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Abstract 

A tracking system using a bank of adaptive linear filters is proposed. Tracking is carried out by means of multiple target detections. The linear 

filters are designed from multiple views of a target using synthetic discriminant functions. For each view an optimum filter is derived from 

noisy reference image and disjoint background model. An iterative algorithm is used to improve the performance of the synthesized filters. 

The number of filters in the bank can be controlled to guarantee a prescribed tracking accuracy. Computer simulation results show that the 

proposed algorithm is able to precisely track a target. 
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1. Introduction 

Object tracking systems are used for applications such as video surveillance, motion based recognition, and vehicle 

navigation [1]. Tracking requires processing large amounts of data. Two approaches can be taken: to reduce the amount of 

information to be processed and to carry out the processing faster. In the former approach, features are usually computed. A 

feature extractor ideally outputs a small number of features. Matching these features across frames yields the displacement 

information. When the camera rate is high, preprocessing might be done by subtracting the background of a given frame from 

the next one, so that the only information is left in the frame in the area where movement took place. On the other hand, tracking 

can be done on the original image without extracting features, by using appearance-based models [1, 2]. This approach requires 

that either the appearance of a target does not change much along the frame sequence or possible views of the target should be 

known a priori. This results in a high computational cost. Optical processors were used extensively for object detection [3]. They 

perform a fast detection by exploiting the parallelism inherent in optical systems. In the case when tracking requires only 

knowing the position of the object at a given time, the problem may be solved by using a consecutive detection approach [4]. 

The use of optical correlators for fast object detection allows real-time tracking applications. The approach of tracking by 

successive detection has several advantages. Correlation filters can be designed to analytically minimize the probability 

detection errors, thus detection in each scene is optimum with respect to a detection criterion. Additionally, correlation filters can 

be designed to minimize errors in the estimation of the target location. Furthermore, since the target is being detected in each 

scene, there is no problem with situations when the target is being temporarily occluded in the scene because it can be correctly 

detected upon reentering the scene. 

Composite correlation filters were proposed for taking into account multiple views of a target in a single correlation operation 

[5]. An optimum correlation filter can be designed for each view of the target, and filters for multiple views can be combined 

into a single composite filter [6-9]. 

If information about a background where detection will be carried out is available, the discrimination capability (DC) of 

composite filters can be improved using an adaptive approach [10]. It has been shown that the performance of composing filters 

degrades with an increasing number of views. This problem can be solved by using a bank of composite filters when each of 

them is designed with a subset of known views of the target. Filters in the bank are then applied in rapid successive correlations, 

and the maximum value over all correlation output planes is chosen as the estimation of the location of the target. The number of 

filters in the bank is chosen to ensure a required accuracy. In other words, the parameter space of possible distortions is divided 

in such a way to always get an error of the position estimation less than a prescribed value with the minimum number of 

correlations. 

The presentation is organized as follows. In Section 2, design of a correlation filter-based optoelectronic tracking system is 

presented. Computer simulations are given and discussed in Section 3. Finally, our conclusions are summarized in Section 4. 

2. Design of tracking system  

2.1. Problem formulation 

One-dimensional notation is used for simplicity. Let us consider a discrete sequence of images where  is x  denotes an i -th 

image. Let  ;t x   denote a target.   is a vector of parameters that determine the appearance (distortion) of the target, such as 

rotation or scaling. Let ix  and i  denote the position and the appearance of the target in the i -th image, respectively. The 

problem consists of calculating an estimation  ˆix  of the target position in the i -th image. No assumption is made on the relation 

between ix  and 1ix  . Location estimation is performed using a bank of composite filters described by transfer functions

  , 1,2,...j hH j N   where hN  is the number of filters in the bank. Each filter  jH   is composed using training images of 

different views of the target. 
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2.2. Optimum filter for single-frame detection 

In this section we derive an optimum filter for detecting a target in a single frame using a noisy view image. Let  r x  denote a 

reference image showing one view of the target and  w x  denote the shape of the target in  r x .  w x  takes a value of unity 

inside the target area and zero otherwise. The suffix is omitted in this section since only one frame is used for the design of 

optimum filters. So,  s x  is an observed scene represented by a nonoverlapping signal model. The target is opaque and appears 

over a background that is spatially disjoint. Additive noise is also considered to be present the frame. Filters will be designed 

from a signal model in which a reference image is corrupted by additive noise. This can model the case when the reference 

image is captured in controlled environment with low quality equipment and no processing is done on the captured images. The 

model is formally defined as 

      r rr x t x x n x    (1) 

           ,s s ss x t x x b x w x x n x      (2) 

where  b x  denotes a nonoverlapping background in the scene;  rn x  and  sn x  represent additive noises in the reference 

image and the input scene, respectively. rx  and sx  are the coordinates of the target in the images.  b x  is a stationary random 

process with the mean value b . The zero-mean process    0 bb x b x    has the power spectral density  0B  . Additive 

noise is modeled as a zero-mean stationary process. The view parameter   is not present in this section because a filter is 

designed for one particular view given in the reference image; therefore, there is no need to distinguish between different views. 

All random processes and random variables in the model are considered as statistically independent of each other. 

The scene model given in (2) implies that pattern recognition must be performed by matching the input scene with a new 

target formed by the target and the weighted inverse support function  bw x . Let  st x  denote the composite target 

      s bx xt t xw  , (3) 

and  ,s sn x x  denote the nondeterministic part of the scene 

        0,s s s s sn x x b x w x x n x   . (4) 

If the target and its support function are explicitly known, the transfer function of the generalized optimum filter (GOF) is the 

best with respect to the peak-to-output energy (POE)  [7-9]:  
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where  sT   and  W   are the Fourier transforms of  st x  and  w x , respectively,  sN   is the power spectral density of 

 sn x , and   denotes the convolution operation. In (1) the target signal is given implicitly in the reference image. Therefore, it 

is required to approximate the GOF using the information available in the reference image. Let  ŵ x  denote an estimation of 

 w x  that can be obtained from the reference image. An estimation of  sT   can be obtained by applying a linear filter to the 

reference image and then to adding the weighted estimation of the inverse support function, that is 

        ˆ ˆ ,r b rt x x g x r x w x x      (6) 

where  g x  is the impulse response of the linear filter used for image filtering. Under the minimum mean square error (MMSE) 

criterion, the optimum filter for eliminating additive noise is the smoothing Wiener filter. Let  T̂   and  Ŵ   denote the 

Fourier transforms of  t̂ x  and  ŵ x , respectively. Substituting  T̂   and  Ŵ   into (5), an approximation of the optimum 

filter ˆGOF  can be obtained. 

2.3. Composite filter design for distortion invariant recognition 

An optimum filter, with respect to the POE criterion, can be designed for each view of the target available for training. A 

modified synthetic discriminant function (SDF) algorithm is used for designing a composite filter from the impulse responses of 

multiple optimum filters  [6, 10]. Let  ˆ
igof x  denote the inverse Fourier transform of the conjugate of  iGOF  .  iGOF   is 

the optimum filter for the i -th view of the target,  1,2, , vi N   where vN  is the number of views available for training. Let 

 ˆi

st x  denote the estimation given in (6) used in the design of  ˆ
igof x , and  let  1 2, , ,

hN    be hN  subsets taken from the 
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set of training images. Here 
j  denotes the size of the j -th subset. Each subset is used to compose the impulse response of the 

j -th composite filter  jh x .  jh x  is a SDF filter for distortion invariant detection obtained as a linear combination of the 

vectors  ˆ
igof x , ji   and undesired objects to be rejected. The coefficients in the linear combination are chosen to satisfy 

constraints on the filter output.  jh x  is expressed as 

      
1

ˆ
f

j

N

j i i i i

i i

h x a go f x b p x
 

   , (7) 

where ia  and ib  are coefficients, fN  is the number of patterns to be rejected, and  ip x  is the appearance of the i -th patterns. 

Now suppose that all signals are discrete. Let jM  be a matrix with 
j fN   columns, where the columns are the vectors 

 ˆ
igof x  and  ip x , respectively. Let a  denote a column vector formed by 

j  coefficients ia  and fN  coefficients ib . Using 

vector-matrix notation, the vector form of  jh x  is given by 

 j jh M a . (8) 

The equality constraints are given by a column vector u  formed by 
j  ones followed by fN  zeros. Let jT  denote 

j fN   

column matrix formed by the vectors  i

st x  and  ip x . The weighing coefficients are chosen to satisfy the following condition: 

 j j

u T h , (9) 

where 

 denotes conjugate transpose. From (8) and (9) the resulting expression for jh  is given by 

  
1

j j j j


h M T M u . (10) 

When the background image is available, an adaptive algorithm can be used to improve the DC of composite filters [14]. The 

background can be described either stochastically, treated as a realization of a stochastic process, or deterministically in the form 

of a typical background picture. The background used in the adaptive algorithm can also contain false objects or structures 

similar to the target. The DC is used to characterize the ability of a filter to distinguish the target from other objects in the scene 

that may have similar appearance. The DC is defined as  
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where 
B

maxy  is the maximum value in the correlation plane over the area that is occupied by the background, while 
T

maxy  is the 

maximum value in the correlation plane over the area occupied by the target. The background area and the target area are 

complementary. Ideally, the values of the DC should be close to unity, which indicates a good capacity to discriminate the target 

against unwanted objects. Negative values of the DC indicate a failure to detect the target. 

The patterns to be rejected in (7) can be obtained with an iterative algorithm. Initially a filter is composed using only the images 

of the target. At each step a filter is applied to the sample background. A pattern is then synthesized from the background at the 

location of the highest value in the filter output. This pattern is then added to the training set to be rejected, and a new filter is 

created. The new filter ensures zero output at the location of the rejected pattern. In this manner, the value of the DC for the new 

filter is monotonically increasing.  

2.4. Optoelectronic tracking system 

Hybrid optoelectronic systems can be used to implement correlation filter-based processors [3]. Hybrid systems have two basic 

architectures: 4f correlator (4FC) and joint transform correlator (JTC). An advantage of the JTC over the 4FC is that the former 

is less sensitive to misalignments of an optical setup such as scale, horizontal, vertical, and azimuthal differences between the 

input and frequency planes. The input plane (joint image) consists of a scene image alongside the template used for filtering. A 

block diagram of the tracking system is shown in Fig. 1. For pure digital implementation prediction and fragmentation 

segmentation stages are included into the tracking system [11-14]. The bank of filters considers different subsets of views. The 

i-th input image is processed using all filters in the bank in rapid succession. The system output at a fixed time is the plane with 

maximum value of the DC. It is computed as follows: first, the highest peak in each correlation plane is found, then using the 

region of support of the target in each plane the highest sidelobe and the DC are calculated, and finally, the filter output with the 

maximum DC among all filters is taken as the system output. The target trajectory as a function of time is formed from positions 

of the system output peaks. For certain applications, such as aerial surveillance, the bank of filters can also account for changes 

in the background due to different types of terrain. The adaptive algorithm can be used with different backgrounds, 

representative of each type of terrain. The resulting composite filters are then included in the bank of filters.  
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Fig. 1.  Block diagram of the optoelectronic tracking system. 

A simpler implementation can be implemented using a single composite correlation filter. While this presents a performance 

advantage in terms of processing time, location accuracy may be degraded owing to a large number of views included into a 

single filter. Conversely, a larger filter bank provides higher accuracy at the cost of processing time. 

3. Results and discussion 

In this section we analyze the performance of the proposed system for target tracking in a nonoverlapping background. We 

consider location accuracy as the performance criterion. Location accuracy can be characterized by the location errors (LE)  [21] 

defined as 

 

    
2 2

ˆ ˆLE T T T Tx x y y   
,
 (12) 

where  ,T Tx y  and  ˆ ˆ,T Tx y  are the coordinates of the target exact position and the position estimation, respectively, when 

using the coordinates of the correlation peak as the location of the target. Using filters derived from the model in (1) and (2) the 

estimated location of the target will not be at the exact position of the target in the input scene; instead, it will be displaced by 

the location of the target in the reference image. The size of all images used in the experiments is 256 256  pixels. A sample 

noisy reference image is shown in Fig. 2 (a); the target is a butterfly at the center of the reference image. The target has size 

28 44  pixels, and has a mean value of 100 with a standard deviation of 25. Image intensities are in the range  0,255 . A test 

input scene is shown in Fig. 2(b). 

      

(a)                                                   (b) 

Fig. 2.  Images used in experiments. (a) Sample reference image, (b) sample scene. 

Image sequences are generated by the following algorithm: 

Generate a random initial position sx , rotation  , and scale   for the target. 

Generate a random direction vector in polar form  ,v   . 

Generate a random sequence i  with the correlation coefficient 0.95 used as perturbation for  . 

Generate uncorrelated zero-mean random sequences i , i , and i  used as perturbations for  , ,  , respectively. 

For each frame i : 

Rotate the target on   degrees, scale it by a factor of  , and place it at the location sx  in the background. 

Add white noise to the scene. 

Update the target location s sx x v  . 

Update i     , i     , i    , and i   . 

The target is allowed to rotate freely, while its scale is kept in the range  0.8,1.2 . The training images contain distorted versions 

of the target scaled by factors 0.9, 1.0, 1.1 and rotated by -9, -3, 3, and 9 degrees. A background used in training with the 

adaptive algorithm. Note that the background is not the same with that of used in tracking experiments. One hundred image 

sequences generated each with 100 frames. The composite filters are designed using noisy reference images corrupted by 
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additive noise with a standard deviation of 10. Two system variants are tested. Let us A denote a system variant that uses one 

composite filter including all views available for training. Let us B4, B6, and B9 denote systems that use banks of 4, 6, and 9 

composite filters, respectively. The performance of the filters is shown in Fig. 3 

 
Fig. 3.  Location errors for each frame in image sequence for system using one, four, six, and nine composite filters. 

The plot shows the location errors per frame averaged over all the generated sequences. It can be seen that the system A is able 

to track the position of the target with an average error of 4.5 pixels. It can also be seen how the errors decrease when the 

number of filters in the bank is increased. For the test images, nine composite filters are required to achieve the location 

accuracy of one pixel or less. 

4. Conclusion 

In this paper we proposed an optoelectronic system for a real-time object tracking. Correlation filters for locating a target in 

nonoverlapping background noise were used for detecting the target in each frame in the image sequence. A bank of filters 

adapted to different possible views and typical backgrounds was proposed to achieve accurate tracking. Optimum filters were 

designed from training images that do not need to be manually processed. With the help of computer simulations, we showed 

that the proposed system is able to estimate the target’s trajectory through the image sequence. Two variants of the proposed 

system showed that there exists a trade-off between simplicity (processing time) and tracking accuracy. It was shown that 

increasing the number of correlations per frame leads to accurate estimation of the target trajectory.  
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