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DETECTION OF ROUGE DRONES BASED ON RADIO FREQUENCY 

CLASSIFICATION 
 
By Akash V. Gosai* and Sachin Shetty  

 

I. INTRODUCTION  

A. Motivation of this research 

The Federal Aviation Administration expects the number of Unmanned Aerial Vehicles in the 

US to be as many as 30,000 (HGH-Infrared). That number continues to grow in parallel to the 

incidents involving UAVs operating in critical locations. As the costs of obtaining drones is 

driven down, this research aimed to develop the ability to test and enhance previous drone 

detection research. There is a need to enhance a current Radio Frequency Signal Classification 

(RF-Class) toolbox that can detect, monitor, and classify wireless signals (Abdulkabir, 2019). 

This toolbox’s ability to accurately classify signals will provide insights into device 

fingerprinting. The current classification of RF signals from the drone is achieved by 

leveraging raw signal information of a specific band. The modulation scheme that was found 

prevailing in commercial drones is Orthogonal Frequency Division Multiplexing (OFDM). 

OFDM can be demodulated to provide information about a raw drone signal. This extracted 

data is coupled with a machine learning algorithm that is used to classify the signal. Testing of 

this research is needed to identify better equipment and an optimized test scenario that captures 

quality data that can be used to train a machine learning algorithm.  

B. Design of the research 

This project is aimed at three key changes consisting of improvement of current drone energy 

detection algorithm, antenna/SDR improvement, and testing in various environments. The 
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current energy detection algorithm did not account for interference or adaptable noise 

calculations based on the environment. The energy detection algorithm produced a binary result 

of “1” if a signal was above a pre-determined threshold, meaning a drone signal was present. 

Conversely, a binary value of “0” would result in a non-drone or no signal present, a calculation 

below the threshold value. The improved algorithm calculates a simulated noise floor by 

locating the minimum value of a 2048-value FFT (Fast Fourier Transform). This improved the 

accuracy of data collection by computing a real number instead of a binary result. Hardware 

changes evaluated the performance of multiple Software Defined Radios (SDRs). Additionally, 

the evaluation of antennas with different gains allowed for the range of the system to be 

improved. For this, both Omnidirectional and Directional antennas were used in comparison. 

The testing environments used for data collection varied drone-to-receiver distances from 0 to 

1000m with and without minor environmental obstructions. Also, the testing scenario included 

cases for the drone to be tested under load conditions transmitting a video signal to the remote. 

C. Thesis statement 

The outcomes of this project specifically focused on improvement of the detection algorithm 

using machine learning, hardware changes to variety of antennas, and application to various 

testing environments.  

 

II. OVERVIEW 

A. Improvement of Energy Detection Algorithm  

The classification of drones was done by using K-Nearest Neighbor (KNN) machine learning 

algorithm. This algorithm targets the entire raw dataset and does not require constant learning. 

KNN is very useful because it allows us to have raw data sets on multiple drones, and it does 

not restrict the user to only training data for one drone. Once signal energy is captured from 

the drone using GNU Radio, it can be piped to the machine learning algorithm. KNN searches 

2

OUR Journal: ODU Undergraduate Research Journal, Vol. 7 [2020], Art. 9

https://digitalcommons.odu.edu/ourj/vol7/iss1/9
DOI: 10.25778/jvdz-m658



 
 

through the entire dataset for K most similar instances, the neighbor, and summarizes the output 

variable for those K instances (Brownlee, 2019). To determine which number is closest, a 

distance is calculated based on the attributes that are classified. For this, the Euclidean Distance 

(Equation 1) was calculated to approximate the nearest-neighbor search in high dimensional 

space. Equation 1 possess the qualities to compare two numbers which are more likely to be 

the same, or when they are farther away their values are less likely to be the same (Yu Hen Hu, 

2014). For classification of drone signal, the output can be calculated as the class with the 

highest frequency from the reoccurring K instances. 

 

 𝑑(𝑖, 𝑗) =  √(𝑋𝑖1 − 𝑋𝑗1)2 + (𝑋𝑖2 − 𝑋𝑗2)
2

+ ⋯ + (𝑋𝑖𝑝 − 𝑋𝑗)
2
 (Equation 1) 

 

The accuracy of the size of the samples will be discussed in the Results. The sample sizes 

allowed us to include outlier cases in a non-optimized algorithm. The overall process of 

classification can be split into three steps: data collection, training and prediction. The data 

collection consists of collecting signal data within the specific environment where the 

classification will be done. Also, this includes the collection of surrounding noise which we 

expect when the drone is on. This data will used in the scenario of the drone being turned off 

as a baseline of ‘no drone’ classification. The training steps consists of turning on the drone 

and capturing the transmitted energy using GNU Radio. This data will be fed into the KNN 

algorithm, where the samples will be selected for prediction. The prediction phase is running 

GNU Radio program with the output model of the training phase to predict new data point 

calculations. 

B. Improvement to Hardware 

The original design consisted of the Hack-RF One, type of SDR, with a connected omni-

directional antenna for capturing signals. This design was created in the initial research of this 

system and was to be optimized to run with the Ettus Research’s Software Defined Radio’s. 
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For this, the evaluation of both the Ettus B205 Mini and B210 were tested with the system. The 

USRP™ B205mini-i delivers a 1×2 (1 TX and 1 RX) SDR/cognitive radio in the size of a 

business card [source]. However, the B210 allows for a 2x2 (2 TX and 2 RX) to operate in a 

full duplex mode, vice the 1x2 half-duplex of the B205 Mini. Table 1 below shows the 

specifications comparison between all three SDRs. The design chosen is highlighted in bold. 

Both SDRs have similar coverage but the capabilities of B210 differs due to the dual channel 

ability for receiving signals. For future usage, the multiple input multiple output capabilities 

will allow for more data flows to simultaneously occur with an additional connected receiver 

antenna.  

Table 1: SDR Comparison 

 

SDR Size Spectrum Coverage Performance 

Hack RF One Half Duplex 1Mhz–6Ghz Up to 20 MS/s 

B205 Mini Half Duplex 70 Mhz-6Ghz Up to 61.44 MS/s 

B210 Full Duplex 70 Mhz-6Ghz Up to 61.44 MS/s 

 

 

The original antenna (VERT 2450) is an omni-directional antenna which is great for indoor use 

since it can provide evenly distributed coverage. Omni-directional antennas also work well 

when the source location is unknown, but at a low gain the signal is less amplified. Since most 

instances of this research is applied to outdoors scenarios, directional antenna was needed. The 

directional antenna that provided the best results up to 1 Km was the Tupavco DB541. Table 2 

summarizes the specifications of both antennas. The DB541 antenna was successful when it 

was pointed within 30 degrees on its axis. The results of these antenna comparisons were 

DB541, and will be shown in section III.  
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Table 2: Antenna Comparison 

 

Antenna Coverage Gain Polarity 

VERT2450 2.4Ghz and 5Ghz 3dBi Vertically (Omni-directional) 

DB541 2.4Ghz and 5Ghz 9dBi Vertically (Directional) 

 

C. Various Testing Environments 

The need for accurate testing conditions that match the war-fighter scenarios is very important. 

This research accounted for random signals and obstacles in indoors and outdoors. The testing 

mainly focused on training dataset accuracy, noise and external signal interference, shadowing, 

the downlink distance and flying under load. Data was split between 80% of training and 20% 

of validation from the raw captured signal energies. The training set uses the k-fold cross 

validation, computes a model accuracy then fits the data against the 20%. This process is 

needed to validate the model which will be ran in the testing environment for classification. 

Most of the testing occurred outside to simulate possible real-world scenarios. There were three 

types of testing: pointing the antenna directly at the drone with no obstruction, minimal 

obstruction, and pointing the antenna about 30 degrees away from the drone. For validation for 

the first scenario, the drone was not turned on with the model running to check if there was any 

drone signal or not. Once it was confirmed there was no drone, it would be turned on and flown 

at different heights. Data would be collected for about 25 thousand points for each distance to 

keep it consistent. The obstruction scenario was tested by flying the drone over and behind a 

building with the antenna pointed in the relative direction as the drone. For unknown drone 

location, testing occurred by pointing the antenna away from the drone by 30 degrees at various 

heights. The accuracy of the various distances will be discussed in results.  

III. RESULTS 

The results consist of testing the Mavic 2 Drone in three different scenarios. The three testing 

scenarios consist of testing in a clear line of sight, shadowing/fading and no line of sight. The 
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line of sight in question is the direction of the antenna pointed towards the drone. Most of the 

testing occurred in ideal conditions with minimal interference. Both of the tables below use the 

DB541 directional antenna. Table 3 below shows detection rate up to 150 meters based on 

random 5000 samples from a pool of 25000 samples for a clear line of sight. The detection rate 

was derived by dividing the number of true samples by the number of samples multiplied by a 

100 to represent a percentage.  

Table 3: Mavic 2 Results (Clear Line of Sight) 

Number of Samples = 5000 

Distance (m) Detection Rate (%) True  False  

5 99.98 4999 1 

25 99.84 4992 8 

50 99.34 4967 33 

100 99.46 4963 37 

125 98.82 4941 59 

150 95.34 4767 233 

 

 Table 4 consists of the data of obstructed line of sight. The detection rate of drone or 

no drone had the accuracy of 80 percent with average drone distance was 150m away. As 

predicted, the performance decreases as the obstruction and interferences increase. Though 

the detection rate was improved from the existing setup.  

Table 4: Mavic 2 Results (Obstructed Line of Sight) 

Number of Samples = 5000 

Distance (m) Detection Rate (%) True  False  

Shadowing/Fading 88.57 4428 572 

Unknown Location 81.22 4034 966 
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IV. CONCLUSION  

This research focused on improvement of the algorithm, hardware changes and testing. The 

three objectives were met by improving the algorithm, applying a directional antenna, and 

testing in many different real-world situations. The hardware changes also consisted of a 

MIMO SDR and directional antenna of 9dBi Gain. The additional testing allowed for having 

an accurate model to classify a drone up to 1Km.   
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