to the every neuron (connection) is different. One can alternately remove connections with low weight and, in turn,

minimal impact to the prediction results, and fine-tuning after every pruning, until achieving the allowable loss in the accuracy.

It is important to note that the pruning can be applied to any neural network architecture and both before and after every another

performance optimization technique being the most general approach.

The distilling the knowledge technique has been initially suggested by Hinton et al. in 2014 [12]. The idea of this approach is

to train a cumbersome neural model or an ensemble of models with the superior generalization ability (“teacher”) and then

transfer its predictive power to another, thinner but usually deeper model (“student”) by training the latter to predict the same

labels as the original one. The main disadvantage of this approach is that the time cost for the optimization is on the same level

with the training from scratch. Another obvious drawback is that the “student” model is not protected from the mistakes of the

“teacher” model. In fact, the resulted model is even weaker, because it can tends to unexpected behavior in predictions.

Moreover, it is not an absolute performance optimization but rather relative to the original teacher network. This technique have

not become widely used. We can only mention the work of Romero et al. [13] in which some limitations of the initial approach

were overcome.

The idea of weights hashing (quantization) [14] is based on that close values of the CNN weights may be considered equal

(with some precision), which makes it possible to share the same memory unit, and, in turn, drastically reduce the memory costs.

This approach continues to exploit the idea of lower precision computations. It is exactly the key part of the famous Deep

Compression method [9], in which a very effective pipeline to optimize the performance and the size of the network is

described. Unfortunately, it is hard to distill from the paper the real influence of quantization to overall compression quality,

because it also includes pruning, which can be the most important factor, which allowed the authors to achieve their outstanding

results in compression of AlexNet architecture.

The tensor decomposition exploits a very intuitive idea: since that deep neural network contains high order matrices (tensor)

of weights in each layer, they can be decomposed to the sequence of lower order matrices and vectors. The most popular

techniques nowadays are CP (CANDECOMP/PARAFAC or Canonical Polyadic Decomposition) [15], Tucker [16] and the most

recent one – Tensor Train [17], [18]. Such approaches allows to explicitly choose between the amount of memory consumption

and the accuracy loss by setting the rank of the decomposition.

The group of binarization methods is based on the observation that it is to enough for weights to be stored in FP32 and

continues the trend of lower precision computations. These techniques differs from the hashing (quantization) by going deeper

into performance optimization problem caring out not only about the storage and native (because of lower precision)

computational efficient. Original idea is followed by the observation that only 1 bit ({0, 1} or {-1, +1}) is enough for weights

values. Thus, it is possible to store only the sign of values instead of usiage of full FP32 precision. Hence, the arithmetic

operations can be replaced to much faster logical operations. However, the binarization of the network right after traditional

training leads to the complete loss of the predictive power of the network. It is important to apply binarization iteratively, epoch-

by-epoch. The procedure of binary weights backpropogation was suggested in [19] to implement this approach. Initial idea to

binarize only weights outgrew to binarizing the whole network including the input vector. Such an approach [20] leads to the

complete replacement of the arithmetic operations by XNOR. It has recently been shown [21] that the applied binary mapping

does not matter, hence, the sign of the variable is usually the simplest and fastest techinque.

There exist other methods, which optimize a fixed architecture or even already learned model by using several architectural

tricks. Among these methods, it is important to mention the SqueezeNet [22] and the Tiny Darknet [23], which achieve the

accuracy compared to the AlexNet [5], but are much smaller and even faster. The PVANet [24] is the architecture for the object

Information Technology and Nanotechnology – 2017

Image Processing and Geoinformation Technology 651

detection task with minimal computational cost obtained by adapting and combining recent technical innovations. The

BranchyNet [25] introduces early exits (classifiers) along the architecture by which the researcher can explicitly balance

between the inference speed and the accuracy.

To summarize our brief survey, we present in Table 1 the potential of the most important discussed methods to achieve four

optimization goals, which we mentioned in introduction. As we can see here, despite of the large number of reviewed papers,

there are no “silver-bullet” methods, which guarantee the training speedup or memory consumption while training. Most of

these techniques dedicated on reduction the memory consumption while inference. The pruning can be very common approach,

e.g. integrated in every modern framework but unfortunately, it is still not common.

Table 1. Reported results of deep neural networks performance optimization

 Memory reduction
while training

Memory reduction
while inference

Inference speedup Baseline model Dataset

Deep Compression [9] no 49 unknown VGG-16 ImageNet

FitNets [13] no 36 13.36 Maxout CIFAR-10

HashedNets [14] no 64 unknown same-size MNIST

CP-Decomposition [15] no 12 4.5 AlexNet ImageNet

TensorNet [18] unknown 80 unknown simple CIFAR-10

BinaryNet [19] ~32 (theoretical) ~32 (theoretical) 3.4~23 Maxout CIFAR-10

Binary-Weight-Network and
XNOR-Net [20]

no 67 58 (CPU) ResNet-18 ImageNet

SqueezeNet [22] unknown 50 1.
AlexNet ImageNet

Tiny Darknet [23] unknown 60 2.9

BranchyNet [25] no no 1.9 ResNet-110 CIFAR-10

3. Experimental Results

In this section we will discuss the computational experiments dedicated on performance optimization power of the following

techniques: HashedNets, BWN, XNOR-Net and CP-decomposition. We have used the author’s code that guarantees us the exact

implementation and results reproducibility. These methods were evaluated on the real task of emotion recognition from frontal

and 45° rotated facial images detected in the widely used Radboud Faces Database (RaFD) [26]. The neural networks were

trained from scratch using identical training samples and learning procedures. Inspired by the well-known facial expression

recognition CNN [27], we choose VGG-S architecture for the HashedNet, BWN and XNOR-Net as a baseline. All the neural

network models are freely available at (https://mega.nz/#F!2FVz1SAT!dRdzpfc7UEwHC-jI9jEkIQ). In fact, in [27] authors

trained an ensemble of neural networks using RGB and different kind LBP (Local Binary Patterns) visual features, but we

decided to use a single RGB input for simplicity. All the experiments were done on the same machine using Tesla M2090 with 6

GB of memory under Ubuntu 14.04 with CUDA Toolkit 8.0.

The testing of the CP-decomposition [15] was performed using the SqueezeNet-1.1 [22] architecture instead of VGG-S.

Indeed, convolutional layers take a small portion of weights in such architectures with massive fully-connected layers as VGG-

S. Hence, the CP-decomposition is appropriate only for such convolutional architectures without fully connected layers as

SqueezeNet. The baseline model was trained with Caffe framework using stochastic gradient descent (SGD) with momentum

0.9, fixed learning rate 0.001 and 32 images in a mini-batch. To compare the neural networks computing efficiency we

measured: 1) epoch time for single forward pass and subsequent gradient update on GPU for mini-batch in one random sample,

averaged over 1000 runs; and 2) GPU inference time for single random sample, averaged over 1000 runs. We additionally

estimated the accuracy loss and the reduction in number of weights.

Fig. 1. The training/testing error rates for the baseline VGG-S neural network model [27].

Information Technology and Nanotechnology – 2017

Image Processing and Geoinformation Technology 652

Fig. 2. The training/testing error rates for the HashedNet.

Original version of the neural network architecture SqueezeNet-1.1 has relatively small number of filters in every

convolutional layer. Hence, the decomposition of every layer to a lower rank, e.g., 16, tends to the complete loss in accuracy.

However, when only two last convolutional layers were decomposed with the rank equal to 192, the number of parameters

reduced at 23.5% with 1.65% of the accuracy loss (from 89.14% to 87.5%). Unfortunately, the inference in the resulted network

became even 1.5 time slower. It seems that replacement of the single large convolutional layer to four sequentially connected

small layers causes higher computing complexity in parallel environment.

 The HashedNets, BWN and XNOR-Net have been trained using RGB images from the same distinct and balanced training /

testing subsets of the RaFD dataset using the Torch framework. We used SGD with momentum equal to 0.9, learning rate fixed

at 0.001 and mini-batch of 20 sample. The common baseline model [27] was trained with the same settings. This baseline CNN

converged to accuracy 97.13% after 100 epochs (Fig. 1). Here and bellow, the testing error rate is in practically all cases less

than the training error rate. Though such behavior seems to be not obvious, it is reasonable due to the usage of dropout

regularization layer, which is activated while training phase and deactivated when evaluating on the validation set. Moreover,

the training error rate is computed as the mean error rate for all mini-batches in one epoch. On the contrary, the testing error rate

is computed only after each epoch with more optimal weights, which were learned during this epoch. Let us compare this result

with the performance optimization techniques.

 We used default compression settings, provided by the authors of the HashedNet technique [14]: compression rate is equal to

0.125 and the bias hashing was set. The latter option leads to the 81.64% reduction in the weights count. Despite this reduction,

the training process (Fig. 2) is practically identical to the baseline (Fig. 1): the network converged to 96.31% accuracy after 100

epochs, which is 0.8% lower when compared to the baseline CNN (Fig. 1). However, the training procedure is 6.7 times slower

when compared to the baseline. The inference procedure of the HashedNet is also 4.7 times slower. We believe that such

slowdown can be drastically reduced by replacing the current third-party implementation of hashing, which does not allow us

saving trained model and measure memory consumption while inference accurately.

 In next experiments, the BWN and the XNOR-Net are implemented according to the paper [20]. Every conv-bn-activation

block excluding the first was replaced with the bn-activation-conv block. The dependences of the testing and training error rates

of the BWN on the epoch number are shown in Fig. 3. Here the BWN converged to the very low error rate 1.43% after forty

epochs. After that time both training and testing error rate started to grow. We cannot precisely explain this behavior but

probably, advance learning rate policy can suppress this binarization shortcoming. In fact, all our experiments demonstrate that

BWN model always converges 2-4 times faster, when compared to the baseline CNN, which can be explained by very strong

regularization effect introduced by the BWN architecture. We have not observed the inference memory reduction or inference

speedup. The number of parameters also remains unchanged.

Fig. 3. The training/testing error rates for the BWN.

Information Technology and Nanotechnology – 2017

Image Processing and Geoinformation Technology 653

Fig. 4. The training/testing error rates for the XNOR-Net.

Fig. 5. The training/testing error rates for the modified XNOR-Net.

The XNOR-Net [20] was not converged in our experiments (Fig. 4). The lowest error rate for the testing set was equal to

41.19%. The only advantage of this method is the slight (2.4%) reduction in the memory consumption while inference, which is

the benefit of the modified binarized activation layer. It is interesting to note that using only binarized activation layer without

weights binarization leads to the same parameters reduction and even slight epoch time speedup. What is more important, such

modification is capable to converge much closer to the accuracy of the baseline model – 88.32% – within the same learning

procedure (Fig. 5).

4. Conclusion

In this paper, we have reviewed several modern approaches to optimize performance of deep neural networks. We emphasized

the obvious trends in this field, namely, efficient tensor decomposition techniques, lower precision calculations and more

accurate network binarization. We performed an evaluation of the state-of-the-art techniques in application to visual emotion

recognition based on facial expressions. Our experimental results are briefly summarized in Table 2. The best value in each

column is marked by bold.

The main direction for further research of the will be concentrated on combining of the most successful reviewed techniques.

It is important to test these methods with other datasets, e.g., in EmotiW challenge. Another research direction is the

implementation of the complete pipeline to video-based emotion recognition. Finally, it is necessary to examine the possibility

to implement discussed methods in image recognition on mobile platforms.

Table 2. Methods evaluation results

Training time per
one epoch, ms

Inference time, ms Model size, MB Accuracy, %

VGG-S (baseline) 43.7 33.4 372.2 97.13
SqueezeNet-1.1 (baseline) 22.94 4.94 2.8 89.14
SqueezeNet-1.1, CP-Decomposition 22.94 7.74 2.1 87.5
HashedNets 294.8 158.2 68.3 96.31
Binary-Weight-Network 83.8 33.5 11.6 98.57
XNOR-Net 84.3 34.2 11.6 58.81
XNOR-Net w/o weights activation 43.4 34.1 11.6 88.32

Acknowledgments

The article was prepared within the framework of the Academic Fund Program at the National Research University Higher

School of Economics (HSE) in 2017 (grant №17-05-0007) and by the Russian Academic Excellence Project "5-100".

A.V. Savchenko is supported by Russian Federation President grant no. МД-306.2017.9.

Information Technology and Nanotechnology – 2017

Image Processing and Geoinformation Technology 654

References

[1] Savchenko, A.V. Search Techniques in Intelligent Classification Systems. / A.V. Savchenko // Springer International Publishing – 2016

[2] Savchenko, A.V. Maximum-Likelihood Approximate Nearest Neighbor Method in Real-time Image Recognition / A.V. Savchenko // Pattern Recognition –

2017 – Vol. 61 – p. 459-469

[3] Choi, K. Automatic Tagging using Deep Convolutional Neural Networks / K. Choi, G. Fazekas, M. Sandler // arXiv preprint arXiv:1606.00298 - 2016

[4] Choi, K. Convolutional Recurrent Neural Networks for Music Classification / K. Choi, G. Fazekas, M. Sandler, K. Cho // arXiv preprint arXiv:1609.04243 -

2016

[5] Krizhevsky A. ImageNet Classification with Deep Convolutional Neural Networks / A. Krizhevsky, I. Sutskever, G. E. Hinton // Advances in Neural

Information Processing Systems – 2012 – Vol. 25 – p. 1106-1114

[6] Lin, M. Network In Network / M. Lin, Q. Chen, S. Yan // arXiv preprint arXiv:1312.4400 - 2013

[7] Szegedy, C. Going Deeper with Convolutions / C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich //

arXiv preprint arXiv:1409.4842 - 2014

[8] He, K. Deep Residual Learning for Image Recognition / K. He, X. Zhang, S. Ren, J. Sun // arXiv preprint arXiv:1512.03385 - 2015

[9] Han, S. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding / S. Han, H. Mao, W. J. Dally //

arXiv preprint arXiv:1510.00149 - 2015

[10] ARM Community [Electronic resource]: https://community.arm.com/iot/embedded/f/discussions/166/fast-deep-learning-inference-on-qualcomm-

snapdragon-achieving-super-fast-inference-times-by-tweaking-models-and-codes

[11] Molchanov, P. Pruning Convolutional Neural Networks for Resource Efficient Transfer Learning / P. Molchanov, S. Tyree, T. Karras, T. Aila, J. Kautz //

arXiv preprint arXiv:1611.06440 - 2016

[12] Hinton, G. Distilling the Knowledge in a Neural Network / G. Hinton, O. Vinyals, J. Dean // arXiv preprint arXiv:1503.02531 - 2015

[13] Romero, A. FitNets: Hints for Thin Deep Nets / A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, Y. Bengio // arXiv preprint arXiv:1412.6550 -

2014

[14] Chen, W. Compressing Neural Networks with the Hashing Trick / W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, Y. Chen // arXiv preprint arXiv:

1504.04788 - 2015

[15] Lebedev, V. Speeding-up Convolutional Neural Networks Using Fine-tuned CP-Decomposition / V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, V.

Lempitsky // arXiv preprint arXiv:1412.6553 - 2014

[16] Kim, Y.-D. Compression of Deep Convolutional Neural Networks for Fast and Low Power Mobile Applications / Y.-D. Kim, E. Park, S. Yoo, T. Choi, L.

Yang, D. Shin // arXiv preprint arXiv:1511.06530 - 2015

[17] Novikov, A. Tensorizing Neural Networks / A. Novikov, D. Podoprikhin, A. Osokin, D. Vetrov // arXiv preprint arXiv:1509.06569 - 2015

[18] Garipov, T. Ultimate tensorization: compressing convolutional and FC layers alike / T. Garipov, D. Podoprikhin, A. Novikov, D. Vetrov // arXiv preprint

arXiv:1611.03214 – 2016

[19] Courbariaux, M. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1 / M. Courbariaux, I.

Hubara, D. Soudry, R. El-Yaniv, Y. Bengio // arXiv preprint arXiv:1602.02830 - 2016

[20] Rastegari, M. XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks / M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi //

arXiv preprint arXiv:1603.05279 - 2016

[21] Merolla, P. Deep neural networks are robust to weight binarization and other non-linear distortions / P. Merolla, R. Appuswamy, J. Arthur, S. K. Esser, D.

Modha // arXiv preprint arXiv:1606.01981 - 2016

[22] Iandola, F. N. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size / F. N. Iandola, S. Han, M. W. Moskewicz, K.

Ashraf, W. J. Dally, K. Keutzer // arXiv preprint arXiv:1602.07360 - 2016

[23] The Darknet project web site [Electronic resource]: http://pjreddie.com/darknet/tiny-darknet/

[24] Hong, S. PVANet: Lightweight Deep Neural Networks for Real-time Object Detection / S. Hong, B. Roh, K.-H. Kim, Y. Cheon, M. Park // arXiv preprint

arXiv:1608.08021 - 2016

[25] Teerapittayanon, S. BranchyNet: Fast Inference via Early Exiting from Deep Neural Networks / S. Teerapittayanon, B. McDanel, H. T. Kung // ICPR –

2016

[26] Langner, O. Presentation and validation of the Radboud Faces Database / O. Langner, R. Dotsch, G. Bijlstra, D. H. J. Wigboldus, S.T. Hawk, A. van

Knippenberg // Cognition & Emotion - 2010 - 24(8), 1377—1388. DOI: 10.1080/02699930903485076

[27] Levi, G. Emotion Recognition in the Wild via Convolutional Neural Networks and Mapped Binary Patterns / G. Levi, T. Hassner // ICMI '15 Proceedings

of the 2015 ACM on International Conference on Multimodal Interaction – 2015 – p. 503-510

http://pjreddie.com/darknet/tiny-darknet/

