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ABSTRACT 

 

STRUCTURAL CHARACTERIZATION OF ORGANIC MATTER IN OIL 

SHALES USING MULTIPLE NUCLEAR MAGNETIC RESONANCE 

SPECTROSCOPIC TECHNIQUES 

 

Wenying Chu 

Old Dominion University, 2020 

Director: Dr. Jingdong Mao 

 
Oil shale is a promising source of hydrocarbon fuel that is distributed throughout the world. 

The petroleum generating potential of oil shale is related to the molecular structure of the organic 

matter in source rock. The major fraction of organic matter of oil shale is termed kerogen, and due 

to its insolubility in  organic solvents, 13C solid-state  nuclear magnetic resonance (NMR) 

spectroscopy is one of the best ways to directly measure the insoluble organic matter without 

changing its chemical structures. This dissertation investigated oil shale samples using advanced 

solid-state 13C NMR spectroscopy techniques and high resolution magic angle spinning (HRMAS) 

NMR spectroscopy, and studied bitumen samples extracted from oil shales using liquid-state NMR 

spectroscopy. Quantitative 13C solid-state NMR spectra were generated for 22 shale samples and 

their percentages of different carbon moieties were integrated and aromaticities were calculated. 

Aromaticity was considered as a supplemental indicator of the thermal maturity and hydrocarbon 

generating potential of the oil shale. By investigating quantitative structural characteristics of three 

shales with extreme heteroatom contents, we found out that he high oxygen content in organic 

matter in the Kukersite shale sample indicated more non-protonated aromatic carbons, which were 

substituted with oxygen. An improved structural model of Kukersite kerogen was constructed 

based on one from literature and refined using our spectral data. The high organic sulfur content 

in the organic matter present in the Jordanian Ghareb shale sample was mostly contributed to the 



 
 

high aromaticity of the organic matter in the sample. The Glen Davis shale sample contained 

organic matter with a relatively low total heteroatom content and produced comparatively simpler 

spectra due to the presence of few oxygen-containing functional groups. A comparative study 

showed that Kimmeridge and Phosphoria formation had similar solid-state 13C NMR spectra from 

shale, kerogen, and extracted rock samples, and they exhibited almost the same signals in liquid-

state 2D 1H-13C HSQC spectra from bitumen samples, indicating their similar structural 

characteristics, in spite of their differences in geologic age and depositional location. By examining 

shales samples with advanced solid-state 13C NMR, quantitative data can be obtained and could 

be used for constructing more reliable kerogen structural models and for predicting petroleum 

generating potential. 
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CHAPTER I 

INTRODUCTION 

 

ORIGINS AND TYPES OF OIL SHALES 

Oil shales are diverse fine-grained sedimentary rocks containing refractory organic 

material that generates commercial quantities of synthetic crude oil and combustible gas upon 

pyrolysis at high temperatures (>350 °C), which can then be refined into liquid hydrocarbon fuels 

(Birdwell, 2017; Dyni, 2003; Yen and Chilingarian, 1976). The inorganic fraction of a shale is the 

mineral composition of the formation while the organic fraction contains mainly a solid material, 

termed kerogen, which is insoluble in organic solvents, and soluble bitumen (Dyni, 2003; Tissot 

and Vandenbroucke, 1983). Oil shales originate from the deposition of fine-grained mineral debris 

and organic degradation products derived from the breakdown of biota which went through early 

development of anaerobic conditions under sufficient overburden pressure and temperature (Yen 

and Chilingarian, 1976). Organic matter in oil shales is a mixture from remains of algae, spores, 

pollen, plant cuticle, corky fragments of herbaceous and woody plants, plant resins, plant waxes, 

and other cellular remains of lacustrine, marine, and land plants which are mainly composed of 

carbon, hydrogen, oxygen, nitrogen, and sulfur (Speight, 2012). Oil shale could be deposited in a 

wide variety of environments from fresh to saline water, including large lake basins, shallow seas 

on continental platform and shelves, and small lakes, bogs, and lagoons associated with coal-

forming swamps (Speight, 2012; Yen and Chilingarian, 1976). 

Oil shales are diverse in genesis, lithologic property, and organic composition so that there 

are more than one way to classify oil shales. Oil shales can be categorized based on the mineral 

content into carbonate-rich oil shales, siliceous oil shales, and cannel oil shales. More commonly, 
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oil shales are classified into terrestrial, marine, and lacustrine origin on the basis of the depositional 

environment of the deposit, the petrographic character of the organic matter, and the precursor 

organisms from which the organic matter was derived (Dyni, 2003; Hutton, 1987). Terrestrial oil 

shales are rich in oil-generating lipid-rich organic matter originated from terrestrial vascular plants 

commonly found in coal-forming swamps and bogs, such as the brown to black oil shale called 

cannel coal. Lacustrine oil shales contain lipid-rich organic matter derived from algae that lived in 

freshwater, brackish, or saline lakes, such as lamosite and torbanite. Marine oil shales include 

lipid-rich organic matter derived from marine algae, acritarchs, and marine dinoflagellates, such 

as kukersite, tasmanite, and marinite (Dyni, 2003; Speight, 2012).  

SHALE DEPOSIT DISTRIBUTION 

As a result of the fast depletion of easily obtained petroleum resources, many coutries have 

been focusing on searching for alternative energy sources. As one of the promising sources of 

hydrocarbon fuel, shale formations are widely distributed throughout the world (Figure 1) with 

know deposits including Australia, Brazil, Canada, China, Estonia, Israel, Jordan, Morocco, Russia, 

Scotland, Spain, Sweden, Syria, Thailand, Turkey, and United States, yet very limited deposits 

have been thoroughly studied and explored. The total amount of potential shale oil reserved in oil 

shales world-wide is abount 475 billion tons, which is about 4.4 times larger than the current 

recoverable reserves of crude oil (Pan et al., 2012),  

The oil shale deposits in Australia are located in the eastern side of the country. There are 

torbanite deposits of New South Wales and Queensland, marine tasmanite deposits of Permian age 

in Tasmania, marine Toolebuc Formation of Early Cretaceous age in Queensland and adjacent 

States, and lamosite deposits in eastern Queensland which were mined for shale oil from late 1800s 

to early 1900s or still have the potential for development (Crisp et al., 1987; Dyni, 2003).  
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In Brazil, at least 9 shale deposits have been reported, and the most famous two are the 

lacustrine oil shale of Tertiary age in the Paraiba Valley and the oil shale of the Permian Irati 

Formation (Padula, 1969). Between those two, the Irati Formation has a great potential for 

economic development due to its accessibility, grade, and widespread distribution. A few oil-shale 

retort plants were established and have been producing shale oil, liquefied petroleum gas, methane, 

and sulfur (Dyni, 2003). 

As many as 19 oil-shale deposits have been identified in Canada, including the Devonian 

Kettle Point Formation and the Ordovician Collingwood Shale of southern Ontario, and the oil 

shales of the New Brunswick of Mississippian age, which have the greatest potential for 

development. The lacustrine Albert Formation deposits in southern New Brunswick have 

substantial amount of shale oil yield and a lot of products are exported to other countries such as 

the U.S. and England (Dyni, 2003; Macauley et al., 1984). 

Oil shale deposits are widespread in China, the deposit in Fushun, Liaoning Province of 

Eocene age is in northeastern China and the deposit in Maoming, Guangdong Province of Tertiary 

age is located in southeastern China (Dyni, 2003). The two oil shale deposits were mined and 

processed in refineries until the Daqing oil field was found to produce cheaper crude oil. Up to 

2002, Fushun shale oil plant was still making profits due to relatively low mining cost and was 

planning on extending to larger retorts and production capacity. Some other coal mining 

companies were developing the oil shale business as well (Qian et al., 2003). 

In Estonia, there are the most famous kukersite oil shale deposit of Ordovician age in 

northern Estonia covering more than 5% of Estonian mainland, and the marine Dictyonema 

argillite as uranium shale (Dyni, 2003). Almost 1 billion tons kukersite oil shale has been extracted 

since 1916 for fuel electric power plants, petrochemicals production, and cement manufacture 
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(Dyni, 2003; Reinsalu and Valgma, 2003). The Dictyoneme oil shale was mainly mined for the 

production of uranium between 1949 and 1952, and total 240500 tons of ore with an average 

uranium content of 0.036% was extracted (Reinsalu and Valgma, 2003). 

Jordan has large oil shale deposits distributed all over the country covering more than 60% 

of Jordan’s territory (Bsieso, 2003), and the eight important deposits are located in west-central 

Jordan close to the east of the Dead Sea (Dyni, 2003).  Jordanian oil shale belongs to the upper 

Cretaceous and lower Tertiary ages and is estimated to be more than 50 billion tons which is 

capable of yielding 50 billion barrels of crude oil (Bsieso, 2003). Two oil shale deposits, El-Lajjun 

and Sultani have the potential for industrial utilization due to their good quality and quantity and 

the low mining and infrastructure costs, and the Government of Jordan has invited proposals to 

develop the source economically and cleanly (Bsieso, 2003). 

In Russia, there is a long history of utilizing shales for direct burning, gas production, oil 

production, and agriculture (Russell, 1990). More than 100 deposits of oil shale have been 

identified, and the deposits of economic and commercial importance that have been exploited are 

in the Northwestern and Baltic states (Dyni, 2003; Russell, 1990). The distribution and origins of 

shale deposition are associated with ancient platform areas formed at various times including 

Cambrian age, late Devonian age, late Carboniferous-early Permian age, lower Triassic age, 

Cenozoic age, and the Quarternary age (Russell, 1990). The oil shale industry supplied shale as 

fuel for industrial boilers and railroad locomotives, and enhanced automation and mechanization 

increased the rate of oil shale processing, but this overall development of the oil shale industry 

increased steadily until the 1975-1980 when some problems arose such as loss of a large 

percentage of the shale in place during mining operations, continuing technological lag in the 

production of shale-based fuel and chemicals, and high pollution levels (Russell, 1990).  
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A famous oil shale deposit in Sweden is the Alum shale, a black organic-rich marinite of 

Cambrian and lower Ordovician age. It represents slow deposition in shallow, near-anoxic water 

with little disturbance. The Alum shale has a high content of metals such as uranium, vanadium, 

nickel, and molybdenum. More than 62 tons of uranium were produced between 1950 and 1961 

and about 50 tons of uranium per year between 1965 and 1969. The oil yields of the Alum shale 

varies from 0 to 6 percent by Fischer assay due to different geothermal histories (Dyni, 2003). 

The oil shale deposits in the United States occur from the late Tertiary to the Ordovician 

and Precambrian period located in various states including Alaska, Montana, Michigan, Wisconsin, 

Nevada, Kansas, etc (Yen and Chilingarian, 1976). The most important deposits in United States 

are the Eocene Green River Formation in the tri-state area of northwestern Colorado, southwestern 

Wyoming, and northeastern Utah, and the Devonian-Mississippian black shales in the central and 

eastern United State (Dyni, 2003). The Green River Formation is rich in organic material and was 

estimated to be able to produce 80 billion barrels of shale oil (Yen and Chilingarian, 1976), and 

the estimation went up to more than 1 trillion barrels with the better understanding of the shale 

formation (Dyni, 2003). The Green River shale deposit also contains large resources of sodium 

carbonate minerals which can be used in the manufacture of bottle and flat glass, baking soda, soap 

and detergents, waste treatment chemicals, and many other industrial chemicals (Dyni, 2003). The 

Devonian-Mississippian black shales have a higher aromatic to aliphatic ration than that of Green 

River Formation, and the oil yield is estimated to be only half as much as the Green River oil shale, 

but hydroretorting can increase the oil yield of the black shale compared to Fischer assay (Dyni, 

2003). The black shales were exploited for shale gas to use in village heating, cooking, and 

illumination (Roen and Kepferle, 1993).
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Figure 1. Map of basins with assessed shale oil and shale gas formations world-wide, as of May 2013, adapted from (Kuuskraa et al., 

2013).
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GRADE OF OIL SHALES     

The grade of oil shales has been determined and expressed by different methods. Core 

drilling and analyses (such as Fischer assay) provide direct measurement of oil yields in oil shales. 

Geophysical well-logging methods use a probe that is lowered in the well at the end of an insulated 

cable, and physical measurements are performed and characteristic data are recorded in graphical 

form as functions of depth (Yen and Chilingarian, 1976). Geophysical well-logging methods 

provide a detailed estimation of the entire length of drilled hole on the exploration, evaluation, and 

production of oil and gas in a faster, more economical way, but core analysis data are always 

important at least in the first test hole to provide empirical correlation between the measured oil 

yield and the response of the geophysical well-logging (Yen and Chilingarian, 1976). 

Traditionally, the grade of an oil shale can be determined by measuring the yield of oil of 

a shale sample in a laboratory retort. In industrial production, a shale deposit which yields 25 

gallons of oil per ton of oil shale is considered as a high-yield deposit (Speight, 2012). In laboratory, 

a common method for determining the oil potential of an oil shale is the “modified Fischer assay” 

which was standardized as the American Society for Testing and Materials Method D-3904-80 

(Miknis, 1992). In the method, a 100 g sample of -8 mesh (2.38 mm) sieved oil shale is heated to 

500 ºC at a rate of 12 ºC per minute and held at this temperature for 40 minutes. The hydrocarbon 

vapors that distill from the shale are condensed to form shale oil and is recorded as weight 

percentage or gallons of oil per ton of shale (Dyni, 2003; Miknis, 1992). The Fischer method does 

not determine the total available energy in an oil shale or necessarily indicate the maximum amount 

of oil that can be produced by the given oil shale (Dyni, 2003). It does not provide any information 

about the quantity or quality of kerogen in the shale, and one cannot tell whether the amount or 
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the structure of kerogen causes the different shale oil yields between two shales determined by the 

Fischer assay (Miknis, 1992). 

Rock-Eval pyrolysis is a temperature programmed pyrolysis to rapidly evaluate the 

petroleum-generative potential and thermal maturity of source rocks. The method heats a 70 mg 

rock sample in an inert atmosphere (helium or nitrogen) through several temperature stages in 

order to quantitatively and selectively determine the free hydrocarbons present in the sample (S1 

peak) and the hydrocarbon- and oxygen-containing compounds that are volatilized during the 

cracking of kerogen (S2 peak). An illustration of Rock-Eval pyrolysis trace is shown in Figure 2. 

The CO2 generated is recorded as the S3 peak and residual carbon is recorded as S4 peak (Behar et 

al., 2001; Speight, 2012). Tmax is the temperature at which S2 peak reaches the maximum, and it is 

an indication of the nature and maturity of the kerogen. The Rock-Eval parameters describe the 

quality of organic matter in the source rocks for exploration purpose (Behar et al., 2001). 

The oil yields of shales upon pyrolysis depend on multiple factors including the natural 

evolution of the rock (the geological history, especially depth of burial), the abundance of kerogen 

in the shale, and the structural characteristics of kerogen (Maciel et al., 1978; Maciel et al., 1979; 

Tissot and Welte, 1984). The molecular structure of kerogen is highly related to the  source 

organism and the depositional environment (Longbottom et al., 2016). It would be very useful to 

develop a reliable method to evaluate the grade of oil shales that could predict the total heat energy, 

the quantity and quality of the oil and gas that could be generated, and the amount of char in the 

residue. The price of crude oil is related to its organic acid content, distillation characteristics, 

sulfur content, viscosity, refraction, and density (Stratiev et al., 2010),  which is usually reflected 

as American Petroleum Institute gravity (API gravity, a measure of how heavy or light a petroleum 

liquid is compared to water). Since the composition and quality of shale oil, to some extent, is a 
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direct result of the molecular structure of the sedimentary organic matter (Williams and Douglas, 

1985), understanding structural characteristics of the organic matter in oil shale is critical in 

predicting the quality of the crude oil.  

 

 

 

Figure 2. An illustration of Rock-Eval pyrolysis trace, adapted from (Guan et al., 2017). 
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SHALE OIL PRODUCTION 

A major requirement for utilizing oil shale as a source of liquid and gaseous fuels is the 

thermal decomposition process termed retorting (Yen and Chilingarian, 1976). The heating process 

is necessary to convert the organic matter embedded in shales to liquid hydrocarbons and 

combustible gases, either through a low-temperature retorting (semi-coking) by heating the oil 

shale up to about 500 °C or a high-temperature retorting (coking) by heating up the oil shale up to 

1000-1200 °C (Speight, 2012).  

The retorting process can occur either aboveground or underground. The aboveground 

retorting is also called ex situ production. The general steps shown, in Figure 3, include: (1) surface 

mining the target deposit by blasting or excavators; (2) preparing ore by crushing and screening it 

into sizes suitable for transportation and retorting; (3) transporting mined shale to facilities for 

retorting; (4) pyrolysis of oil shale to get crude products; (5) upgrading and refining the raw 

products to marketable products; and (6) spent shale disposal and possible reclamation of mined 

area (Bartis et al., 2005; Speight, 2012; Väli et al., 2008). Some alternative mining methods are 

preferred depending on the depth of the target deposit. Among those methods, open-pit mining is 

suitable for the deposit where the overburden is less than 150 feet thick and the ratio of overburden 

thickness to deposit thickness ratio is less than 1:1; and room and pillar mining is viable when the 

overburden is too thick for surface mining. Both mining methods have been proven at commercial 

scale for oil shale production (Speight, 2012). Many aboveground retorting systems have been 

tested and a few succeeded in large scale production, including gas combustion retorting system, 

Union Oil Company retorting system, TOSCO II process system (Yen and Chilingarian, 1976), 

Fushun retorting system in China, Kiviter lump shale retorting system in Estonia, Petrosix lump 

shale retorting system in Brazil, Galoter particulate shale retorting system in Estonia, ATP 
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retorting system in Canada, and Enefit-280 retorting system upgraded from Galoter technology  

(Pan et al., 2012).  

Aboveground retorting has advantages of high organic matter recovering efficiency, well-

controlled operation, simple product recovery, and repeated usage of operational facilities. 

Aboveground retorting developed during 1970s-1980s, and significant problems arose during the 

development (Bartis et al., 2005). The disadvantages of aboveground retorting are obvious, such 

as high cost due to mining, ore preparation and transportation, limitation to rich-shale resources 

due to the high cost, spent shale disposal and its potential ground water pollution, high cost to 

reclaim and revegetate the mined area, and high capital investment for large-scale facilities 

(Speight, 2012). 

 

 

Figure 3. Major steps in aboveground retorting process, adapted from (Bartis et al., 2005). 

 

In contrast to aboveground retorting, underground or in situ retorting involves heating the 

shale in situ (underground) by using underground combustion, introducing heated gases or liquids 

to the shale formation, or using electrical heating elements (Han et al., 2014). The liquids generated 

will then be collected and transported to an upgrading or refining facility (Bartis et al., 2005). In 
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situ retorting may be applicable to deposits that contain lower grade shale with yield down to 10 

gallons of shale oil per ton of shale (Speight, 2012), as well as deposits with different thickness 

and amounts of overburden that are not suitable for surface mining economically (Yen and 

Chilingarian, 1976). Two approaches have been tested: (1) true in situ method which involves 

dewatering, fracturing, retorting by injection of hot fluid or ignition of a portion of the bed, and 

recovery of the oil and gas through wells (Congress, 1980); and (2) modified in situ method which 

consists of digging a tunnel to the bottom of the shale bed, mining enough shale to create a room, 

drilling a chimney-shaped underground retort filled with broken shale, injecting air and burning 

fuel to ignite the rubble pile, pyrolysis of lower layers with the heat generated, and pumping the 

products to the surface (Congress, 1980). An example of in situ retorting process in shown in 

Figure 4.  

 The advantages of underground retorting include avoiding large amount of shale mining 

and transporting, ability to generate products from deep deposits of shale formation, eliminating 

the necessity of disposing of spent shale waste, possibility to utilize low-grade shale formation, 

and lower cost due to minimized mining, transportation, and crushing (Speight, 2012). The 

disadvantages are also evident which include difficulty in controlling subsurface combustion, 

possibility of low permeability and porosity in the shale formation, low efficiency of recovery, 

high power consumption, and high risk of aquifer contamination (Fang et al., 2008). 

Overall yields from underground retorting is lower than those form aboveground retorting. 

Aboveground retorting tends to yield gases with better quality, and underground retorting tends to 

yield liquid hydrocarbon fractions with better quality possibly due to relatively slower and more 

even heating during in situ retorting process (Speight, 2012). 
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Some advanced retorting and upgrading processes are being developed and tested in lab-

scale. The objectives are to minimize the regressive thermal and chemical reactions that form coke 

and gases, and to maximize the yield of liquid products. The approaches being researched include 

lowering heating temperatures, increasing heating rates, shortening residence time durations, and 

introducing hydrogen transfer/donor agents or solvents (Johnson et al., 2004). Many aspects still 

need to be improved for commercial-scale production. 

 

Figure 4. An example of underground (in situ) retorting process, adapted from (Bartis et al., 

2005). 

 

The shale oil produced from retorting varies in properties and composition and are usually 

very unstable. The unstable raw liquid product can cause pipelines clogging, machinery and engine 

malfunction, increased problem and cost, and overall loss in profits, thus needs to be upgraded to 

a stable synthetic crude oil before being transported with pipelines and used as conventional 
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refinery feedstock to produce marketable fuel products (Fathoni and Batts, 1992). The approaches 

to upgrade raw shale oil include: dewatering and desalting (Speight, 2012); hydrotreatment to 

decompose sulfur and nitrogen compounds to nonreactive hydrocarbons, H2S, and NH3, as well as 

reduce olefin and diolefin contents to eliminate possible gum formation; strong caustic scrubbing 

to remove sediment precursors; and modification of chemical and physical characteristics such as 

adding stabilizer, antioxidants, and metal deactivators (Fathoni and Batts, 1992).  

The upgraded shale oil will be transported to a refinery to either obtain middle distillate 

products such as kerosene, diesel, and jet fuel, or to crack into lighter weight products such as 

gasoline (Congress, 1980; Lee, 1990). 

ENVIRONMENTAL IMPACTS 

Oil shale in the ground is generally harmless to environment or human health. Oil shale 

retorting, unfortunately, has negative environmental impacts if not controlled properly. 

Predominant waste produced during shale oil extraction makes up to 125% of the volume 

originally mined, and the disposal could impact a large area of land including potential land erosion 

and groundwater contamination. Waste water from retorting contains high concentration of 

complex organic compounds and waste spent shale contains potentially leachable salts and organic 

pyrolysis products (Routson et al., 1979). During shale gas production, the environmental risks 

also include aboveground waste water spilling, groundwater contamination due to faulty well 

construction, uncontrolled gas migration, and chemical leaking during drilling and hydraulic 

fracturing (Zoback et al., 2010).  

Land disturbance is the most serious environmental impact from oil shale retorting. A large 

aera of land will need to be taken from current uses during production regardless of which retorting 
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method is used, and there could be permanent ecological effects. Aboveground retorting could 

change the topographic features from mining and disposal of spent shale. In situ retorting could 

also disturb the land from surface-based drilling (Bartis et al., 2005). Land disturbance also 

includes the possible landscape fragmentation, conflicts with agricultural lands and natural areas 

such as forests, and constructing necessary infrastructure of roads, pipelines, and service areas 

(Baranzelli et al., 2015). Reduction of soil fertility and decreases of wild habitat usually occurs 

even after reclamation. 

Air pollution is another major environmental impact in oil shale operations. This include: 

(1) airborne dust particles produced underground blasting, which not only affect local area but also 

transport to affect father areas before they settle (Xiu et al., 2020); (2) oil shale fly-ash containing 

high concentrations of various heavy metals, carbonates, alkaline oxides, and harmful organic 

compounds (Raukas and Punning, 2009; Vallner et al., 2015); (3) greenhouse gas emissions such 

as H2S, NH3, CO, CH4, and CO2 during retorting and shale gas production, even though the gas 

life-cycle emissions are lower than conventional coal or natural gas production (Burnham et al., 

2012); (4) acid gases (SOx and NOx) emission (Taylor et al., 1982); and (5) volatile organic 

compound emissions (Robinson, 2014). 

Water consumption and water pollution is also a primary factor influencing the 

environment during oil shale production. Approximately three times of water is needed per unit 

volume of shale oil produced (Bartis et al., 2005). It includes water requirements for power 

generation, heating process, refining, dust control, on-site worker demands, and reclamation 

(Speight, 2012). With oil shale plants near rivers, there is great potential of inorganic salt loading 

to fresh water, from mine drainage containing sodium, potassium, calcium, magnesium, sulfate, 

bicarbonate, and chloride salts (Speight, 2012). Depending on the types of shale used in production, 
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waste water might also contain organic pollutants such as phenols, resorcins, ammonia, pyridines, 

etc., and are toxic if not removed appropriately (Wan, 2009). In situ retorting can increase the 

porosity and water absorption of the heated area and pyrolysis products can enter groundwater to 

deteriorate water quality (Hu et al., 2018). Groundwater quality is also directly impacted by the 

use of machinery, blasting, fuel, and oil residues during mining process (Raukas and Punning, 

2009). Shale gas production generates “flowback water” from fracturing fluid containing salts and 

other chemicals as well as “produced water” from continuous flow of liquid through the well 

during production (Estrada and Bhamidimarri, 2016). Both types of wastewater are potential 

environmental hazards. 

Spent shale causes a huge amount of solid waste pollution if not disposed or treated 

properly. The oxygen- and sulfur-containing compounds in spent shale would produce acidic 

species which leach to ground water along with dissolved heavy metals (Speight, 2012). The spent 

shale leachate also contains small amounts of the same soluble pollutants as those in air pollution, 

affecting local soil quality and water quality in rivers and streams (Bartis et al., 2005). Soil 

deterioration could occur due to solid waste from oil shale industry (Põllumaa et al., 2001).  

Shale oil and gas development has both short-term and long-term effects on ecosystems. It 

clears the landscape for pad construction and related infrastructure, resulting in loss of native 

habitats. Land fragmentation, such as pipelines, new roads, transmission lines, and other types of 

corridors, further increases the habitat loss by altering moisture, temperature, and light which 

change the species interactions and movement patterns. Noise pollution during exploration and 

production can affect wildlife communication and transmission. Potential water quantity change 

and quality declining can affect terrestrial and aquatic species. Habitats and species most at risk 
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include core forest habitat, sagebrush habitat, vernal pond inhabitants, and stream biota 

(Brittingham et al., 2014).  

The United States Congress introduced federal regulations in the 1960s to limit 

environmental impacts from oil shale industry development (Speight, 2012). Stricter and more 

rigidly enforced regulations are yet to be introduced by federal government and state governments 

to sufficiently protect the environment. Even though many techniques and managements have been 

developed to diminish the negative environmental impacts from oil shale industry (Bartholomew 

and Mauter, 2016; Brittingham et al., 2014; Coussens and Martinez, 2013; Eshleman and Elmore, 

2013; Estrada and Bhamidimarri, 2016; Ethridge et al., 2015; Nasiri et al., 2017; Vallner et al., 

2015; Wan, 2009; Zhang et al., 2019), series of project-based evaluating and monitoring systems 

still need to be designed and employed (Baranzelli et al., 2015).   

ANALYTICAL TECHNIQUES TO CHARACTERIZE ORGANIC MATTER IN 

OIL SHALES 

The structural characterization of oil shales is critical in advancing the method to evaluate 

the grade of oil shales, understanding the hydrocarbon generation process, and developing better 

petroleum exploitation strategies and proper disposal or reclamation methods of spent shales. 

Increasing attention has been paid to characterization of organic matter in oil shales and various 

analytical methods have been used to analyze oil shale and kerogen samples. The herarchy of 

experimental techniques for the characterization and structure elucidation of kerogen and related 

materials has been summarized (Rullkötter and Michaelis, 1990). 

Elemental compositions of shales, kerogen, or extracted bitumens are usually determined 

by elemental analyzers (Bolin et al., 2016). Trace elements can be analyzed by X-ray fluorescence 

spectrometry (Glikson et al., 1985). Determining the elemental hydrogen, carbon, and oxygen 
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composition of a kerogen and plotting the atomic hydrogen to carbon (H/C) and oxygen to carbon 

(O/C) ratios on a van Krevelen diagram is the traditional way to classify the type of the kerogen 

in a shale (Whelan and Thompson-Rizer, 1993). Isotopic analysis, such as 13C/12C and 15N/14N 

ratios, can give information on the general organic matter origin and indicate the geochemical and 

biochemical cycles through which the elements have passed (Craig, 1953; Rigby and Batts, 1986). 

X-ray diffraction (XRD) is the principal method used to identify the mineral phases present in oil 

shales. By measuring the angles and intensities of the X-ray beams diffracted by the crystalline 

structure, it can provide the quantitative data on crystallized mineral phases of a sample 

(Suryanarayana and Norton, 1998; Wang et al., 2009). These overall analytical techniques provide 

general information on the average composition of bulk sample shales. 

To characterize detailed structural properties of the organic matter in oil shales, degradative 

techniques such as chemical degradation and pyrolysis can be employed. Chemical degradation 

include oxidative, reductive, and cleavage reactions resulting in non-specific products, and 

selective chemical degradation at bonds such as ester, amide, ether, sulfur, olefinic, aromatic-C, 

aromatic-O-C bonds, leading to indicative cleavage products (Rullkötter and Michaelis, 1990). 

Pyrolysis of a shale or kerogen is usually carried out by heating up a small amount of sample in a 

reactor, and the pyrolysis products will be swept by a carrier gas out of the reactor and to the 

following instrument for further analyses (van de Meent et al., 1980). Gas chromatography (GC), 

mass spectrometry (MS), and Fourier-transform infrared spectroscopy (FTIR) are commonly 

employed to identify the volatile pyrolysis products (Fletcher et al., 2014; Hillier et al., 2013; van 

de Meent et al., 1980). The non-volatile pyrolysis products can be extracted with organic solvents 

and analyzed using high-performance liquid chromatography (HPLC) and solution-state nuclear 

magnetic resonance (NMR) spectroscopy (Fletcher et al., 2014; Zhao et al., 2017). The identified 
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components of pyrolysates include straight, branched, and cyclic hydrocarbons, alkylaromatic 

hydrocarbons, sulfur-bearing alkylated aromatic compounds, and alkylphenols. Even though they 

are minor portions of the whole organic matter, they to some extent proportionally represent the 

parent structural element concentrations in the kerogen (Engel and Macko, 2013b). Degradative 

techniques can provide detailed structural information on pyrolysis products and small building 

units of organic matter in oil shales, but the pyrolysates can undergo secondary reactions and have 

constitutional features not present in the parent material; therefore the structural information could 

be unrepresentative and difficult to relate them back to the precursor structure in oil shales. 

Kerogen, which is insoluble in organic solvents, comprises the majority fraction of the 

organic matter in oil shales. The hierarchy of experimental methods to characterize the biological 

source, elemental composition, functional group/chemical environment, constitutional moieties, 

building blocks, and 3D-structures of kerogen and related materials was summarized (Rullkötter 

and Michaelis, 1990) and shown in Figure 5. Spectroscopic techniques are the best means to 

analyze the chemical environment in order to elucidate the structure of the organic matter in oil 

shales as a whole. Specifically, 13C solid-state  NMR can directly measure the insoluble organic 

matter without tedious chemical reactions and provide information on the distribution of carbon 

moieties and how they are connected, making it one of the best non-destructive methods for 

providing quantitative and comprehensive structural information on oil shales (Cao et al., 2013a; 

Cao et al., 2013b; Mao et al., 2017a; Miknis, 1992).  

 



20 
 

 

 

Figure 5. The hierarchy of experimental methods for the characterization and structure 

elucidation of kerogen and related materials, adapted from (Rullkötter and Michaelis, 1990). 

 

STRUCTURAL PROPERTIES OF THE ORGANIC MATTER IN OIL SHALES 

Kerogen is a solid, waxy organic material that is formed with pressure and heat from the 

Earth acting upon the remains of organisms, it is insoluble in non-polar organic solvents due to the 

high molecular weight and can yield oil upon heating (Speight, 2012). The chemical composition 

of kerogen is based on its biochemical source-related mechanical composition, diagenetic 

modification, and degree of thermal evolution (Engel and Macko, 2013b). Generally, kerogen is a 

mixture of various nonpolymeric macromolecules containing substantial amounts of carbon and 

hydrogen, as well as up to 400 heteroatoms (nitrogen, oxygen, and sulfur) for every 1000 carbon 

atoms (Speight, 2012; Vandenbroucke, 2003). The position of atomic H/C versus O/C of kerogen 

in the van Krevelen diagram categorizes them into diffent types (Figure 6), which can also 
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indicates the evolutionary path for kerogen from different precursors and depositional 

enrivonments (Vandenbroucke and Largeau, 2007).  

Type I kerogen usually contains atomic H/C ratio 1.5 or higher, and atomic O/C ratio 0.03 

to 0.1 (Vandenbroucke and Largeau, 2007). Type I kerogen is generally derived from lacustrine 

algae and has rich saturated aliphatic chains and few cyclic or aromatic structures (Speight, 2012). 

This type of kerogen is not widespread, but the Green River Shale in the Uinta Basin contains the 

reference Type I kerogen which consists of lacustrine deposit that has been reworked by 

microorganisms with the remaining constituent lipids and some cuticular vegetal waxes (Durand, 

1980a). The high H/C ratio in Type I kerogen corresponds to the long chain n-alkanes (>40 

carbons) in the pyrolysis products, oils, and extracts of this type of kerogen and has the highest oil 

potential among kerogen types (Vandenbroucke and Largeau, 2007).  

Type II kerogen contains atomic H/C of 1.3 and O/C ration of 0.15, and a higher level of 

sulfur (Vandenbroucke and Largeau, 2007). It is usually derived from zooplankton, phytoplankton, 

or bacterial remains that are deposited in a reducing marine environment (Speight, 2012). There 

are more cyclic aliphatic and aromatic structures in type II kerogen than that of type I. The n-

alkanes in the pyrolysis products and extracts are less than 25 carbons, so the oil-generating 

potential of type II kerogen is lower than that of type I kerogen at the same level of maturation 

(Speight, 2012; Vandenbroucke and Largeau, 2007). 

Type III kerogen has even lower atomic H/C ratio (<0.8) and higher atomic O/C ratio (>0.2). 

The organic matter is usually derived from higher terrestial plants rich in lignin. The low hydrogen 

content and particularly high oxygen content correspond to carbon skeleton of cyclic or 

heterocyclic and extensive aromatic polycyclic structures (Durand, 1980a; Speight, 2012). High 

aromatic and heteroaromatic contents result in lower oil-generating potential but higher paraffinic 
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extracts and gas-generating potential compared to Type II kerogen (Vandenbroucke and Largeau, 

2007). 

 

 

Figure 6. van Krevelen diagram showing the distribution of kerogen types, adapted from 

(Walters, 2007). 

 

Quantitative characterization of the molecular structures of kerogen and related 

macromolecular fossil organic matter is helpful in understanding the generation, migration and 

accumulation of hydrocarbons as the processes on a geological time scale (Rullkötter and 

Michaelis, 1990). It also potentially aids in predicting oil and gas properties to improve production 

strategies and to alleviate environmental impacts. The combination of elemental analyses, 
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degradative analyses of pyrolysis products and bitumens, and non-destructive spectroscopic 

analyses of raw shale and kerogen, structural characterization has been, to some degree, achieved. 

Some constitutional models of kerogen have been proposed (Huang et al., 2018; Lille et al., 2003; 

Orendt et al., 2013; Tong et al., 2016; Ungerer et al., 2015; Wang et al., 2018).  

NMR METHODS FOR CHARACTERIZATION OF ORGANIC MATTER IN 

OIL SHALES  

In order to elucidate the molecular structure of the organic matter in oil shale, the research 

in this dissertation heavily relies on NMR spectroscopic techniques including  advanced solid-state 

NMR, liquid-state NMR, and high resolution magic angle spinning (HRMAS) NMR techniques. 

This section will introduce all the NMR techniques that have been used in the research. 

Advanced solid-state NMR 

 Advanced solid-state NMR techniques for the characterization of natural organic matter 

(NOM) and their applications to fossil fuels including oil shale and kerogen samples were 

summarized and a systematic approach for nondestructively investigating complex NOM was 

proposed and demmonstrated (Mao et al., 2017a; Mao et al., 2011). The general steps of the 

approach, shown in Figure 7, is to identify and quantify specific functional groups in the organic 

structure, determine the proximities or connectivities of specific functional groups, and detect the 

domains or heterogeneities in the chemical structure (Mao et al., 2011). The solid-state NMR 

techniques used in this dissertation are described below. 

13C multiple cross-polarization magic angle spinning (multiCP/MAS) NMR 

The 13C cross polarization/magic angle spinning (CP/MAS) method is the most widely 

used solid-state NMR technique in source rock organic matter studies. It has provided abundant 

qualitative or semi-quantitative structural information (Barron, 1982; Dennis et al., 1982; Kelemen 
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et al., 2007a; Lille et al., 2003; Miknis et al., 1984; Trewhella et al., 1986; Wang et al., 2017; Wei 

et al., 2005; Werner-Zwanziger et al., 2005; Witte et al., 1988; Ẑujović et al., 1995). Simple 13C 

CP/MAS detects the magnetization transferred from more abundant 1H nuclei to less abundant 13C 

nuclei, but the magnetization transfer is more efficient for the protonated carbons than non-

protonated carbons or mobile segments due to their weaker H-C dipolar couplings, so the less 

efficiently transferred magnetization will show underestimated signals in the spectra. Along with 

other shortcomings including spinning sidebands, baseline distortion, and ambiguous assignments, 

the CP/MAS NMR spectra are not quantitative (Mao et al., 2000).  

 

 

Figure 7. Systematic advanced solid-state NMR techniques for characterizing structures and 

heterogeneities in NOM, adapted from (Mao et al., 2011). 

 

In order to obtain quantitative NMR spectra, the traditionally reliable way is to use direct 

polarization/magic angle spinning (DP/MAS) with long enough recycle delays between scans that 

allows complete longitudinal (T1) relaxation of the magnetization to the z-axis. However, DP/MAS 

is very time-consuming when T1 is long which is usually the case for complex organic materials 

(Mao et al., 2000). Johnson and Schmidt-Rohr developed a simple robust high spinning speed 
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multiple-ramped amplitude cross polarization/magic angle spinning (multiCP/MAS) method to get 

quantitative 13C NMR spectra with better signal-to-noise ratios than DP/MAS while saving much 

experimental time (Figure 8). In the multiCP/MAS pulse sequence, repeated blocks of CP (~1 ms) 

separated by periods of duration tz (~0.5 s) is used, the 1H magnetization can recover to near-

equilibrium value during tz and reverses most of the 1H magnetization loss during CP period. The 

local 1H  magnetization loss near 13C due to the polarization transfer to 13C is canceled by 1H spin 

diffusion from the surrounding spins (Johnson and Schmidt-Rohr, 2014). MultiCP/MAS has 

performed very well on crystalline model compounds such as amino acid derivatives as well as 

complex organic matter including plant matter, chars, and humic acid in getting quantitative 

spectra comparable to DP/MAS (Johnson and Schmidt-Rohr, 2014). 

13C multiCP/MAS plus dipolar dephasing (multiCP/DD) 

Dipolar dephasing is usually combined with multiCP/MAS to remove signals from any 

nucleus that is directly bonded to proton. This spectral editing technique selects signals from non-

protonated carbons by the faster dephasing (decaying) of the magnetization originated from any 

species strongly dipolar coupled to proton while decoupling gate is off. Carefully choosing the 

wait time and placing the gated decoupling delay allows full removal of the signals from 

protonated carbons (Mao and Schmidt-Rohr, 2004a; Opella and Frey, 1979). 

13C chemical shift anisotropy (CSA) filter 

13C CSA filter was introduced to select signals of alkyl carbons and suppress those of 

aromatic carbons (Mao and Schmidt-Rohr, 2004b). This technique is based on the carbon bonding 

symmetry, as shown in the magnitude of the chemical shift anisotropy (CSA). Because of the 

tetrahedral bonding symmetry, the CSAs of sp3-hybridized carbons are much smaller than the 

CSAs of planar sp2-hybridized and linear sp-hybridized carbons. When the CSA is recoupled using 
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a few rotation-synchronized π-pulses, the magnetization of carbons with larger CSAs decays faster. 

Simple three- or five-pulse CSA-recoupling sequences with “γ-integral” are used to totally 

suppress the magnetization of all sp2- and sp-hybridized carbons. This technique is particularly 

useful in separating the overlapping (usually between 90-120 ppm) signals of sp2- and sp3-

hybridized carbons, e.g., anomerics (O-C-O) and aromatics, in complex NOM when they cannot 

be distinguished by their isotropic chemical shifts (Mao et al., 2017b; Mao and Schmidt-Rohr, 

2004a, b). 

 

 

Figure 8. An illustration of multicp/MAS as a reliable quantitative 13C NMR method for 

unlabeled solids, adapted from (Johnson and Schmidt-Rohr, 2014). 
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13C CSA filter combined with dipolar dephasing (CP/TOSS/DD/CSA filtered) 

13C CSA filter technique can be combined with dipolar dephasing technique in order to 

select non-protonated mobile sp3-hybridized carbon signals. A four-π-pulse total suppression of 

sidebands (TOSS) is inserted before detection to remove sidebands (Mao et al., 2017a). 

CHn selection 

Signals of immobile CH2 and CH groups (CHn) can be selected in a simple spectral editing 

experiment similar to the scheme previously proposed (Wu et al., 1994). Two spectra are recorded, 

and a third spectrum is generated by their difference displaying the signals of immobile CHn groups 

with a small CH3 contribution. The first is a CP/TOSS spectrum with a short CP of 50 µs, showing 

the signals of protonated carbons in immobile segments with some residual signals from 

quaternary carbons. The second is a CP/TOSS spectrum with a short CP of 50 µs and 40 µs dipolar 

dephasing, showing only the residual signals from quaternary carbons or mobile segments 

including CH3 groups with more than 50% efficiency (Mao et al., 2007). The third spectrum 

presents the result of the signals of the first spectrum minus the signals of the second spectrum. 

Two-dimensional 1H-13C heteronuclear correlation (2D HETCOR) NMR 

Correlation of 13C chemical shifts with 1H chemical shifts can reveal more structural 

information than 1D 13C or 1H spectrum (Mao et al., 2001). Since 1H-13C dipolar couplings can 

provide correlation between internuclear distance on about 0.6 nm, 2D HETCOR NMR is able to 

reveal close proximity of different functional groups (Bronnimann et al., 1992; Mao et al., 2017a). 

Combined with dipolar dephasing, 2D HETCOR NMR is especially useful in detecting the 

correlation between nearest protons and the non-protonated carbon functional groups such as 

COO/NC=O (Mao et al., 2012). 2D HETCOR NMR can also be used with 1H spin diffusion in 

order to identify domains and heterogeneities in NOM structure (Mao and Cao, 2011), where 
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“domain” refers to similar types of chemical compounds spatially segregated from others (such as 

polysaccharide or lignin) with the diameter larger than 5 nm and “heterogeneity” refers to that of 

diameter less than 5 nm (Mao et al., 2017a).  

Liquid-state NMR spectroscopy 

Liquid-state NMR is one of the routine techniques for identifying the structure of either 

pure or complex organic compounds once they are dissolved in a chosen organic solvent. A series 

of liquid-state NMR techniques have been developed and improved over more than half a century 

(Lambert et al., 2019). The experimental methods used in this dissertation included 1D proton 

NMR, 2D 1H-1H correlation spectroscopy (COSY) to detect correlation between protons sharing 

a J-coupling through bond, total correlation spectroscopy (TOCSY) to detect correlation of protons 

within a chain or network of the bonding even when they do not share a J-coupling, and 1H-13C 

heteronuclear single quantum coherence (HSQC) to detect the correlation of carbons with directly 

bonded protons. 

High resolution magic angle spinning (HRMAS) NMR spectroscopy 

HRMAS is a technique suitable for investigating interfaces between a translationally 

mobile (liquid) and an immobile or less mobile (solid support, gel, microparticle), more 

particularly for detecting NMR resonances from a conformationally mobile chemical moiety, 

grafted to or interacting with the immobile phase. It allows the application of liquid-state NMR 

experiments to samples that are not fully soluble and contain solids. The signals are from species 

in contact with the solvent system, leading to spectra similar to liquid-state NMR spectra. It has 

been applied to study gels, ligand, soil, and kerogen (Alam and Jenkins, 2012; Iqbal et al., 2010; 

Polito et al., 2008; Salmon et al., 2011; Simpson et al., 2001).  
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All the pulse sequence programs available for liquid-state NMR experiments can be 

employed in HRMAS experiment, making it a very useful technique in studying those samples 

that give none or very poor at all signals under the regular solvent condition. It combines the 

techniques in liquid-state NMR with the magic angle spinning method in solid-state NMR.  
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CHAPTER II 

SURVEY INVESTIGATION OF ORGANIC MATTER IN OIL SHALES 

 

INTRODUCTION 

The organic matter in oil shale, mainly in the form of kerogen, is closely related to the 

quantity and quality of petroleum and gas generated by the oil shale. Kerogen contains essential 

information about the geothermal history of the shale formations and can reflect the past 

environments, climates, and biota (Vandenbroucke and Largeau, 2007). Kerogen is usually 

isolated for analytical investigation, especially NMR study, due to its low concentration in 

sedimentary rocks. The typical isolation procedures involve the treatment with non-oxidant acids 

to break down the mineral components and remove the paramagnetic materials (Vandenbroucke 

and Largeau, 2007).  In previous studies, the NMR spectra of raw shale and the corresponding 

kerogen samples showed similar chemical shift distributions with generally more resolved peaks 

in the spectra of kerogen samples due to the more concentrated organic matter after the removal 

of paramagnetic materials and some soluble fraction (Cao et al., 2013b). However, difference has 

been observed such as the depletion of oxygen-substituted carbons, indicating the destruction of 

carbohydrates in acid treatment during the kerogen isolation (Maciel and Dennis, 1981). It is 

reasonable to avoid the kerogen isolation process and study raw shale if the shale contains a decent 

concentration of kerogen and negligible amount of paramagnetic materials to yield well-resolved 

NMR spectra.   

The world-wide shale formations introduced in the last chapter represent their own 

depositional and thermal histories. To gain an overall picture of the structural characteristics of 
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the organic matter from typical shales formations and provide more information on the 

development of oil exploration, shale samples collected from some famous sites were investigated.  

MATERIALS AND METHODS 

Shale samples 

The 22 shale samples investigated in this chapter were collected and provided by the United 

States Geological Survey (USGS). The shale samples were collected from heavily studied, often 

visited sites or from mines that are currently or were previously in operation. The samples were 

taken from a particularly organic-rich interval of the formation in an outcrop or at a roadcut. This 

ensured the high organic matter concentration for directly measuring the raw shale samples without 

the tedious process of kerogen isolation. The samples were crushed to small pieces, pulverized, 

and sieved (-60 mesh) to obtain homogenized powders for NMR analysis. They were from various 

geological times including Eocene, Late Cretaceous, Jurassic, Permian, Carboniferous, Devonian-

Mississippian, Ordovician, and Cambrian. These samples contained different mineral components 

and types of kerogen and were collected at different locations including Sweden, USA, Israel, 

Jordan, Australia, Brazil, UK, and Estonia. Sample information was listed in Table 1. 

Solid-state NMR spectroscopy 

All 13C NMR analyses were performed on a Bruker Avance 400 spectrometer at 100 MHz 

for 13C. Samples were packed in 4-mm-diameter zirconia rotors with Kel-F caps, and experiments 

were run in a double-resonance probe head and the rotor was spun at magic angle of 54.7° to the 

direction of the magnetic field. The 13C chemical shifts were referenced to tetramethylsilane 

(TMS), with 13COO- labeled glycine at 176.49 ppm as a secondary reference. 
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Table 1. Information of 22 shale samples. 

Sample name Location Age Mineralogy 
TOC 

(wt. %) 

Hydrogen 

index (mg-

HC/g-TOC) 

Alum Shale Vastmanlands, Sweden Cambrian Quartz, illite 12.4 465 

Boquillas shale Val Verde County, Texas, USA Late Cretaceous Calcite, quartz, kaolinite 5 619 

Brecciated oil shale NW Colorado, USA Eocene Carbonate, quartz, feldspar 16 935 

Cow Ridge B-marker NW Colorado, USA Eocene Mixed-layer clays, quartz 8 732 

Dawsonitic oil shale NW Colorado, USA Eocene Quartz, feldspar, dawsonite 9.9 805 

Garden Gulch Member NW Colorado, USA Eocene Illite, carbonate 10 821 

Ghareb (Israel) Hadarom, Israel Late Cretaceous Carbonate 15.8 705 

Ghareb (Jordan) Al Karak, Jordan Late Cretaceous Carbonate, clay 20.9 759 

Glen Davis New South Wales, Australia Permian Quartz  56.2 939 

Green River (GR-42) NW Colorado, USA Eocene Carbonate, quartz, feldspar 25.4 854 

Irati Formation Parana, Brazil Permian Quartz, illite 11 730 

Kimmeridge Clay 

(Blackstone) 
England, UK Jurassic Claystone 53.8 604 

Mancos shale Delta County, Colorado, USA Late Cretaceous Illite, quartz, albite 3.2 187 

Narva-E mine Kukersite Estonia Ordovician Carbonate, clay 44.7 982 

New Albany Shale (Clegg 

Ck) 
Indiana, USA 

Devonian-

Mississippian 
Quartz, illite 14.9 549 

Phosphoria Fm (Retort Shale) Montana, USA Permian Quartz, ML clays 28 469 

Pumpherston Scotland, UK Carboniferous Quartz, kaolinite 27.7 512 

Pyrolysis standard NW Colorado, USA Eocene Carbonate, quartz, feldspar 13.3 899 

Timahdit Morocco Oil Shale South-central Morocco Late Cretaceous ML clays, carbonate 9.5 560 

Uinta Basin (Mahogany 

zone) 
Utah, USA Eocene Carbonate, quartz, feldspar 29.7 1003 

Uteland Butte shale NW Colorado, USA Eocene Clay, quartz, carbonate 6 893 

Woodford shale Carter County, Oklahoma, USA 
Devonian-

Mississippian 
Quartz, dolomite, illite 8 550  
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13C multiple cross-polarization magic angle spinning (multiCP/MAS) NMR 

The 13C multiCP/MAS technique was employed to obtain quantitative solid-state 13C MAS 

NMR spectra with good signal-to-noise ratios while measuring time was significantly reduced in 

contrast to direct-polarization (DP/MAS) NMR (Johnson and Schmidt-Rohr, 2014). The spectra 

were collected at a spinning speed of 14 kHz, with very small (<3%) spinning sidebands that have 

minimal overlap with centerbands. The 90° 13C pulse length was 4.2 µs. Scan numbers varied 

based on the carbon contents in the samples to achieve reasonable S/N ratio. 

13C multiCP/MAS plus dipolar dephasing (multiCP/DD) 

To obtain quantitative structural information on non-protonated carbons and mobile 

segments, 13C multiCP/MAS combined with dipolar dephasing was applied. Most experimental 

conditions were the same as for the 13C multiCP/MAS method except that a recoupled dipolar 

dephasing time of 68 µs was applied (Mao and Schmidt-Rohr, 2004a). The same scan numbers 

were collected as in the multiCP/MAS technique of each sample. 

RESULTS 

The 13C multiCP/MAS and multiCP/DD spectra of 22 shale samples are presented in Figure 

9. The multiCP/MAS spectra showed the signals of all carbon moieties while multiCP/DD spectra 

showed the signals of non-protonated carbons and mobile segments in the organic matter of the 

shale samples.  

In multiCP/MAS spectra of all the samples, there were two major bands centered around 

30 ppm and 135 ppm which were assigned to aliphatic (alkyl) carbons and aromatic carbons, 

respectively. The intensive aliphatic band indicated a significant contribution of methylene groups. 

Specific functional groups were assigned to corresponding chemical shift regions, 0-48 ppm was 

assigned to nonpolar alkyls, 48-65 ppm to OCH3 and NCH, 65-93 ppm to O-alkyls, 148-165 ppm 
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Figure 9. MultiCP/MAS (black lines) and multiCP/DD spectra (bold lines) of 22 shale samples. 
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to aromatic C-O, 165-190 ppm to COO and NC=O, and 190-220 ppm to ketones and aldehydes. 

The multiCP/DD spectra (bold lines) in Figure 9 selectively presented the signals from the 

non-protonated carbon moieties and mobile segments. The broad aliphatic bands centered at 30 

ppm confirmed the presence of methylene groups, which was consistent with the bands in 

multiCP/MAS spectra. All these band heights were lower in multiCP/DD spectra than those in 

multiCP/MAS spectra due to the suppression of signals at this region other than the signals from 

mobile segments. The shoulders at around 20 ppm in the multiCP/DD spectra of the samples were 

more resolved than those in multiCP/MAS spectra, corresponding to the contribution of methyl 

groups to the aliphatic bands. The methyl group signals were better separated and shown in the 

spectra of some samples such as Boquilla sample, Cow Ridge sample, Dawsonitic sample, 

Jordanian Ghareb sample, Glen Davis sample, Green River sample, Irati sample, Kukersite sample, 

Phosphoria sample, and Utland Butte sample, indicating more distinctive methyl moieties in their 

molecular structures.  

In the aromatic region, the bands in multiCP/DD spectra were generally lower than those 

in multiCP/MAS spectra due to the presence of signals from only the non-protonated aromatic 

carbons. The signals at downfield to the aromatic region confirmed the existence of ester structures 

in some of the shale samples. The relative proportion of protonated and non-protonated aromatic 

carbons, as well as other carbon moieties can be calculated using the chemical shift assignment 

and integration of multiCP/MAS spectra and multiCP/DD spectra. 

To demonstrate the composition of carbon moieties, the percentages of different carbon 

moieties were calculated following the systematic calculating approach (Mao et al., 2011), Briefly, 

the percentages of ketones and aldehydes, COO/N-C=O, and aromatic C-O groups were directly 

integrated from multiCP/MAS spectrum at chemical shift regions 220-190 ppm, 190-165 ppm, 
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and 165-148 ppm, respectively. The percentage of Aromatic C-C plus aromatic C-H was integrated 

from multiCP/MAS spectrum at chemical shift region 148-93 ppm, and then integral between 148-

93 ppm from the multiCP/DD spectrum was obtained and divided by 0.93 (dipolar dephasing 

efficiency), in order to separate non-protonated aromatic C-C and protonated aromatic C-H. The 

total percentage of OCH, OCH2, and quaternary OC (OCq) was integrated from multiCP/MAS 

spectrum at chemical shift region 93-65 ppm, and the percentage of OCq was obtained from 

integral between 93-65 ppm in multiCP/DD spectrum. The percentage of OCH3 plus aromatic 

NCH was integrated from multiCP/MAS spectrum at chemical shift region 65-48 ppm, and then 

percentage of OCH3 was separated by integrating from multiCP/DD spectrum at 65-48 ppm and 

divided by its dipolar dephasing efficiency 0.65. The percentage of alkyls was integrated from 

multiCP/MAS spectrum at chemical shift region 48-0 ppm, and CCH3 was calculated by integral 

between 24-0 ppm from the multiCP/DD spectrum divided by its dipolar dephasing efficiency 0.65. 

The different between alkyls and CCH3 was referred as other alkyls in Table 2, which was mainly 

CCH2C in our samples. 

 The relative proportions (%) of carbon moieties in 22 oil shale samples were shown in 

Table 2 and the functional group distribution in the organic matter of the same shale samples were 

illustrated in Figure 10. The relative proportions of different functional groups presented 

quantitative structural information that was consistent with what was shown in spectra, such as the 

predominant functional groups being alkyls and aromatics. However, Table 2 also provided more 

information regarding what types of alkyl groups and their percentages. Based on chemical shifts 

in both multiCP/MAS and multiCP/DD spectra, the alkyl groups were separated into OCq 

(quaternary carbon connected to oxygen), OCH and OCH2 (tertiary or secondary carbon connected
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Table 2. Relative proportions (%) of carbon moieties in 22 oil shales calculated using 13C multiCP/MAS and multiCP/DD spectra. 

Chemical shift 

(ppm) 
220-190 190-165 165-148 148-93 93-65 65-48 48-0 

  

Ketone 

and 

aldehyde 

COO 

and 

NC=O 

Arom. 

C-O 

Arom. 

C-C 

Arom. 

C-H 
OCq 

OCH 

and 

OCH2 

OCH3 NCH CCH3 
Other 

alkyls 

Alum 0.8 1.6 4.4 4.0 37.1 0.5 2.9 0.7 5.6 5.4 37.0 

Boquillas 0.6 5.1 1.9 20.0 8.4 1.1 1.4 2.0 5.9 11.4 42.2 

Breccia 0.0 3.5 3.7 3.0 9.6 0.8 1.5 1.3 3.2 5.8 67.6 

Cow Ridge 2.1 3.9 4.0 15.9 3.9 2.0 2.4 2.2 2.1 10.8 50.7 

Dawsonitic 0.5 1.5 3.7 1.1 17.7 0.3 1.8 0.9 4.1 6.3 62.1 

Garden Gulch 1.5 3.0 3.4 1.8 16.3 0.2 2.4 1.0 5.4 5.8 59.2 

Ghareb Israel 0.0 3.0 2.0 2.4 14.1 0.7 6.0 1.3 7.3 3.2 60.0 

Ghareb Jordan 0.4 3.3 3.0 18.5 7.0 1.0 2.0 2.0 6.5 10.2 46.1 

Glen Davis 0.2 0.7 1.9 15.6 6.3 0.1 0.6 1.1 3.0 5.2 65.3 

Green River 0.9 3.5 3.5 9.4 6.4 1.2 1.7 2.0 4.6 8.9 57.9 

Irati 1.3 1.5 2.3 2.9 24.2 0.5 1.6 1.2 5.8 6.1 52.6 

Kimmeridge 0.5 1.6 2.4 17.4 10.4 1.4 2.8 2.0 5.1 6.8 49.6 

Kukersite 2.0 2.7 7.3 12.3 6.9 1.1 3.7 0.7 2.9 5.7 54.7 

Mancos 2.4 4.8 5.5 20.4 8.9 2.7 2.3 3.1 4.3 11.8 33.8 

New Albany 1.2 1.9 4.5 8.0 28.6 0.7 2.8 0.8 4.7 5.6 41.2 

Phosphoria 1.3 3.6 4.2 23.3 10.0 1.3 1.4 1.5 3.8 12.8 36.8 

Pumpherston 2.2 3.5 4.2 14.2 7.4 0.7 2.6 1.5 4.0 5.2 54.5 

ShPYR-1 1.3 4.3 3.7 2.1 13.9 0.4 2.1 1.1 4.6 5.3 61.2 

Timahdit 0.6 4.1 4.2 5.1 18.9 1.0 4.0 1.1 5.5 4.1 51.4 

Uinta Basin 0.6 3.5 3.5 2.7 9.4 0.5 1.7 1.1 3.1 5.2 68.7 

Uteland Butte 1.9 6.2 3.5 11.4 3.4 2.2 2.7 1.5 2.7 7.2 57.3 

Woodford 1.6 2.2 5.2 20.1 10.0 1.7 2.3 1.4 5.6 8.8 41.1 
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to oxygen), OCH3 (methoxy group) and NCH, CCH3 (methyl group), and other alkyl groups that 

were not included, and aromatic groups were separated into aromatic C-O, aromatic C-C, and 

aromatic C-H.  

 

 

 

Figure 10. Functional group distribution in the organic matter of 22 shale samples. 
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All types of alkyl carbons accounted for 52%-80% of organic carbons in all the shale 

samples, with Alum sample being the lowest and Uinta Basin sample being the highest. This 

confirmed what was shown in Figure 9. that all the shale samples had significant signal bands at 

the aliphatic region in the multiCP/MAS spectra. On the other hand, aromatic carbons constituted 

16%-46% of organic carbons in the samples measured, with Uinta Basin sample being the lowest 

and Alum sample being the highest, which is the opposite to alkyl carbon percentages. Among all 

types of aromatic carbons, Uteland Butte sample had the smallest proportion of aromatic C-H 

(3.4%) and Alum sample had the largest (37%); Dawsonitic sample had the smallest proportion of 

aromatic C-C (1.1%) and Phosphoria had the largest (23%); and Glen Davis sample had the 

smallest proportion of aromatic C-O (1.9%) and Kukersite sample had the largest (7.3%). All the 

shale samples had small proportion of COO and/or NC=O functional groups (0.7%-6.2%) and 

negligible proportion of ketone and/or aldehyde functional groups (0%-2.4%). 

DISCUSSION 

The shale samples measured were from various geological times which would naturally 

result in different thermal maturities of the shales. Thermal maturity is the extent of temperature–

time driven reactions, which are responsible for the conversion of sedimentary organic matter to 

petroleum or cracking of oil to gas. It reflects the temperature history of the source rock in the 

subsurface and estimates its petroleum generating potential (Mani et al., 2017). The temperature 

at which the rate of hydrocarbon generation reaches its maximum (S2 peak) in Rock-Eval pyrolysis 

is termed Tmax. It has been used as a thermal maturity parameter. However, mineral matrix effect, 

heavy bitumen carryover, weathering, and uranium irradiation can cause inaccuracy of its thermal 

maturity estimation (Yang and Horsfield, 2020). Vitrinite reflectance (Ro), which measures the 

percentage of incident light reflected from the surface of vitrinite particles, is the conventional 
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method to characterize the maturity and thermal history of a sedimentary rock (Fang and Jianyu, 

1992; Tissot and Welte, 1984). A linear correlation between vitrinite reflectance (Ro 0.29%-1.4%) 

and aromaticity derived from 13C CP/MAS NMR spectra was reported for Type II kerogen samples 

(Werner-Zwanziger et al., 2005). The result indicated that more aromatic carbon percentage from 

the spectra corresponded to being more thermally mature. This is consistent with our result that 

the sample with the highest percentage of aromatic carbons (Alum) is from the oldest geological 

time, the Cambrian Period, while the sample with the lowest percentage of aromatic carbons 

(Dawsonitic) is from the relatively youngest geological time, the Eocene Epoch of the Paleogene 

Period. It proved the potential ability of quantitative 13C solid-state NMR spectral data of oil shale 

as a complementary thermal maturity indicator besides Tmax and vitrinite reflectance. 

Petroleum (oil and gas) generating potential of oil shale and other organic-rich sediments 

is one of the most important concerns of geochemical studies. Besides the external factors such as 

grain size of shales, pyrolysis temperature, heating rate, and pyrolysis atmosphere (Ahmad and 

Williams, 1998; Jaber et al., 1999; Nazzal, 2002, 2008; Williams and Ahmad, 1999), the shale oil 

yield inherently depends on the amount of kerogen contained in the corresponding source rock, 

i.e., the organic carbon content, as well as the structure of the kerogen (Miknis and Conn, 1986). 

High petroleum generating potential is generally supported by the factors such as high total carbon 

content (TOC), high hydrogen index, early to mid-thermal maturity, high extractable organic 

matter content (bitumen content) and hydrocarbon yield, as well as high pyrolysis (Rock-Eval) S1 

value plus S2 value (Gao et al., 2016; Hakimi et al., 2010; Wan Hasiah, 1999).  

By comparing 13C CP/MAS NMR data and modified Fischer assay results, the petroleum 

generating potential of oil shale was found to be linearly related to the aliphatic carbon content, 

i.e., a larger proportion of aliphatic carbon in a shale sample would lead to a higher pyrolytic oil 
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yield, independent of the geological age, depositional environment and location of the shale 

(Miknis et al., 1982a). More specifically, methylene and methine carbons were found to be directly 

related to oil yield while other aliphatic carbons, together with carbonyl and carboxyl carbons, 

were related to gas production (Kuangzong et al., 1991). After analysis and calculation, solid-state 

13C NMR spectra can also reflect the hydrogen index, thermal maturity, hydrocarbon yield of the 

organic matter from oil shale which are all related to the petroleum generating potential, making 

it a fast, non-destructive, and reliable method to predict the petroleum generating potential of oil 

shales and other organic-rich sediments (Longbottom et al., 2016; Miknis et al., 1982b). 

There are multiple characteristics to determine the quality and the price of crude oil, but 

the most important ones are density and sulfur content. The light (lower density, or higher degrees 

of API gravity) and sweet (lower sulfur content, S ≤ 0.5% mass) crude oils are high quality and 

priced the highest, and the heavy and sour (S ≥ 3% mass) crude oils are priced the lowest (Stratiev 

et al., 2010). While sulfur content can be measured with elemental analysis, the density or API 

gravity can be predicted from spectroscopic data (Abbas et al., 2012; Aske et al., 2001; Morgan et 

al., 2014; Stasiuk and Snowdon, 1997).  

Since the quality of shale oil is closely related to the types of the hydrocarbons (saturated 

hydrocarbons, aromatic hydrocarbons, asphaltenes, and resins) (Abbas et al., 2012; Aske et al., 

2001), the hydrocarbon composition highly relies upon the organic matter of the source rock, 

which makes advanced solid-state 13C NMR method a great candidate for predicting the quality of 

crude oil generate by oil shale, based on the organic structural characteristics of the source rock.   

In this chapter, solid-state 13C NMR multicp/MAS and multicp/DD techniques have proven 

their ability to quantify different carbon moieties of the organic matter in oil shales (Table 2). In 

the following chapters, more advanced solid-state 13C NMR experiments with spectral editing 
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techniques, as well as two-dimensional techniques, liquid-state NMR techniques, and HRMAS 

NMR techniques will be applied to some chosen shale samples to address specific issues. 
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CHAPTER III 

EFFECT OF HETEROATOM CONTENT ON KEROGEN STRUCTURE 

Reprinted with permission from Chu, W., X. Cao, K. Schmidt-Rohr, J. E. Birdwell and J. Mao (2019). "Investigation 

into the Effect of Heteroatom Content on Kerogen Structure Using Advanced 13C Solid-State Nuclear Magnetic 

Resonance Spectroscopy." Energy & Fuels 33(2): 645-653. Copyright (2019) American Chemical Society. 

INTRODUCTION 

The majority organic carbon in oil shale is in the form of kerogen which is insoluble in 

common inorganic and organic solvents and represents the largest repository of organic matter on 

earth (Durand, 1980b; Vandenbroucke and Largeau, 2007). The hydrogen, carbon, and oxygen 

contents of kerogen are used to determine kerogen types by plotting the atomic H/C and O/C ratios 

in a van Krevelen diagram (Engel and Macko, 2013a). The different elemental ratios provide 

information on the relative amount of liquid oil or natural gas that the kerogen will generate during 

thermal decomposition (Speight, 2012). Oil shales of different origins generally have different 

heteroatom contents and elemental ratios, which lead to various linkages between functional 

groups and thus different structural properties (De Leeuw and Largeau, 1993; Engel and Macko, 

2013a). Abundant oxygen content could indicate the presence of O-containing functional groups 

such as phenols, esters, ethers, and carboxylic acids. Organic sulfur can be present in the form of 

sulfoxide, sulfone, aliphatic sulfur, and aromatic sulfur (Wang et al., 2017). While the elemental 

analysis may suggest overall chemical composition, spectroscopic methods can provide much 

more detailed and comprehensive structural information. Specifically, solid-state NMR can 

provide quantitative structural information and is one of the best methods for non-destructive 

characterization of oil shale and kerogen given their insolubility in organic solvents. 

The 13C cross polarization/magic angle spinning (CP/MAS) method is the most widely 

used solid-state NMR technique in source rock organic matter studies. For instance, it has been 
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applied to investigate structures of Green River oil shale kerogen (Trewhella et al., 1986), kerogen 

from Tertiary deposits in Queensland, Australia (Miknis et al., 1984), Aleksinac oil shale kerogen 

(Ẑujović et al., 1995), Estonian kukersite kerogen (Lille et al., 2003), and Australian Glen Davis 

shale (Barron, 1982). This technique was also applied in studying thermal alteration of Cretaceous 

black shale kerogen (Dennis et al., 1982), thermal evolution of a group of kerogen samples from 

China (Wei et al., 2005), and thermal maturity of the New Albany shale (Werner-Zwanziger et al., 

2005), usually along with Rock-Eval pyrolysis and vitrinite reflectance (Witte et al., 1988). It also 

has been combined with X-ray photoelectron spectroscopy (XPS) to characterize organic nitrogen 

and sulfur structures in oil shale kerogens (Kelemen et al., 2007a; Wang et al., 2017). Solid-state 

NMR has significantly advanced knowledge on oil shales, and 13C CP/MAS has provided abundant 

qualitative or semi-quantitative structural information. However, shortcomings of simple 13C 

CP/MAS include spinning sidebands, baseline distortion, and ambiguous assignments, and 

quantitative information cannot be obtained due to those or other limitations. Systematic advanced 

solid-state NMR techniques (Cao et al., 2013b; Mao et al., 2017a; Mao et al., 2011) have been 

developed and applied to study natural organic matter including shales in order to make 

quantitative measurements (Cao et al., 2013a), better functional group assignments (Mao et al., 

2010), and aromatic cluster size estimation (Mao and Cao, 2011). 

While several studies have been conducted on the extractable organic fraction of Estonian 

kukersite, Glen Davis torbanite, and Ghareb marinite deposits using gas chromatography-mass 

spectrometry (GC-MS), Fourier-transform infrared spectroscopy (FTIR), and X-ray absorption 

near-edge structure (XANES) spectroscopy (Audino et al., 2001; Blokker et al., 2001; Derenne et 

al., 1988; Grice et al., 2001; Koopmans et al., 1998b; Lille, 2003), but few investigations have 

been carried out on isolated samples of the insoluble fraction or the whole shales (Barron, 1982; 
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Lille et al., 2003; Wilson et al., 1983). In this chapter, we analyzed structures of Ordovician 

Estonian Kukersite shale sample, Permian Australian Glen Davis shale sample, and Cretaceous 

Jordanian Ghareb shale sample by advanced 13C solid-state NMR techniques including 13C 

multiple cross-polarization magic angle spinning (multiCP/MAS), 13C multiCP/MAS plus dipolar 

dephasing (multiCP/DD), two-dimensional 1H-13C heteronuclear correlation (2D HETCOR), and 

2D HETCOR with 1H spin diffusion. Our objectives were to obtain quantitative structural 

information on these three shales and to compare the structures present in their kerogens, which 

have very different heteroatom compositions, in order to understand how they contribute to organic 

matter structural properties.  

MATERIALS AND METHODS 

Shale samples 

Ordovician kukersite deposits of Estonia cover an area of more than 50,000 km2, and they 

have been extensively exploited and processed to fuel electric power plants and produce synthetic 

crude oil, petro-chemicals and other products (Dyni, 2003). The Kukersite shale sample is a type 

I/II kerogen-bearing oil shale from the Narva-E mine, Estonia. Permian Glen Davis torbanite/shale 

deposits at New South Wales Australia are organic-rich sedimentary rocks primarily originating 

from Botryococcus braunii algae (Derenne et al., 1988; Hutton et al., 1980) and some 

methanogenic bacteria (Glikson, 1983). The Cretaceous Jordanian Ghareb marinite contains Type 

IIS kerogen and is rich in a complex distribution of organic sulfur compounds, among which the 

alkylthiophenes can be used as biomarkers to indicate paleoenvironmental changes (Kohnen et al., 

1990; Koopmans et al., 1998a). All the shale samples were provided by the USGS (collected by 

M. Lewan). The shale samples were crushed, pulverized, and sieved (-60 mesh) to obtain 

homogenized powders for NMR analysis. 
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The mineralogy of shale samples was determined by X-ray diffraction (XRD; see Table 3). 

Corundum was added as an internal standard (20 wt. %) to each sample prior to micronization and 

a PANalytical X’Pert Pro MPD X-ray diffractometer (Westborough, Massachusetts) was used to 

collect diffractograms. Semi-quantitative mineralogy was obtained by interpreting diffractograms 

using the Jade Software package (Materials Data Inc., Livermore, California). Elemental 

compositions of isolated kerogen samples were determined following demineralization following 

the method described previously (Bolin et al., 2016). Total organic carbon (TOC) content and 

programmed pyrolysis parameters were determined using a LECO C744 Series analyzer and 

Wildcat Technologies Hydrocarbon Analyzer With Kinetics (HAWK), respectively, following 

manufacturers’ instructions. The results from kerogen elemental analysis and XRD, TOC, and 

programmed pyrolysis analyses on shale samples are shown in Table 1. 

NMR spectroscopy 

All 13C NMR analyses were performed on a Bruker Avance 400 spectrometer at 100 MHz 

for 13C. Samples were packed in 4-mm-diameter zirconia rotors with Kel-F caps, and experiments 

were run in a double-resonance probe head. The 13C chemical shifts were referenced to 

tetramethylsilane (TMS), with 13COO- labeled glycine at 176.49 ppm as a secondary reference. 

13C multiple cross-polarization magic angle spinning (multiCP/MAS) NMR 

The 13C multiCP/MAS technique was employed to obtain quantitative solid-state 13C MAS 

NMR spectra with good signal-to-noise ratios while measuring time was significantly reduced in 

contrast to direct-polarization (DP/MAS) NMR (Johnson and Schmidt-Rohr, 2014). The spectra 

were collected at a spinning speed of 14 kHz, with very small (<3%) spinning sidebands that have 

minimal overlap with centerbands. The 90° 13C pulse length was 4.2 µs. Scan numbers ranged 

from 1024 to 4096 based on the carbon contents in the samples to achieve reasonable S/N ratio. 
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Table 3. Summary of results from total organic carbon (TOC), programmed pyrolysis and X-ray 

Diffraction (XRD) analyses of shales and elemental analysis of corresponding kerogen isolates.  

Shale TOC (mg/g) S1 (mg/g) S2 (mg/g) S3 (mg/g) Tmax (°C) 

Kukersite 447 0.4 439.2 5.6 428 

Glen Davis 562 3.7 521.5 3.0 457 

Ghareb 209 5.1 158.4 2.9 407 

Shale 

Quartz 

(wt. %) 

Calcite 

(wt. %) 

Total Clay 

(wt. %) 

Feldspar 

(wt. %) 

Amorphous 

(wt. %) 

Kukersite 8.1 37.9 4.5 N/A 30.6 

Glen Davis 48.4 1.0 1.7 N/A 49.8 

Ghareb 8.9 67.2 11.0 12.2 6.1 

Kerogen 

Carbon 

(wt.%) 

Hydrogen 

(wt.%) 

Nitrogen 

(wt.%) 

Oxygen 

(wt.%) 

Total Sulfur 

(wt.%) 

Kukersite 74.43 8.72 0.22 13.41 1.51 

Glen Davis 84.87 9.07 1.22 3.71 0.80 

Ghareb 68.75 7.71 1.57 5.66 14.13 

Note: Mineralogy is reported on an organic-free basis. Other minor mineral phases detected 

include pyrite (Kukersite, 0.8 and Ghareb 0.7 wt. %), dolomite (Kukersite, 5.9 wt. %), and 

fluorapatite (Ghareb, 5.9 wt %). 

 

 13C multiCP/MAS plus dipolar dephasing (multiCP/DD) 

To obtain quantitative structural information on non-protonated carbons and mobile 

segments, 13C multiCP/MAS combined with dipolar dephasing was applied. Most experimental 

conditions were the same as for the 13C multiCP/MAS method except that a recoupled dipolar 
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dephasing time of 68 µs was applied (Mao and Schmidt-Rohr, 2004a). The same scan numbers 

were collected as in the multiCP/MAS technique. 

Two-dimensional 1H-13C heteronuclear correlation (2D HETCOR) NMR 

The 2D HETCOR and its combination with dipolar dephasing can identify specific 

functional groups and their connectivities and proximity (Mao et al., 2017a; Mao et al., 2001). 2D 

HETCOR experiments were performed at a spinning speed of 7.5 kHz. Standard Hartmann-Hahn 

CP (HH-CP) with 0.5 ms CP time allows for correlations between carbons and protons within ~0.5 

nm radius. A 40-µs dipolar dephasing delay was inserted into the HH-CP HETCOR pulse sequence 

to reveal multi-bond proximities between protons and non-protonated carbons or mobile groups 

like -CH3. 2D HETCOR NMR with 1H spin diffusion (Mao and Cao, 2011) was also performed 

with a 1 ms mixing time.  

Structural model construction and spectrum simulation 

A structural model of Kukersite kerogen was constructed based on the model proposed by 

Lille et al. (Lille et al., 2003). The model was adapted by calculating 1D 13C NMR spectra, for all 

C, C not bonded to H, and CH, using chemical shifts from the empirical chemical-shift prediction 

program from ACD/Labs (Anderson et al., 2014; Lille et al., 2003). These data were input to an 

in-house Matlab program that converted them into spectra with a Gaussian line broadening of ca. 

5 ppm (full width at half maximum). The structures were optimized iteratively by small 

modifications until the necessary fit of simulated spectra with the experimental spectra was 

obtained. 

RESULTS 

13C multiCP/MAS and 13C multiCP/DD spectra 
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Quantitative multiCP/MAS 13C NMR spectra of all carbons and those of non-protonated 

carbons and mobile segments in the three shale samples are presented in Figure 11. All the three 

multiCP/MAS 13C NMR spectra contained sharp peaks centered at 30 ppm, which were assigned 

to polymethylene chains, and all three had relatively weaker signals in aromatic regions (93-165 

ppm). The region of 0-48 ppm was assigned to nonpolar alkyls, 48-65 ppm to OCH3 and NCH, 

65-93 ppm to O-alkyls, 93-148 ppm to aromatics, 148-165 ppm to aromatic C-O, 165-190 ppm to 

COO and NC=O, and 190-220 ppm to ketones and aldehydes. With the assistance of spectral 

editing techniques including dipolar dephasing, more specific assignments can be achieved (Mao 

et al., 2017a). In the multiCP/MAS 13C NMR spectra (Figure 11 a, c, and e), all three contained 

aliphatic bands centered at 30 ppm and aromatic bands around 93-165 ppm. After dipolar 

dephasing (Figure 11 b, d, and f), the intensities of the aromatic bands were only slightly changed, 

indicating that most aromatic carbons are not bonded to hydrogens. The residual signals within 

sp3-hybridized carbon region are from rotating -CH3 groups around 0-24 ppm and mobile -(CH2)n- 

segments around 30 ppm. 

In the 13C multiCP/MAS spectrum of Kukersite sample (Figure 11 a), there were signals in 

the aromatic region around 156 ppm, 142 ppm, and 117 ppm, and much stronger signals in the 

aliphatic region around 30 ppm and 15 ppm, indicating most carbons were in aliphatic forms. The 

aromatic signals of Kukersite sample were more distinctive than those of Glen Davis sample and 

Ghareb sample, indicating extensive oxygen substitution of the aromatic rings. In the dipolar 

dephased spectrum of Kukersite sample (Figure 11 b), the aromatic signals were slightly reduced 

meaning most of the aromatic carbons were non-protonated, while the signals at 30 ppm was 

significantly reduced. The peak centered around 156 ppm was assigned to aromatic carbons 

bonded to oxygen, and the band at 115 ppm to their neighboring carbons, while the band centered 
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around 142 ppm was assigned to substituted aromatic carbons not near oxygen, or orthodiphenols 

(Figure 11 a and b). The broad band around 75 ppm was due to OCH or OCH2 groups. The 

prominent band at 30 ppm was attributed to -(CH2)n-, and the small peak around 15 ppm to -CH3.  

 

 

Figure 11. Quantitative multiCP 13C NMR spectra of all carbons (a, c, and e) and multiCP with 

dipolar dephasing of non-protonated carbons and mobile carbons (b, d, and f) from Kukersite, 

Glen Davis, and Ghareb shale samples. 
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The 13C multiCP/MAS spectrum of Glen Davis sample (Figure 11 c) was relatively simpler 

compared with that of Kukersite sample, containing two major bands: aromatic band around 130 

ppm and a sharp aliphatic peak around 30 ppm. The aliphatic band was the sharpest and strongest 

among the spectra of the three shales, indicating it had the most abundant aliphatic structure. The 

aromatic peak of Glen Davis sample was the smallest among the three samples. The aromatic 

signals around 138 ppm were assigned to branched non-protonated aromatic carbons because they 

were retained in the 13C multiCP/DD spectrum. The signals around 127 ppm were partially retained 

in the 13C multiCP/DD spectrum indicating that a part of the signals was due to protonated aromatic 

carbons (Figure 11 c and d). Almost no signals of aromatic or alkyl C-O functional groups were 

present. The sharp band at 30 ppm was assigned to -(CH2)n-, and the small peak at 15 ppm assigned 

to –CH3. 

In the 13C multiCP/MAS and multiCP/DD spectra of Jordanian Ghareb shale (Figure 11 e 

and f), there was a sharp peak at 169 ppm, assigned to carbonates, in addition to the two bands 

assigned to aliphatics and aromatics, which was different from the spectra of the other two samples. 

The carbonate peak corresponded to the large amount of calcite (67.2 wt.%) in the mineral fraction; 

however, this peak was not observed in the Kukersite spectrum, which also contained a substantial 

calcite fraction (37.9 wt. %). The aromatic band was centered at 135 ppm and mostly arose from 

non-protonated aromatic carbons, and the shoulder at ~125 ppm was primarily assigned to 

protonated aromatic carbons. Again, there were almost no C-O signals. The band at 30 ppm was 

assigned to mobile -(CH2)n-, and the small peak at 15 ppm to –CH3. The alkyl band was broader 

compared to those of the other two shales, indicating more diverse aliphatic carbons, presumably 

in branched and cyclic alkane structures.  
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Quantitative structural information and aromaticity 

The quantitative structural information of the three samples is listed in Table 4, where the 

percentages of different functional groups of the organic matter in the shales were calculated based 

on 13C multiCP/MAS and 13C multiCP/DD spectra (Johnson and Schmidt-Rohr, 2014; Mao et al., 

2017a). Alkyl C accounted for more than half of the organic carbons in all three shales, among 

which Glen Davis sample had the largest proportion (70.5%), consistent with the intense alkyl 

peaks in Figure 11 c. Previous studies on oil shales showed no anomeric carbons present (Cao et 

al., 2013a), indicating carbohydrates were absent, so the 13C chemical shift anisotropy filter 

technique was not applied in the present study. The aromatic C fraction, including aromatic C-O, 

ranged from 23.8% for the Glen Davis sample to 28.5% in the Ghareb sample. The organic matter 

of Kukersite sample had the largest percentage of aromatic C-O (about 7.3%) while organic matter 

of Ghareb sample had the largest proportion of aromatic C (about 25.5%). About 71-75% of the 

aromatic C in the three samples was non-protonated (arom. C-O and arom. C-C), indicating there 

was much more substituted or bridgehead aromatic C than aromatic C-H. The ketone/aldehyde 

fraction was small (2%) in the Kukersite sample, and negligible in the other two samples. The 

COO and NC=O groups accounted for a little more, being the most abundant in Ghareb sample at 

3.3%, with the carbonate peak at 169 ppm in Figure 11 e. All three samples had some amounts of 

OCH3 and NCH moieties, with the highest in Ghareb sample (up to 8.5% of the organic carbon), 

more than twice the fraction present in Kukersite and Glen Davis samples, to some extent 

accounting for the broad base of the aliphatic band in Figure 11 e. The O-alkyl fraction ranged 

from 0.7% in Glen Davis organic matter to 4.8% in Kukersite. 

Figure 12 illustrated the functional group distribution in the organic matter of the three 

shale samples more clearly. The alkyl groups dominated in all three samples and followed by 
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aromatic groups. The aromatic-O group in from Kukersite shale is obviously greater than the other 

two, which is consistence with spectral features in Figure 11. 

The aromaticity of the three sample and the percentages of aromatic C-O, C-C, and C-H 

were calculated after sideband correction (Mao and Schmidt-Rohr, 2004a) and show in Table 5. 

The aromaticity of three samples ranged around 26%-31%, with Ghareb sample showed the 

highest aromaticity and Glen Davis sample the lowest. All three samples had about 25%-29% of 

aromaticity as protonated aromatic carbons. Among the non-protonated carbons, Kukersite sample 

had the most aromatic carbons in the form of aromatic C-O, much higher than the other two 

samples, and the least in the form of aromatic C-C.  

 

Table 4. Relative proportions (%) of functional groups in the three oil shales determined by 13C 

multiCP/MAS and 13C multiCP/DD spectra. 

Chemical 

Shift 

Ketone 

and 

aldehyd

e 

COO 

and 

NC=O 

Arom.O 

  OCH 

and 

OCH2 

    
Other 

alkyls 

  

Arom.C OCH3 NCH CCH3 

        

(ppm) 
220-190 190-165 165-148 148-93 93-63 63-48 48-0 

Kukersite 
2.0 2.6 7.8 20.4 4.7 0.7 2.8 53.4 5.6 

Glen Davis 
0.2 0.7 2.0 23.5 0.7 1.1 2.9 63.8 5.1 

Ghareb 
0.4 3.2 3.2 27.2 2.9 1.9 6.3 44.9 9.9 

 

 

2D 1H-13C HETCOR NMR spectra 

Kukersite sample 
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Spectra from 2D 1H-13C HETCOR and 2D HETCOR with dipolar dephasing experiments 

on the Kukersite sample are shown in Figure 13. A 2D HETCOR NMR spectrum with 0.5 ms cross 

polarization time can reveal 1H-13C proximities within one or two bonds (Mao et al., 2001), i.e., 

1H signals within approximately 0.5 nm radius from the C are detected. 1H slices were extracted 

from the 2D spectra to identify the proximities between functional groups. The 1H slices extracted 

from the 13C chemical shifts of 15 ppm and 30 ppm (Figure 13 c) had cross peaks in the aliphatic 

region indicating the alkyl carbons mainly associated with their directly bonded alkyl protons 

around 1.5 ppm. The 1H slices at the 13C chemical shift of 75 ppm had a proton peak at 1 ppm and 

a shoulder around the 1H chemical shift of 6.5 ppm, suggesting that the O-alkyl carbons were 

primarily correlated with the alkyl chain and also with aromatic rings. The 1H slices from the 

aromatic carbon region at 112 ppm, 141 ppm, and 155 ppm showed signals of directly bonded 

protons around 6.5 ppm as well as alkyl proton signals at around 1.5 ppm, demonstrating that 

aromatic carbons were bonded to alkyl groups. 

 

Table 5. Aromaticity and the percentages of aromatic C-O, C-C, and C-H in three samples 

calculated from 13C multiCP/MAS and 13C multiCP/DD spectra. 

  
Aromaticity 

(%) 

Arom. C-O 

(%)   

Arom. C-C 

(%) 

Arom. C-H 

(%) 

Kukersite 
28.2 28.4 42.4 29.2 

Glen Davis 
25.5 13.9 59.7 26.4 

Ghareb 
30.4 15.8 59.2 25.0 
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The 2D HETCOR spectrum with dipolar dephasing in Figure 13 b shows the correlations 

of non-protonated carbons with protons that are at least two bonds away, and 1H slices were 

extracted and shown in Figure 13 d. 1H slices extracted at the 13C chemical shifts of 15 ppm, 23 

ppm, and 30 ppm showed alkyl proton signals. The 1H slices at 13C chemical shifts of 116 ppm, 

141 ppm, and 155 ppm (Figure 13 d) had shoulders around 6.5 ppm and major bands around 1.5 

ppm, demonstrating the non-protonated aromatic carbons were close to aromatic protons and 

nonpolar alkyl protons, which confirmed the linkage between aromatic and alkyl functional groups. 

 

 

Figure 12. Functional group distribution in the organic matter of Kukersite, Glen Davis, and 

Jordanian Ghareb shale samples.  

 

Glen Davis sample 

Figure 14 shows the 2D HETCOR spectra of Glen Davis sample. Similar to Kukersite 

sample, the 1H slices (Figure 14 c) extracted at the 13C chemical shifts of 15 ppm and 30 ppm 

showed predominantly cross peaks to the directly bonded protons around 1.5 ppm. The 1H slices 

from 126 ppm and 138 ppm showed that aromatic carbons were near both their bonded protons 
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(signals around 7.5 ppm), and alkyl groups (signals around 1.5 ppm). The 2D HETCOR spectrum 

with dipolar dephasing of Glen Davis sample is presented in Figure 14 b. The extracted 1H slices 

(Figure 14 d) at the 13C chemical shifts of 15 ppm, 23 ppm, and 30 ppm confirmed the association 

between alkyl carbons and their bonded protons, while the 1H slices taken at 131 ppm and 138 

ppm demonstrated again that the non-protonated aromatic carbons were substituted with alkyl 

groups. 

 

 

Figure 13. (a) 2D 1H-13C HETCOR NMR spectrum and (b) 2D 1H-13C HETCOR spectrum after 

dipolar dephasing of Kukersite sample. (c, d) 1H slices extracted from the 2D spectra; (c) refers 

to 1H slices from spectrum (a), and (d) from spectrum (b). 
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A 2D HETCOR spectrum with 1 ms 1H spin diffusion spectrum of Glen Davis sample is 

shown in Figure 15 a. Fast equilibration within 1 ms corresponds to heterogeneities of less than 1 

nm (Mao and Cao, 2011; Mao et al., 2010). The 1H slices (Figure 15 b) extracted at 13C chemical 

shifts of 15 ppm, 30 ppm, 126 ppm, and 138 ppm were all similar, indicating that magnetization 

was equilibrated within 1 ms. The fast equilibration indicated that aromatic carbons in this shale 

do not form domains and are in close proximity to the alkyl chains. 

 

Figure 14. (a) 2D 1H-13C HETCOR NMR spectrum and (b) 2D 1H-13C HETCOR spectrum after 

dipolar dephasing of Glen Davis sample. (c, d) 1H slices extracted from the 2D spectra; (c) refers 

to 1H slices from spectrum (a), and (d) from spectrum (b). 
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DISCUSSION 

The Estonian Kukersite shale sample is derived from the accumulation of the remains of 

an extinct microorganism, Gloeocapsomorpha Prisca (Derenne et al., 1990; Dyni, 2003; Lille, 

2003). The bitumens generated by the pyrolysis of Kukersite kerogen and most Ordovician oils 

show distinctive features of saturated hydrocarbon distribution (Derenne et al., 1990). Some key 

features of Kukersite kerogen include a dominance of C9-C19 odd n-alkane chains and a prominent 

occurrence of phenolic structures (Lille, 2003), which is consistent with the n-alkyl-phenol and n-

alkyl-resorcinol structures of the pyrolysates of its origin, the outer cell walls of G. Prisca (Blokker 

et al., 2001; Derenne et al., 1990).  

 

 

Figure 15. (a) 2D 1H-13C HETCOR NMR spectrum with 1 ms 1H spin diffusion and (b) 1H slices 

extracted from the 2D spectrum of Glen Davis sample. 
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The Kukersite shale sample in our study (Table 3) has a similar kerogen elemental 

composition to the kerogen molecular model proposed by Lille et al.(Lille et al., 2003). The long 

aliphatic carbon chains in the model correspond to the large alkyl band around 5 to 50 ppm in the 

experimental and simulated 13C MAS NMR spectra of the Kukersite kerogen (Lille et al., 2003), 

consistent with our 13C multiCP/MAS NMR spectrum of the Kukersite sample (Figure 11 a). The 

oxygen content of the Kukersite sample is comparatively higher than that of the other two shales 

(Table 3). Oxygen was proposed to be in the form of phenolic structures and ether linkages in the 

kerogen model (Lille et al., 2003). The heteroatom-containing groups in the model were tentatively 

quantified using 13C CP/MAS (Lille, 2003), but with the 13C multiCP/MAS and multiCP/DD NMR 

spectra (Figure 11 a and b), we were able to more accurately quantify the oxygen-containing 

functional groups (Table 4). Functional groups containing aromatic C-O bonds account for more 

than 1 in 4 of the aromatic carbons present, indicating the presence of many doubly O-substituted 

aromatic rings. The observed 155 ppm chemical shift is incompatible with ortho dioxysubstitution 

(~145 ppm) or para substitution (~150 ppm). The ratio of aliphatic to aromatic carbons based on 

the kerogen model was about 4-5 (Lille, 2003), higher than that in the present study ( ~2.3 

calculated from Table 4). This is most likely due to the underestimation of aromatics by standard 

13C CP/MAS measurements. The difference between the Kukersite kerogen in the Lille et al. study 

and that present in our raw Kukersite oil shale is minimal based on the similar kerogen H:C ratios 

for the two samples. There were significantly more non-protonated (C-O and C-C, total 70.8%) 

than protonated aromatic carbons (29.2%; Table 5), indicating that at least 4 carbons on an 

aromatic ring must be substituted by oxygen or a carbon chain, on average. Kukersite kerogen 

contains abundant diphenolic moieties linked to the macromolecular structure via terminal and 

mid-chain carbon of the linear side chains (Derenne et al., 1990), which is confirmed by 2D 
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HETCOR data (Figure 13 a and b), and more non-protonated carbons were connected with alkyl 

chains (42.4%) than with phenolic groups (28.4%; Table 5) in our sample. With the lower aliphatic 

to aromatic carbon ratio, the structure of the Kukersite kerogen must contain shorter alkyl chains 

than those in the molecular model (Lille et al., 2003) to properly explain this discrepancy. We 

simulated an updated structural model of Kukersite kerogen based on the literature (Lille, 2003; 

Lille et al., 2003) by adjusting the structure, specifically shortening some alkyl chains, adding 

some chains on the aromatic rings, increasing the amount of methyl groups, etc., to obtain a good 

fit of simulated spectra with the experimental spectra. As shown in Figure 16, the simulated spectra 

(dashed lines) of multiCP/MAS, multiCP/DD, and CH-only corresponded well to the experimental 

spectra (solid lines). Specifically, the peaks within aromatic region of the simulated multiCP/MAS 

spectrum matched with the experimental spectrum reasonably well after the modifications, as well 

as the CH, CH2, and CH3 groups in aliphatic region and O-containing groups such as C=O, COO, 

and OCH.  

The kerogen present in the Australian Glen Davis shale sample had a low heteroatom 

content (N, S, and O; Table 3), leading to a comparatively simple 13C multiCP/MAS NMR 

spectrum (Figure 11 c) consisting mostly from signals of alkyl and aromatic carbon moieties. The 

absence of oxygen would be consistent with the cleavage of C-O bonds due to the maturation of 

the shale (Derenne et al., 1988), but by all measures the Glen Davis sample is thermally immature. 

Due to the small amount of aromatic C-O structures, the non-protonated carbons must be 

substituted with alkyl chains, consistent with the chemical shifts of aromatic carbons (Figure 11 c) 

and 2D HETCOR data (Figure 4 a and b). Fewer aromatic C-O structures leads to a simpler 

aromatic structure compared to Kukersite sample, as reflected in their different aromatic bands 

(Figure 11). The aliphatic band of organic matter of Glen Davis sample was sharper than those of 
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Kukersite or Ghareb sample (Figure 11 a and c), indicating its alkyl chains have fewer branches, 

cyclic structures, and cross linkages. The soluble organic matter extracted from eastern Australia 

Glen Davis torbanite contains large amounts of drimanes, abundant monomethylalkanes, and an 

unusual presence of macrocyclic alkanes containing 14 to 34 carbons (Audino et al., 2001; Audino 

et al., 2004; Grice et al., 2001), all consistent with a large proportion of alkyl carbons. The low 

aromaticity (Table 5) and the sharp aliphatic band (Figure 11 c) of our Glen Davis sample were 

consistent with previous results showing that the pyrolysis products of Glen Davis shale contained 

more saturated hydrocarbons compared to aromatic hydrocarbons (Boreham et al., 1994). The 2D 

HETCOR spectrum with 1 ms 1H spin diffusion (Figure 15) showed no indication of previously 

described fused aromatic systems, such as 1,2,5-trimethylnaphthalene and 5,6-dimethyl-1-

ethylnaphthalene (Grice et al., 2001). The sharp aliphatic band assigned to –(CH2)n– and the band 

assigned to –CH3– can correspond to series of monomethylalkanes (Audino et al., 2001).  

The Jordanian Ghareb shale sample contained much more organic sulfur in its kerogen 

compared to the other two samples (Table 3). Alkylthiophenes and alkylbenzothiophenes are stable 

forms of organic sulfur compounds (Koopmans et al., 1998b; Van Kaam-Peters et al., 1995). Both 

of these structures could contribute to the aromatic band centered at 135 ppm in the 13C 

multiCP/MAS spectrum (Figure 11 e). Sulfur has a similar electronegativity as carbon, and 

therefore does not produce distinctive chemical shifts when bonded to carbon. This is supported 

by the results of sulfur XANES spectroscopy on immature kerogen from a Jordanian Ghareb 

sample collected at the same location as the sample examined here (Birdwell et al., 2018), 

revealing that the majority of sulfur moieties are categorized as thiophene, sulfoxide, sulfide, and 

elemental-organic sulfur. More labile sulfur moieties are converted into aromatic forms during 

maturation, oxygen-containing groups are eliminated, and therefore the remaining oxygens are 
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most likely in the form of aromatic C-O groups and O-alkyl (Kelemen et al., 2010) as shown in 

Table 4. The Ghareb shale had the highest aromaticity among the three shales (Table 5), consistent 

with more typical marine kerogens (Kelemen et al., 2007a; Miknis, 1992).  

 

 

 

Figure 16. Structural model of Kukersite sample and its simulated (red dashed lines) and 

measured (black solid lines) 13C NMR spectra.  
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CHAPTER IV 

COMPARISON OF PHOSPHORIA AND KIMMERIDGE FORMATIONS 

 

INTRODUCTION 

Oil shale has been considered as one of the viable energy sources with the increasing 

attention to unconventional fuels, and the quality of oil produced from oil shales depends on the 

properties of deposits and retort technologies (Hartstein et al., 2010). Understanding the molecular 

composition of oil shales will assist the development of oil shale processing and the evaluation of 

shale oil quality. The major organic components in oil shales are kerogen, the fraction insoluble in 

organic solvents which represents about 80% (w/w) of the organic matter, and bitumen (native 

bitumen, different from bitumen generated during kerogen decomposition (Bolin et al., 2016)), the 

fraction soluble which accounts for about 20% (w/w) of the organic matter (Birdwell, 2017; Yen 

and Chilingarian, 1976).  

The molecular structure of kerogen is difficult to characterize due to its insolubility, but 

the advances in solid-state nuclear magnetic resonance (NMR) spectroscopy techniques (Cao et 

al., 2013b) have improved the characterization of kerogen structural properties. Advanced solid-

state NMR techniques (Cao et al., 2013b; Mao et al., 2017a) and high resolution magic angle 

spinning (HRMAS) NMR (Salmon et al., 2011; Simpson, 2001) have been successfully applied to 

study the insoluble and partially soluble fractions of natural organic matter. Bitumen represents 

unites of the precursors that do not bind to the insoluble macromolecular network of kerogen and 

that have been cleaved without much structural alteration (Speight, 2012), and it is often extracted 

by organic solvents and measured using analytical techniques such as gas chromatography (GC), 
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Fourier transform infrared (FT-IR) spectrometry (Adebiyi and Akhigbe, 2015), MS (Burdelnaya 

et al., 2013; Park et al., 2013), NMR spectroscopy (Borrego et al., 1996), X-ray absorption near-

edge structure (XANES) spectroscopy (Birdwell et al., 2018), etc.  

In this chapter, Phosphoria sample and Kimmeridge sample were selected for structural 

characterization using advanced solid-state NMR, HRMAS NMR, and liquid-state NMR. The 

Phosphoria Formation of Permian age is a world-class phosphate-ore deposit covering 350,000 

km2 area in Idaho, Wyoming, Montana, Utah, and Nevada, and has been mined for a century (Hein, 

2003). The Jurassic Kimmeridge clay formation is an organic-rich claystone deposit in Britain and 

across north-west Europe (Scotchman, 1991). US Geological Survey (USGS) has studied the 

Phosphoria Formation during field mapping and sampling programs (Dyni, 2003). Pyrolysis 

products and bitumen extracted from the Phosphoria Formation in western United States has been 

investigated using GC (Claypool et al., 1978; Price and Wenger, 1992), GC-MS (Clayton and King, 

1987; Lewan et al., 1986), and high performance liquid chromatography (HPLC) (Knauss et al., 

1997). Phosphoria rock sample has been analyzed by two-step laser mass spectrometry (L2MS) to 

study the polycyclic aromatic hydrocarbons (Zhan et al., 1997). Kerogen pyrolysis products, 

extracts, and pulverized rock of Kimmeridge Clay Formation have been analyzed by GC-MS 

(Eglinton et al., 1988a; Eglinton et al., 1988b; Scotchman, 1991; van Dongen et al., 2006; van 

Kaam-Peters et al., 1997), gas chromatography-isotope ratio mass spectrometry (GC-IRMS), 

HPLC (Garrigues et al., 1990), IR spectrometry (Scotchman, 1991), cross-polarization magic 

angle spinning (CP/MAS) 13C NMR (Boucher et al., 1990; Mann et al., 1991; Palmer et al., 1987), 

X-ray fluorescence (XRF) (van Dongen et al., 2006), and time-resolved synchrotron X-ray 

tomography (Figueroa Pilz et al., 2017). As far as we know, this is the first study on organic 

structural characterization of Phosphoria and Kimmeridge shales using advanced solid-state NMR, 



65 
 

 

HRMAS NMR, and liquid-state NMR. The object is to comprehensively characterize the soluble 

and insoluble fractions of oil shales. 

MATERIALS AND METHODS 

Sample preparation 

Phosphoria shale is a type IIS kerogen-bearing oil shale from marine Phosphoria Formation 

of Permian Period in Montana, USA, and Kimmeridge clay (blackstone) is a type II kerogen-

bearing oil shale from Jurassic Period in UK, both provided by USGS. The shale samples were 

crushed, pulverized, and sieved (-60 mesh) to obtain homogenized powder for solid-state NMR 

analysis.  

Kerogen from Phosphoria and Kimmeridge shales were isolated by sequential of acid 

treatments with 18% (w/w) hydrochloric acid, 52% (w/w) hydrofluoric acid, and 37% (w/w) 

hydrochloric acid to remove the mineral components. This was followed by a heavy-liquid 

separation in ZnBr2 solution, additional hot HCl to remove ralstonite, and a Soxhlet extraction 

using a 60:40 (wt%) benzene and methanol mixture. The residue after drying in a vacuum oven 

was considered kerogen (Birdwell and Washburn, 2015; Lewan et al., 1986). 

Bitumen from both shales were extracted from dry, pulverized aliquots of shale using 

chloroform in a Soxhlet apparatus. The bitumen was then concentrated in a rotary evaporator 

(Birdwell and Washburn, 2015). The shales after chloroform extraction were described as 

extracted rocks in this study, and they were analyzed with 13C solid-state NMR as well. 

NMR spectroscopy 

Solid-state 13C NMR spectroscopy 
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All solid-state 13C NMR analyses were performed using a Bruker Avance II 400 

spectrometer at 100 MHz for 13C. The shale and kerogen samples were packed in 4-mm-diameter 

zirconia rotors with Kel-F caps, and experiments were run in a double-resonance probe along the 

magic angle. The 13C chemical shifts were referenced to tetramethylsilane (TMS), with 13COO- 

labeled glycine at 176.46 ppm as a secondary reference. 

13C multiple cross-polarization magic angle spinning (multiCP/MAS) NMR 

The 13C multiCP/MAS technique was developed to obtain quantitative solid-state 13C MAS 

NMR spectra of organic materials with good signal-to-noise ratios while reducing the measuring 

time in contrast to direct-polarization (DP/MAS) NMR (Johnson and Schmidt-Rohr, 2014). The 

spectra were collected at a spinning speed of 14 kHz, with a very small (<3%) spinning sidebands 

and minimal overlap with center bands. The 90⁰ 13C pulse length was 4.2 µs.  

13C multiCP/MAS plus dipolar dephasing (multiCP/DD) 

To identify non-protonated carbons and mobile segments, 13C multiCP/MAS combined 

with dipolar dephasing was applied. Most conditions were the same as for the 13C multiCP/MAS 

method but with a dipolar dephasing time of 68 µs (Mao and Schmidt-Rohr, 2004a).  

13C chemical shift anisotropy (CSA) filter 

13C CSA filter was introduced to separate signals of sp3-hybridized carbons from those of 

sp2- and sp-hybridized carbons. This technique was based on the carbon bonding symmetry, hence 

the fact that CSAs of sp3-hybridized carbons are much smaller than that of sp2- and sp-hybridized 

carbons, so their magnetization remains after a certain recoupling time (Mao et al., 2017b; Mao 

and Schmidt-Rohr, 2004b). Total suppression of sidebands (TOSS) was applied before detection, 

the spectra were referred as CP/TOSS/CSA filtered spectra. 
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13C CSA filter combined with dipolar dephasing (CP/TOSS/DD/CSA filtered) 

13C CSA filter technique was combined with dipolar dephasing technique in order to show 

non-protonated mobile sp3-hybridized carbon signals. 

CHn selection 

Signals of immobile CH2 and CH groups (CHn) can be selected in a simple spectral editing 

experiment similar to the scheme previously proposed (Wu et al., 1994). Two spectra were 

acquired, and a third spectrum generated by their difference showed the signals of CHn groups. 

The first was a CP/TOSS spectrum with a short CP of 50 µs, and the second was a CP/TOSS 

spectrum with a short CP of 50 µs and 40 µs dipolar dephasing (Mao et al., 2007). 

Liquid-state NMR spectroscopy 

Liquid-state NMR analyses were performed using a Bruker Avance III 400 spectrometer 

at 400 MHz for 1H. The bitumen sample was dissolved in deuterated chloroform, and then 

transferred into a 5-mm NMR tube. A 1D proton spectrum was acquired with 64 scans and 1s 

delay. 2D spectra including 1H-1H correlation spectroscopy (COSY), and 1H-13C heteronuclear 

single quantum coherence (HSQC) were acquired to provide molecular connectivity. 

High resolution magic angle spinning (HRMAS) NMR spectroscopy 

HRMAS NMR experiments were performed on a Bruker Avance III 400 spectrometer at 

400 MHz for 1H. The shale sample was packed in a 4-mm-diameter 50 µl zirconia HRMAS rotor, 

swelled with 25 µl of deuterated dimethyl sulfoxide (DMSO-d6), and sealed with a Kel-F insert 

screw and a cap. All spectra were collected in a double-resonance probe along the magic angle at 
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a spinning speed of 5 kHz. The HRMAS techniques including TOCSY and HSQC were adapted 

from liquid-state NMR. 

RESULTS 

13C Solid-state NMR spectra  

Solid state NMR is one of the most powerful techniques to investigate shale and its related 

solid phase samples due to their insolubility. Quantitative 13C multiCP/MAS NMR spectra of all 

carbons and multiCP/DD spectra of non-protonated carbons and mobile carbons from Phosphoria 

raw shale, kerogen, and extracted rock are presented in Figure 17, and Kimmeridge raw shale, 

kerogen, and extracted rock in Figure 18. The region of 0-48 ppm was assigned to nonpolar alkyls, 

48-63 ppm to OCH3 and NCH, 63-93 ppm to O-alkyls, 93-147 ppm to aromatics, 147-164 ppm to 

aromatic C-O, 164-190 ppm to COO and NC=O, and 190-220 ppm to ketones and aldehydes.  

The three multiCP/MAS spectra of Phosphoria samples (Figure 17 a, b, and c) were quite 

similar, dominated by a major band around 30 ppm, representing aliphatic carbons, indicating the 

significant contribution of methylene groups. There was also a shoulder around 15 ppm at aliphatic 

region, which was attributed to –CH3 groups. There was a less intense signal around 132 ppm, 

representing aromatic carbons. There were very weak signals at OCH3/NCH, O-alkyl, and 

COO/NC=O regions and almost no signals of ketone/aldehyde were present. Similarly, the 

multiCP/MAS spectra of Kimmeridge samples (Figure 18 a, b, and c) showed the most intense 

peak around 30 ppm at aliphatic region and the second most intense peak around 132 ppm at 

aromatic region, but the aromatic peaks were shorter than those of Phosphoria spectra. 

After dipolar dephasing, the aromatic bands of Phosphoria shale and kerogen (Figure 17 d 

and e) and Kimmeridge shale and kerogen (Figure 18 d and e) were only slightly reduced, 
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indicating that the majority of the aromatic carbons were non-protonated. The residue signals at 

the aliphatic bands of the shales were from –(CH2)n- groups around 30 ppm and rotating -CH3 

groups around 20 ppm. The signals in dipolar dephased spectra of both extracted rocks (Figure 17 

f and Figure 18 f) were less intense than those of the corresponding shale and kerogen, which 

might be due to the low C% content in the extracted rocks resulting in poor S/N ratio. 

 

 

Figure 17. Quantitative multiCP 13C NMR spectra (a, b, and c), multiCP with dipolar dephasing 

spectra (d, e, and g), CP/TOSS with 13C CSA filter spectra (g, h, and i), 13C CSA filter with 

dipolar dephasing spectra (j, k, and l), and CHn selected spectra (m, n, and o) of Phosphoria 

shale, kerogen, and extracted rock samples. 
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Qualitative 13C cross polarization with total sideband suppression (CP/TOSS) combined 

with spectral editing techniques were able to assign the overlapping resonances and better describe 

the structural characteristics of the samples. CP/TOSS/CSA filtered spectra of the three samples 

are presented in Figure 17, showing signals from saturated carbons. CP/TOSS/CSA filtered spectra 

of Phosphoria shale (Figure 17 g), kerogen (Figure 17 h), and extracted rock (Figure 17 i) samples 

all had aliphatic bands almost the same as those in their multiCP/MAS spectra, indicating the 

contribution from the alkyl carbons. No signals between 90-120 ppm were present in the 

CP/TOSS/CSA filtered spectra, meaning all signals in this region were attributed to aromatic 

carbons and no anomeric carbons, which was consistent with previous study (Cao et al., 2013a). 

The aliphatic bands in CP/TOSS/DD/CSA filtered spectra (Figure 17 j, k, and l) of all three 

samples generally matched those in multiCP/DD spectra, but there were no signals in aromatic 

regions since sp2-hybridized aromatic carbon signals were suppressed. Similar results can be found 

in CP/TOSS/CSA filtered spectra of Kimmeridge samples (Figure 18 g, h, and i).  

Signals of immobile -CH2 and -CH groups of the Phosphoria samples are shown in Figure 

17 m, n, and o. The strong signals at aliphatic region were attributed to alkyl –CH, -CH2 groups. 

The much less intense signals at aromatic region were from the protonated aromatic carbons, 

indicating the very small amount of protonated aromatic carbons, which was consistent with the 

result from multiCP/DD spectra. The same trend was shown in the CHn selected spectra of 

Kimmeridge samples (Figure 18 m, n, and o). 

Quantitative structural information 

The quantitative structural information of the six samples was listed in Table 6, where the 

percentages of different functional groups were calculated based on 13C multiCP/MAS, 13C 
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multiCP/DD spectra, and spectral editing results (Mao et al., 2011; Mao and Schmidt-Rohr, 2004a). 

Alkyl carbons accounted for a little less than half of all carbons in the Phosphoria samples and 

more than half in Kimmeridge samples, which was consistent with the intense aliphatic peak in 

the multiCP/MAS spectra (Figure 17 and 8  a, b, and c). Among the alkyl carbon, the methyl 

groups accounted for about 12% in Phosphoria shale and kerogen and about 9% in Kimmeridge 

shale and kerogen. The second major carbon moiety was aromatic carbons, accounting for 40% of 

total carbons in Phosphoria shale and 32% in Kimmeridge shale.  

 

 

 

Figure 18. Quantitative multiCP 13C NMR spectra (a, b, and c), multiCP with dipolar dephasing 

spectra (d, e, and g), CP/TOSS with 13C CSA filter spectra (g, h, and i), 13C CSA filter with 
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dipolar dephasing spectra (j, k, and l), and CHn selected spectra (m, n, and o) of Kimmeridge 

shale, kerogen, and extracted rock samples. 

 

Table 6. Relative proportions (%) of functional groups in Phosphoria and Kimmeridge shale, 

kerogen, and extracted rock determined by 13C multiCP, 13C multiCP/DD spectra, and spectral 

editing results. 

Chemical Shift 

Ketone 

and 

aldehyde 

COO 

and 

NC=O 

Arom.O 

  OCH 

and 

OCH2 

non-

protonated 

OC 

    
Other 

alkyls 

  

Arom.C OCH3 NCH CCH3 

        

(ppm) 220-190 190-164 164-147 147-93 93-63 63-48 48-0 

P
h

o
sp

h
o

ri
a Shale 

1.4 3.5 3.2 36.4 1.2 1.0 1.6 3.8 35.4 12.6 

Kerogen 
1.2 3.2 3.6 37.9 1.1 1.4 1.7 4.0 33.6 12.3 

Extracted 

rock 

0.8 3.1 3.6 35.7 1.6 0.6 1.1 4.7 43.1 5.7 

K
im

m
er

id
g
e Shale 

0.8 2.1 2.3 29.9 2.2 1.6 2.0 5.5 45.0 8.5 

Kerogen 
1.0 1.9 2.9 32.0 1.5 1.7 1.8 5.2 43.1 8.9 

Extracted 

rock 

1.1 1.4 2.2 30.0 2.4 1.7 2.3 5.1 39.8 14.0 

 

 

Figure 19 was generated to visually compare the spectral features and the functional group 

distribution of organic matter in Phosphoria and Kimmeridge shale, kerogen, and extracted shale 

samples. Very close pattern appeared in the samples, especially for the predominant alkyl and 

aromatic groups. The illustration was consistent with the results concluded from spectral and 

integrating data. 
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Figure 19. Functional group distribution of the organic matter in Phosphoria and Kimmeridge 

shale, kerogen, and extracted shale samples. 

 

The aromaticity and the composition of aromatic C-O, C-C, and C-H were also calculated 

(Mao and Schmidt-Rohr, 2004a) and listed in Table 7. The aromaticity of Kimmeridge samples 

(32~35%) were less than that of Phosphoria samples (39~42%), which was also described by the 

reduced aromatic peak in their multiCP/MAS spectra (Figure 17 a and 8 a). Kimmeridge shale also 

had less substituted aromatic C (C-O and C-C) and more aromatic C-H than Phosphoria shale, 

indicating that Kimmeridge shale had fewer aromatic carbons connected to alkyl carbons and 

oxygens than Phosphoria shale. The chemical shift region attributed to COO and NC=O groups 

and NCH group accounted for 3.5% and 3.8%, respectively, in Phosphoria shale, and 2.1% and 

5.5%, respectively, in Kimmeridge shale. There were small number of O-alkyl groups and little to 

no ketone and aldehyde groups in the samples. 
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Table 7. Aromaticity and the percentages of aromatic C-O, C-C, and C-H in three samples 

calculated from13C multiCP, 13C multiCP/DD spectra, and spectral editing results. 

Sample Aromaticity (%) Arom. C-O (%)   Arom. C-C (%) Arom. C-H (%) 

P
h

o
sp

h
o

ri
a 

Shale 39.6 16.0 56.8 27.2 

Kerogen 41.5 22.5 70.0 7.5 

Extracted 

rock 

39.4 5.9 17.3 76.8 

K
im

m
er

id
g
e 

Shale 32.2 18.7 52.6 28.7 

Kerogen 34.8 14.1 56.7 29.2 

Extracted 

rock 

32.3 2.6 6.7 90.7 

Note: aromaticity (%) is the proportion of aromatic C over all C, aromatic C-O (%) is the proportion of 

aromatic C-O over all aromatic C, aromatic C-C (%) is the proportion of aromatic C connecting to alkyl C 

over all aromatic C, and aromatic C-H (%) is the proportion of aromatic C-H over all aromatic C. 

 

Liquid-state NMR spectra 

Liquid-state NMR techniques were employed in order to analyze bitumen, the soluble part 

of shale, for better resolution during less experimental time. Figure 20 shows the 1H NMR for the 

bitumen samples extracted form Phosphoria and Kimmeridge shales. There were generally two 

regions for aliphatic and aromatic protons similar to the solid-state NMR spectra. The sharp peaks 

at aliphatic region were assigned to methyl groups at 0.9 ppm and methylene groups at 1.3 ppm in 

both samples. The peak at 3.7 ppm in Phosphoria bitumen (Figure 20 b) was attributed to –CH2O 

groups. The big humps at the aliphatic region under the sharp peaks (Figure 20 b and e) indicated 
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there were other alkyl components with lower molecular mobility present. The humps between 

6.2-8.3 ppm (Figure 20 c and f) were ascribed to aromatic protons, and the sharp peak at 7.28 ppm 

was due to the impurity of the solvent, deuterated chloroform. To better assign the proton peaks, 

COSY and HSQC experiments were applied to the same bitumen samples. 

 

 

Figure 20. 1D 1H NMR spectrum of Phosphoria and Kimmeridge bitumen from liquid-state 

NMR (a and d), 0-4.5 ppm region zoomed-in (b and e), and 6-10 ppm region zoomed-in (c and 

f). 
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The COSY spectrum of Phosphoria bitumen is shown in Figure 21. The off-diagonal 

contours showed the correlations between coupled protons. The correlations at aliphatic region 

corresponded to the intense peaks in 1D spectrum in Figure 20 a, indicating the presence of 

dominant aliphatic structures. Contour 1 showed the methyl groups were associated with the 

methylene and methine groups, confirming the presence of alkyl chains. Contour 2 was assigned 

to alkyl groups correlated with olefinic H, and contour 3 was assigned to methylene groups α to 

O-alkyls. There was no significant off-diagonal correlation at aromatic region likely due to the 

weak signals from the much less aromatic fraction and the fact that aromatic carbons were partially 

substituted. Figure 22 presents the COSY spectrum of Kimmeridge bitumen. There were more 

signals shown in aliphatic region than those in Phosphoria bitumen spectrum, and some signals 

were observed in aromatic region. Similar to Figure 21, contour 1 was assigned to methyl groups 

connecting to methylene groups, contour 4 to alkyl groups correlated with olefinic H, and contour 

5 to methylene groups α to O-alkyls. The other signals were not in Figure 21, including contour 2 

assigned to methylene groups connecting to methine groups, contour 3 assigned to methylene 

groups β to olefinic groups, and contour 6 was the correlation between two O-alkyls. 

The 2D HSQC spectrum and two expanded regions of Phosphoria bitumen are displayed 

in Figure 23 to show the correlations between carbons and protons. There were two major regions 

of contours corresponding to aliphatic and aromatic signals. The chemical shifts of the contours in 

Figure 23 b and c, and the chemical structures assigned to them were listed in Table 8. For the 

methyl groups around 0.90 ppm at 1H dimension, contour 1 and 2 were assigned to terminal methyl 

groups (-(CH2)n-CH3) at the end of aliphatic chains, contour 3 was assigned to branched methyl 

groups on aliphatic chain connected to methines (-CH(CH3)-CH2-), contour 4 was assigned to 

branched terminal methyl groups (-(CH2)n-CH(CH3)2), and contour 5 and 6 were assigned to 
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methyl groups connected to cyclohexane rings. The contours along 1.2-1.3 ppm at 1H dimension 

were assigned to different methylene groups. Contour 7 was assigned to the methylene groups α 

to the terminal methyl groups (-(CH2)n-CH2-CH3), contour 9 to the methylene groups β to the 

terminal methyl groups (-(CH2)n-CH2-CH2-CH3), and 8 to the other methylene groups in a long 

aliphatic chain ((-(CH2)n-CH2-CH2-CH3). Contour 10, 11, and 12 were assigned to the methylene 

groups α to one or two methines of branched chains (-CH2-CH-). The signals from methine groups 

were weaker compared to methyl and methylene groups. Contour 13 was from the methine groups 

connected to the terminal methyl groups (-CH-(CH3)2), and 14 from methine groups at branch 

positions of aliphatic chains (-CH2-CH(CH3)-CH2-).  

 

Figure 21. 2D 1H-1H COSY spectrum of Phosphoria bitumen from liquid-state NMR. 
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Other signals were attributed to alkyl groups that were close to unsaturated structures or 

heteroatoms. Contour #15 was assigned to methylene groups β to –COO (-CH2-CH2-COOR). 

Contour #16-25 were assigned methyl groups α to C=C olefinic carbons (CH3-CH=CH-) or 

aromatic carbons (CH3-Ar). Contour # 26, 27, and 28 were from the methylene group between 2 

double bonds (-CH=CHCH2CH=CH-). Contour #29 and 30 were from the methine group and 

methylene group connected to aromatic rings, respectively. Contour # 31 was assigned to 

methylene group α to COO. Contour #32 was from methylene group connected to aromatic C-O 

(-CH2-O-Ar). The rest of the contours #34-43 were from aromatic groups. 

 

 

Figure 22. 2D 1H-1H COSY spectrum of Kimmeridge bitumen from liquid-state NMR. 
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Figure 23. 2D 1H-13C HSQC spectrum of Phosphoria bitumen from liquid-state NMR (a), 

aliphatic region (b), and aromatic region (c). 
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Figure 24. 2D 1H-13C HSQC spectrum of Kimmeridge bitumen from liquid-state NMR (a), 

aliphatic region (b), and aromatic region (c). 
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Table 8. Contours selected from 2D 1H-13C HSQC spectrum of Phosphoria bitumen sample from 

liquid-state NMR and the possible chemical structure assignments.  

Contour 

# 

1H 

shift 

(ppm) 

13C 

shift 

(ppm) 

Chemical structure 
Contour 

# 

1H 

shift 

(ppm) 

13C 

shift 

(ppm) 

Chemical structure 

1 0.9 12 -(CH2)n-CH3 23 2.5 21 CH3-Ar or CH3-CH=CH- 

2 0.9 14 -(CH2)n-CH3 24 2.7 20 CH3-Ar or CH3-CH=CH- 

3 0.9 20 -CH(CH3)-CH2- 25 2.9 23 CH3-Ar or CH3-CH=CH- 

4 0.9 23 -(CH2)n-CH(CH3)2 26 2.7 27 -CH=CHCH2CH=CH- 

5 0.9 30 (CH3)2-cyclic alkane 27 2.8 30 -CH=CHCH2CH=CH- 

6 0.9 33 (CH3)2-cyclic alkane 28 2.9 31 -CH=CHCH2CH=CH- 

7 1.3 23 -(CH2)n-CH2-CH3 29 2.2 30 -CH-Ar 

8 1.3 30 -(CH2)n-CH2-CH3 30 2.4 34 -CH2-Ar  

9 1.3 32 -(CH2)n-CH2-CH3 31 2.4 43 -CH2-COO 

10 1.1 37 -CH2-CH- 32 3.7 58 -CH2-O-Ar 

11 1.2 39 -CH2-CH- 33 6.4 128 Aromatic ring –CH= 

12 1.3 37 -CH2-CH- 34 6.6 123 Aromatic ring –CH= 

13 1.5 29 -CH-(CH3)2 35 7 127 Aromatic ring –CH= 

14 1.4 33 -CH2-CH(CH3)-CH2- 36 7.2 126 Aromatic ring –CH= 

15 1.6 25 -CH2-CH2-COOR 37 7.4 125 Aromatic ring –CH= 

16 2.1 14 CH3-Ar or CH3-CH=CH- 38 7.6 120 Aromatic ring –CH= 

17 2.2 15 CH3-Ar or CH3-CH=CH- 39 7.6 126 Aromatic ring –CH= 

18 2.3 13 CH3-Ar or CH3-CH=CH- 40 7.7 123 Aromatic ring –CH= 

19 2.5 14 CH3-Ar or CH3-CH=CH- 41 7.7 121 Aromatic ring –CH= 

20 2.6 16 CH3-Ar or CH3-CH=CH- 42 7.8 122 Aromatic ring –CH= 

21 2.1 21 CH3-Ar or CH3-CH=CH- 43 7.9 123 Aromatic ring –CH=  

22 2.3 20 CH3-Ar or CH3-CH=CH-     
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2D HSQC spectrum of Kimmeridge bitumen is displayed in Figure 24, and the expanded 

aliphatic and aromatic regions shared almost all the contour spots as labeled in Figure 23. This 

indicated that the two bitumen samples extracted from Phosphoria and Kimmeridge shales had 

very similar molecular structures.   

 

 

Figure 25. 2D 1H-13C HSQC spectrum from HRMAS NMR of Phosphoria shale (a) and its 

aliphatic region (b), and Kimmeridge shale (c) and its aliphatic region (d). 
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HRMAS NMR spectra 

HRMAS NMR spectroscopy allows for the applications of liquid-state NMR techniques to 

samples that are not fully soluble, such as oil shale. Only the shale segments in contact with the 

solvent system showed NMR signals, and thus valuable information could be obtained on the 

interface moieties that were connected to the insoluble shale and mobile in the liquid phase. The 

HSQC spectra of Phosphoria and Kimmeridge shales from HRMAS NMR were presented in 

Figure 25. Their possible structure assignments were listed in Table 9. There were many similar 

signals as those in bitumen HSQC spectrum (Figure 23 b and Table 8), indicating that those 

structural fragments were most likely cleaved when swollen by organic solvents and that the 

structure of bitumen partially represented the structure of the organic matter in shale samples. 

DISCUSSION 

Kimmeridge clay formation is an important shale formation in UK and over much of 

northwest Europe, and has a history of multiple attempts at commercial exploitation because of 

the potential to produce millions of tons of shale oil (Speight, 2012). Analysis of shale oil generated 

from Kimmeridge formation has been carried out to provide information on oil shale genesis 

(Williams, 1987; Williams and Douglas, 1985, 1986). Kimmeridge clay is considered to be 

deposited during eustatic rise and transgression in an environment between open ocean and an 

enclosed marine basin (Gallois, 1976), which is consistent with the primary contribution of algal 

or bacterial organic matter source, and smaller yet various magnitude contribution of terrestrially 

derived organic material (Ramanampisoa and Disnar, 1994; Scotchman, 1991; Williams and 

Douglas, 1985).  
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Table 9. Contours selected from 2D 1H-13C HSQC spectrum from HRMAS NMR of Phosphoria 

and Kimmeridge shales and the possible chemical structures. 

Phosphoria Kimmeridge 

Contour 

# 

1H 

shift 

(ppm) 

13C 

shift 

(ppm) 

Chemical structure 

Contour 

 # 

1H 

shift 

(ppm) 

13C 

shift 

(ppm) 

Chemical structure 

1 0.84 14 -(CH2)n-CH3 1 0.87 14 -(CH2)n-CH3 

2 0.84 21 -CH(CH3)-CH2- 2 0.87 21 -CH(CH3)-CH2- 

3 0.82 32 (CH3)2-cyclic alkane 3 0.95 21 -(CH2)n-CH(CH3)2 

4 1.2 30 -(CH2)n-CH2-CH3 4 1.3 21 -(CH2)n-CH2-CH3 

5 1.5 30 -CH-(CH3)2 5 1.3 29 -(CH2)n-CH2-CH3 

6 1.6 40 -CH- 6 1.5 24 -CH2-CH2-COOR 

7 1.7 36 -CH- 7 1.7 33 -CH2-CH(CH3)-CH2-  

8 2.0 31 -CH2-Ar 8 1.9 21 -CH-CH2- 

9 2.2 33 -CH2-COO 9 2 30 -CH2-Ar 

10 6.0 74 -CH-O 10 2.1 29 -CH2-Ar 

    

11 2.2 33 -CH2-COO 

    

12 2.5 29 -CH2-CH=CH- 

    

13 2.5 21 -CH2-CH=CH- 

        14 6 74 -CH-O 

 

 

The predominant methylene signal in the 13C NMR multiCP spectrum of Kimmeridge shale 

sample (Figure 18 a) indicated the presence of poly-methylene chains in the molecular structure 
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of the organic matter in the sample, which was confirmed by the 1H NMR spectrum of the 

corresponding bitumen sample (Figure 20 d), and also was supported by  selective chemical 

degradation and GC data (Boucher et al., 1990). The different types of alkyl structures shown in 

the 2D 1H-13C HSQC spectrum of Kimmeridge bitumen sample (Figure 24 and Table 8) suggested 

extensive crosslinking, which also had been demonstrated before ((Boucher et al., 1990)). This 

might be the result of “vulcanization”, when sulfur was incorporated into lipids to form cross-links 

between long carbon chains for the macromolecule to gain resistance to diagenetic degradations 

(Boussafir et al., 1995). This was also consistent with rich heterocyclic sulfur compounds 

generated during hydrous pyrolysis of Kimmeridge kerogen (Eglinton et al., 1988a) . A great 

portion of the aromatic signals in the NMR spectra (Figure 18) of our Kimmeridge sample could 

be from those sulfur-containing compounds, such as alkylthiophene, alkylbenzothiophene, and 

alkyldibenzothiophene.  

Phosphoria formation is a major source rock for oil in Northern and central Rocky 

Mountain region (Claypool et al., 1978), and it is distinguished into four different facies based on 

their biomarker ratios (Dahl et al., 1993). The biomarkers detected in oil generated from 

Phosphoria source rocks included long chain alkanes as well as tricyclic alkanes (Silliman et al., 

2002) and triaromatic steroids (Clayton and King, 1987), which was supported by the liquid-state 

and HRMAS 2D 1H-13C HSQC spectrum of our Phosphoria sample (Table 8 and 9). Sulfur 

containing heterocyclic aromatics were also present in oil from Phosphoria sample (Silliman et al., 

2002), as it was in Kimmeridge sample. 

For both Phosphoria and Kimmeridge samples, the multiCP/MAS spectra of raw shale, 

kerogen, and extracted rock were very much alike (Figure 17 a, b, and c and Figure 18 a, b, and c), 

indicating that the insoluble organic fraction dominated in the shale samples so that removal of the 
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soluble fraction did not significantly affect the carbon moiety distribution, similar to the study of 

Green River shale and kerogen study (Cao et al., 2013a). The alkyl carbon moiety (methyl groups 

and other alkyl in Table 6) in both kerogens were slightly lower than that in raw shales, which was 

consistent with the fact that both bitumen samples were rich in aliphatic carbons shown in Figure 

20, resulting in the reduction of aliphatic carbons in kerogen samples relative to raw shales. These 

results showed that the acid treatments in kerogen isolation and chloroform treatment in bitumen 

extraction did not change the major organic component of Phosphoria and Kimmeridge shales 

except for the small proportion of soluble organic fraction. 

The multiCP/MAS spectra of both shale samples were similar, but the functional group 

distribution (Table 6) and aromaticity (Table 7) of the two shales showed their detailed differences. 

Besides the subtle differences between some minor functional groups such as ketone/aldehyde, 

carbonyl, and O-alkyl, the main difference was the aromaticity. The aromaticity of Kimmeridge 

sample was lower than that of Phosphoria sample. Using aliphatic carbon moiety and alkyl-

substituted aromatic moiety (Kelemen et al., 2007b), we could estimate that the average length of 

aliphatic chain in Kimmeridge shale was longer than that in Phosphoria shale.  

In spite of their differences in geologic age and geographical location, Kimmeridge and 

Phosphoria shale samples share many similarities in solid-state 13C NMR spectra, and the bitumen 

samples extracted from the two shales also shared a lot of same peaks in 2D 1H-13C HSQC spectra 

(Figure 23 and 13), indicating the same molecular structures (Table 8). Both samples are marine 

originated source rocks. The H/C ratio and S/C ratio of the two kerogens are very similar, with 

both bordering on the type IIS high sulfur marine kerogen type (Bolin et al., 2016). The two shales 

samples also generate similar distributions of hydrocarbon gases under hydrous pyrolysis and the 

bitumen samples have similar sulfur speciation in the XANES spectra (Bolin et al., 2016). The 
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similar hydrous pyrolysis products could explain the same assignments in the 2D 1H-13C HSQC 

spectra of two bitumen samples. 
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CHAPTER V 

CONCLUSIONS 

 

SUMMARY AND CONCLUSIONS OF THE RESEARCH 

As routine 13C solid-state NMR techniques in this dissertation, multiCP/MAS and 

multiCP/DD techniques can quickly generate quantitative spectra of the whole carbon and non-

protonated carbon moieties from the organic matter in oil shale samples. After integration using 

the spectra, the percentages of different carbon moieties were calculated, resulted in quantitative 

assignments of various functional groups. Functional group assignments are the building blocks in 

elucidating and constructing molecular structures of the organic matter in oil shales. Since the 

quality of shale oil is directly related to the types of hydrocarbons, which depends on the structural 

characteristics of kerogen in the shale, advanced solid-state 13C NMR is a good method for 

predicting the quality of crude oil generate by oil shale. 

Aromaticity can be calculated using the multiCP/MAS and multiCP/DD spectra of shale 

samples, and it complements vitrinite reflectance and Tmax from Rock-Eval pyrolysis on estimating 

thermal maturity of source rocks. Higher aromaticity generally corresponds with the source rock 

being more thermal mature. Higher aromaticity also means lower hydrogen index and lower 

aliphatic carbon content in the sample, which indicates low petroleum generating potential of the 

oil shale, supported by modified Fischer assay data. 

By investigating quantitative functional group distributions and detailed structural 

characteristics of three shales with different and arguably extreme heteroatom contents using 

advanced 13C solid-state NMR techniques, the following conclusions are drawn: 
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The high oxygen content in organic matter contained in the Ordovician Kukersite shale 

sample from Estonia corresponds with abundant aromatic C-O signals in the NMR results, and 

hence more non-protonated aromatic carbons. The non-protonated aromatic carbons are 

substituted with oxygen and alkyl chains. Meta dioxygen substitution is common. An improved 

structural model is constructed based on one from the literature and refined using our spectral data, 

and the simulated 13C NMR spectra of the model matched the measured spectra of Kukersite shale 

reasonably well. 

The high organic sulfur content in the organic matter present in Jordanian marinite shale 

from the Upper Cretaceous Ghareb Formation is mostly represented in the form of aromatic sulfur 

based on other studies, and is consistent with the high aromaticity of organic matter in the sample 

examined for this work. 

Upper Permian torbanite shale of the Glen Davis Formation contains organic matter with 

a relatively low total heteroatom content and produces comparatively simpler spectra with only 

aromatic and aliphatic bands detected due to the presence of few if any oxygen-containing 

functional groups.  

These results further previous work on Green River Formation and New Albany shale 

studies, among others, to examine how kerogen structure varies for different organic matter 

sources and depositional environments. By examining source rock with kerogens containing 

extreme heteroatom contents, we can assess the kinds of chemical structures that may be present 

in other more typical kerogens. With more reliable structural models of kerogen, it may be possible 

to refine models of thermal decomposition of kerogen to petroleum and potentially predict specific 

oil and gas properties a priori based solely on characterization of immature source rock samples 

(Durand, 1980b; Vandenbroucke and Largeau, 2007). 
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Two shale samples and their corresponding kerogens, extracted rocks, and bitumens were 

investigated using advanced solid-state NMR, liquid-state NMR, and HRMAS NMR techniques 

to characterize their possible molecular structual components. Despite the differences in geologic 

age and depositional location, Kimmeridge and Phosphoria formation have similar solid-state 13C 

NMR spectra from shale, kerogen, and extracted rock samples, and they share almost the same 

signals in liquid-state 2D 1H-13C HSQC spectra from bitumen samples. We speculate the organic 

matter in Kimmeridge and Phosphoria samples have very similar molecular structure. The 

speculation can be supported by elemental analysis and XANES spectral data. 

Advanced solid-state NMR techniques, along with liquid-state and HRMAS NMR 

techniques, have great ability in predicting oil yield of shale formation and quality of its shale oil 

by characterizing molecular structures of the organic matter in source rocks related to quantity and 

quality of potential hydrocarbon product.  

DIRECTION FOR FUTURE RESEARCH 

A good extension of this research is to develop a standard approach for predicting oil 

quantity and quality that would be produced by a shale quickly and non-destructively, using 

advanced solid-state NMR techniques. In order to reach this goal, a lot of well-studied shale 

formations should be measured with advanced NMR techniques to obtain quantitative data, and 

then the NMR data can be analyzed with other available data, such as elemental composition, 

mineralogy, chemical degradation, chromaography, mass spectrometry, infrared spectroscopy, 

Fischer assay, hydrous pyrolysis, and rock-eval pyrolysis. Statistical analyses can be applied when 

there are enough shale samples analyzed, and a good correlation between the NMR data and 

potential oil yied and quality data may be generated with a reasonable error. 



91 
 

 

Further research can also be carried out regarding the structural model of the kerogen in 

different shale formations. Quatitative solid-state NMR spectra are needed in order to construct a 

reliable model. Having more distictive functional groups in the structure improves the signals that 

can be presented in NMR spectra, and enhances the accuracy of the structural model. When 

simulated spetra match the experimental spectra on every single peak, the accuracy of the structural 

model is proven.   
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