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Abstract 

In this paper, we consider the problem of insufficient runtime and memory-space complexities of contemporary deep convolutional neural 

networks in the problem of image recognition. A survey of recent compression methods and efficient neural networks architectures is 

provided. The experimental study is focused on the visual emotion recognition problem. We compare the computational speed and memory 

consumption during the training and the inference stages of such methods as the weights matrix decomposition, binarization and hashing in the 

visual emotion recognition problem. It is experimentally shown that the most efficient recognition is achieved with the full network 

binarization and matrices decomposition. 
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1. Introduction 

Deep neural networks have recently become everyday tool for such tasks as image recognition [1], [2], speech recognition [1], 

signal processing and text analysis [3], [4]. The neural network study, started in the middle of the last century, made an 

incredible leap in the beginning of the XXI century. The success of deep convolutional neural networks (CNN) has started from 

the paper of Alex Krizhevsky et al. [5], which introduced a novel approach known as the AlexNet architecture, for solving 

visual recognition tasks with the very-large ImageNET dataset. Contemporary CNN architectures [6], [7], [8] are much more 

accurate when compared with original AlexNet. However, their runtime complexity becomes insufficient for application in 

several practical tasks, especially with implementation on mobile platforms. Hence, the performance optimization of deep CNN 

is now considered as one of the most important studies in deep learning. For instance, the work on deep compression [9] 

received the Best Paper Award in very prestigious International Conference on Learning Representation (ICLR’16). 

The CNN optimization starts even before the training or testing the model. The proper choice of hardware can drastically 

improve the training performance. The leader in the deep learning hardware development, NVIDIA, nowadays release the wide 

range of GPUs, different by the form-factor (from tiny development boards to server-side Tesla) and the purpose. However, 

NVIDIA is not alone on this field. Recent year Google has lifted the veil about its Tensor Processing Unit (TPU) – a special 

purpose chip, highly optimized for the tensor (matrix) operations, which is the core routine in neural networks. Such acquisitions 

of Intel as Nervana and Movidius are also not accidental. Nervana introduced not only deeply optimized (and, probably, most 

efficient) framework but also a special-purpose hardware platform, which includes not only optimized chip but also an optimized 

memory and data channels. Movidius, in its turn, provides a small device capable for inferencing deep neural networks in real 

time. Qualcomm announced its SnapDragon 820 – probably the most optimized mobile chip: more than 5 times faster in 

comparison with nearest generations [10]. 

The next step in the performance optimization pipeline is the choice of an appropriate driver. The last trend in this field is the 

lower-precision operations. Using lower precision, e.g., FP16 (2 bytes per float weight) or INT8 (one byte per integer) at the 

training stage can significantly limit the generalization ability of the CNN model. However, using such precision at the inference 

stage saves both memory space and processing time with permissible losses in accuracy. It is important that nowadays there are 

several frameworks, which contain very efficient implementations of the neural network training procedures, e.g. convolutional 

operation, back propagation or stochastic gradient descent. However, none of frameworks is absolutely optimal but every one 

tends to be. Moreover, most of them are general-purpose: they cannot be used on usual mobile device, they inherits the 

limitations of the high-level programming languages in which they are written etc. The progress both in mobile industry and in 

deep learning area marked the emergence of special-purpose frameworks, usually written in C/C++ capable or even intended to 

use on mobile platforms. 

However, the most remarkable research direction in this field is the optimization of algorithms and neural network 

architectures. To compare the various methods, we will use the following goals: 

 Recognition accuracy; 

 GPU total training time; 

 GPU average inference time; 

 Space (memory) complexity of the training and inference procedures. 

In this paper we tried to select the most promising and effective optimization possibilities introduced in the papers from last 

year. We compared author implementations in such acute task as the task of emotion recognition from facial expressions. The 

rest of the paper is organized as follows. In Section 2, we provide a survey of recent literature devoted to the performance 
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improvements of deep neural networks. Section 3 contains an experimental study of performance optimization methods in visual 

emotion recognition. Finally, concluding comments are given in Section 4. 

2. CNN performance optimization methods overview 

There are several types of classification of deep neural networks performance optimization techniques. The methods can 

differ:  

1) by the accuracy loss: lossless, optimization with accuracy loss, optimization-accuracy trade-off); 

2) by the applicability level: architectural, operational (by model / framework modification), computational (exactly while 

training or inference), hardware; 

3) by the limitations: architecture-dependent, and architecture-independent; 

4) by the implementation: runtime implementation, two-step (training -> optimization), sequential (training -> optimization -

> re-training); 

5) by the optimization building block: all blocks, convolutional layers, fully connected layers. 

Perhaps the most fundamental approach and in the same time one of the most efficient and universal is the pruning [9], [11]. It 

is known that in huge amount of weights (connections) in the trained network even with the superior generalization ability the 

contribution to the every neuron (connection) is different. One can alternately remove connections with low weight and, in turn, 

minimal impact to the prediction results, and fine-tuning after every pruning, until achieving the allowable loss in the accuracy. 

It is important to note that the pruning can be applied to any neural network architecture and both before and after every another 

performance optimization technique being the most general approach. 

The distilling the knowledge technique has been initially suggested by Hinton et al. in 2014 [12]. The idea of this approach is 

to train a cumbersome neural model or an ensemble of models with the superior generalization ability (“teacher”) and then 

transfer its predictive power to another, thinner but usually deeper model (“student”) by training the latter to predict the same 

labels as the original one. The main disadvantage of this approach is that the time cost for the optimization is on the same level 

with the training from scratch. Another obvious drawback is that the “student” model is not protected from the mistakes of the 

“teacher” model. In fact, the resulted model is even weaker, because it can tends to unexpected behavior in predictions. 

Moreover, it is not an absolute performance optimization but rather relative to the original teacher network. This technique have 

not become widely used. We can only mention the work of Romero et al. [13] in which some limitations of the initial approach 

were overcome. 

The idea of weights hashing (quantization) [14] is based on that close values of the CNN weights may be considered equal 

(with some precision), which makes it possible to share the same memory unit, and, in turn, drastically reduce the memory costs. 

This approach continues to exploit the idea of lower precision computations. It is exactly the key part of the famous Deep 

Compression method [9], in which a very effective pipeline to optimize the performance and the size of the network is 

described. Unfortunately, it is hard to distill from the paper the real influence of quantization to overall compression quality, 

because it also includes pruning, which can be the most important factor, which allowed the authors to achieve their outstanding 

results in compression of AlexNet architecture. 

The tensor decomposition exploits a very intuitive idea: since that deep neural network contains high order matrices (tensor) 

of weights in each layer, they can be decomposed to the sequence of lower order matrices and vectors. The most popular 

techniques nowadays are CP (CANDECOMP/PARAFAC or Canonical Polyadic Decomposition) [15], Tucker [16] and the most 

recent one – Tensor Train [17], [18]. Such approaches allows to explicitly choose between the amount of memory consumption 

and the accuracy loss by setting the rank of the decomposition. 

The group of binarization methods is based on the observation that it is to enough for weights to be stored in FP32 and 

continues the trend of lower precision computations. These techniques differs from the hashing (quantization) by going deeper 

into performance optimization problem caring out not only about the storage and native (because of lower precision) 

computational efficient. Original idea is followed by the observation that only 1 bit ({0, 1} or {-1, +1}) is enough for weights 

values. Thus, it is possible to store only the sign of values instead of usiage of full FP32 precision. Hence, the arithmetic 

operations can be replaced to much faster logical operations. However, the binarization of the network right after traditional 

training leads to the complete loss of the predictive power of the network. It is important to apply binarization iteratively, epoch-

by-epoch. The procedure of binary weights backpropogation was suggested in [19] to implement this approach. Initial idea to 

binarize only weights outgrew to binarizing the whole network including the input vector. Such an approach [20] leads to the 

complete replacement of the arithmetic operations by XNOR. It has recently been shown [21] that the applied binary mapping 

does not matter, hence, the sign of the variable is usually the simplest and fastest techinque. 

There exist other methods, which optimize a fixed architecture or even already learned model by using several architectural 

tricks. Among these methods, it is important to mention the SqueezeNet [22] and the Tiny Darknet [23], which achieve the 

accuracy compared to the AlexNet [5], but are much smaller and even faster. The PVANet [24] is the architecture for the object 
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detection task with minimal computational cost obtained by adapting and combining recent technical innovations. The 

BranchyNet [25] introduces early exits (classifiers) along the architecture by which the researcher can explicitly balance 

between the inference speed and the accuracy. 

To summarize our brief survey, we present in Table 1 the potential of the most important discussed methods to achieve four 

optimization goals, which we mentioned in introduction. As we can see here, despite of the large number of reviewed papers, 

there are no “silver-bullet” methods, which guarantee the training speedup or memory consumption while training. Most of 

these techniques dedicated on reduction the memory consumption while inference. The pruning can be very common approach, 

e.g. integrated in every modern framework but unfortunately, it is still not common. 

Table 1. Reported results of deep neural networks performance optimization 
 

 Memory reduction 
while training 

Memory reduction 
while inference 

Inference speedup Baseline model Dataset 

Deep Compression [9] no 49 unknown VGG-16 ImageNet 

FitNets [13] no 36 13.36 Maxout CIFAR-10 

HashedNets [14] no 64 unknown same-size MNIST 

CP-Decomposition [15] no 12 4.5 AlexNet ImageNet 

TensorNet [18] unknown 80 unknown simple CIFAR-10 

BinaryNet [19] ~32 (theoretical) ~32 (theoretical) 3.4~23 Maxout CIFAR-10 

Binary-Weight-Network and 
XNOR-Net [20] 

no 67 58 (CPU) ResNet-18 ImageNet 

SqueezeNet [22] unknown 50 1. 
AlexNet ImageNet 

Tiny Darknet [23] unknown 60 2.9 

BranchyNet [25] no no 1.9 ResNet-110 CIFAR-10 

3. Experimental Results 

In this section we will discuss the computational experiments dedicated on performance optimization power of the following 

techniques: HashedNets, BWN, XNOR-Net and CP-decomposition. We have used the author’s code that guarantees us the exact 

implementation and results reproducibility. These methods were evaluated on the real task of emotion recognition from frontal 

and 45° rotated facial images detected in the widely used Radboud Faces Database (RaFD) [26]. The neural networks were 

trained from scratch using identical training samples and learning procedures. Inspired by the well-known facial expression 

recognition CNN [27], we choose VGG-S architecture for the HashedNet, BWN and XNOR-Net as a baseline. All the neural 

network models are freely available at (https://mega.nz/#F!2FVz1SAT!dRdzpfc7UEwHC-jI9jEkIQ). In fact, in [27] authors 

trained an ensemble of neural networks using RGB and different kind LBP (Local Binary Patterns) visual features, but we 

decided to use a single RGB input for simplicity. All the experiments were done on the same machine using Tesla M2090 with 6 

GB of memory under Ubuntu 14.04 with CUDA Toolkit 8.0. 

The testing of the CP-decomposition [15] was performed using the SqueezeNet-1.1 [22] architecture instead of VGG-S. 

Indeed, convolutional layers take a small portion of weights in such architectures with massive fully-connected layers as VGG-

S. Hence, the CP-decomposition is appropriate only for such convolutional architectures without fully connected layers as 

SqueezeNet. The baseline model was trained with Caffe framework using stochastic gradient descent (SGD) with momentum 

0.9, fixed learning rate 0.001 and 32 images in a mini-batch. To compare the neural networks computing efficiency we 

measured: 1) epoch time for single forward pass and subsequent gradient update on GPU for mini-batch in one random sample, 

averaged over 1000 runs; and 2) GPU inference time for single random sample, averaged over 1000 runs. We additionally 

estimated the accuracy loss and the reduction in number of weights. 

 

Fig. 1.  The training/testing error rates for the baseline VGG-S neural network model [27]. 
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Fig. 2.  The training/testing error rates for the HashedNet. 

Original version of the neural network architecture SqueezeNet-1.1 has relatively small number of filters in every 

convolutional layer. Hence, the decomposition of every layer to a lower rank, e.g., 16, tends to the complete loss in accuracy. 

However, when only two last convolutional layers were decomposed with the rank equal to 192, the number of parameters 

reduced at 23.5% with 1.65% of the accuracy loss (from 89.14% to 87.5%). Unfortunately, the inference in the resulted network 

became even 1.5 time slower. It seems that replacement of the single large convolutional layer to four sequentially connected 

small layers causes higher computing complexity in parallel environment. 

 The HashedNets, BWN and XNOR-Net have been trained using RGB images from the same distinct and balanced training / 

testing subsets of the RaFD dataset using the Torch framework. We used SGD with momentum equal to 0.9, learning rate fixed 

at 0.001 and mini-batch of 20 sample. The common baseline model [27] was trained with the same settings. This baseline CNN 

converged to accuracy 97.13% after 100 epochs (Fig. 1). Here and bellow, the testing error rate is in practically all cases less 

than the training error rate. Though such behavior seems to be not obvious, it is reasonable due to the usage of dropout 

regularization layer, which is activated while training phase and deactivated when evaluating on the validation set. Moreover, 

the training error rate is computed as the mean error rate for all mini-batches in one epoch. On the contrary, the testing error rate 

is computed only after each epoch with more optimal weights, which were learned during this epoch. Let us compare this result 

with the performance optimization techniques. 

 We used default compression settings, provided by the authors of the HashedNet technique [14]: compression rate is equal to 

0.125 and the bias hashing was set. The latter option leads to the 81.64% reduction in the weights count. Despite this reduction, 

the training process (Fig. 2) is practically identical to the baseline (Fig. 1): the network converged to 96.31% accuracy after 100 

epochs, which is 0.8% lower when compared to the baseline CNN (Fig. 1). However, the training procedure is 6.7 times slower 

when compared to the baseline. The inference procedure of the HashedNet is also 4.7 times slower. We believe that such 

slowdown can be drastically reduced by replacing the current third-party implementation of hashing, which does not allow us 

saving trained model and measure memory consumption while inference accurately. 

 In next experiments, the BWN and the XNOR-Net are implemented according to the paper [20]. Every conv-bn-activation 

block excluding the first was replaced with the bn-activation-conv block. The dependences of the testing and training error rates 

of the BWN on the epoch number are shown in Fig. 3. Here the BWN converged to the very low error rate 1.43% after forty 

epochs. After that time both training and testing error rate started to grow. We cannot precisely explain this behavior but 

probably, advance learning rate policy can suppress this binarization shortcoming. In fact, all our experiments demonstrate that 

BWN model always converges 2-4 times faster, when compared to the baseline CNN, which can be explained by very strong 

regularization effect introduced by the BWN architecture. We have not observed the inference memory reduction or inference 

speedup. The number of parameters also remains unchanged. 

 

Fig. 3.  The training/testing error rates for the BWN. 



Information Technology and Nanotechnology – 2017 

Image Processing and Geoinformation Technology       653 

 

Fig. 4.  The training/testing error rates for the XNOR-Net. 

 

Fig. 5.  The training/testing error rates for the modified XNOR-Net. 

The XNOR-Net [20] was not converged in our experiments (Fig. 4). The lowest error rate for the testing set was equal to 

41.19%. The only advantage of this method is the slight (2.4%) reduction in the memory consumption while inference, which is 

the benefit of the modified binarized activation layer. It is interesting to note that using only binarized activation layer without 

weights binarization leads to the same parameters reduction and even slight epoch time speedup. What is more important, such 

modification is capable to converge much closer to the accuracy of the baseline model – 88.32% – within the same learning 

procedure (Fig. 5). 

4. Conclusion 

In this paper, we have reviewed several modern approaches to optimize performance of deep neural networks. We emphasized 

the obvious trends in this field, namely, efficient tensor decomposition techniques, lower precision calculations and more 

accurate network binarization. We performed an evaluation of the state-of-the-art techniques in application to visual emotion 

recognition based on facial expressions. Our experimental results are briefly summarized in Table 2. The best value in each 

column is marked by bold. 

The main direction for further research of the will be concentrated on combining of the most successful reviewed techniques. 

It is important to test these methods with other datasets, e.g., in EmotiW challenge. Another research direction is the 

implementation of the complete pipeline to video-based emotion recognition. Finally, it is necessary to examine the possibility 

to implement discussed methods in image recognition on mobile platforms. 

Table 2. Methods evaluation results 
 

  
  

Training time per 
one epoch, ms 

Inference time, ms Model size, MB  Accuracy, % 

VGG-S (baseline) 43.7 33.4 372.2 97.13 
SqueezeNet-1.1 (baseline) 22.94 4.94 2.8 89.14 
SqueezeNet-1.1, CP-Decomposition 22.94 7.74 2.1 87.5 
HashedNets 294.8 158.2 68.3 96.31 
Binary-Weight-Network 83.8 33.5 11.6 98.57 
XNOR-Net 84.3 34.2 11.6 58.81 
XNOR-Net w/o weights activation 43.4 34.1 11.6 88.32 
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